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Preface

The main content of this dissertation comprises of the five published journal arti-

cles in Chapters 2-6. Additionally, one section of a review article containing a rich

summary of the problem statement has been reproduced in Chapter 1. The neces-

sary permissions required to reproduce these articles have been obtained from each

publisher. All correspondence including letters of permission are in Appendix A.

The main contribution of the author to the overall research and body of knowledge

are:

1. The theoretical formulation and associated simulations of a loss compensation

and resolution enhancement technique for coherent, near-field, superresolution

imaging systems.

2. The physical implementation and verification of the proposed technique with

hyperbolic metamaterials and lossy Plasmonic superlenses.

3. The extensive mathematical derivation of the working principles and physics

of the technique with the greater scope of developing a noise-resistant imaging

theory, applicable to diverse problems in various fields pertaining to noisy linear

systems.

xi



4. Identifying and exploring the possibility of extending the resolution enhance-

ment technique in fields such as terahertz time domain spectroscopy, imaging

through atmospheric turbulence and high-resolution biomedical imaging.

5. Assistance during the experimental demonstration of the above concept with

incoherent light and fabrication of a micro-coil wire hyperbolic metamaterial

for a future experiment with coherent light.

The individual contributions for each chapter are as follows:

1 Chapter 2: A. Ghoshroy formulated the theory, performed numerical modeling and

developed the data analysis code for the primary results presented in the paper. A.

Ghoshroy wrote the paper, W. Adams, X. Zhang and D. Guney provided technical

comments and D. Guney edited the manuscript.

2 Chapter 3: A. Ghoshroy designed the metamaterial system, performed numerical

modeling and developed the data analysis code for the primary results presented

in the paper. A. Ghoshroy wrote the paper, W. Adams, X. Zhang and D. Guney

provided technical comments and D. Guney edited the manuscript.

1A. Ghoshroy, W. Adams, X. Zhang, and D. O. Guney, “Active plasmon injection scheme for
subdiffraction imaging with imperfect negative index flat lens,” J. Opt. Soc. Am. B 34, 1478
(2017).

2A. Ghoshroy, W. Adams, X. Zhang, and D. Guney, “Hyperbolic metamaterial as a tunable near-
field spatial filter to implement active plasmon-injection loss compensation,” Phys. Rev. App. 10,
024018 (2018).

xii



3Chapter 4: A. Ghoshroy performed the numerical modeling and data analysis to

obtain the main results in the paper. A. Ghoshroy organized and wrote the paper,.

W. Adams, X. Zhang, and D. Guney provided technical comments and D. Guney

edited the manuscript.

4Chapter 5: A. Ghoshroy and D. Guney developed the mathematical model and

theory and core derivations. A. Ghoshroy wrote the data analysis code to obtain the

main results in the paper. A. Ghoshroy organized and wrote the paper. W. Adams

and D. Güney provided technical comments. D. Guney edited the manuscript.

5 Chapter 6: A. Ghoshroy, and D. Guney formulated and researched extensions of

the core concepts to other domains. A. Ghoshroy and D. Guney organized and wrote

the paper. W. Adams provided technical comments.

3A. Ghoshroy, W. Adams, X. Zhang, and D. Guney, “Enhanced superlens imaging with loss-
compensating hyperbolic near-field spatial filter,” Opt. Lett. 43, 1810 (2018).

4A. Ghoshroy, W. Adams, and D. Guney, “Theory of coherent active convolved illumination for
superresolution enhancement,” J. Opt. Soc. Am. B 37, 2452 (2020).

5A. Ghoshroy, W. Adams, and D. Guney, “Super-resolution enhancement with active convolved
illumination and correlations,” SPIE 11081, 1108128 (2020).
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Abstract

The first two decades of the 21st century witnessed the emergence of “metamateri-

als”. The prospect of unrestricted control over light-matter interactions was a major

contributing factor leading to the realization of new technologies and advancement

of existing ones. While the field certainly does not lack innovative applications,

widespread commercial deployment may still be several decades away. Fabrication of

sophisticated 3d micro and nano structures, specially for telecommunications and op-

tical frequencies will require a significant advancement of current technologies. More

importantly, the effects of absorption and scattering losses will require a robust solu-

tion since this renders any conceivable application of metamaterials impracticable.

In this dissertation, a new approach, called Active Convolved Illumination (ACI),

is formulated to address the problem of optical losses in metamaterials and plas-

monics. An active implementation of ACI’s predecessor the Π scheme formulated

to provide compensation for arbitrary spatial frequencies. The concept of “selective

amplification” of spatial frequencies is introduced as a method of providing signal

amplification with suppressed noise amplification. Pendry’s non-ideal negative index

flat lens is intentionally chosen as an example of a stringent and conservative test

candidate.

xvii



A physical implementation of ACI is presented with a plasmonic imaging system.

The superlens integrated with a tunable near-field spatial filter designed with a lay-

ered metal-dielectric system exhibiting hyperbolic dispersion. A study of the physical

generation of the auxiliary shows how selective amplification via convolution, is imple-

mented by a lossy metamaterial functioning as a near-field spatial filter. Additionally

the preservation of the mathematical formalism of ACI is presented by integrating

the hyperbolic metamaterial with the previously used plasmonic imaging system.

A comprehensive mathematical exposition of ACI is developed for coherent light.

This provides a rigorous understanding of the role of selective spectral amplifica-

tion and correlations during the loss compensation process. The spectral variance

of noise is derived to prove how an auxiliary source, which is firstly correlated with

the object field, secondly is defined over a finite spectral bandwidth and thirdly, pro-

vides amplification over the selected bandwidth can significantly improve the spectral

signal-to-noise ratio and consequently the resolution limit of a generic lossy plasmonic

superlens.

xviii



Chapter 1

Introduction

1.1 An era of metamaterials

In the year 1959, Richard Feynman gave a lecture at the annual American Physical

Society meeting at Caltech. Inspired by developments in synthetic chemistry at the

time, Feynman considered the possibility of direct manipulation of the structural

composition of matter on an atomic or molecular level. He envisioned a dramatic

expansion of the range of obtainable properties which could be obtained with natural

materials at the time [1]. Feynman’s speech predated important discoveries such

as the scanning tunneling microscope and it failed to inspire the greater scientific

community at the time. Interestingly, the paradigm of metamaterials, now considered

1



one of the most active areas of modern physics would not become fashionable for

almost fifty years.

The science of metamaterials deals with engineering material properties on demand.

In principle, a material’s electromagnetic, thermodynamic or acoustic properties can

be engineered by carefully controlling various subwavelength structural parameters,

composition and other degrees of freedom including, but is not limited to, geometry,

arrangement and alignment of resonations or inclusions, shape, size, density and

periodicity of constituent elements. Therefore, metamaterials can be thought of as a

platform enabling the realization of countless devices and technologies, beyond what

nature can offer very much like the vision Feynman had conceived in 1959. Since the

onset of the twenty-first century, when the term metamaterial was first conceived, an

unprecedented series of milestones were made in a stunningly short span of time [2, 3].

Metamaterials have also impacted fundamental physics by fostering the observation

of new physical phenomena such as the experimental discovery of toroidal dipole

response in electrodynamics and the observation of the anapole [4].

However, the promise of such limitless possibilities came with a sizable share of chal-

lenges and despite the remarkable successes and milestones spanning almost two

decades of research, widespread deployment of metamaterials in commercial and in-

dustrial environments is still lacking. Several challenges such as design and fabrica-

tion for telecommunications or visible wavelengths, fully three-dimensional unit cells

2



to approach the bulk 3D limit and mitigation of losses require robust solutions before

metamaterials can transition from a scientific finding to a real-world usable material.

However, these challenges should not discourage popular interest in the subject since

the field is still somewhat young. For example, the industrial deployment of optical

fibers and the growth of the optical telecommunications industry in the late 1970s was

spurred after Bell Laboratories developed a vapor deposition process to mass-produce

a low-loss optical fiber, almost 60 years after Henry Round at Marconi Labs and Oleg

Vladimirovich Losev independently discovered the phenomenon of light emission from

a semiconductors in the 1920s.

1.2 Problem Statement and Goals1

The problem of overcoming optical losses in metamaterials and plasmonics is perhaps

the greatest fundamental challenge, rendering many of the proposed applications not

viable in real world scenarios. Progress towards the development of a robust solution

has been sluggish even after nearly two decades of efforts. Soukoulis and Wegener

noted the gravity of this problem and the desired improvement any potential solu-

tion must hope to achieve, especially at optical frequencies [5]. Meanwhile, multiple

strategies were proposed including gain medium [6], optical parametric amplification

1Reprinted from A. Ghoshroy, Ş. K. Özdemir and D. Guney, “Loss compensation in metamaterials
and plasmonics with virtual gain [Invited],” Opt. Mater. Express 10, 1862 (2020); with permission
from ©The Optical Society.
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[7], geometric tailoring and optimization [8], and metasurfaces [9]. Although not

eliminated completely, with many new devices metasurface approach substantially

minimized the attenuation suffered by bulk metamaterials. Alternative low-loss ma-

terials such as high-index dielectrics, nitrides [10], oxides [11], and two-dimensional

(2D) materials such as graphene, hexagonal boron nitride (h-BN) [12, 13], and their

2D analogue transition metal dichalcogenides (TMDCs) [14] have been considered as

potential replacements for metals.

The early years of metamaterial research were primarily centered around sub-

wavelength metallic resonators. However, the desired strong field enhancement and

confinement resulting from the metallic free electron response is accompanied by non-

radiative Ohmic losses. Geometric tailoring and optimization [8] of the underlying

current distribution within the resonator permits limited reduction of losses.

Replacement of metallic resonators with high-index dielectric resonators exhibiting

Mie resonances [15] in silicon [16], germanium, gallium phosphide, and certain per-

ovskites has been considered to be a promising route for overcoming losses [17]. Dielec-

tric resonators with strong displacement currents from bound electron oscillations are

free from Ohmic losses. This enables low-loss non-plasmonic metamaterials [18, 19]

and metasurfaces [20] having a plethora of exotic optical properties and light-matter

interactions [21] including linear [22] and nonlinear [23, 24] effects. Loss-free negative

index dielectric metamaterial was demonstrated at microwaves based on resonant

4



forward scattering [25]. However, this was achieved only for radiative losses using

lossless dielectrics. Material losses have been shown to increase at larger operation

frequencies, and available maximum range of refractive index is limited [17]. The

latter renders dielectric resonators diffraction limited with moderate local field en-

hancement and makes it unsuitable for applications requiring small-mode volumes

and large electric field enhancements, such as surface enhanced Raman spectroscopy

[26] and deep sub-wavelength miniaturization [27]. Hydrogenated amorphous silicon

(a-Si:H) appears as a relatively good candidate as a low-loss dielectric material for

visible spectrum [28]. A difficulty often encountered in the visible spectrum is the

fabrication of high aspect ratio dielectric resonators for phase control applications

[20, 29, 30, 31]. This difficulty arises from two competing processes: Minimizing

losses in the visible requires the use of larger bandgap materials. However, ma-

terials with larger bandgap have smaller refractive index for the same wavelength,

significantly limiting the field confinement. In short, the fundamental problem of si-

multaneous suppression of material losses while preserving field enhancement remains

elusive across the electromagnetic spectrum [26].

The use of gain materials involving pumped semiconductor quantum dots and dye

molecules in epoxy resins was also originally thought as a promising strategy for

active compensation of losses [6]. However, problems with the pump requirement,

stability, gain saturation [32], intense noise generation near the field enhancement

regions [33, 34, 35], causality [34, 35], and maintenance [32] have posed stringent

5



constraints and raised fundamental questions about the viability of this approach.

In recent years, graphene, h-BN, 2D TMDCs, and layered oxides have fostered sig-

nificant interest towards low loss optoelectronics and nanophotonics. 2D TMDCs

[36] are nanomaterials with a single plane of transition metal atoms (such as Mo,

W, Ta etc.) sandwiched (X-M-X) between two planes of chalcogen atoms (such as

Se, S, Te, etc.). Individual atomic planes are ambitiously used as building blocks for

artificially stacked materials to obtain the desired combined functionality [36]. The

sandwich structure provides unique opportunities to directly control material prop-

erties by inserting guest species at the van der Waals gap through intercalation [37].

Recently, the possibility of extremely low optical losses with TaS2 was shown and

2D TDMC-halide structures with engineered band structures and density of states

were proposed as alternative plasmonic materials with greatly suppressed intrinsic

losses [14]. Similarly, plasmonic and phonon-polaritonic properties exhibiting very

low optical losses have been demonstrated [12, 13, 38] for h-BN. However, prob-

lems associated with thermodynamic stability, control of surface construction with

low defect densities, charge transfers, and built-in electric fields in heterostructures

impose cumbersome fabrication and design challenges for 2D materials [39]. Addi-

tionally, continuous or pulsed laser induced thermal or non-thermal damage to the

crystal structure is a serious concern [39]. Energetic phonons, hot electrons due to

electron-electron and electron-phonon interactions have been shown to damage the

crystal structure through ionization and Coulombic explosion process [40, 41]. Laser

6



induced damage strongly depends on the underlying defect density [39]. High quality

atomic layers fabricated with chemical vapor deposition have higher damage thresh-

olds than other processes such as liquid-phase exfoliation due to their relatively low

defect densities [42, 43, 44].

It is also worth mentioning the numerous attempts made to find alternative low-loss

plasmonic materials especially in the optical regime. Candidates such as alkali-noble

intermetallics [45, 46], and transition metal nitrides [10], doped semiconductors and

transparent conducting oxides [47] were proposed for infrared and optical frequencies.

However, the performance of these materials is still lower than that of the noble metal

counterparts.

Fortunately, finding the elusive “metal” [48] with losses several orders of magnitude

less than naturally occurring noble metals is not the only hope for transitioning plas-

monics and metamaterials into a practical field from a purely research enterprise.

From a perspective of light-matter interactions, the above research enterprises can

be broadly classified under the engineering of “matter” based solutions to obtain a

more favorable interaction with incident light compared to naturally occurring noble

metals. The research presented in this dissertation considers the prospect of engi-

neering a “light” based solution to mitigate the effects of a lossy interaction with the

metamaterial. In principle, the concept has some commonalities with more recent

efforts on “virtual gain” particularly in the compensation of losses in metamaterials

7



and plasmonics. Virtual gain, here, is fundamentally different than traditional ap-

proaches and is defined as the result of an amplification in a medium acquired with

no intrinsic gain mechanism (i.e., optical gain from parametric, nonlinear, lumines-

cence, fluorescence, or emission processes is not involved). A very recent review on

the latter can be found in [26]. The term was coined for the first time in [49] and has

been adopted and expanded here with the hope of initiating discussions of alternative

explorations in a broader context.

In 2015, Sadatgol et al. proposed employing an coherent optical amplification tech-

nique, called plasmon-injection (Π or PI) scheme, to amplify the field inside a lossy

metamaterial through coherent superposition [50]. Coherent amplification, has been

used to provide gain to mode-locked laser pulses inside a passive optical cavity through

constructive interference with a secondary source [51, 52]. To the best of our knowl-

edge, this was the first application of coherent amplification to loss compensation in

metamaterials. The Π scheme uses an auxiliary source to amplify the domestic field

in a lossy metamaterial giving the illusion of suppressed material losses with enhanced

transmission. Theoretical implementations of the Π scheme with near-field imaging

systems involving negative index materials (NIMs) [53], superlenses [54], and hyper-

lenses [55, 56] showed a resolution enhancement. Additionally, the auxiliary source

was shown to emulate linear deconvolution [53].

This dissertation generalizes the Π scheme to the more encompassing active convolved

8



illumination (ACI) and brings the concept closer virtual gain, within the context of a

loss compensation technique which is not simply restricted to plasmons. The distinc-

tive features of ACI, such as selective spectral amplification and correlations, are de-

veloped along with a rigorous mathematical study for coherent light. A greater objec-

tive of this dissertation is twofold. Firstly, this dissertation develops a noise-resistant

imaging theory and generalizes the use of ACI in a wide range of problems related

to noisy linear systems, for example, those in atmospheric imaging [57, 58, 59, 60],

time-domain spectroscopy [61, 62], optical communications [63, 64, 65, 66]. A second

objective, which is briefly touched and is left as a potential future work, introduces

the idea of active spectrum and correlation manipulation for applications involv-

ing PT symmetric non-Hermitian photonics [67, 68], and even quantum computing

[60, 69, 70]. ACI has also been experimentally demonstrated for a far-field imaging

system with incoherent light and a second complementary experimental demonstra-

tion for coherent light is also planned as a future work.

1.3 Summary of Research

Chapter 2 introduces the first active implementation of the Π scheme in the presence

of noise with Pendry’s non-ideal negative index flat lens adopted as a stringent test

candidate. The concept of the auxiliary source is expanded beyond traditional decon-

volution based inverse filtering methods. The keyword active emphasizes the use of

9



external physical energy even though linear transmission through passive materials is

considered. The principal concept is that a physically convolved auxiliary source can

restore weak signals while countering adverse noise amplification effects by selective

amplification of high spatial frequency features deep within the subwavelength regime.

The selective amplification approach also enables recovery of high spatial frequencies

previously buried within the noise. Consequently, the resolution limit of the lossy

metamaterial lens can be substantially extended thus enabling ultrahigh-resolution

imaging. This chapter therefore establishes the theoretical formalism of the active

compensation process and convolution is used as a means to correlate the auxiliary

source to the original signal whose enhanced transmission is desired.

Chapter 3 presents a proof-of-principle physical implementation of the compensation

scheme with an experimentally demonstrated plasmonic lens. A 50nm thick Ag film

functioning as a lossy plasmonic lens at wavelength λ = 365nm is selected since it is

incapable of resolving subwavelength apertures separated by one-sixth of the illumi-

nation wavelength (λ/6). The apertures are assumed to be illuminated by a normally

incident plane wave and the auxiliary source is generated by integrating a hyperbolic

metamaterial, functioning as a near-field spatial filter, between the lens and the aper-

tures. A high-intensity illumination above 1 mW/µm2 is used to generate the desired

auxiliary source and the restoration of previously undetectable Fourier components

of the image spectrum with minor noise amplification is illustrated. Consequently,

this allows the perfect reconstruction of three apertures separated by (λ/6) with the

10



integrated system which was previously not achievable by the plasmonic lens alone.

