768 research outputs found

    Kitting in the Wild through Online Domain Adaptation

    Get PDF
    Technological developments call for increasing perception and action capabilities of robots. Among other skills, vision systems that can adapt to any possible change in the working conditions are needed. Since these conditions are unpredictable, we need benchmarks which allow to assess the generalization and robustness capabilities of our visual recognition algorithms. In this work we focus on robotic kitting in unconstrained scenarios. As a first contribution, we present a new visual dataset for the kitting task. Differently from standard object recognition datasets, we provide images of the same objects acquired under various conditions where camera, illumination and background are changed. This novel dataset allows for testing the robustness of robot visual recognition algorithms to a series of different domain shifts both in isolation and unified. Our second contribution is a novel online adaptation algorithm for deep models, based on batch-normalization layers, which allows to continuously adapt a model to the current working conditions. Differently from standard domain adaptation algorithms, it does not require any image from the target domain at training time. We benchmark the performance of the algorithm on the proposed dataset, showing its capability to fill the gap between the performances of a standard architecture and its counterpart adapted offline to the given target domain

    Variable autonomy assignment algorithms for human-robot interactions.

    Get PDF
    As robotic agents become increasingly present in human environments, task completion rates during human-robot interaction has grown into an increasingly important topic of research. Safe collaborative robots executing tasks under human supervision often augment their perception and planning capabilities through traded or shared control schemes. However, such systems are often proscribed only at the most abstract level, with the meticulous details of implementation left to the designer\u27s prerogative. Without a rigorous structure for implementing controls, the work of design is frequently left to ad hoc mechanism with only bespoke guarantees of systematic efficacy, if any such proof is forthcoming at all. Herein, I present two quantitatively defined models for implementing sliding-scale variable autonomy, in which levels of autonomy are determined by the relative efficacy of autonomous subroutines. I experimentally test the resulting Variable Autonomy Planning (VAP) algorithm and against a traditional traded control scheme in a pick-and-place task, and apply the Variable Autonomy Tasking algorithm to the implementation of a robot performing a complex sanitation task in real-world environs. Results show that prioritizing autonomy levels with higher success rates, as encoded into VAP, allows users to effectively and intuitively select optimal autonomy levels for efficient task completion. Further, the Pareto optimal design structure of the VAP+ algorithm allows for significant performance improvements to be made through intervention planning based on systematic input determining failure probabilities through sensorized measurements. This thesis describes the design, analysis, and implementation of these two algorithms, with a particular focus on the VAP+ algorithm. The core conceit is that they are methods for rigorously defining locally optimal plans for traded control being shared between a human and one or more autonomous processes. It is derived from an earlier algorithmic model, the VAP algorithm, developed to address the issue of rigorous, repeatable assignment of autonomy levels based on system data which provides guarantees on basis of the failure-rate sorting of paired autonomous and manual subtask achievement systems. Using only probability ranking to define levels of autonomy, the VAP algorithm is able to sort modules into optimizable ordered sets, but is limited to only solving sequential task assignments. By constructing a joint cost metric for the entire plan, and by implementing a back-to-front calculation scheme for this metric, it is possible for the VAP+ algorithm to generate optimal planning solutions which minimize the expected cost, as amortized over time, funds, accuracy, or any metric combination thereof. The algorithm is additionally very efficient, and able to perform on-line assessments of environmental changes to the conditional probabilities associated with plan choices, should a suitable model for determining these probabilities be present. This system, as a paired set of two algorithms and a design augmentation, form the VAP+ algorithm in full

    Robotics Technology Crosscutting Program. Technology summary

    Full text link

    CPPS-3D: a methodology to support cyber physical production systems design, development and deployment

    Get PDF
    Master’s dissertation in Production EngineeringCyber-Physical Production Systems are widely recognized as the key to unlock the full potential benefits of the Industry 4.0 paradigm. Cyber-Physical Production Systems Design, Development and Deployment methodology is a systematic approach in assessing necessities, identifying gaps and then designing, developing and deploying solutions to fill such gaps. It aims to support and drive enterprise’s evolution to the new working environment promoted by the availability of Industry 4.0 paradigms and technologies while challenged by the need to increment a continuous improvement culture. The proposed methodology considers the different dimensions within enterprises related with their levels of organization, competencies and technology. It is a two-phased sequentially-stepped process to enable discussion, reflection/reasoning, decision-making and action-taking towards evolution. The first phase assesses an enterprise across its Organizational, Technological and Human dimensions. The second phase establishes sequential tasks to successfully deploy solutions. Is was applied to a production section at a Portuguese enterprise with the development of a new visual management system to enable shop floor management. This development is presented as an example of Industry 4.0 technology and it promotes a faster decision-making, better production management, improved data availability as well as fosters more dynamic workplaces with enhanced reactivity to problems

    Computational Foundations for Safe and Efficient Human-Robot Collaboration in Assembly Cells

    Get PDF
    Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    From a manual to a system-guided process: implementing change in a fast-moving consumer goods company in KwaZulu-Natal, South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The purpose of this study was to develop a change management framework in transitioning from a manual process to an automated system-guided process using digital technology for managing short-dated inventory in the logistics operations environment. The manual process at the logistics study site entailed the operational staff physically going through all bin locations of inventory in the warehouse and manually checking the shelf-life expiry date (SLED) of the inventory, and as recorded on manually created documents. A qualitative methodology was applied due to the exploratory nature of this study. The data collection strategies utilised were semi-structured interviews and focus groups. The participants were from a purposefully selected sample which constituted all levels of the operational staff. They were managers; despatch/receiving co-ordinators; inventory counters; clerical stock controllers; administration clerks; forklift drivers; reach truck drivers; and supervisors. There were fourteen interviews and three focus group interviews. The data were analysed thematically and subsequently the change management framework was imposed, which was the theoretical underpinning in support of the transition from a manual process to an automated system-guided process utilising digital technology. An understanding of the theoretical underpinning of the change management framework and the unified theory of acceptance and use of technology (UTAUT) emerged as the discussion developed. The application of the UTAUT model indicated user intention to embrace new technology. The thematic concepts that emerged from the data generated were technology exposure and awareness; skills and competencies; challenges and recommendations; and system implementation: manual-to-automated. The contributions and findings of this study included that the integration of technology and the workforce at the study site did not result in job losses, which is positive for the people, the company, and the economy. Policy contributes to, and informs, job security, skills development, ways of working, and technology adoption frameworks. The contribution from the leadership and management team, with their practical approach, supported the workforce in transitioning from a manual to an automated system-guided approach. One of the inherent fears that the participants cited was that of job losses. Effective communication; training; and management support and presence, contributed to the change in behaviour required to adopt the technology and embrace change. The study ultimately proposed the Logistics Change Management Model, which was adapted to the South African context and is applicable when transitioning from a manual to a system-guided process at the focal company. It is recommended that further studies are conducted to strengthen the theoretical framework

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)
    • …
    corecore