554 research outputs found

    Plasmonic Superlens Imaging Enhanced by Incoherent Active Convolved Illumination

    Full text link
    We introduce a loss compensation method to increase the resolution of near-field imaging with a plasmonic superlens that relies on the convolution of a high spatial frequency passband function with the object. Implementation with incoherent light removes the need for phase information. The method is described theoretically and numerical imaging results with artificial noise are presented, which display enhanced resolution of a few tens of nanometers, or around one-fifteenth of the free space wavelength. A physical implementation of the method is designed and simulated to provide a proof-of-principle, and steps toward experimental implementation are discussed

    Terahertz time-gated spectral imaging for content extraction through layered structures

    Get PDF
    Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers

    Performance Evaluation of a THz Pulsed Imaging System: Point Spread Function, Broadband THz Beam Visualization and Image Reconstruction

    Get PDF
    Terahertz (THz) technology is a promising research field for various applications in basic science and technology. In particular, THz imaging is a new field in imaging science, where theories, mathematical models and techniques for describing and assessing THz images have not completely matured yet. In this work, we investigate the performances of a broadband pulsed THz imaging system (0.2–2.5 THz). We characterize our broadband THz beam, emitted from a photoconductive antenna (PCA), and estimate its point spread function (PSF) and the corresponding spatial resolution. We provide the first, to our knowledge, 3D beam profile of THz radiation emitted from a PCA, along its propagation axis, without the using of THz cameras or profilers, showing the beam spatial intensity distribution. Finally, we evaluate the THz image formation on a test-sample composed by a regular linen natural pattern

    Terahertz deconvolution

    Get PDF
    The ability to retrieve information from different layers within a stratified sample using terahertz pulsed reflection imaging and spectroscopy has traditionally been resolution limited by the pulse width available. In this paper, a deconvolution algorithm is presented which circumvents this resolution limit, enabling deep sub-wavelength and sub-pulse width depth resolution. The algorithm is explained through theoretical investigation, and demonstrated by reconstructing signals reflected from boundaries in stratified materials that cannot be resolved directly from the unprocessed time-domain reflection signal. Furthermore, the deconvolution technique has been used to recreate sub-surface images from a stratified sample: imaging the reverse side of a piece of paper

    Efficient metallic spintronic emitters of ultrabroadband terahertz radiation

    Full text link
    Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-P\'erot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.Comment: 18 pages, 10 figure

    Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

    Get PDF
    Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 Όm3, can be optically switched off with less than 100 ΌW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10−9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation

    Fast image deconvolution for enhancement of the resolution in the video rate terahertz imaging

    Get PDF
    International audienceA fast image deconvolution algorithm is used to demonstrate the resolution enhancement of video rate camera acquired Terahertz images. Our algorithm is based on variable splitting technique with the use of a family of sparsity inducing regularizers for the first time in an image deconvolution application, it is also suitable for practical applications in industry with computationally constrained conditions. The results of the proposed process provide substantial enhancement on the quality and resolution of THz images

    Superresolution Enhancement with Active Convolved Illumination

    Get PDF
    The first two decades of the 21st century witnessed the emergence of “metamaterials”. The prospect of unrestricted control over light-matter interactions was a major contributing factor leading to the realization of new technologies and advancement of existing ones. While the field certainly does not lack innovative applications, widespread commercial deployment may still be several decades away. Fabrication of sophisticated 3d micro and nano structures, specially for telecommunications and optical frequencies will require a significant advancement of current technologies. More importantly, the effects of absorption and scattering losses will require a robust solution since this renders any conceivable application of metamaterials impracticable. In this dissertation, a new approach, called Active Convolved Illumination (ACI), is formulated to address the problem of optical losses in metamaterials and plasmonics. An active implementation of ACI’s predecessor the Π scheme formulated to provide compensation for arbitrary spatial frequencies. The concept of “selective amplification” of spatial frequencies is introduced as a method of providing signal amplification with suppressed noise amplification. Pendry’s non-ideal negative index flat lens is intentionally chosen as an example of a stringent and conservative test candidate. A physical implementation of ACI is presented with a plasmonic imaging system. The superlens integrated with a tunable near-field spatial filter designed with a layered metal-dielectric system exhibiting hyperbolic dispersion. A study of the physical generation of the auxiliary shows how selective amplification via convolution, is implemented by a lossy metamaterial functioning as a near-field spatial filter. Additionally the preservation of the mathematical formalism of ACI is presented by integrating the hyperbolic metamaterial with the previously used plasmonic imaging system. A comprehensive mathematical exposition of ACI is developed for coherent light. This provides a rigorous understanding of the role of selective spectral amplification and correlations during the loss compensation process. The spectral variance of noise is derived to prove how an auxiliary source, which is firstly correlated with the object field, secondly is defined over a finite spectral bandwidth and thirdly, provides amplification over the selected bandwidth can significantly improve the spectral signal-to-noise ratio and consequently the resolution limit of a generic lossy plasmonic superlens
    • 

    corecore