Chapter 4 presents a detailed discussion of the physical generation of the auxiliary

source. A hyperbolic metamaterial (HMM), designed with a multilayered aluminium-

dielectric structure, and functioning as a near-field spatial filter is used to present and

verify the physical generation of a functioning auxiliary source. Selective amplifica-

tion is implemented by carefully selecting the structural parameters of the layered

system such that the HMM has a relatively high-transmission peak at a tunable

center frequency and low transmission on either side. The layered structure is in-

tentionally selected to exploit its shift invariance property. This ensures the physical

implementation of a convolution operation necessary to correlate the auxiliary source

to the original signal. With the aid of numerical simulations, this chapter presents the

physical implementation of the mathematical abstractions developed in Chapter 2,

where the idea of selective amplification with auxiliary source is first introduced. The

idea of scaling selective amplification with the controlled amplitude of illumination is

also presented and verified.

Chapter 5 formulates a comprehensive theoretical framework of ACI for coherent

light. The underlying model specifically highlights the distinctive features of ACI

and provides a rigorous mathematical analysis of the process. ACI’s auxiliary source

is designed with three essential characteristics. Firstly, it is correlated with the object

field. Second, it is defined over a finite spectral bandwidth. Third, it is amplified

11



over that selected bandwidth. These features are achieved by an auxiliary source

coherently superimposed with the object field. The noise variance in the Fourier

domain is derived to prove that utilizing the auxiliary source with the above properties

can significantly improve the spectral signal-to-noise ratio and resolution limit.

Chapter 6 presents potential implementations and extensions of ACI with various

systems. Even though concept of ACI was first numerically demonstrated as a loss

compensation method, it later rapidly evolved into a scheme for the mitigation of

information loss in noisy and lossy linear systems. The ACI has since turned into

a scheme for spectrum manipulation using selective amplification and correlations.

Therefore, in chapter 6 a brief study of the potential implementation of ACI in imaging

through scattering and random media, THz time domain spectroscopy, and quantum

computing is considered. The factors which limit the performance of each system

are briefly discussed followed by an argument on how the limits can be potentially

extended using selective amplification with ACI.
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the resolution of hyperlens by the compensation of losses without gain media.

Progress In Electromagnetics Research C, 70:1–7, 2016.
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Chapter 2

Active plasmon injection scheme

for subdiffraction imaging with

imperfect negative index flat lens1

1Reprinted from A. Ghoshroy, W. Adams, X. Zhang, and D. O. Guney, “Active plasmon injection
scheme for subdiffraction imaging with imperfect negative index flat lens,” J. Opt. Soc. of Am. B

34, 1478 (2017); with permission from ©The Optical Society.
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2.1 Introduction

Controlling the interaction of photons and electrons at the sub-wavelength elec-

tromagnetic regime has led to a wide variety of novel optical materials and ap-

plications in the territory of metamaterials and plasmonics relevant to computing,

communications, defense, health, sensing, imaging, energy, and other technologies

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. The prospect of circumventing Rayleigh’s

diffraction limit, thereby allowing super-resolution imaging has regained tremendous

ground since Pendry theorized that a slab of negative (refractive) index material

(NIM) can amplify and focus evanescent fields which contain information about the

sub-wavelength features of an object [39]. A recent review of super-resolution imaging

in the context of metamaterials is given in [40].

However, a perfect NIM does not exist in nature and although recent developments

in metamaterials have empowered their realization, a fundamental limitation exists.

The presence of material losses in the near infrared and visible regions is significant

[41, 42, 43]. This compromises the performance of the theoretical perfect lens [44, 45]

since a significant portion of evanescent fields is below the noise floor of the detector

and is indiscernible. Therefore, new efforts were directed towards the compensation

of losses in metamaterials [46, 47, 48]. Among the schemes that were developed, gain
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media to compensate intrinsic losses gained popularity [49, 50]. However, Stockman

[51] demonstrated that the use of gain media involved a fundamental limitation. Using

the Kramers-Kronig relations, they developed a rule based on causality which makes

loss compensation with gain media difficult to realize.

Recently, a new compensation scheme, called plasmon injection or Π scheme [52],

was proposed. The Π scheme was conceptualized with surface plasmon driven NIMs

[53] and achieves loss compensation by coherently superimposing externally injected

surface plasmon polaritons (SPPs) with local SPPs. Therefore, absorption losses in

the NIM could be removed without a gain medium or non-linear effects. Although

the Π scheme was originally envisioned for plasmonic metamaterials [52, 54, 55], the

idea is general and can be applied to any type of optical modes. In [56] Adams, et.

al used a post processing technique equivalent to this method. They demonstrated

that the process can indeed be used to amplify the attenuated Fourier components

and thereby accurately resolve an object with sub-wavelength features.

Although this form of passive inverse filter provides compensation for absorption

losses, it is also prone to noise amplification [56]. This is illustrated in figure 2.1

which shows an object with three Gaussian features separated by λo/4, where λo is

the free space wavelength. Noise is prominent in the Fourier spectra beyond ky
ko

= 2.5

as seen in figure 2.2. However, the compensated image is still reasonably well resolved.

Consider now the object shown in figure 2.3, which has four Gaussians separated by
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Figure 2.1: Electric field magnitude squared [V m−1]2 distribution in the
object and image planes for an object with features separated by λo/4 with
λo = 1µm. The compensated image is reasonably well resolved with the
equivalent inverse filter post-processing technique.
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Figure 2.2: Fourier spectra [V m−1] of the three Gaussians and the com-
pensated image in figure 2.1, and the raw image obtained without loss com-
pensation. The compensation filter is the inverse of the transfer function.
The compensated image spectrum is obtained simply by multiplying the raw
image spectrum with the compensation filter. Notice that the noise can be
seen for high spatial frequencies which is amplified by the compensation.
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Figure 2.3: Electric field magnitude squared [V m−1]2 for the four Gaus-
sians, in the object and image planes, separated by λo/4 with λo = 1µm.
The compensated image is very poorly resolved with one of the Gaussians
missing.

λo/4. The Fourier spectra of the raw image, shown in figure 2.4, demonstrates how

the feature at ky
ko

= 2 is not distinguishable under the noise. The final compensated

image, when subject to the same compensation scheme, is poorly resolved. We define

a feature as any spatial Fourier component that has substantial contribution to

the shape of the object. It is clear that the Fourier components beyond ky
ko

= 2

have a significant contribution to the four Gaussians and must be recovered from the

image spectrum in order to accurately resolve the object. Therefore, noise presents a

limitation which must be overcome to make the Π scheme versatile.

In the present work, we demonstrate how the Π scheme can be significantly improved

with the use of a physical auxiliary source to recover high spatial frequency features

that are buried under the noise. We show that by using a convolved auxiliary source
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Figure 2.4: Fourier spectra [V m−1] of the four Gaussians and the compen-
sated image in figure 2.3, and the raw image along with the compensation
filter. Notice that the feature at

ky
ko

= 2 is not discernable under the noise
and cannot be recovered well with the compensation.

we can amplify the object spectrum in the frequency domain. The amplification

makes the Fourier components that are buried in the noise distinguishable. This

allows for the recovery of the previously inaccessible object features by adjusting the

amount of compensation from the Π scheme.

The technique presented in this paper is based on the same negative index flat lens

(NIFL) as in [56]. We use the words ”passive” and ”active” to distinguish between

the compensation schemes applied in [56] and in this work, respectively. Therefore,

the inverse filter post processing used in [56] and figures 2.1-2.4 to emulate the physi-

cal compensation of losses can be called passive Π scheme, since no external physical

auxiliary is actively involved as opposed to the active Π scheme here, where the direct

physical implementation using an external auxiliary source as originally envisioned in
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[52] is sought. The active compensation scheme allows us to control noise amplifica-

tion and hence extend the applicability of the Π scheme to higher spatial frequencies.

2.2 Theory

We define the optical properties of the NIFL with the relative permittivity and per-

meability expressed as ǫr = ǫ
′

+ iǫ
′′

and µr = µ
′

+ iµ
′′

, where ǫ
′

= −1 and µ
′

= −1.

COMSOL Multiphysics, the finite element method based software package that we

use here, assumes exp(jωt) time dependence. Therefore, the imaginary parts of ǫr

and µr are negative for passive media. In this paper we have used 0.1 as the imaginary

parts of both ǫr and µr which is a reasonable value given currently fabricated meta-

material structures [57, 58, 59]. The geometry used to numerically simulate the NIFL

in COMSOL is given in figure 2.5. The first step is characterizing the NIFL with a

transfer function. For a detailed discussion on the geometry setup and transfer func-

tion calculations, the reader is referred to [56]. Here, we present a brief mathematical

description of the compensation scheme.

The spatial Fourier transforms of the electric fields in the object and image planes

are related by the passive transfer function, TP (ky) of the imaging system, which can
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Figure 2.5: The geometry built in COMSOL to perform numerical simula-
tions (not to scale). OP and IP are the object and image planes, respectively.
Electric field is polarized along the z-axis (pointing out of plane). The object
is defined as an electric field distribution [Ez(y)] on the object plane. The
operating wavelength is λo = 1µm and 2d = 0.5µm. Blue, white, and orange
regions are the NIFL, air, and perfectly matched layer (PML), respectively.

be calculated with COMSOL. This is expressed mathematically as

I(ky) = TP (ky)O(ky). (2.1)

Here O(ky) = F{O(y)} and I(ky) = F{I(y)}, where O(y) and I(y) are the spatial

distribution of the electric fields in the object and image planes, respectively, and

F is the Fourier transform operator. According to [56] the passive compensation

is defined by the inverse of the transfer function. Hence, the loss compensation is

achieved by multiplying the raw image spectrum in Eq. 2.1 with the inverse of the
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transfer function given by

CP (ky) =

[

TP (ky)

]

−1

. (2.2)

For ”active” compensation we first define a mathematical expression given by

A(ky) = 1 + P (ky), (2.3)

P (ky) = Poexp

[

−
(ky
ko

− kc)
2

2σ2

]

, (2.4)

where Po is a constant. kc controls the center frequency of the Gaussian, ko = 2π
λ

is

the free space wave number and σ controls the full width at half maximum (FWHM)

of the Gaussian. We convolve A(y) = F−1{A(ky)} with the object O(y) in the spatial

domain and denote the new object by O
′

(y). This is expressed as

O
′

(y) =

∞
∫

−∞

O(y)A(y − α)dα. (2.5)

We shall refer to this convolved object as the total object. Since convolution in the

spatial domain is equivalent to multiplication in the spatial frequency domain, the

Fourier spectrum of the total object O
′

(ky) = F{O′

(y)}, is related to the original

object by

O
′

(ky) = O(ky) +O(ky)P (ky). (2.6)

The second term on the RHS will be referred to as the ”auxiliary source,” where Po in
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Eq. 2.4 defines its amplitude at the center frequency kc . Note that this term, which

is a convolution of O(y) with P (y) = F−1{P (ky)}, represents amplification in the

spatial frequency domain provided that P (ky) > 1. Even though the auxiliary source

is object dependent, as we will discuss later, the external field to generate auxiliary

source does not require prior knowledge about the object. Now, the Fourier transform

of the fields in the object and image planes are related to each other by the transfer

function of the NIFL as defined by Eq. 2.1. Therefore, in response to the total object,

the new field distribution in the image plane, expressed as I
′

(y) = F−1{I ′

(ky)}, is

transformed as

I
′

(ky) = TP (ky)O
′

(ky), (2.7)

where we can plug in the value of O
′

(ky) from Eq. 2.6 to obtain the convolved image

I
′

(ky) = TP (ky)O(ky) + TP (ky)O(ky)P (ky). (2.8)

The second term on the RHS of Eq. 2.8 is a measure of the residual amplification

which managed to propagate to the image plane. Therefore, by controlling Po, from

the object plane, we can tune the necessary amplification of high spatial frequency

features to raise the desired frequency spectrum above the noise floor in the image

plane. This process is illustrated in figure 2.6 for different auxiliary amplitudes.
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Figure 2.6: Fourier spectra [V m−1] of an arbitrary object illustrating how
the auxiliary amplitude can be tuned from the object plane to raise the
image spectrum above the noise floor by controlling the amplification. P (ky)

is centered at kc =
ky
ko

= 3 with σ = 0.13.

The new ”active” loss compensation scheme must consider the extra power that is

now available in the image spectrum. We distinguish the compensation scheme from

Eq. 2.2 with the subscript ”A”. We start by defining the active transfer function of

the NIFL as

TA(ky) =
I

′

(ky)

O(ky)
. (2.9)

The numerator of Eq. 2.9 is the image of the total object which is given by Eq. 2.8.

This transfer function is called ”active” because it considers the auxiliary to be a part

of the imaging system. Plugging in the value of I
′

(ky) from Eq. 2.8 into Eq. 2.9 we

obtain the following expression for the active transfer function,

TA(ky) = TP (ky) + TP (ky)P (ky). (2.10)
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The active compensation filter is simply defined as the inverse of the active transfer

function and is expressed mathematically by

CA(ky) =

[

TP (ky) + TP (ky)P (ky)

]

−1

. (2.11)
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Figure 2.7: Comparisons of the passive transfer function TP (ky) and com-
pensation filter CP (ky) with the active transfer function TA(ky) and com-
pensation filter CA(ky). P (ky) incorporated into the active compensation

filter is centered at kc =
ky
ko

= 3 with σ = 0.13.

Figure 2.7 illustrates the active and passive transfer functions and the correspond-

ing loss compensation schemes. The amount of active compensation drops within

2.5 < ky
ko
< 3. This indicates that in this region the auxiliary source is expected to

provide compensation to the image. Therefore, the greater the auxiliary power, the

lower is the required compensation through inverse filter within that region of spatial

frequencies. It is interesting to note at this point the similarity of the active trans-

fer functions in figure 2.7 and those in [60]. In the latter, however, highly stringent
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conditions are imposed on the negative index lens to obtain such a transfer function.

2.3 Noise Characterization

The active compensation scheme will be applied to an NIFL imaging system affected

by noise where the noise process is a circular Gaussian random variable. Although

there are many different sources of noise, they can be broadly classified into, ”signal-

dependent” (SD) and ”signal-independent” (SI). The random nature of noise man-

ifests itself in the form of an uncertainty in the level of the desired signal. This

uncertainty is quantified by the standard deviation σn. The actual distortion can

be thought of as a random selection from an infinite set of values and the selection

process obeys a probability distribution function. The standard deviation describes

the range of values which have the greatest likelihood of being selected. When the

underlying signal is distorted by multiple independent sources of noise, each charac-

terized by Gaussian distributions, then the variance (σ2
n) of the total noise is the sum

of the variances of individual noise sources [61].

SD noise, as the name implies, is characterized by a σn that is intricately related

to spatial (or temporal) variations in the incoming signal intensity. The magnitude

of the signal distortion therefore also increases with the signal strength. Sources of
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SD noise in an imaging system can be present on the detector side or the transmis-

sion medium. For example, the statistical nature of photons manifests itself as noise

which has Poissonian statistics. In radiographic detection equipment, such sources

of noise are called quantum mottle or quantum noise [62, 63]. Another source of SD

noise originates from roughness of the transmission media, which in sub-wavelength

imaging systems can be for example, surface roughness of the NIFL. One can think

of surface irregularities as electromagnetic scatterers which radiate in different direc-

tions, distorting the propagating wave. Previous experiments on the impact of surface

roughness [64, 65, 66] showed that increasing material losses in the NIFL improved the

image resolution of the perfect lens for relatively large surface roughness. Although

this may seem counter-intuitive, it can be explained if roughness is modelled as a

source of scattering. Adding material loss is equivalent to lowering the power trans-

mission of the lens. This lowers the magnitude of the excitation field responsible for

scattering effects and in turn reduces the magnitude of the scattered field. If material

losses are kept constant, the scattering process will be proportional to the intensity of

illumination provided to the object. Therefore, such kind of noise is amplified as the

illumination intensity is increased. On the other hand, the SI noise is quantified by

a standard deviation which is not a function of the incoming signal. Therefore, the

random nature of the noise will be visible only when the incoming signal amplitude

is comparable to the distortions due to the SI noise. A good example of this is ”dark

noise”, which affects a CCD sensor even in the absence of illumination [67].
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A well known model [68] used to describe the spatial distribution of a signal that has

been distorted with both SD and SI sources of noise is

r(y) = s(y) + f(s(y))N1(y) +N2(y), (2.12)

where s(y) is the noiseless or ideal signal and r(y) is the noisy version. N1(y) and

N2(y) are two statistically independent random noise processes with zero mean and

Gaussian probabilities with standard deviations σn1 and σn2, respectively. The noise

processes N1(y) and N2(y) are signal independent. The signal dependent nature of

noise is modelled by modulating N1(y) using the function f(s(y)). Generally, f(s(y))

is a non-linear function of the ideal signal itself which is chosen based on the system

which Eq. 2.12 is attempting to describe. For example, f(s(y)) is usually considered

to be the photographic density which is unitless when modelling signal-dependent

film grain noise. Therefore, f(s(y))N1(y) represents the effective signal dependent

noise term. We can re-write the expression in Eq. 2.12 as

r(y) = s(y) +NSD(y) +NSI(y), (2.13)

where the standard deviation of NSD(y) is f(s(y))σn1 and the subscripts SD, SI

distinguish between the sources of noise. The noise model of Eq. 2.12, referred to

as the signal modulated noise model, is used for signal estimation purposes with the

Wiener filter. A detailed discussion on this can be found in [68, 69, 70, 71]. However,
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we will use Eq. 2.13 in this paper for mathematical convenience to analyse the relative

contributions of SD and SI noise.

