164 research outputs found

    High-Overtone Bulk Acoustic Resonator

    Get PDF

    Beyond 5 GHz excitation of a ZnO-based high-overtone bulk acoustic resonator on SiC substrate

    Full text link
    This work describes the fabrication and characterization of an Au/ZnO/Pt-based high-overtone bulk acoustic resonator (HBAR) on SiC substrates. We evaluate its microwave characteristics comparing with Si substrates for micro-electromechanical applications. Dielectric magnetron sputtering and an electron beam evaporator are employed to develop highly c-axis-oriented ZnO films and metal electrodes. The crystal structure and surface morphology of post-growth layers have been characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) techniques. HBAR on SiC substrate results in multiple longitudinal bulk acoustic wave resonances up to 7 GHz, with the strongest excited resonances emerging at 5.25 GHz. The value of f.Q (Resonance frequency * Quality factor) parameter obtained using a novel Q approach method for HBAR on SiC substrate is 4.1 * 10^13 Hz which, to the best of our knowledge, is the highest among all reported values for specified ZnO-based devices

    High overtone Bulk Acoustic Resonators: application to resonators, filters and sensors

    Get PDF
    International audienceAcoustelectric devices have been used now for several decade to stabilize oscillators, to filter radio-frequency signals or to allow for physical and even chemical detection and measures.Among all the structures that have been developed in that purpose, one has been revealing particularly interesting for the development of high quality factor resonator on an extended range of frequency. It is based on the generation of high overtones in bulk acoustic wave resonant structure and therefore are currently called HBARs. These devices may be fabricated along various approaches but they always consist of a thin (or thinned) piezoelectric layer deposited or bonded onto a high quality single crystal material. The spectral response of this kind of device exhibit a periodic comb of peaks modulated by the transducer response, yielding resonances on a very large spectrum with various characteristics and properties. We present here the basic principles of such devices, their remarquable properties, the etchnologies required to manufacture them and the various applications they can be applied for. A focus is partcularly dedicated to oscillator stabilization and to wirelss sensor development

    Application of Thin Piezoelectric Films in Diamond-Based Acoustoelectronic Devices

    Get PDF
    The theory of external loading influence on acoustic parameters of piezoelectric five-layered structure as “Al/(001) AlN/Mo/(001) diamond/Me” has been developed. Oscillations in diamond-based high-overtone bulk acoustic resonators (HBARs) have been investigated in terms of 3D FEM simulation. Peculiarities of technology of aluminum-scandium nitride (ASN) films have been discussed. Composition Al0.8Sc0.2N was obtained to create the diamond-based HBAR and SAW resonator. Application of ASN films has resulted in a drastic increasing an electromechanical coupling up to 2.5 times in comparison with aluminum nitride. Development of ASN technology in a way of producing a number of compositions with the better piezoelectric properties has a clear prospective. SAW resonator based on “Al IDT/(001) AlN/(001) diamond” structure has been investigated in the band 400–1500 MHz. The highest-quality factor Q ≈ 1050 was observed for the Sezawa mode at 1412 MHz. Method of measuring HBAR’s parameters within 4–400 K at 0.5–5 GHz has been developed. Results on temperature dependence of diamond’s Q-factor at relatively low frequencies were quite different in comparison with the ones at the frequencies up to 5 GHz. Difference could be explained in terms of changing mechanism of acoustic attenuation from Akhiezer’s type to the Landau-Rumer’s one at higher frequencies in diamond

    Piezoelectric Materials

    Get PDF
    The science and technology in the area of piezoelectric ceramics are extremely progressing, especially the materials research, measurement technique, theory and applications, and furthermore, demanded to fit social technical requests such as environmental problems. While they had been concentrated on piezoelectric ceramics composed of lead-containing compositions, such as lead zirconate titanate (PZT) and lead titanate, at the beginning because of the high piezoelectricity, recently lead water pollution by soluble PZT of our environment must be considered. Therefore, different new compositions of lead-free ceramics in order to replace PZT are needed. Until now, there have been many studies on lead-free ceramics looking for new morphotropic phase boundaries, ceramic microstructure control to realize high ceramic density, including composites and texture developments, and applications to new evaluation techniques to search for high piezoelectricity. The purpose of this book is focused on the latest reports in piezoelectric materials such as lead-free ceramics, single crystals, and thin films from viewpoints of piezoelectric materials, piezoelectric science, and piezoelectric applications

    Piezoelectric-Layered Structures Based on Synthetic Diamond

    Get PDF
    Results of theoretical, modeling, and experimental investigation of microwave acoustic properties of piezoelectric layered structure “Me1/AlN/Me2/(100) diamond” have been presented within a wide frequency band 0.5–10 GHz. The highest among known material quality parameter Q × f ~ 1014 Hz for the IIa type synthetic diamond at operational frequency ~10 GHz has been found. Conditions of UHF excitation and propagation of the bulk, surface, and Lamb plate acoustic waves have been established and studied experimentally. Frequency dependencies of the impedance and quality factor have been studied to obtain a number of piezoelectric layered structure parameters as electromechanical coupling coefficient, equivalent circuit parameters, etc. Results of 2D finite element modeling of a given piezoelectric layered structure have been compared with the experimental ones obtained for the real high-overtone bulk acoustic resonator. An origin of high-overtone bulk acoustic resonator’s spurious resonant peaks has been studied. Results on UHF acoustic attenuation of IIa-type synthetic single crystalline diamond have been presented and discussed in terms of Akhiezer and Landau–Rumer mechanisms of phonon–phonon interaction. Identification and classification of Lamb waves belonging to several branches as well as dispersive curves of phase velocities have been executed. Necessity of introducing a more correct Lamb-mode classification has been recognized

    Performance optimization of lateral-mode thin-film piezoelectric-on-substrate resonant systems

    Get PDF
    The main focus of this dissertation is to characterize and improve the performance of thin-film piezoelectric-on-substrate (TPoS) lateral-mode resonators and filters. TPoS is a class of piezoelectric MEMS devices which benefits from the high coupling coefficient of the piezoelectric transduction mechanism while taking advantage of superior acoustic properties of a substrate. The use of lateral-mode TPoS designs allows for fabrication of dispersed-frequency filters on a single substrate, thus significantly reducing the size and manufacturing cost of devices. TPoS filters also offer a lower temperature coefficient of frequency, and better power handling capability compared to rival technologies all in a very small footprint. Design and fabrication process of the TPoS devices is discussed. Both silicon and diamond substrates are utilized for fabrication of TPoS devices and results are compared. Specifically, the superior acoustic properties of nanocrystalline diamond in scaling the frequency and energy density of the resonators is highlighted in comparison with silicon. The performance of TPoS devices in a variety of applications is reported. These applications include lateral-mode TPoS filters with record low IL values (as low as 2dB) and fractional bandwidth up to 1%, impedance transformers, very low phase noise oscillators, and passive wireless temperature sensors

    Shear Mode Piezoelectric Thin Film Resonators

    Get PDF
    corecore