In the NIFL imaging system which we consider, the ideal signal s(y) will be the

electric field distribution on the image plane, that is I(y) and I
′

(y) for passive and

active schemes, respectively. In [60], Chen, et. al adopted a 60dB signal to noise

ratio (SNR) in their negative index lens considering an experimental imaging system

detector [72]. This corresponds to a SD standard deviation of 10−3I(y). In this work,

we adopt the same standard for the SD noise. Additionally, we assume a SI noise

process in the imaging system by adopting a spatially invariant standard deviation of

10−3[V/m]. This means that even in the absence of illumination, there is a constant

background noise of the order of 1 mV/m in the detector. Although the value of the

SI noise is chosen arbitrarily, this does not limit the results discussed in this paper,

since the SI noise can be easily suppressed by additional auxiliary power.

By taking into consideration the SNR standard used by Chen, et. al [60] and the

mathematical form of Eq. 2.13 we can frame the equations for the noisy images as

IN(y) = I(y) +NSD(y) +NSI(y) (2.14)

and

I
′

N(y) = I
′

(y) +N
′

SD(y) +N
′

SI(y) (2.15)
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corresponding to the ideal images described by Eqs. 2.1 and 2.8, respectively. The

subscript N indicates the noisy image. The standard deviations of the noise processes

are

σn(SD) = 10−3I(y), (2.16)

σ
′

n(SD) = 10−3I
′

(y) (2.17)

and

σn(SI) = σ
′

n(SI) = 10−3 V/m. (2.18)

Eqs. 2.16 - 2.18 fully describe the random variables that are used to construct the SI

and SD noise terms in Eqs. 2.14 and 2.15.
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Figure 2.8: Electric field [V m−1] distributions in the object and image
planes. The fields on the image planes are multiplied by the window function
to reduce the errors in the Fourier transform. The total object has been
scaled down by ≈ 104.
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2.4 Results

Having described how both SD and SI noise are added to the system, the next step

is to evaluate the performance of active-compensation and compare with the passive

version. We will attempt to image the previously exemplified object comprising four

Gaussian features, separated by λo

4
with λo = 1µm and compare the results of passive

and active compensation. Note that due to the finite extent of the image plane, it

is necessary to multiply the electric fields with a window function to ensure that

the field drops to zero where the image plane is abruptly terminated. Otherwise,

errors are introduced in the Fourier transform calculations. Windowing the field

distribution simply reduces these sources of error, which will be then visible only in

the higher spatial frequencies. Since these errors are very small compared with the

amplitude of the SD and SI sources of noise, they do not have a significant impact

on the calculations. Increasing the length of the image plane along the y-axis can

also reduce these errors, but because of computational constraints this may not be

desirable.

Figure 2.8 shows the spatial electric field distributions on the object and image planes.

Noise was artificially added to the fields on the image plane that were calculated with

COMSOL. The resultant noisy images are indicated by the red and green lines in the

figure. The Tukey (tapered cosine) window function was applied to the image plane
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only. The Fourier transforms of the images, with and without added noise are shown

in figure 2.9. The black line, which corresponds to IN(ky) in Eq. 2.14, shows how the

added noise has clearly affected the raw image spectrum beyond ky
ko

= 2, where all

of the object features are now completely buried under the noise and indiscernible.

However, the blue line, which corresponds to I
′

N(ky) in Eq. 2.15, shows how these

features can be recovered with the convolved auxiliary.

We propose the following iterative process to apply the auxiliary source. We then use

active compensation filter to reconstruct the image spectrum.

1. Select an arbitrary kc in the region where the noise has substantially degraded

the spectrum. Choose a guess auxiliary amplitude by selecting P0.

2. Convolve the object with A(y) to obtain the total object.

3. Measure the electric fields on the image plane corresponding to the total object.

4. Re-scale P0 for the selected kc if necessary, to make sure that adequate ampli-

fication is available in the image plane and noise is not visible in the Fourier

spectrum.

5. Select another kc on the noise floor and ensure that there is sufficient overlap

between the adjacent auxiliaries.

6. Repeat the processes in 1 − 5 by superimposing those multiple auxiliaries until

the transfer function of the imaging system is reasonably accurate. We were
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restricted by the inaccuracy of the simulated passive transfer function TP (ky)

beyond ky
ko

= 4.7 which prevented us from going beyond.

Note that in the above steps the selection of Po does not require prior knowledge

about the object. The blue and green lines of figure 2.9 show the total images with

and without added noise, respectively. They include four auxiliary sources with the

center frequencies kc = ky/ko = 2.8, 3.1, 3.6, 4.2 and Po = 3000, 10000, 4×105, 106,

respectively, with the same σ = 0.35. The final A(y) was then convolved with the

object and the resulting total field distribution on the object plane is shown by the

blue line in figure 2.8.

Active compensation filter, defined by Eq. 2.11 and illustrated in figure 2.10, is then

multiplied in the spatial frequency domain by the total image spectrum with the

added noise. The resulting compensated spectrum is the red line of figure 2.10. The

noise, which was visible in the total image spectrum beyond ky
ko

= 4.5, is also amplified

in this reconstruction process. However, in the regions where the auxiliary source is

sufficiently strong, suppression of noise amplification is evident. The reconstructed

spectrum perfectly coincides with the original object shown by the black curve in

figure 2.10. The light blue line corresponds to the passively compensated image ob-

tained by multiplying Eq. 2.2 (i.e., dark blue line in figure 2.10) with the noise added

raw image (i.e., black line in figure 2.9). The advantage of the active compensation

over its passive counterpart is therefore clearly evident from the reconstructed Fourier
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spectrum. After the loss compensation process, the spectrum is truncated at ky
ko

= 4.7

because the simulated transfer function loses accuracy.
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Figure 2.9: Amplitude of the Fourier transforms [V m−1] on a log scale.
Red and green lines are the image spectra I(ky) and I

′

(ky) with no added
noise, respectively. The blue line shows the image of the total object with
added noise, I

′

N (ky). Noise is visible at
ky
ko

> 4.5 due to the inadequate
amplification. The apparent noise in the pink line are due to the numerical
errors introduced by the Fourier transform and shifts to higher

ky
ko

values
after applying the Tukey window as seen in the red line.

Figure 2.7 shows that the passive transfer function starts to flatten beyond ky
ko

= 4.5,

even though the analytical transfer function monotonically decreases (see figure 3

in [60]), inaccurate simulated transfer function TP (ky) indicates that it is no longer

possible to perform the required compensation accurately (see Eq. 2.11). More

precisely, the imaging system requires more compensation than the transfer function

predicts. The reconstructed spectrum therefore starts to deviate from the original

object when ky
ko
> 4.5 as seen in the red plot of figure 2.10, indicating inadequate

compensation. This was one of the main reasons why we were unable to image
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beyond ky
ko

= 5.
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Figure 2.10: Fourier spectra [V m−1] of the reconstructed images illustrat-
ing the difference between active and passive compensation. The passive
compensation has significantly amplified the noise whereas the active one
does not.

Additionally, reconstructing the object features successfully requires a strong ampli-

fication. The auxiliary amplitude necessary to produce this amplification is very high

and it starts to generate substantial electric field oscillations towards the edges of the

image plane. Because the image plane is finite along the y-axis and the electric field

is abruptly cut at a point where it is non-zero, a computational error is introduced

in the spatial Fourier transform. An artefact of this can be seen in figure 2.10 where

the red plot shows that the feature at ky
ko

= 1 is slightly shifted. The error is more

prominent when the intensity of illumination is increased. Extending the size of the

image plane along the y-axis mitigates the error at the expense of computational or

physical resources.
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Figure 2.11: Reconstructed images showing the difference between active
and passive compensation schemes. Note that the passively compensated
image has been scaled down by 107.

Note that towards the tails of the amplification, or when ky
ko
> 4.5, the amplification

is not strong enough to overcome the noise. Hence, there should be sufficient overlap

between the two adjacent auxiliaries. The FWHM of P (ky), controlled by σ, can be

selected arbitrarily. In our simulations we were limited by the finite image plane. A

very narrow P (ky) in the spatial frequency domain translates to a wide field distri-

bution in the spatial domain. This created additional field oscillations towards the

edges of the image plane increasing the errors in the Fourier transform calculations.

Figure 2.11 shows the amplitude squared of the reconstructed fields illustrating the

improvement of the active over passive compensation scheme.
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2.5 Discussion

The active compensation scheme works, because the convolved auxiliary source allows

us to “selectively amplify” spatial frequency features of the object. This amplification

cannot be achieved simply by the superposition of the object with an object indepen-

dent auxiliary source. This is illustrated in figure 2.12 where we set O(ky) = 1V m−1

in the second term of Eq. 2.6 and use the same P (ky) distributions in figure 2.9.

The blue and green lines correspond to the images of the object superimposed with

the object independent auxiliaries with and without added noise, respectively. The

buried object spectrum at ky
ko

= 3 shown in figure 2.9 has gone undetected.
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Figure 2.12: Fourier spectra [V m−1] of the raw image superimposed with
several object independent auxiliaries. Such superposition does not provide
amplification and hence the feature at

ky
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= 3 is not recovered. Note that
the black and red lines are the raw images with and without added noise,
respectively, as also shown in figure 2.9.
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The convolution process to construct the auxiliary source that was described in this

paper can be thought of as a form of structured light illumination or wavefront engi-

neering [73, 74, 75, 76, 77, 78, 79, 80]. Along these lines, for example, a plasmonic lens

imaging system was discussed recently in [73], where the authors described the fields

on the image plane by Eq. 2.1 that contains an illumination function as a result of

a phase shifting mask. Spatial filters based on hyperbolic metamaterials [81, 82, 83]

may be promising for the implementation of the proposed convolution. For example,

an object illuminated with a high intensity plane wave and projected on such spatial

filters can physically implement the convolved auxiliary source corresponding to the

second term in Eq. 2.6 and used in step 2 of the iterative reconstruction process.

Here, the spatial filter needs to be engineered to have a transfer function of the form

similar to Eq. 2.4. The object (i.e., such as an aperture based object illuminated

by a plane wave) is to be placed on top of this additional metamaterial layer. The

field distribution at the exit of this layer would be the convolution of the object field

distribution with the point spread function of the layer, hence leading to the auxil-

iary source term in Eq. 2.6 (i.e., second term). One way to engineer such a transfer

function is with the hyperbolic metamaterials which support high spatial frequency

modes. In [83], for example, the transmission coefficient for the transverse magnetic

waves in a hyperbolic medium was shown to have multiple peaks in the high spatial

frequency region. The position of these peaks can be tuned by changing the filling
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fraction or the thickness of the hyperbolic medium. If one has engineered a meta-

material with a transfer function having one transmission peak P0 around a certain

spatial frequency (i.e., center spatial frequency kc in Eq. 2.4) and is zero everywhere

else, the iterative process where P0 is re-scaled (i.e., to control amplification) is func-

tionally equivalent to re-scaling the amplitude of the plane wave E0 illuminating the

object. It is also worth mentioning here that this physically means actively adjusting

the coherent plasmon injection rate in the imaging system to compensate the losses

as conceptualized in [52]. On the other hand, controlling the center frequency will

require multiple or tunable metamaterial structures where the transfer function can

be tuned to show transmittance peaks at different center frequencies. Therefore, it

would be advantageous to have a broad transmittance in a physical implementation

as long as the noise amplification does not start to dominate. Another possible way

to construct the necessary transfer function may be with the use of metasurfaces [84],

which are ultrathin nanostructures fabricated at the interface of two media. The

scattering properties of the sub-wavelength resonant constituents of the metasurfaces

can be engineered to control the polarization, amplitude, phase, and other properties

of light [74, 75, 76, 77, 85, 86]. This can allow one to engineer an arbitrary field

pattern from a given incident illumination [85, 86].

In order to understand how the active compensation enhances the resolution limit of

the NIFL we need a deeper understanding of the effect of the noise on the ideal image

spectrum. Eqs. 2.16 and 2.17 tell us that the signal dependent noise is amplified
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proportionally with the illumination. But since the active compensation seems to

work so well, can we say that the noise is not amplified to the same extent as the

signal? Then, would it be possible to achieve the same results by simply increasing

the intensity of the plane wave illuminating the object? To address these questions

we will consider below the “weak illumination,” “structured illumination” and “strong

illumination” cases.

We will take the Fourier transforms of Eqs. 2.14 and 2.15 and analyze how each noise

term contributes to the total distortion of the ideal image under the three illumination

schemes. The linearity of the Fourier transform allows us to plot each term in the

equations separately and these are shown in figures 2.13 - 2.15 for the weak, strong,

and structured illuminations, respectively. In the strong illumination case we have

used a plane wave whose electric field is 108 times stronger than the weak illumination.

The green and black lines in figures 2.13 - 2.15 correspond to the images with and

without added noise, respectively. The Fourier transforms of the SI and SD noise are

the blue and gold lines, respectively, which add up to the total noise shown by the

red line.

To compare the performance of the imaging system under the three illumination

schemes, we will see how closely the noise added images overlap with the images with

no added noise. We should note that the spatial distribution of the SD noise will be

spread out over multiple Fourier components [87] and therefore the random nature
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Figure 2.13: Fourier spectra [V m−1] of the raw images with and without
added noise illustrating the contribution of the SD and SI noise to the total
distortion of the image under the weak illumination case.

of noise will not be visible in the spatial frequency domain. This can be seen in the

gold plots which are fairly smooth compared to the blue lines.
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Figure 2.14: Fourier spectra [V m−1] of the raw images with and without
added noise illustrating the contribution of the SD and SI noise to the total
distortion of the image under the strong illumination case. The SD noise is
amplified approximately by a factor of 108 throughout the spectrum and the
contribution of the SI noise is very small.
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Figure 2.15: Fourier spectra [V m−1] of the convolved images with and
without added noise illustrating the contribution of the SD and SI noise to
the total distortion of the image under the structured illumination case. The
SD noise is approximately at the same level as the weak illumination except
that the noise is redistributed.

If we compare the SD noise spectra in figures 2.13 and 2.14 we immediately con-

clude that as we increase the intensity of the illumination, the SD noise is amplified

throughout the spectrum. However, a slight improvement to the noisy spectrum over

the weak illumination is visible within the region 2 < ky
ko
< 3. Additionally, if we ana-

lyze figure 2.13, where the gold line intersects the black line, we see that in the strong

illumination case in figure 2.14, only the Fourier components until this intersection

point are recovered. The intersection marks the spatial frequency at which the ideal

image (i.e., raw image with no added noise) I(ky) matches the Fourier transform of

the SD noise NSD(ky). Beyond this point, we can say that the ideal image is com-

pletely buried under the SD noise alone. As we steadily increase the intensity of the

illumination, I(ky) and NSD(ky) increase by the same proportion and therefore, the

value of ky
ko

where the two intersect does not change. We can therefore say that the
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improvement in the noisy spectrum in figure 2.14 is due to the signal rising above the

SI noise which does not change with the illumination intensity. Further increments

in the strength of the illumination will not improve the noisy image spectrum.

On the other hand, if we study the SD noise spectrum in figure 2.15, we can see that

it is approximately at the same average level as figure 2.13. This is not surprising if

we compare the green and red plots of figure 2.8. We can see that the spatial electric

field distribution of the noise added images I
′

N(y) and IN(y) are comparable. The

only difference is that I
′

N(y) has high spatial frequency features. Since the standard

deviation of the SD noise is proportional to the amplitude of the image, according

to Eqs. 2.16 and 2.17, we can see why the SD noise is approximately the same in

both the weak and structured illumination schemes. Note that under the structured

illumination, the noise added convolved image closely follows the ideal image until

ky
ko

= 4.5. This can be pushed to even higher spatial frequencies if the transfer function

characterizing the lens is accurate. Also, note that the structured illumination has

successfully suppressed the computational errors in the Fourier transform which are

visible in the black line in figure 2.13 beyond ky
ko

= 3. These errors are amplified by a

factor of 108 times in figure 2.14.

From the above discussion we conclude that by using structured illumination the SD

noise is not amplified but redistributed when compared with the strong illumination.

Therefore, it is possible to raise the high spatial frequency features of the object above
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the noise. This is the primary reason why structured illumination can accurately

resolve the image while strong illumination fails.

The technique is generally applicable to any arbitrary object with the use of any plas-

monic or metamaterial lens provided that accurate transfer function for the imaging

system is available. A selective amplification process is used to recover specific ob-

ject features by controlling P0 near and beyond where the noise floor is reached in

the Fourier spectrum of the raw image. Therefore, no prior knowledge of the object

is required. However, a necessary criterion is a sufficiently accurate transfer func-

tion in the region where the auxiliary is applied to correctly estimate the required

amount of amplification. It should be noted that different objects may require dif-

ferent auxiliaries, since the spatial frequency at which the noise floor is reached may

vary for different objects. Therefore, it would be instrumental to have a tunability

mechanism for the versatility of the imaging system. Even though a single narrow-

band auxiliary would be still sufficient to enhance the resolution of the raw image,

further enhancement in the resolution would demand either superimposing multiple

narrowband auxiliaries or a single sufficiently broadband auxiliary within the range

of accurate transfer function. Narrowband auxiliaries require larger image plane and

more post-processing while a single broadband auxiliary requires less post-processing

and smaller image plane at the expense of possibly higher noise amplification. Simi-

larly, unnecessarily large amplitude of a narrowband auxiliary may excessively amplify

the noise. Another likely limitation arises from increasingly large power loss in the
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deep subwavelength regime, which requires increasingly high amount of amplification

to reconstruct extremely fine details of the object. This does not only reduce the

efficiency but might also introduce undesired non-linear and thermal effects in the

optical materials, hence, limiting the resolution of the imaging system.

2.6 Conclusion

In summary, we proposed an active implementation of the recently introduced plas-

mon injection scheme [52] to significantly improve the resolution of Pendry’s non-ideal

negative index flat lens beyond diffraction limit in the presence of realistic material

losses and SD noise. Simply by increasing the illumination intensity, it is not gen-

erally possible to efficiently reconstruct the image due to the noise amplification.

However, in the proposed active implementation one can counter the adverse noise

amplification effect by using a convolved auxiliary source which allows for a selective

amplification of the high spatial frequency features deep within the sub-wavelength

regime. We have shown that this approach can be used to control the noise amplifi-

cation while at the same time recover features buried within the noise, thus enabling

ultra-high resolution imaging far beyond the previous passive implementations of the

plasmon injection scheme [56, 88]. The convolution process to construct the aux-

iliary source in the proposed active scheme may be realized physically by different

methods, metasurfaces [74, 75, 76, 77, 78, 84, 85, 86] and hyperbolic metamaterials
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[81, 82, 83, 89] being the primary candidates. A more detailed analysis on the design

of such structures to implement the convolved auxiliary source will be the focus of

our future research. Finally, we should note that we purposefully focused on im-

perfect negative index flat lens here that poses a highly stringent and conservative

problem. However, in the shorter term the proposed method can be relatively easily

applied to experimentally available plasmonic superlenses [1, 2, 3, 64, 66, 73] and

hyperlenses [4, 5, 6, 7, 8]. Our findings also raises the hopes for reviving Pendry’s

early vision of perfect lens [39] by decoupling the loss and isotropy issues toward a

practical realization [90, 91, 92, 93, 94, 95].
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[75] Anders Pors, Michael G. Nielsen, René Lynge Eriksen, and Sergey I. Bozhevolnyi.

Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano

Letters, 13(2):829–834, 2013.
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Chapter 3

Enhanced superlens imaging with

loss-compensating hyperbolic

near-field spatial filter1

1Reprinted from A. Ghoshroy, W. Adams, X. Zhang, and D. O. Guney, “Enhanced superlens imag-
ing with loss-compensating hyperbolic near-field spatial filter,” Opt. Lett. 43, 1810 (2018); with
permission from ©The Optical Society.
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Controlling the interaction of light with metamaterials (MM) has instigated poten-

tially revolutionary applications such as imaging beyond diffraction limit [1, 2, 3, 4],

perfect absorbers [5], invisibility cloaks [6], and many others [7, 8]. However, especially

in the visible spectrum, MMs have significant dissipative losses in their constituent

metallic structures that dampen the coupled electron-light oscillations (i.e., surface

plasmon polaritons (SPPs)). In the context of superresolution imaging, losses limit

the resolution of ”superlenses” hindering their advantages in applications such as

nanoimaging and nanolithography [9, 10]. Loss compensation schemes involving non-

linear effects [11] and electrically or optically pumped gain media [12, 13, 14] were

developed. Although these approaches have shown substantial promise at optical fre-

quencies, their usefulness has been limited in imaging. This is because preserving the

amplitude and phase relationships between fields in time and space is difficult with

gain-assisted MMs due to the stability and gain saturation issues that can lead to

significant noise amplification [15].

Our approach to loss compensation employs an ”auxiliary source,” which injects SPPs

to amplify the local SPPs of a plasmonic MM. The technique was initially conceptu-

alized for a single wavevector in [16]. An auxiliary source capable of amplifying an

arbitrary wavevector was also envisioned and loss compensation scheme was named

the ”plasmon-injection” or Π scheme. Theoretical studies later showed that the tech-

nique is similar to a linear deconvolution [17] capable of enhancing [17, 18, 19, 20] the

resolution limits of previously studied near-field imaging systems employing negative
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index MMs, plasmonic lenses and hyperlenses. However, in a physical implementa-

tion of the Π scheme, a detailed understanding of the auxiliary source was necessary.

These were later presented in [21] where the word ”active” is used to distinguish the

Π scheme from previous ”passive” counterparts [17, 18, 19, 20]. It was shown that

the auxiliary must provide amplification to a narrow band of high spatial frequencies

to avoid amplifying noise and must be constructed by a physical convolution with the

object field. Following this revelation, it was shown how a hyperbolic metamaterial

(HMM) functioning as a tunable near-field spatial filter presents a possible method

to construct an auxiliary source with the above properties [22].

This letter describes for the first time, a coherent light physical implementation of the

active Π scheme. A HMM spatial filter is integrated into a near-field imaging system

to construct the convolved auxiliary source with selective amplification capabilities

and an iterative reconstruction process [21], and is used to reconstruct the image. A

plasmonic imaging system operating at wavelength λ = 365 nm with a 50 nm thick Ag

lens is selected. The lens is located symmetrically between object and image planes

separated by 100 nm. This superlens is incapable of resolving subwavelength features

at one-sixth of the illumination wavelength (λ/6) primarily due to material losses

and noise. Numerical calculations, performed with the finite element based software

package COMSOL Multiphysics, show how the active Π scheme when implemented

with the system allows the λ/6 resolution. Additionally, the reconstruction process

requires no prior knowledge of the object and the concept can be extended to other
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near-field imaging systems at different wavelengths.

A schematic of the Ag lens imaging system, with and without the integrated HMM

spatial filter is shown in figures 3.1(a) and (b), respectively. The spatial filter is con-

structed by alternately stacking layers of Al with dielectrics. The imaging system is

embedded inside a dielectric with relative permittivity ǫd = 2.5 similar to an exper-

imental Ag lens [23]. The relative permittivities of Ag and Al at λ = 365 nm are

ǫAg = −1.8752 + 0.5947i and ǫAl = −18.179 + 3.2075i, respectively calculated from

the Drude-Lorentz model [24]. The systems are excited with a transverse magnetic

(TM) polarized field from the object plane and the responses are extracted as a com-

plex magnetic field from the image plane. The object and image planes are marked

by dashed lines in figures 3.1(a) and (b). Both geometries are padded with perfectly

matched layers (PMLs) shown in blue while the edges of the PMLs are backed by

scattering boundary conditions shown by pink lines. The extent of the geometry

along the y-axis is 80λ and 9500 mesh elements are defined at each boundary parallel

to the y-axis with the smallest mesh element being approximately equal to 3 nm.

Transfer functions are calculated by using a TM point source excitation on the object

plane. A Gaussian field distribution with full width at half maximum of 6 nm is

used to mimic the point source. Prior to all image processing calculations, noise is

introduced into the measured fields from the image plane by assuming that the spatial

distribution of the field is measured by a detector with an array of pixels. The signal

recorded at each pixel is distorted by a combination of signal dependent (SD) and
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Figure 3.1: The geometry of the imaging system (a) with and (b) without
the integrated spatial filter (not to scale). In the Π scheme, the object
plane in (a) is illuminated by a high-intensity (above 1 mW/µm2) plane
wave. The resultant field in the image plane is then deconvolved to use in
the reconstruction of the high resolution image. This process is equivalent
to superimposing the object field in the object plane in (b) with a loss
compensating auxiliary field followed by the deconvolution. The transfer
functions are calculated from the field distributions on the image planes
using point source excitations on the object planes. The HMM image plane
is assumed to be the last interface. In all the imaging processes, spatial
random noise is added in the image planes before any post-processing.

signal independent (SI) noise processes. The corresponding noisy image is calculated

according to the “signal-modulated noise” model [25, 26, 27], employed previously in

[21]. This work uses 0.025I(y) A/m and 0.005 A/m for the standard deviations of

SD and SI noise, respectively and I(y) is the spatial distribution of the noiseless or

ideal signal on the image plane. Note that these values have larger standards than an

experimental optical detector [28] and are selected to highlight the adequacy of the

active Π scheme in noisy systems.
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The efficacy of the active Π scheme in imaging is exemplified with an arbitrary object

with 3 Gaussian features separated by λ/6. The object is defined as a real TM

polarized field on the object plane (see figure 3.1). In a physical imaging system, no

prior knowledge of the object will be available. Therefore, only the raw data from

the image plane is used to pinpoint the spatial frequency at which the first instance

of the auxiliary source should be applied. For this purpose, the Ag lens without

the integrated spatial filter (see figure 3.1(b)) is used to image the object field. The

measured amplitude and phase of the raw image are corrupted with noise and are

shown by the green lines in figures 3.2(a) and (b), respectively. It is evident that the

Ag lens is incapable of resolving the object shown by the black line in figure 3.2(a).

The amplitude of the Fourier transforms of the object and the raw image are shown

in figure 3.2(c) while figure 3.2(d) shows the contributions of the SD and SI noise.

Figure 3.2(c) shows how the losses and noise progressively degrade the image spectrum

beyond ky ≈ 2k0, where k0 is the free-space wavenumber. Eventually, the image

spectrum is completely overwhelmed by the noise and cannot be recovered by passive

deconvolution or increased illumination intensity since both processes proportionally

amplify noise [21]. In conclusion, a selective amplification with the auxiliary must be

initiated from ky ≈ 2k0 and progressively moved to higher spatial frequencies. Note

that the Fourier spectra in figures 3.2(c) and (d) are truncated at ky = 7k0 because

the calculated transfer function loses accuracy beyond this point. Hence, the selective

amplification process can be applied until ky = 7k0. One important reason for the
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Figure 3.2: (a) Amplitude of the magnetic field distribution of the object
and the raw image from the object and image planes (see figure 3.1(b)). The
inset shows the two-dimensional (2D) pattern of the magnetic field amplitude
along the imaging system. (b) The phase of the magnetic field of the raw
image. The object is purely real and has zero phase. (c) The amplitude of
the Fourier transform of the object and the raw image. (d) The contributions
of the SD and SI noise to the raw image.

failure of the numerically calculated transfer function is the finite spatial extent of

the image and object planes which introduces errors in the Fourier transforms due to

the sharp truncation of the fields [21].

In order to design an auxiliary source to cover the spectral band 2k0 ≤ ky ≤ 7k0,

tunable HMM spatial filters with pass-bands within this range will be used below. The

pass-band of the HMM spatial filter can be tuned by changing the relative permittivity

of the constituent dielectric layer and the filling fraction, because this shifts the type

II hyperbolic dispersion of the filters [22]. Six HMM spatial filters are designed to

cover the above range. The design parameters are listed in table 3.1. The metallic

layer is set to Al and the overall thickness of the HMMs are kept constant at 365 nm
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for consistency. The relative permittivities for the dielectrics listed in table 3.1 at

λ = 365 nm are obtained from [29, 30, 31, 32, 33, 34]. The amplitude and phase of

the complex transfer function corresponding to the HMM spatial filters are shown in

figures 3.3(a) and (b), respectively.

Table 3.1

Design parameters of the HMM spatial filters.

Dielectric Relative Number of Filling
permittivity unit cells fraction

SiO2 2.2147 10 0.65
Al2O3 3.18587 10 0.65
Si3N4 4.05373 10 0.65
ZrO2 5.06205 10 0.65
MoO3 6.031 + 1.1908i 10 1.1
T iO2 8.2886 + 0.10186i 12 1.1

Figure 3.3: (a) Amplitude and (b) phase of the transfer function of each
HMM spatial filter. The phase plot shows only the region of high trans-
mission since the calculated phase is irrelevant and not reliable outside the
pass-band of the filter due to poor transmission.

It is instructive to illustrate the effect of selective amplification with an auxiliary

source with one filter-lens system. Therefore, we first select the integrated Al−ZrO2

HMM spatial filter (see figure 3.3(a)). The object is illuminated with a high intensity

(about 700 mW/µm2) coherent light source and then imaged with the integrated
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system. The corresponding image measured by the detector is called the ”active

image.” The amplitude and phase of the active image are shown in figures 3.4(a) and

(b), respectively. The Fourier transform of the active image and the object spectrum

are shown by dark green and black lines, respectively, in figure 3.4(c). Figure 3.4(d)

shows the contribution of the SD noise. Comparing the active image spectrum in

figure 3.4(c) with the raw image spectrum in figure 3.2(c), it is evident that the noise is

not visible in the active image spectrum within the pass-band of the Al−ZrO2 spatial

filter. However, the raw image spectrum is predominantly noisy in the same spectral

band. Additionally, the active image spectrum also shows a node at ky = 4k0 which

is not detectable in the raw image spectrum. Since the missing Fourier component

is within the pass-band of the filter, we must conclude that the node is a feature of

the object which was previously buried under the noise. Importantly, the SD noise

level for the integrated Al − ZrO2 HMM spatial filter does not increase at the same

rate as the input field (compare the dark green solid line in figure 3.4(d) and red solid

line in 3.2(d)) due to the nontrivial superposition of the pass-band spatial frequencies

with other frequencies in the image plane in the presence of spatial random noise.

Similar behavior is observed with the other filters (only three are shown in figure 3.4

for clarity). This is the essence of how the selective amplification with the auxiliary

source allows us to recover the object features with little noise amplification.

After determining the active image spectrum for each filter-lens integrated system, the

final step is a post-processing technique where the noisy portions of the raw image
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Figure 3.4: (a) Amplitude and (b) phase of the magnetic field distribution
of the active images with different filters. The same color code as in figure 3.3
is used for the filters. The inset in (a) shows the 2D pattern of the magnetic
field amplitude along the integrated imaging system using the Al − SiO2

filter. (c) The amplitudes of the Fourier transforms of the object and the
active images. (d) The contributions of the SD noise spectra.

spectrum are substituted with the noise-free portions of the relevant active image

spectrum and then deconvolved with an active transfer function. The active image

spectrum for the jth spatial filter is first expressed as

I(j)a (ky) = H0Tl(ky)P
(j)(ky)O(ky), (3.1)

where Tl(ky), P
(j)(ky) are the transfer functions of the Ag lens and the j(th) HMM

spatial filter, respectively. O(ky) is the object spectrum and H0 is the incident plane-

wave illumination amplitude. The noise-free portion of each active image spectrum
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is selected by multiplying Eq. 3.1 with a rectangular function

R(j)(ky) =















1

∣

∣

∣

∣

ky−k
(j)
c

W (j)

∣

∣

∣

∣

≤ 1
2

0 otherwise.

(3.2)

of width W (j) and centered at k
(j)
c defined for the jth integrated system. The equiva-

lent portions of the raw image spectrum are substituted by the selected active image

spectra. The resulting total image spectrum can be written as

I
′

(ky) = I(ky)

[

1 −
6

∑

j=1

R(j)(ky)

]

+
6

∑

j=1

I(j)a (ky)R
(j)(ky), (3.3)

where I(ky) is the raw image spectrum. Similarly, the active transfer function Ta(ky)

is obtained by substituting identical portions the Ag lens transfer function with the

integrated system transfer function and is expressed as

Ta(ky) = Tl(ky)

{

1 −
6

∑

j=1

R(j)(ky) +
6

∑

j=1

H0P
(j)(ky)R

(j)(ky)

}

. (3.4)

The final reconstructed image is obtained by multiplying I
′

(ky) from Eq. 4.2 with the

inverse of the active transfer function in Eq. 3.4 (i.e., active deconvolution). W (j),

k
(j)
c , and H0 which were used for this reconstruction are listed in table 3.2 for each

filter-lens integrated system. Note that two adjacent rectangle functions should not

overlap for Eqs. 4.2 and 3.4 to be valid.
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Table 3.2

Post-processing parameters

SiO2 Al2O3 Si3N4 ZrO2 MoO3 T iO2

W (j) (k0) 0.949 0.476 0.456 0.369 1.145 1.882

k
(j)
c (k0) 2.366 3.078 3.544 3.957 4.716 6.228

H0 (Am−1) 3000 3000 5000 60000 3× 106 5× 106

The reconstructed image spectrum obtained after the above post-processing steps is

shown by the red line in figure 3.5(a). The active compensated spectrum closely fol-

lows the object spectrum shown by the black line and is almost noise-free. The raw

image spectrum, shown by the green line and previously illustrated in figure 3.2(c),

is significantly corrupted beyond ky ≫ 3k0 and the passively compensated image

spectrum, obtained by a simple deconvolution method [17, 18] shows significant noise

amplification. Lastly, figure 3.5(b) compares the amplitude squared of the recon-

structed fields with the original object illustrating the significant enhancement of the

active Π loss compensation scheme. The lens completely fails to resolve the object and

passive reconstruction is extremely unreliable due to significant noise amplification

whereas, active compensation can resolve the object with a sufficiently high contrast.

The effect here comes from the loss compensation mechanism implemented through

the integrated system, not from the individual systems. Presently, image resolution

is limited by the filter design, increasingly high power requirement, SD noise level,

and accurate transfer functions.

In conclusion, we have shown how the Π loss compensation scheme when physically

implemented with a near-field superlens enhances the performance of the superlens.
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Figure 3.5: (a) Fourier spectra and (b) spatial field distributions of the
reconstructed images illustrating the superiority of the active Π scheme over
passive deconvolution. The imaging system is now capable of resolving ob-
jects separated by λ/6.

The introduction of a convolved auxiliary source, generated by integrating a HMM

spatial filter into the system allows restoration of attenuated components of the image

spectrum with little noise amplification. The proof-of-principle here can be verified

experimentally with available plasmonic lenses and hyperlenses. The present imple-

mentation can be optimized for higher resolution with different near-field lenses and

to operate with a single high-frequency spatial filter in near real-time at different

wavelengths. We believe this work brings us closer to overcoming losses in near-field

imaging and elevates the possibility of realizing a ”perfect lens” first envisioned by

Pendry. Finally, consistent with this letter, we noticed that in three other indepen-

dent works HMM spatial filters either alone or integrated with a superlens cavity and

a type I HMM were recently used to achieve pattern uniformity in lithography [35],

high-resolution Bessel beam [36], and hyperbolic dark-field lens [37], respectively.
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image reconstruction using intensity data and equivalence to structured light

illumination for compensation of losses. J. Opt. Soc. Am. B, 34(10):2161–2168,

Oct 2017.

[18] Wyatt Adams, Mehdi Sadatgol, Xu Zhang, and Durdu Ö Güney. Bringing the

‘perfect lens’ into focus by near-perfect compensation of losses without gain me-

dia. New J. Phys, 18(12):125004, 2016.

88



[19] Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Ö Güney. Enhancing the
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Chapter 4

Hyperbolic metamaterial as a

tunable near-field spatial filter to

implement active plasmon-injection

loss compensation1

1Reproduced from A. Ghoshroy, W. Adams, X. Zhang, and D. O. Guney, “Hyperbolic metamaterial
as a tunable near-field spatial filter to implement active plasmon-injection loss compensation,”
Phys. Rev. Applied 10, 024018 (2018); doi:10.1103/PhysRevApplied.10.024018. ©2020 by the
American Physical Society.
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4.1 Introduction

Our ability to control electromagnetic fields with metamaterials has flourished since

the turn of the century and has in turn engendered a myriad of previously unthought

of applications. As opposed to the electromagnetic properties of naturally occurring

materials, the properties of metamaterials stem primarily from their subwavelength

structural details rather than their chemical properties alone. By carefully controlling

these subwavelength features, one can fabricate an artificial material with electromag-

netic properties which are very rare and sometimes impossible to find in nature. One

important application of metamaterials is in the field of near-field superlensing. The

near-field optics coupled with plasmonics and metamaterials has a wide range of im-

plications from subdiffraction imaging [1] to enhanced absorption [2, 3, 4]. In the

context of imaging, the near-field contains information about the subwavelength fea-

tures of an object and is evanescent in nature. Pendry envisioned [5] that a slab of

negative index material (NIM) can be used to amplify these evanescent waves and

renewed interest in the obscure idea of NIMs first conceived by Veselago [6] in the

late 1960s.

In the years that followed, a NIM was realized [7] for the first time by Shelby, et al.

followed by the demonstration of a near-field superlens that exhibits imaging beyond

the diffraction limit [8, 9]. Subsequently, it was realized that the presence of inherent
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material losses substantially degrade the performance of superlenses [10, 11, 12]. A

robust loss compensation scheme was clearly necessary and in the ideal case should

be completely independent of the object. Efforts to overcome this problem led to the

development of new approaches at loss compensation which employed gain medium

[13, 14, 15], non-linear effects [16], and geometric tailoring [17]. However, these

approaches introduced additional complexities, such as pump requirement, stability,

and gain saturation issues, among others, which are crucial especially for imaging

applications.

We have been attempting to develop a new loss compensation scheme, with no above

complexities, where the goal is to use an external “auxiliary” illumination to com-

pensate losses in the material. This was initially conceptualized in [18], where the

losses suffered by a normally incident wave were compensated by a coherent super-

position with an auxiliary field. Although the method was studied in detail for a

single wavevector, it inspired two important questions. If one could develop a sim-

ilar technique, where an auxiliary source provides compensation for a large band of

wavevectors, would it be possible to perfectly reconstruct the original object in an

imaging scenario without having any prior knowledge of the object? If so, could the

technique be applied to different near-field imaging systems such as those employing

NIMs or plasmonic lenses using, for example, silver [19] and silicon carbide (SiC)

[20], or hyperlenses [21] under both coherent and incoherent illumination? In [18],

we used the name “plasmon-injection (Π) scheme,” referring to the above form of
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loss compensation which employs an external auxiliary source to amplify the decayed

Fourier components propagating inside the lossy plasmonic metamaterial (see figure

4.1a). It has been envisioned that the amplitude of each Fourier component to be

provided by the auxiliary could be estimated from the transfer function of the imag-

ing system. Subsequent efforts were directed at answering the second question. It

was demonstrated theoretically that the technique in general could be applied to dif-

ferent imaging systems to improve their resolution limits [22, 23, 24, 25]. However,

no physical auxiliary source was considered. It was simply assumed that one already

has the means to amplify an arbitrary Fourier component as proposed in [18]. Before

attempting to physically realize the auxiliary source, it was important to understand

what properties the auxiliary should possess in order to compensate losses in a re-

alistic noisy imaging system. Continuing efforts [26] showed that the auxiliary must

provide “selective amplification” to a narrow-band of high-frequency Fourier compo-

nents to avoid large noise amplification. Additionally, to recover Fourier components

of the object buried in the noise, the auxiliary source has to be constructed by the

physical convolution of the object field.

In this work, we show that metal-dielectric systems with a hyperbolic dispersion op-

erating as a tunable spatial filter can be used to construct the auxiliary source and

preserve the necessary characteristics shown in [26] (see figure 4.1b). Selective am-

plification property relies on the selective spatial filter functionality of such physical

systems. Since the auxiliary is to be applied in the deep subwavelength region in the
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Figure 4.1: Implementations of active Π scheme. (a) In general, a desired
input (upper left) cannot be faithfully transferred through a passive meta-
material due to optical losses and noise. However, in the Π scheme, the
input is actively superimposed with a correlated auxiliary source (lower left)
to compensate the losses, hence the output can be produced with a high
fidelity. (b) This superposition process can be equivalently implemented by
integrating the lossy metamaterial with a hyperbolic metamaterial (HMM)
while simply elevating the illumination intensity. In both cases, with ei-
ther two sources in (a) or a single source in (b), linear transmission through
passive metamaterials is considered. The term “active” refers to physically
adding energy to the input desired to be transferred.

reciprocal space, the spatial filter is designed to strongly suppress the propagating

modes while allowing the transmission of a tunable band of evanescent modes. Lay-

ered metal-dielectric systems with hyperbolic dispersion are one possible solution for

such spatial filters since they are known to support wavevectors with large transversal

components exceeding the diffraction limit. This is due to the presence of coupled

surface plasmon polariton (SPP) modes at the interfaces. By modifying the permit-

tivities of the constituent materials one can control the eigenmodes supported by the

system.
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4.2 Theory

In section II.A, we briefly frame the essential mathematical properties of the active

Π loss compensation scheme [26] by envisaging a possible physical system to realize

described in section II.B. Throughout this paper we consider plane waves propagating

in the xy-plane. The wavevector component ky represents a spatial variation along

the transversal direction and the wavevector component kz = 0. Therefore, by looking

at the sign of k2x one can distinguish between the propagating and evanescent modes.

4.2.1 Active Π loss compensation scheme

The auxiliary source is essential to the active Π loss compensation scheme since it is

the means with which appropriate levels of amplification are applied to the fields which

suffer attenuation while propagating through a lossy metamaterial. It is important

to emphasize that the term “active” refers to physically adding energy to the system

(see figure 4.1). Still, linear transmission through passive metamaterials is considered.

This is in a sense analogous to well-known active imaging and distinguishes the active

Π scheme from deconvolution-only based implementations [22, 23, 24, 25], where no

external physical energy is involved. Let Hi(y) be the spatial distribution of an input

field incident on a lossy metamaterial. The auxiliary source is constructed during
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a convolution process between the input field and a function A(y) whose Fourier

transform, A(ky) = F [A(y)] is

A(ky) = 1 + A0G(ky), (4.1)

where G(ky) is a Gaussian centered at ky = kc and A0 is a constant. The convolved

input field distribution has a selectively amplified Fourier spectrum provided that the

second term in Eq. 4.1 is larger than 1 for some bandwidth. The amplification is

controlled by the scaling factor A0, while the central frequency and the bandwidth

are tuned by the Gaussian function. In the Fourier domain, the auxiliary source is

defined as the product of Hi(ky) with A0G(ky) (i.e., the second term in the Fourier

domain). The modified incident field is then propagated through a lossy metamaterial

structure which has a transfer function T (ky). The resulting output field distribution

Ho(y) has the Fourier spectrum

Ho(ky) = Hi(ky)[1 + A0G(ky)]T (ky). (4.2)

The term Hi(ky)A0G(ky)T (ky) in Eq. 4.2 represents the selectively amplified spec-

trum measured at the output plane. In [26] this concept was proposed for a lossy NIM

structure in the presence of realistic noise. An iterative loss-compensation scheme was

developed where the auxiliary source was tuned to different high spatial frequencies

and the amplification provided to each selected spatial frequency was controlled by
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A0. It was shown that this compensation scheme can account for material losses

in the NIM structure while inhibiting the noise amplification. However, a possible

physical implementation of this concept requires designing a metamaterial which can

structure the input field in above described manner. The metamaterial should have

a transmission shape similar to Eq. 4.1 and its response should be shift invariant in

the plane perpendicular to the optical axis. A system is said to have shift invariance

along a plane if its response to a point source excitation changes only in spatial posi-

tion on that plane but not in functional form, as the point source traverses the input

plane. This is necessary because to generate the auxiliary source, the incident field

must be convolved with A(y). Additionally, the metamaterial should have a relatively

high transmission peak at a tunable centre frequency and low transmission on either

side especially in the lower spatial frequencies. Therefore, the metamaterial should

possess the characteristics of a tunable and high selectivity band-pass filter for high

spatial frequencies. Since the transfer function of a passive physical system cannot

easily take the mathematically convenient form in Eq. 4.1, one needs a metric to

determine how closely a passive physical system can emulate the ideal one. As will

be justified later, we assume that the transfer function of the realistic passive physical

system is given by

a(ky) = b+ g(ky), (4.3)

99



where b is a constant low background transmission. g(ky) represents the pass-band

of the passive system that approximates G(ky) in Eq. 4.1. Let us define

S(ky) =
g(ky)

b
, (4.4)

to compare the “similarity” of Eq. 4.3 with Eq. 4.1. If the selectivity S(kc) of the

spatial filter is approximately the same as the second term in Eq. 4.3 at the center

frequency, then Eq. 4.3 is said to be similar to Eq. 4.1 up to the factor b. This can

be easily seen if we rewrite Eq. 4.3 as

a(ky) = b[1 + S(ky)]. (4.5)

Once the transfer function given by Eq. 4.5 is multiplied by A0 = b−1, we obtain

approximately the same equation as Eq. 4.1. However, this typically means amplifi-

cation, since b≪ 1. Then, the question is, “How can we physically achieve an active

transfer function from a passive spatial filter described by Eq. 4.5, especially the

amplification step?” Note that this is necessary to construct Eq. 4.1, which in turn is

required for the construction of the auxiliary source in the loss compensation scheme.

If a band-pass spatial filter with the above mentioned properties can be designed

and cascaded with the lossy metamaterial structure, then from Eqs. 4.2 and 4.5, the
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transfer function of this cascaded system can be written as

TA(ky) = A0a(ky)T (ky)

= [1 + S(ky)]T (ky). (4.6)

Since TA(ky) is the transfer function of the system in the presence of the auxiliary

source, it is the modified or “active transfer function” of the cascaded system [26].

Hence, the theoretical framework of the active Π compensation scheme which employs

an auxiliary source is physically equivalent to integrating the lossy metamaterial with

a passive band-pass spatial filter of the selectivity S(kc) and illuminating with a

uniform plane wave of amplitude increased by a factor of A0 = b−1. Note that the

required value of the selectivity S(kc) can be obtained by optimizing the g(kc) and b.

If the transmission peak is improved at the center frequency of the spatial filter, the

suppression of the background transmission b can be relaxed and the process becomes

more efficient due to the reduced A0. This spatial filter should have a tunable pass-

band with a high selectivity and the response must also be shift invariant along a

plane perpendicular to the optical axis.
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4.2.2 HMMs

Above properties in section II.A may be difficult, if not impossible, to realize with

isotropic materials, but it is well known that there exists a class of metamaterials with

hyperbolic dispersion which supports the propagation of evanescent modes. Spatial

filtering using HMMs [27, 28, 29, 30, 31] has not been studied before directly in the

context of loss compensation. Here we briefly review some of the properties of HMMs

which are relevant to this work [32, 33, 34].

Without loss of generality, we assume magnetically isotropic HMMs. Then, the dis-

persion relation for the extraordinary waves can be easily determined from the eigen-

value equation and is

k2x
ǫy

+
k2y
ǫx

=
ω2

c2
, (4.7)

where ω is the angular frequency and c is the speed of light in vacuum. Eq. 4.7

describes a hyperbola if the signs of the principal relative permittivity components

are not the same (i.e., ǫy < 0 and ǫx > 0). The isofrequency contour of such a

medium for transverse magnetic (TM) polarized light is shown in figure 4.2. The

choice of the parameters and the operating wavelength in the figure will be detailed

later on. We should also note that the contributions from the imaginary parts of the

calculated relative permittivity to the isofrequency contour in figure 4.2 are negligible.

From this isofrequency contour, one immediately concludes that the open form of the
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hyperbola allows for the propagation of modes with very large transversal wavevector

components, which generally leads to evanescent waves in conventional isotropic and

uniaxially anisotropic media. Additionally, we make a note of the intercepts on the

ordinate axis, which are crossed in figure 4.2. This shows that the medium only

supports the propagation of high transversal wavevector components ky beyond a

certain cut-off. A common type of HMMs are physically constructed by alternately

-10 -8 -6 -4 -2 0 2 4 6 8 10
k

x
/k

0

-10

-8

-6

-4

-2

0

2

4

6

8

10

k
y
/k

0

Figure 4.2: Isofrequency contour plot of a HMM with ǫy < 0 and ǫx > 0 at
wavelength λ0 = 365 nm. k0 is the free space wavenumber. The red markers
indicate the cut-offs for the transversal wavevector components. The artifi-
cial material corresponding to the plot is realized by stacking 8 periods of
alternating aluminium and quartz layers. The principal relative permittiv-
ity components are calculated with the effective medium approximation (see
text for details).

stacking metallic and dielectric layers. Assuming that the electromagnetic parameters

of individual layers are homogeneous and isotropic and the unit cell thickness is

sufficiently small compared to the wavelength of the incident radiation such that the

Maxwell-Garnett effective medium approximation is valid, then the system can be
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described as an anisotropic medium whose principal permittivities are

1

ǫx
=

1

1 + η

[

1

ǫd
+

η

ǫm

]

(4.8)

ǫy = ǫz =
ǫd + ηǫm

1 + η
, (4.9)

where η is the filling fraction, which is defined as the ratio of the thicknesses of the

two layers

η =
Tm
Td
, (4.10)

and ǫd and ǫm are the permittivities of the dielectric and metallic layers, respectively.

The cut-off transversal wavevector components marked in the isofrequency contour

in figure 4.2 can be expressed in terms of the effective parameters as

kcutoff
k0

= ±
√

(1 + η)ǫmǫd
ǫm + ηǫd

. (4.11)

This tells that the cut-off can be tuned by changing the material and geometric

parameters of the system. In fact, later on we will use Eq. 4.11 to select the available

materials when constructing a spatial filter with a desired cut-off frequency.
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Figure 4.3: The geometries constructed in COMSOL to perform numerical
simulations (not to scale) shows the (a) HMM spatial filter, and the lossy
metamaterial (b) with and (c) without the HMM. Magnetic field polarized
along the z-axis is incident on the input plane (dashed black lines) and
the responses of the systems are extracted from the output planes (solid
black lines). The red, orange, green, and blue regions are the metallic and
dielectric layers of the HMM, background dielectric, and perfectly matched
layers (PMLs), respectively. The purple region indicates the silver layer in
the lossy metamaterial. Scattering boundary conditions are applied to the
edges of the PMLs and highlighted in pink.

4.3 Results and Discussion

In section III.A, we first analyze the convolution and spatial filtering characteris-

tics of the designed metal-dielectric multilayered structure which exhibits hyperbolic

dispersion to verify if the physical system preserves all mathematical properties dis-

cussed earlier. These properties are essential to the auxiliary source which forms the

backbone of the active Π loss compensation scheme. In section III.B, the HMM spa-

tial filter is integrated with a lossy metamaterial to verify if the physically cascaded

system behaves in accordance with the theoretical loss compensation framework [26]

described in section II.A. This is achieved by studying the active transfer function of
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the cascaded system in Eq. 4.6. Additionally, the response of the cascaded system to

an arbitrary input (see Eq. 4.2) is studied to show that the HMM spatial filter can

be used to physically implement the active Π loss compensation scheme. A 50 nm

thick silver film coated with a 25 nm thick dielectric layer on each side is selected

as the lossy metamaterial due to its simplicity and relevance to a “superlens” [19]

functionality. The transmission of the structure degrades rapidly as one progresses

to especially higher spatial frequencies. The transmission properties of the HMM

spatial filter, the lossy metamaterial as well as the response of the integrated system

to an arbitrary input are calculated with the finite element method based commercial

software package COMSOL Multiphysics.

4.3.1 Convolution and spatial filtering with HMMs

The schematics of the HMM spatial filter, the lossy metamaterial with, and without

the HMM are shown in figure 4.3. The same background dielectric material is used in

all the structures with the relative permittivity ǫd = 2.5 similar to the dielectric used

for an experimental silver lens in [19]. Multiple HMM spatial filters, all of which use

aluminium as the metallic layer are designed, each having the same overall thickness of

365 nm for consistency. The parameters used to design each spatial filter are listed in

tables 4.1 and 4.2. The edges of the geometries are padded with PMLs shown in blue

in figure 4.3 and backed by scattering boundary conditions indicated by the pink lines.
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Each structure is illuminated with a TM polarized field from the input plane and the

response is extracted as a complex magnetic field distribution from the output plane.

For the rest of this paper we will set the operating wavelength at λ0 = 365 nm. This

wavelength is selected because there exist near-field imaging systems and physical

sources centered at 365 nm [19]. The relative permittivities of aluminum and silver

at the selected wavelength are ǫAl = −18.179− i3.2075 and ǫAg = −1.8752− i0.5947,

respectively, calculated from the Drude-Lorentz model [35]. Initially, the results with

the Al− SiO2 HMM are presented by taking the relative permittivity of ǫd = 2.2147

for SiO2 at the selected wavelength [36]. Using these parameters and assuming that

Eqs. 4.8 and 4.9 are valid, the relative permittivity tensor elements of the effective

anisotropic material are ǫx = 3.5302 − 0.0391i and ǫy = −4.5832 − 1.0692i. In figure

4.2, we used these parameters to plot the isofrequency contour for the extraordinary

waves described by Eq. 4.7.

The transfer functions of the structures shown in figure 4.3 are calculated from the

point spread functions (PSF) of the systems in response to a TM dipolar point source.

A point source can be approximated by a Gaussian field distribution as long as the

FWHM is extremely small compared with the operating wavelength. Therefore, a

TM polarized Gaussian field distribution with FWHM = 6 nm is applied to the

input planes of each system to determine respective transfer functions. To maintain a

fairly high degree of accuracy in the calculations the spatial extent of the geometries

along the y-axis is set to 80 times the wavelength. This is necessary for the shift
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Table 4.1

Geometric parameters of the HMM spatial filters and the low

cut-off wavevector components

Unit Filling Lower cut-off
HMM cells fraction wavevector

component (k0)

Al − SiO2 8 0.5 1.88071
Al −Al2O3 8 0.5 2.28849
Al − Si3N4 8 0.5 2.77659
Al − ZrO2 8 0.5 2.96987
Al −MoO3 12 0.7 3.54714
Al − T iO2 12 1.1 5.11537

invariance and capturing the sufficiently large extent of the field from the output

plane. The data should not be abruptly truncated since this will introduce errors

in the Fourier transform calculations. Additionally, due to the excitation of SPPs

with large transversal wavevectors, there will be rapid field oscillations on the output

plane, as well as at each metal-dielectric interface. To capture this field accurately

we used 9500 mesh elements at each interface parallel to the y-axis with the smallest

mesh element being approximately equal to 3 nm.

Having explained the computational subtleties in the transfer function calculation,

we analyze in detail the transmission characteristics of the Al − SiO2 HMM. The

amplitude and phase of the complex magnetic magnetic field in response to a point

source excitation are plotted in figures 4.5(a) and 4.5(b), respectively. If the system

is shift invariant, this field distribution becomes the PSF of the system and the

response to any arbitrary field distribution can be calculated from the PSF by using

convolution. In order to verify that the system is effectively shift invariant under the

108



Table 4.2

Relative permittivities of dielectrics and plasmonic metals at

λ0 = 365 nm.

Materials Relative
permittivity

Ag −1.8752 − 0.59470i
Al −18.179 − 3.2075i
P t −4.2933 − 8.5848i
Ta −8.8170 − 9.0576i
SiO2 2.2147
Al2O3 3.18587
Si3N4 4.05373
ZrO2 5.06205
MoO3 6.031 − 1.1908i
T iO2 8.2886 − 0.10186i

finite transversal extent of the HMM, hence the convolution property, we applied an

arbitrary TM polarized magnetic field distribution on the input plane. The excitation

field is chosen to be purely real and is plotted in figure 4.5(a). The corresponding

response of the system is determined with COMSOL and is extracted as a complex

magnetic field distribution from the output plane. The simulated amplitude and

phase of the output magnetic field distribution are shown by the black lines in figures

4.5(a) and 4.5(b), respectively. If the convolution is satisfied, this simulated response

should be equal to the convolution of the input field shown in figure 4.5(a) with the

PSF of the system shown in figure 4.4. The expected response of the system from the

numerical convolution is also calculated and the amplitude and phase of the output

magnetic field are shown by the green lines in figures 4.5(b) and 4.5(c), respectively.

When we compare the simulated response with the numerical convolution result, we
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Figure 4.4: Plots of the (a) amplitude and (b) phase of the complex mag-
netic field distribution in response to a point source excitation. This is the
PSF of the shift invariant Al − SiO2 HMM and can be used to determine
the response to any arbitrary incident excitation by using convolution.

can see that there is a very high degree of overlap. This indicates that the multi-

layered structure is indeed effectively shift invariant under the assumed finite extents

of the HMM and input field. However, the convolving feature of the HMM starts to

deteriorate if the transversal extent of the HMM is decreased or that of the input

field is increased.
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Figure 4.5: The effective shift invariance of the finite extent multi-layered
Al−SiO2 HMM. (a) An arbitrary TM polarized real magnetic field is applied
to the geometry. (b) The amplitude and (c) the phase for the simulated
response of the system, shown by the black lines are compared with those
from the numerical convolution shown by the green lines.

The amplitude and phase of the complex transfer function of the Al − SiO2 HMM

are shown in figures 4.6(a) and 4.6(b), respectively. Four transmission peaks are

clearly visible in the spectrum. Note that only the portion of the phase within the

transmission band is shown. The phase varies continuously within the transmission

band. The apparent discontinuities have a phase change of 2π which indicates that it is

actually continuous. The cutoff wavevector component for the Al−SiO2 multilayered

structure can be calculated from Eq. 4.11 and is equal to kcutoff = 1.8807k0. The

corresponding point is circled in the amplitude plot of figure 4.6(a). We see that in
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Figure 4.6: The amplitude and phase of the complex transfer function is
shown in (a) and (b), respectively, for the Al−SiO2 HMM. The circle in (a)
corresponds to the cutoff transversal wavevector component calculated from
Eq. 4.11. We see that the wave transmission sharply drops off in this region.
Also, the peaks in the transmission spectrum correspond to the eigenmodes
of the layered structure.

this region, the transmission drops off rapidly which is consistent with the prediction

of the effective medium approximation. Figure 4.6 clearly shows the spatial filtering

property of the HMM around ky = 2.2k0. In figure 4.7 we have used different dielectric
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Figure 4.7: The tunable nature of the near-field spatial filter with different
dielectrics. The cut-off wavevector components corresponding to each ǫd are
calculated from Eq. 4.11 and circled in the respective transmission plots
emphasizing the validity of the effective medium for the system.

materials. The material parameters for these dielectrics [36, 37, 38, 39, 40, 41] and

their corresponding low cut-off wavevector components are shown in tables 4.1 and

4.2. The cut-offs are indicated by circles in the corresponding transmission plots in

figure 4.7. We see that the predictions of the effective medium approximation are

still valid since the amplitude transmission drops off sharply below the low cut-offs.

Additionally, figure 4.7 shows the tunable nature of the designed spatial filters based

on HMMs.

Note that even though Eq. 4.7 predicts an infinite number of transversal wavevector

components allowed in the system, there is however an upper limit. This limit is

set by the validity of the effective medium theory, which attempts to homogenize

the layered system, and the rapid attenuation of high spatial frequencies [29, 42].
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The approximation ceases to be valid whenever the wavelength corresponding to the

longitudinal wavevector component kx approaches the periodicity of the the layered

structure which in our case is 45 nm.

The general guidelines for designing a near-field band-pass spatial filter can be deter-

mined from Eq. 4.11. Also, figure 4.8 shows the low cut-off wavevector component

kcutoff from Eq. 4.11 plotted as a function of the dielectric relative permittivity ǫd

for different plasmonic metals at λ0 = 365 nm. η = 0.5 is kept in all the plots. The

permittivity of platinum is calculated from the Drude-Lorentz model with the data

given in [35] whereas the relative permittivity of tantalum is taken from the reflection

electron energy-loss spectroscopy data in [43]. The relative permittivity data is sum-

marized in table 4.2. Figure 4.8 can be used to estimate the relative permittivity of

the required dielectric material for different plasmonic metals. The slope of the plots

is the measure of the sensitivity of the tunable nature of the spatial filter. The sen-

sitivity depends on the selection of both plasmonic metal and the ratio η. Note that

although silver has the highest sensitivity in figure 4.8, it has a limit beyond which

the filter cannot be tuned with dielectrics. This is due to the loss of the hyperbolic

nature of the layered structure above a certain value of the relative permittivity ǫd.

In contrast, other metals allow tunability for a broader range of transversal wavevec-

tor components at the expense of higher loss and stringent dielectric permittivity

requirements. While loss can be mitigated by controlling the filling fraction or the

number of unit cells to some extent, the requirement of large permittivity imposes a
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Figure 4.8: Plots of the low cut-off transversal wavevector components
versus the dielectric relative permittivity ǫd for different plasmonic metals
which give hyperbolic dispersion at λ0 = 365 nm taking the filling fraction
η = 0.5.

limitation on the tunability especially at small optical wavelengths. Note, however,

that the spatial filters can be scaled to different wavelengths as long as the layered

system exhibits hyperbolic dispersion. This is because the normalized cutoff wavevec-

tor component in Eq. 4.11 is not explicitly dependent on the wavelength and varies

according to the material parameters and filling fraction.
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Figure 4.9: Plot of the passive transfer function of the lossy metamate-
rial T (ky) and the active transfer function TA(ky) of the Al − T iO2 HMM
integrated with the lossy metamaterial. Losses progressively degrade the
transmission of transversal wavevector components greater than k0. How-
ever, the transmission spectrum of the active transfer function of the inte-
grated system shows an improvement within the pass-band of the filter. The
enhancement is on the order of S(ky) and A0 = 1.2× 106.

4.3.2 Implementation of the active Π loss compensation

scheme with the HMM

The HMM spatial filters can physically emulate all the mathematical properties to

generate the auxiliary source in the Π scheme. When an arbitrary input field with in-

creased amplitude (i.e., by a factor of A0) is incident on an HMM, the auxiliary source

will be produced on the output plane of the HMM (see figure 4.3a) superimposed with

the original arbitrary input field (see Eq. 4.2). The next step involves implementing

the Π scheme by integrating the Al−T iO2 filter with the lossy metamaterial (see fig-

ure 4.3b). This is verified by analyzing the active transfer function description of the
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integrated system (see Eq. 4.6) and comparing with the passive transfer function of

the lossy metamaterial structure (see figure 4.3c). The transfer function of the lossy

metamaterial T (ky), is shown by the black line in figure 4.9. We observe how the losses

progressively degrade transmission through the metamaterial with increasing ky. The

performance of the physical system will be further impacted by noise from multiple

sources which tends to distort the field at the output plane. Such sources of noise can

be related to, for example, the roughness in the nanostructures of the metamaterial

or the detector which samples the intensity distribution from the output plane. This

makes it challenging to overcome losses in a metamaterial without amplifying noise.

However, if the transfer function of the lossy system T (ky) can be determined to a

sufficient degree of accuracy, then the amount of compensation necessary for each

attenuated transversal wavevector component can be estimated and provided by the

active transfer function TA(ky) of the integrated system as shown in figure 4.9. The

peak in the active transfer function corresponds to the pass-band of the Al − T iO2

filter which is shown in figure 4.7. As described by Eq. 4.6, the transmission within

this pass-band is increased on the order of S(ky). For example, figure 4.9 is obtained

by the filter with the selectivity of S(kc = 5.8k0) ∼ 103 and b ∼ 10−6. Such improv-

ing of the transfer function using the integrated system is important for two reasons.

First, the plot of the active transfer function provides evidence that integrating the

Al − T iO2 filter with the lossy metamaterial cascades the two systems such that the

overall behavior can be described by Eq. 4.6 (i.e., convolution dictated by Eq. 6 is
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maintained between the output of the HMM filter and the point spread function of

the lossy metamaterial). Second, recall that the factor A0 (see Eq. 4.1) scales the

amount of selective amplification provided by the auxiliary source. Figure 4.9 shows

that this is physically equivalent to integrating the lossy metamaterial with a high

selectivity spatial filter and increasing the amplitude of illumination by a factor of

A0.

In order to confirm the viability of the HMM spatial filter in a loss compensation

scenario, we compare the response of the lossy metamaterial to an arbitrary input

field, with (see figure 4.3b) and without (see figure 4.3c) the integrated HMM spatial

filter. The output is distorted by noise from a combination of signal dependent (SD)

and signal independent (SI) sources using the “signal-modulated noise” model in

[44, 45, 46]. This study uses 0.0045Ho(y) and 0.005 A/m for the standard deviations of

SD and SI noise, respectively, where Ho(y) is the noise-free spatial field distribution on

the output plane. These standard deviations are larger than the ones used in [26, 47],

and in an experimental optical detector [48], and are selected, because they illustrate

the deleterious effect of noise in a lossy metamaterial system and further stress the

improvement achieved by integrating the spatial filter into the lossy system. In the

subsequent discussion, the lossy metamaterial is first illuminated with a weak input

field and the noisy response is analyzed in the Fourier domain. Then, the intensity of

illumination is increased to see any improvements in the output spectrum. Finally,

the integrated system is illuminated with the same increased input field and the three
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Figure 4.10: Fourier spectrum amplitudes of the input and output fields
with and without added noise under the configurations, (a) weak illumina-
tion, (b) strong illumination, and (c) structured illumination. The SD and
SI noise spectra show their relative contributions in the noise added output
fields. Note that the most of the nodes in the input spectrum are completely
obscured by noise at the output plane as shown by the green line in (a).
Increasing the amplitude of illumination by a factor of 1.2×106 only slightly
improves the noisy output spectrum in (b), because the SD noise is propor-
tionally amplified and is the dominant source of distortion. However, with
the HMM spatial filter integrated into the system in (c), the improvement in
the noisy output spectrum is significant even under the same high intensity
illumination as in (b). Nodes belonging to the input field spectrum within
4k0 < ky < 7k0 which were previously obscured by noise in both (a) and (b)
are now visible in the noise added output spectrum in (c). Additionally, the
SD noise amplification in (c) is much smaller when compared with (b). The
level of SD noise is close to the SI noise similar to (a) indicating little noise
amplification.

results are compared. We refer to these three cases as “weak illumination,” “strong

illumination,” and “structured illumination,” respectively. Figure 4.10 compares the

results for the three cases. The black line shows the spectrum of the input field
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desired to be transmitted faithfully (see figure 4.1) and the corresponding noise-free

output is shown by the red line. The noise added output is shown by the green line

and it contains random distortions from SD and SI sources of noise. Additionally,

the Fourier spectra of the SD and SI noise which contribute to this distortion are also

shown in the figure by yellow and blue lines, respectively. Note that the choice of the

input field is purely arbitrary and is selected to complement the discussion to follow.

Let us first consider the weak illumination case (see the upper section in figure 4.1a);

that is the response of the lossy metamaterial system to an input field when the am-

plitude of illumination is 1A/m. The noise-free output spectrum shown by the red

line in figure 4.10(a) shows deteriorating transmission with increasing ky. Neverthe-

less, the nodes of the input spectrum are still visible. However, the most of the nodes

are completely obscured in the noise added output spectrum especially for ky > 3k0

as shown by the green line in figure 4.10(a), because with increasing ky the amplitude

of distortion introduced by the combination of SI and SD noise becomes comparable

to and eventually dominates the output spectrum. In the strong illumination regime

shown in figure 4.10(b), the field amplitude is strengthened by a factor of 1.2 × 106.

The Fourier spectrum of the noise added output shows a slight improvement com-

pared to the weak illumination case in figure 4.10(a). This can be understood if we

compare the intersection point of the output spectrum with the SD noise spectrum in

figures 4.10(a) and 4.10(b). When the intensity of illumination is increased, only the

Fourier components until this intersection point are simply raised above the SI noise.
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This intersection marks the point in the Fourier domain where the amplitude of trans-

mission in the output spectrum becomes equal to the distortion introduced by the SD

noise. As the intensity of the illumination is increased, the output spectrum and the

SD noise increase with the same proportion. Therefore, the Fourier component where

the two intersect does not change and the Fourier components of the output spectrum

beyond this point are always buried under the SD noise. Additional increments to

illumination intensity will have no effect on the noise added output spectrum. Con-

sider the structured illumination case in figure 4.10(c). The lossy metamaterial is

integrated with the Al − T iO2 HMM spatial filter and illuminated by the same high

field amplitude of 1.2 × 106A/m (see figure 4.1b). The pass-band of the Al − T iO2

HMM filter is shown in figure 4.7 and the active transfer function of the integrated

system is shown in figure 4.9. We can immediately see that under the structured

illumination, the level of SD noise in the Fourier spectrum is comparable with the

SI noise similar to the low intensity case shown in figure 4.10(a). Importantly, the

noise added output spectrum in figure 4.10(c) closely follows the noise-free output

spectrum until about 7k0. In accordance with Eq. 4.6 and figure 4.9, below 4k0 the

field spectrum remains intact as can be seen by the overlapping output (see green

solid line in figure 4.10(c)) and input (see black solid line in figure 4.10(c)) spectra.

Also, the three nodes within 4k0 < ky < 7k0, which were previously buried under the

noise in figures 4.10(a) and 4.10(b), are now visible in figure 4.10(c), consistent with

the active transfer function of the integrated system plotted in figure 4.9.
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The above discussion clearly shows that a high selectivity HMM spatial filter can be

used to physically implement the active Π loss compensation scheme by constructing

the required auxiliary source that selectively amplifies a narrow band of high spatial

frequencies (see Eq. 4.1). It is important to note that the concept shown in the

above discussion is a physical implementation of the theory presented in [26] where

the merits of selective amplification with auxiliary source were presented. Figure

4.10(c) and the accompanying discussion verify the concept with a physically designed

auxiliary source and extend the idea of selective amplification to cascaded systems

with controlled amplitude of illumination for amplification as described by Eq. 4.6.

In [49] the proposed implementation of the Π scheme with high selectivity integrated

spatial filters under high intensity illumination, as described here, has been shown to

enhance the resolution of a silver superlens imaging system, where the loss compen-

sated output field is deconvolved with the active point spread function to improve the

resolution. In Fourier domain, this is simply the inverse filtering of the output spec-

trum (see green solid line in figure 4.10(c)) with the active transfer function expressed

by Eq. 4.6 (see also yellow solid line in figure 4.9).
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4.4 Conclusion

In conclusion, we have proposed the use of a near-field spatial filter for the active im-

plementation [26] of the recently introduced Π loss compensation scheme [18]. This

presents in detail the first possible physical implementation of the scheme with arbi-

trary optical fields which has been only a mathematical abstraction before [18, 26].

The “tunability”,“selective amplification” characteristics of the auxiliary source in the

Π scheme can be realized with the layered metal-dielectric systems with hyperbolic

dispersion that act as near-field spatial filters. We have verified that the convolution,

which is vital for the construction of the auxiliary source, can be achieved in the

layered system. This allows such layered systems to be integrated with the near-field

superlenses (e.g., silver [19] and SiC [20] lenses), so that the complete imaging system

can be described with a modified transfer function. The work here paves the way to a

robust loss compensation scheme for enhanced near-field superlensing with ultra-high

resolution [29, 30, 42, 49, 50]. A spatial filter of this form may also have potential

applications in “edge-detection” as proposed for acoustics in a recent work [51], where

an acoustic metamaterial is used to transmit the high-spatial evanescent modes while

suppressing the propagating modes.
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Chapter 5

Theory of coherent active

convolved illumination for

superresolution enhancement1

1Reprinted from A. Ghoshroy, W. Adams, and D. O. Guney, “Theory of coherent active convolved
illumination for superresolution enhancement,” J. Opt. Soc. Am. B 37, 2452 (2020); with permis-
sion from ©The Optical Society.
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5.1 Introduction

Metamaterials (MMs), which are artificial inhomogeneous structures usually designed

with subwavelength metal/dielectric or all-dielectric building blocks, rose to promi-

nence nearly two decades ago as an appealing direction for designing materials with

unprecedented electromagnetic properties previously considered difficult, if not im-

possible, to realize. Invisibility cloaks [1], ultra-high-resolution imaging [2, 3, 4] and

photolithography [5], enhanced photovoltaics [6, 7], miniaturized antennas [8], ultra-

fast optical modulation [9], and metasurfaces [10, 11] are few of the multitude of

applications which have been envisioned. Supported by parallel efforts in micro and

nanofabrication, MMs are anticipated to have broad impact on many technologies

employing electromagnetic radiation. However, despite enormous theoretical and ex-

perimental progress, numerous lingering problems [12] require diligent consideration.

Optical losses continue to be one of the greatest threats to the viability of many of

the MM-based devices proposed to date. Mitigation of losses remains a challenging

problem for the MM community. Gain medium was initially proposed [13, 14, 15, 16]

as a potential solution. However, later studies showed that stability and gain satura-

tion issues as a result of stimulated emission near the field enhancement regions leads

to intense noise generation [17, 18, 19]. Due to these concerns and other associated

complexities such as pump requirement, progress towards the development of a robust

loss compensation scheme has been somewhat sluggish even after nearly two decades
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of efforts. Dielectric metasurfaces have also been proposed to alleviate some of these

concerns [10, 11].

A recent theoretical study [20] investigated an unconventional approach in the form of

an alternative exploration of “virtual gain” [21, 22] to manage the losses in MMs. This

compensation process, designated “plasmon injection (PI or Π) scheme,” employs an

additional source to modify the field incident on a lossy MM. This auxiliary source is

designed to adequately amplify an arbitrary field thereby enhancing its transmission

through the MM. A multiport MM structure was used in [20] to illustrate the concep-

tual operating principle for the amplification of normally incident waves. Auxiliary

fields are used to coherently add energy to the lossy system to compensate the losses

of different natures. This amplification mechanism was related in [22, 23] to coherent

amplification of pulses using a passive cavity described in [24, 25]. The main differ-

ence in [20] is continuous wave operation at the nanoscale plasmonic MM structure.

In [26, 27, 28], we discussed in detail the generalization of the Π scheme to imaging,

which involves a spectrum of spatial frequencies. A systematic amplification in the

Fourier spectrum plays a key role in extending the resolution limit of the imaging

system. This is akin to the Wiener optimal filtering principle that also attempts to

cleverly privilege spatial frequencies with respect to their noises [29, 30, 31]. The

earlier theoretical studies with MM or near-field imaging systems employing nega-

tive index materials (NIMs) [32], superlenses [33], and hyperlenses [34, 35] produced

promising results. Implementing the Π scheme with the above systems resulted in
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performance improvements. The distinguishing feature of the Π scheme is the aux-

iliary source. The earlier variants of the Π scheme were shown to emulate linear

deconvolution [32].

The physical generation of the auxiliary source requires some considerations. It was

shown [26] that the auxiliary source can be generated through a convolution process

with the original object field incident at the detector while selectively providing am-

plification to a controllable band of spatial frequencies. As a result of this process,

the auxiliary source becomes correlated with the original object field [26, 36]. A near-

field spatial filter designed with hyperbolic metamaterials (HMMs) was proposed to

physically generate the auxiliary source [27] with the above properties. The filter

was integrated with a 50 nm silver film to illustrate the overall loss compensation

process. This was the first potential application of the spatial filtering properties

[37, 38, 39, 40, 41] of HMMs in the context of loss compensation. Later studies with

coherent [28] and incoherent [42] illumination produced favourable results. An im-

provement in the resolution limit of a near-field silver superlens elevated the viability

of the Π scheme as an effective alternative to previously conceived loss mitigation

approaches [7, 13, 14, 15, 16, 43, 44] including dielectric metasurfaces [10, 11]. Even

though the techniques presented in [28, 42] possess similar properties to the original

concept of the Π scheme in [20], the scheme was generalized to a more encompassing

term active convolved illumination (ACI) in [42], since it is essentially the physical

convolution operation which is key to the process. Also, the Π scheme narrows down
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the process to only plasmons. More recently, the ACI technique has been applied to

an experimental system, where the signal-to-noise ratio (SNR) and resolution limit of

a reference far-field imaging system have been significantly improved with a modest

amount of amplification [45]. It has also been shown that the ACI offers more toler-

ance to pixel saturation compared to the reference system.

In this paper, we construct a theoretical framework to provide the first comprehensive

mathematical exposition of the fundamental concept of ACI for coherent illumina-

tion. Pendry’s classic setup [2] of a silver superlens operating at a wavelength of

365 nm is adopted since it is the simplest configuration which broadly exemplifies

the rudimentary impact of optical losses such as in not only MM systems, but also

different conventional and advanced linear systems. We consider the silver superlens

only as a canonical example to accentuate how the ACI permits recovery of infor-

mation carried by attenuated signal with minimal noise amplification. The greater

scope of this paper is to develop a noise-resistant imaging theory that can be poten-

tially generalized to a wide range of problems in various contexts related to noisy

linear systems. Specific attention is drawn towards the required mechanisms, such

as selective spectral amplification, physical convolution, and correlations. This study

strengthens analytically, the previous results and associated assertions [28, 42] made

with numerical simulations to gain physical insight into the ACI’s working principles

in imaging. We conjecture that the theory of ACI can be potentially generalized

to a wide variety of noisy and lossy linear systems including, for example, those in
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atmospheric imaging [46, 47, 48, 49], time-domain spectroscopy [50, 51], optical com-

munications [52, 53, 54, 55], PT symmetric non-Hermitian photonics [21, 56, 57],

and even quantum computing [49, 58, 59]. Some discussions of how the ACI can be

applied to atmospheric imaging, time-domain spectroscopy, and quantum computing

can be found in [49].

5.2 Near-Field Imaging System with ACI

As Pendry pointed out [2], the properties of a NIM necessary for superresolution

imaging far beyond the diffraction limit, can be attained for transverse magnetic

(TM) polarized light at a wavelength λ = 365 nm by a thin silver film embedded

inside a dielectric. Under such conditions, resonant excitation of surface plasmons

at the silver interface provides satisfactory amplification to high spatial frequencies

which can then be focused assuming that the thickness of the silver film, object and

image plane distances are much smaller than the incident wavelength. The configu-

ration of such an imaging system is shown in Fig. 5.1(a), where the silver film with

thickness d is embedded inside a dielectric and positioned symmetrically between

the object and image planes indicated by solid and dashed black lines, respectively.

A TM field distribution on the object plane is detected from the image plane af-

ter propagating though the silver film. During this propagation process, material
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losses progressively degrade the transmission of high spatial frequencies with increas-

ing transversal wavenumber ky. Therefore, the ultimate performance of the system is

limited to the highest spatial frequency whose attenuated amplitude is strong enough

to be accurately detected from the image plane amid noise. An ideal loss compensa-

tion scheme should extend this limit by intelligently providing adequate amounts of

power to these previously undetectable spatial frequencies to allow them to survive

the lossy transmission process by ensuring minimal noise amplification.

Figure 5.1: Schematic of a typical silver lens imaging system (a) without
ACI and (b) the modified form with the integrated spatial filter for an imple-
mentation of ACI. The TM-polarized field distribution on the object plane
propagates through each system and is recorded from the image plane. The
purple, green, and red regions are the silver lens, background dielectric and
the integrated spatial filter, respectively.

In ACI, loss compensation can be performed by introducing an additional material

between the object plane and the lens as shown in Fig. 5.1(b). This material should

behave as a tunable active band-pass spatial filter [26, 28]. We write the transfer
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function of the spatial filter as [27]

a(ky) = b+G(ky), (5.1)

where we set b as a real constant corresponding to a uniform low background trans-

mission. G(ky) = |G(ky)|eiϕ(ky) is a complex band-limited function with phase ϕ(ky)

and describes the pass-band of the passive filter. If the amplitude of the wave il-

luminating the system is increased by a factor A0 = b−1, the resulting transmitted

spectrum is

A(ky) = 1 + A0G(ky). (5.2)

Eq. 5.2 is defined as the transfer function of the active spatial filter [27]. The term

“active spatial filter” simply refers to the process of physically providing increased

energy to the passive filter with the transfer function in Eq. 5.1. In other words,

linear transmission through passive materials is considered. The word active also

distinguishes ACI from purely deconvolution based methods [32, 33, 34, 35] where no

additional energy is provided to the system.

The response of the active spatial filter should be shift invariant along the object

plane and integrating the filter with the lens should allow the entire system to be

described with an active transfer function [26, 28] written as

TA(ky) = T (ky)[1 + A0G(ky)], (5.3)
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where T (ky) is the passive transfer function of the silver lens.

Figure 5.2: Conceptual schematic of ACI emphasizing the underlying
physics of the loss compensation process. (a) An arbitrary incident field
is (b) a weighted superposition of different harmonics. After propagating
though (c) the active spatial filter, the amplitudes of a few selected har-
monics (e.g., k7 and k8) are amplified relative to the others based on the
transfer function of the filter given by Eq. 5.2 and depicted by the inset in
(c). (d) The modified field incident on (e) the lossy MM contain the ampli-
fied spatial frequencies (origin of auxiliary source), superimposed with the
unaltered harmonics. The estimated amplification provided to the selected
harmonics can be the inverse of their passive transmission amplitudes (e.g.,
T (k7) and T (k8) in the inset). This would ensure that they survive the lossy
transmission process through the MM.

The Eqs. 5.2 and 5.3 are central to the ACI loss compensation process. The physical

picture is best illustrated with the aid of the schematic shown in Fig. 5.2. An

arbitrary field incident on the system, shown in Fig. 5.2(a) can be described as

a linear, weighted superposition of harmonics or spatial frequencies shown in Fig.

5.2(b). The active spatial filter in Fig. 5.2(c) is inserted between the lossy MM in
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Fig. 5.2(e) and the incident field. The transfer function of the active filter has the

form of Eq. 5.2 and the amplitude |A(ky)| is depicted in the inset in Fig. 5.2(c).

The transmission amplitude of a lossy MM, which deteriorates for increasing spatial

frequencies, is illustrated by the inset in Fig. 5.2(e). For example, assume that

the spatial frequencies k7 and k8 will be compensated. ACI achieves this by tuning

the center frequency, kc of the active spatial filter such that |A(ky)| > 1 over the

identified spatial frequencies. This is illustrated by the inset in Fig. 5.2(c). After

the harmonics of the incident field propagate though the active spatial filter, the

amplitudes of the identified spatial frequencies are amplified relative to the other

harmonics. Therefore, the field exiting the active filter contains the original harmonics

of the object superimposed with the selectively amplified harmonics k7 and k8 [see

Fig. 5.2(d)]. The amplification provided to these harmonics (controlled by A0) is

adjusted to ensure that they survive the lossy transmission process through the MM.

The selectively amplified spatial frequencies at the exit of the filter constitute the

auxiliary source as discussed in [26] and is conceptually similar to [20] with the only

difference being the generation process, which here like in [26] employs the active

spatial filter to simply modify the original field incident on the MM by a convolution

operation.

Using numerical simulations, ACI was implemented with an experimentally realized

silver superlens [60] at the wavelength λ = 365 nm. A physical system approximat-

ing the properties of the active spatial filter was designed with aluminium-dielectric
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multilayered structures which exhibit hyperbolic dispersion [27]. The above theoret-

ical formulation was tested by integrating the multilayered structure with the lens

as shown in Fig. 5.1(b). Imaging results with coherent [28] and incoherent [42] illu-

mination showed an improvement in the resolution limit of the lens even under the

presence of noise. The HMMs used in [28, 42] were designed to act as the spatial

filter in Fig. 5.1(b), such that their transmission properties closely approximate Eq.

5.2 under high intensity illumination.

5.3 Variance in the Fourier Domain

To start with, let the image plane has a length L along the y-axis [see Fig. 5.3(a)].

A continuous signal i(y), along the image planes is measured by a detector which

can be an array of pixels or a scanning near-field probe. Based on the setup in

Fig. 5.1, i(y) represents TM-polarized field. An arbitrary spatial field distribution is

decomposed into M discrete samples at intervals of ∆y where M is an even integer.

The above spatial decomposition is represented by the segmented line in Fig. 5.3(a)

where each segment is defined as a pixel. An integer p satisfying −M
2
≤ p ≤ M

2
− 1

uniquely identifies each pixel centered at y(p) = p∆y ≡ ξ. This relates the discrete

space ξ to continuous space y. The signal sampled by the pth pixel is denoted by

i(ξ). In subsequent calculations we will set L = 80λ with λ = 365 nm and M =

5840. Therefore, the sampling interval is ∆y = 5 nm which is slightly larger than
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previously demonstrated apertureless probes which can achieve resolutions down to

1 nm [61]. The resulting noisy image at each pixel is described with a popular signal-

modulated noise model [62, 63, 64, 65, 66]. The image plane is thought of as an array

of statistically independent random variables (RVs) and the subsequent noisy image

at the pth pixel is denoted by

in(ξ) =

[

|i(ξ)| + nsd(ξ)

]

eiθ(ξ). (5.4)

i(ξ) is the noiseless field at the image plane and is corrupted by signal-dependent (SD)

noise process nsd(ξ). The discussion of signal-independent noise can be found in [26,

27]. The RV nsd(ξ) in Eq. 5.4 has zero mean, Gaussian probability density function,

and standard deviation f{|i(ξ)|}γσsd, where σsd is a constant. θ(ξ) is the phase of the

noiseless coherent field i(ξ) at the pth pixel (i.e., ξ ≡ p∆y). A correction due to the

shift in the zero-optical-path difference point based on an interferometric setup was

not included in our model. f{|i(ξ)|}γ is a function of the ideal image amplitude and

is referred to as the modulation function [62]. γ is a parameter satisfying 0 ≤ γ ≤ 1

[63]. The variance at each pixel is,

σ2
ξp

= f{|i(ξ)|}2γσ2
sd. (5.5)

The modulation function and the value of γ are selected to best mimic the behavior

of SD noise which affects the system.
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The above detection process results in a similar decomposition of the continuous

Fourier spectrum of i(y) into M discrete spatial frequencies as illustrated by the

segmented line in Fig. 5.3(b). Two adjacent frequencies are separated by ∆ky and the

individual spatial frequencies are referenced by ky(q) = q∆ky ≡ ζ, where −M
2
≤ q ≤

M
2
− 1. This relates the discrete Fourier space ζ to continuous Fourier space ky. The

Fourier transform of the discretized noise-free image, i(ξ), is denoted by I(ζ), and the

standard deviation at the qth spatial frequency is σζq . Knowledge of σζq is particularly

useful in determining the maximum achievable limiting resolution for optical systems

where transmission progressively worsens for high spatial frequencies. For example,

the Fourier components with transmitted amplitudes comparable to, or less than

σζq will be indiscernible from random noise fluctuations within the measured signal.

Therefore, σζq allows us to identify the spatial frequencies whose Fourier domain

information is effectively lost due to noise effects. Additionally, the effectiveness

of a loss compensation technique can also be evaluated by monitoring its effect on

σζq . Thus, a formulation of σζq is important for our understanding of the underlying

mechanism of ACI and its capacity at compensating losses while minimizing noise

amplification.

A general expression for the standard deviation at the qth spatial frequency can be

calculated by approximating the analytical Fourier transform relation as a Riemann

sum [67]. The Fourier transform of the noisy image in(ξ) in Eq. 5.4 is then written
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Figure 5.3: Illustration of an image measurement process in a detector
system. (a) The continuous field i(y) along the image plane of length L is
decomposed into M samples at intervals of ∆y. Each sample is identified by
an integer p. During the detection process, noise degrades the ideal image
and the standard deviation at each sample is σξp .|in(ξ)| is the magnitude
of the recorded image at the pth pixel or y = p∆y ≡ ξ spatial coordinate.
(b) The Fourier spectrum of i(ξ) is similarly a decomposition into M spatial
frequencies and σζq is the standard deviation at the qth frequency.

as

In(ζ) =

(M
2
−1)∆y
∑

ξ=−M
2
∆y

|in(ξ)|eiθ(ξ) exp

(

− iξζ

)

∆y

=

(M
2
−1)∆y
∑

ξ=−M
2
∆y

|in(ξ)|
{

cos

(

θ(ξ) − ξζ

)

+ i sin

(

θ(ξ) − ξζ

)}

∆y

= I ′n(ζ) + iI ′′n(ζ) (5.6)

with real and imaginary parts I ′n(ζ) and I ′′n(ζ), respectively. Note that the number

of samples M , is related to ∆y and ∆ky by M = 2π/∆y∆ky [67]. We can substitute
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|in(ξ)| from Eq. 5.4 into Eq. 5.6 to express the real and imaginary parts of In(ζ) as

I ′n(ζ) =

(M
2
−1)∆y
∑

ξ=−M
2
∆y

{

|i(ξ)| + nsd(ξ)

}

cos[φ(ξ, ζ)]∆y, (5.7)

and

I ′′n(ζ) =

(M
2
−1)∆y
∑

ξ=−M
2
∆y

{

|i(ξ)| + nsd(ξ)

}

sin[φ(ξ, ζ)]∆y, (5.8)

respectively, and φ(ξ, ζ) = θ(ξ) − ξζ.

Based on Eq. 5.6, we can write In(ζ) as

In(ζ) = I(ζ) +Nsd(ζ), (5.9)

where I(ζ) and Nsd(ζ) are the Fourier transforms of i(ξ) and nsd(ξ) in Eq. 5.4,

respectively. The real and imaginary parts of I(ζ) and Nsd(ζ) can also be expressed in

terms of the sums of cosines and sines similar to In(ζ) (see Eqs. 5.7 and 5.8). Nsd(ζ) in

Eq. 5.9 has a standard deviation σζq describing SD noise at the qth Fourier component.

The variance of the real and imaginary parts of Nsd(ζ) are denoted by σ2
ζq ,r

and σ2
ζq ,i

,

respectively. According to Eqs. 5.6 and 5.9 Nsd(ζ) is a weighted superposition of all

the RVs in the spatial domain. Each RV involved in the summation is statistically

independent with a Gaussian probability density function. Therefore, we can apply
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Bienaymé’s identity, to express σ2
ζq ,r

and σ2
ζq ,i

as

σ2
ζq ,r

=

(M
2
−1)∆y
∑

ξ=−M
2
∆y

σ2
ξp

cos2[φ(ξ, ζ)](∆y)2, (5.10)

and

σ2
ζq ,i

=

(M
2
−1)∆y
∑

ξ=−M
2
∆y

σ2
ξp

sin2[φ(ξ, ζ)](∆y)2, (5.11)

respectively, and σ2
ξp

= f{|i(ξ)|}2γσ2
sd. The overall variance at each spatial frequency

is simply the sum of the variances of the real and imaginary parts in Eqs. 5.10 and

5.11, that is

σ2
ζq

=

(M
2
−1)∆y
∑

ξ=−M
2
∆y

f{|i(ξ)|}2γσ2
sd(∆y)2. (5.12)

Without loss of generality, the subsequent calculations can be simplified and provide

more physical insight by assuming the modulation function in Eq. 5.12 is a linear

function of |i(ξ)| with γ = 1. This results in constant SNR and has implications

on the considered noise levels and required illumination intensities. This is chosen

to relate the variance directly to the total physical power contained in the signal as

shown below. Similar effects are obtained, such as in practical detectors with the

Poisson distribution of photon noise [42, 45, 62]. Substituting f{|i(ξ)|} = |i(ξ)| and

147



γ = 1 we can rewrite Eq. 5.12 as

σ2
ζq

=

[

(M
2
−1)∆y
∑

ξ=−M
2
∆y

|i(ξ)|2σ2
sd∆y

]

∆y. (5.13)

The summation enclosed inside brackets, is proportional to the optical power on the

image plane. Therefore, we can employ the energy conservation theorem by using

Parseval’s relation and rewrite σ2
ζq

in Eq. 5.13 as

σ2
ζq

=

[

1

2π

(M
2
−1)∆ky
∑

ζ=−M
2
∆ky

|I(ζ)|2σ2
sd∆ky

]

∆y

=
1

M

(M
2
−1)∆ky
∑

ζ=−M
2
∆ky

|I(ζ)|2σ2
sd. (5.14)

Eqs. 5.13 and 5.14 state, for a fixed number of pixels M = 2π/∆y∆ky, that the

spectral variance σ2
ζq

is constant and proportional to the total power contained in

the signal. Similar results have been reported for incoherent light in [68, 69, 70].

This is a remarkable result, which can be potentially generalized to a wide variety

of problems in noisy and lossy linear systems, either classical or quantum. Below,

in the context of superresolution imaging, we demonstrate how this result leads to

enhanced spectral SNR with the incorporation of selective spectral amplification and

correlations. For different values of γ, the variance is still flat, but not proportional

to the power contained in the signal (see Eq. 5.12). To the best of our knowledge,
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the utilization of Eqs. 5.13 and 5.14 in imaging has only been drawn attention to

here and in a slightly modified form recently in [69] to extend the SNR limit using

sub-pupils.

The presence of an extra ∆y clearly makes σ2
ζq

dependent on the spatial discretiza-

tion. Rescaling ∆y in Eq. 5.14 would result in effects of upsampling or downsampling

of continuous signals. Therefore, Eq. 5.14 cannot be readily generalized for an ar-

bitrary detector system without considering the physical mechanism through which

information is extracted. The spectral variance may not necessarily reduce with pixel

miniaturization and multiple factors must also be considered when determining the

overall effect on noise. The number of detected photons are also intimately related to

the pixel active area, quantum efficiency, the pixel optical path, integration time, and

sensitivity [71, 72, 73, 74]. Additionally, it may be necessary to incorporate crosstalk

effects between adjacent pixels to accurately model the effect of pixel scaling on σ2
ζq

.

However, the effects of pixel miniaturization on the detected noise are considered in-

dependent from ACI, which only deals with compensation of signal losses for a fixed

number of pixels.

In subsequent discussions, an analytical equation [75] is used for the transfer function

of the silver lens imaging system, which is configured similar to an experimental silver

lens [60] with d = 50 nm and embedded inside a background dielectric of relative

permittivity ǫd = 2.5 [27, 28, 42] [see Figs. 5.1(a) and 5.4]. The relative permittivity
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Figure 5.4: Magnitude of the analytical transfer function for a 50 nm thick
silver lens embedded inside a dielectric and symmetrically placed between
the object and image planes as shown in Fig. 5.1(a). The required com-
pensation at each Fourier component should ideally be the inverse of the
transfer function and is shown by the green line.

of silver at λ = 365 nm is ǫAg = −1.88 + 0.60i, calculated from the Drude-Lorentz

model [76]. The corresponding estimated compensation necessary for each spatial

frequency is simply the inverse of the corresponding magnitude of transmission (see

Fig. 5.4). In Fig. 5.4 and following ones negative spatial frequencies are not shown,

although the full spectrum is considered in all the calculations.
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5.4 Results

5.4.1 Selective spectral amplification and correlations

In the following, an example object with a Gaussian spectrum is employed in Figs.

5.5 and 5.6, defined as

|O(ζ)| = exp

[−ζ2
2α2

]

, (5.15)

where α describes the full width at half maximum (FWHM) of |O(ζ)| and is defined

as

α =
0.25M∆ky

2
√

2 ln 2
. (5.16)

The imaging systems are illuminated with a TM-polarized source from the object

plane (see Fig. 5.1). We assume that the object field is created through subwavelength

slits [3, 77]. The spatially coherent discretized complex magnetic field distribution

along the object plane is denoted as o(ξ). The Fourier transforms of the noiseless

image for the passive (i.e., without ACI) and active (i.e., with ACI) imaging systems
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are

IP (ζ) = O(ζ)T (ζ), (5.17a)

IA(ζ) = O(ζ)T (ζ)[1 + A0G(ζ)], (5.17b)

respectively, where O(ζ) = F{o(ξ)} and F is the Fourier transform operator. The

subscripts “P” and “A” refer to the passive and active imaging systems, respectively.

O(ζ)A0G(ζ) in Eq. 6.3b is defined as the auxiliary source [26, 27, 28] (see Fig. 5.2).

Therefore, O(ζ)T (ζ)A0G(ζ) is the residual auxiliary source which survived the lossy

transmission process through the lens. As can be seen from Eq. 6.3b, the object field

O(ζ) is superimposed coherently with the auxiliary source. The auxiliary source is

required to possess three important properties. First, it is correlated with the object

field O(ζ) [26]. Second, it is defined over a finite bandwidth through G(ζ). Third, it is

amplified by a factor of A0. Below, without loss of generality, we use a band-limited

unit magnitude rectangular function for G(ζ). Then, overall, the auxiliary source

corresponds to only a portion of the object spectrum, which is selectively amplified.

However, in general, the function G(ζ) can have an arbitrary profile with a finite

bandwidth [27]. In this case, the auxiliary source spectrum is modified in accordance

with the given function G(ζ), while being still selectively amplified and correlated

with the object. In [27] and [28], we show how to construct such an auxiliary source

using HMMs acting as near-field spatial filters.
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The standard deviations at the qth Fourier component corresponding to IP (ζ) and

IA(ζ) in Eq. 6.3 are denoted by σζq ,P and σζq ,A, respectively. Their expressions are

determined by substituting |I(ζ)| in Eq. 5.14 with |IP (ζ)| and |IA(ζ)|, respectively.

That is

σ2
ζq ,P

=
1

M

(M
2
−1)∆ky
∑

ζ=−M
2
∆ky

|O(ζ)T (ζ)|2σ2
sd, (5.18)

and

σ2
ζq ,A

=
1

M

(M
2
−1)∆ky
∑

ζ=−M
2
∆ky

|O(ζ)T (ζ)|2σ2
sd|1 + A0G(ζ)|2

= σ2
ζq ,P

+ σ2
ζq ,Aux. (5.19)

Note that σ2
ζq ,A

can be split into its contributing parts. σ2
ζq ,Aux describes the contri-

bution to the SD noise from the residual auxiliary source and is given by

σ2
ζq ,Aux =

1

M

(M
2
−1)∆ky
∑

ζ=−M
2
∆ky

|O(ζ)T (ζ)|2A2
0σ

2
sd

×
[

2G′(ζ)

A0

+ |G(ζ)|2
]

, (5.20)

where G′(ζ) is the real part. Eqs. 5.18 and 5.19, say that integrating the active

spatial filter with the imaging system gives an additional standard deviation σζq ,Aux,

dependent on the filter parameters. Eq. 5.20 shows how the active filter parameters,
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such as A0, the center frequency qc, and the width of G(ζ) contribute to the noise at

each Fourier component. Before proceeding further, we reduce Eq. 5.20 to

σ2
ζq ,Aux ≈ 1

M

(M
2
−1)∆ky
∑

ζ=−M
2
∆ky

|O(ζ)T (ζ)|2A2
0σ

2
sd|G(ζ)|2, (5.21)

since the summation of the first term inside the brackets in Eq. 5.20 can be

generally dropped. For example, consider compensating the spatial frequencies

10k0 ≤ ζ ≤ 12k0. According to the green line in Fig. 5.4, the estimated value

for A0 is approximately within the order 106 ∼ 108.

For simplicity, we rewrite the transfer function of the active spatial filter in Eq. 5.2

as

AR(ζ) = 1 + A0GR(ζ), (5.22)

where GR(ζ) = |GR(ζ)|eiϕR(ζ) is a unit magnitude rectangular function of width Wk0

and centered at ζc. That is

|GR(ζ)| =















1

∣

∣

∣

∣

(ζ−ζc)
Wk0

∣

∣

∣

∣

≤ 1
2

0 otherwise.

(5.23)

This redefinition conveniently emphasizes the effect of selective spectral amplification

without loss of generality. Then, we can express the ratio Rσ of σ2
ζq ,Aux in Eq. 5.21
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to σ2
ζq ,P

in Eq. 5.18 as

Rσ = A2
0

PIP ,W

PIP

, (5.24)

where PIP ,W is the portion of the total power contained by IP (ζ) distributed over

bandwidth Wk0 and centered at ζc, and PIP is the total power contained by IP (ζ).

Thus, it is important to note that Eq. 5.24 is the ratio of the power in the selectively

amplified band to the total power in the noiseless signal without selective amplifi-

cation. This ratio should not be too large to prevent excessive noise amplification.

Consider, for example, the case where the Fourier components within 6k0 ≤ ζ ≤ 8k0

Figure 5.5: The power spectral densities of the object (|O(ζ)|2) and the
passive image (|IP (ζ)|2) showing how the total power contained within the
Gaussian object and image is distributed throughout the Fourier spectrum.

are selected for amplification. We set A0 = 104 to guarantee the recovery of this

entire band. This overcompensates the lower spatial frequencies within the band.

From Eq. 5.24 the ratio Rσ evaluates to about 13. This indicates that even though

Fourier components were strongly amplified, the resultant increment in the spectral
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variance is comparatively small. This can be generalized for an arbitrary ζc. Fig.

5.5 shows the power spectral density (PSD) plots for |O(ζ)|2 and the corresponding

|IP (ζ)|2 = |O(ζ)T (ζ)|2 indicated by black and red lines, respectively. Since |T (ζ)|

decays with increasing q (see black line in Fig. 5.4), the PSD of IP (ζ) clearly follows

a similar trend. Most of the power contained within the image is distributed over a

small portion of the Fourier spectrum. For example, if the previously selected band

is modified to 8k0 ≤ ζ ≤ 10k0, PIP ,W in Eq. 5.24 will decrease as can be seen from

Fig. 5.5. However, PIP will remain the same and therefore, the ratio between PIP ,W

and PIP decreases. This conveniently restricts Rσ from becoming large even though

the Fourier components within 8k0 ≤ ζ ≤ 10k0 require larger amplification compared

to the previous example.

Based on Rσ in Eq. 5.24 the ACI technique suggests, in principle, an infinite resolu-

tion. Because there is a trade-off between the illumination intensity and the band-

width of the passive spatial filter to keep the spectral SNR above 0 dB at an arbitrarily

large spatial frequency in the loss compensated image spectrum. Once the SNR is

above 0 dB for a particular spatial frequency, that particular frequency of the image

can be reconstructed with deconvolution using the active transfer function in Eq. 5.3.

The larger the illumination intensity, the smaller the bandwidth should be to sup-

press the noise amplification. However, in practice the resolution is limited by several

factors: maximum power, minimum bandwidth and maximum center frequency of

the passive spatial filter, and the minimum pixel size. Also, the present model of
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ACI does not consider weak signals, which should be treated with a quantum optical

model [78].

5.4.2 Improving SNR and resolution limits

The above inhibition of noise amplification during the compensation process results

in substantial improvement in system performance [26, 28, 42]. This is investigated

by comparing between the spectral SNR of the passive and active systems. A general

expression for the spectral SNR is

SNR(ζ) =
|I(ζ)|
σζq

. (5.25)

Substituting the constant A0 with a functional form A0(ζ) = |T (ζ)|−1 allows optimal

amplification for full compensation of losses within Wk0 bandwidth and is adopted

below to emphasize the relative importance of the selective amplification rather than

the exact functional form. Alternatively, a Gaussian or log-normal form of |GR(ζ)| can

also be used to better describe the previously considered MM spatial filters [27, 28].

Additionally, for the remainder of this work we will use σsd = 10−3 in the signal-

modulated noise model in Eq. 5.4 for consistency with our previous works [26, 27,

28, 42], where an experimental imaging system detector [79] is considered.

157



Based on Eqs. 6.3 and 5.25, the SNR of the passive and active imaging systems

SNRP (ζ) and SNRA(ζ), respectively, are written as

SNRP (ζ) =
|O(ζ)T (ζ)|

σζq ,P
, (5.26)

and

SNRA(ζ) =
|O(ζ)T (ζ)||1 + A0(ζ)GR(ζ)|

σζq ,A
, (5.27)

respectively. SNRP (ζ) is plotted by the black line in Fig. 5.6 and SNRA(ζ) for

filters with W = 1, 3, 4, and 6 by the pink, green, blue and purple lines, respectively.

Note that ζc is kept constant at 10k0 and the dashed yellow line marks SNR = 0 dB.

The intersection of SNRP (ζ) with the dashed line marks the resolution limit of the

passive system since larger Fourier components will be indistinguishable from noise in

the detected signal. However, SNRA(ζ) shows a remarkable improvement especially

within the regions where compensation is provided. We point out that SNRA(ζ)

is less than SNRP (ζ) outside the selected bands as expected, since the additional

noise from σζq ,Aux affects the entire spectrum (see Eq. 5.14). This contribution

increases with W as is evident from Fig. 5.6. Nevertheless, the additional increment

in the spectral variance is significantly smaller than the amplification provided to

each Fourier components inside the selected bands, which results in an impressive

enhancement in SNR. The purple line is particularly interesting since it encapsulates

the remarkable power of ACI. The rectangle function |GR(ζ)|, in this case, spans a
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fairly broad 6k0 bandwidth and has essentially extended the resolution limit of the

system close to double compared to the passive system.

Figure 5.6: SNRs of the passive (black line) and active imaging systems
(pink, green, blue and purple lines) with differentW . The effective resolution
limit of the passive imaging system is approximately ζ = 7k0. In contrast,
the SNR of the active imaging systems incorporating ACI is increased within
the selected bands of each filter. Slightly reduced SNR outside the selected
bands indicate the noise contribution from the auxiliary source.

5.4.3 Arbitrary objects

In general, the theory of ACI can be expanded to arbitrary objects. This is illustrated

with Fig. 5.7 where the Fourier spectrum of an arbitrary object is plotted by the

black line. The corresponding noise-free passive image spectrum is calculated from

Eq. 6.3a and corrupted with noise in the spatial domain according to the signal-

modulated noise model in Eq. 5.4. The noisy image is then Fourier transformed to
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obtain In,P (ζ). The magnitudes of IP (ζ) and In,P (ζ) are shown in Fig. 5.7 by pink

and light green lines, respectively. The standard deviation σζq ,P , which has degraded

the passive image spectrum is shown by the dashed dark green line. We can see how

|IP (ζ)| progressively worsens with increasing ζ. Eventually, σζq ,P becomes comparable

to |IP (ζ)| at approximately ζ = 7k0 after which |In,P (ζ)| is overwhelmed by noise,

similar to the simpler Gaussian object in Fig. 5.6 (see black line). The noise-free

active image spectrum is calculated from Eq. 6.3b taking ζc = 10k0, W = 4, and

substituting A0G(ζ) with A0(ζ)GR(ζ), where A0(ζ) = |T (ζ)|−1. This active image

is then also corrupted with noise in the spatial domain and Fourier transformed to

obtain In,A(ζ), magnitude of which is shown by the light blue line in Fig. 5.7. The

standard deviation for the active system σζq ,A is shown by the dashed dark blue line.

Fig. 5.7 clearly manifests the noise-resistant effect of the selective amplification. Note

that the missing nodes on the object spectrum are accurately recovered inside the

band 8k0 ≤ ζ ≤ 12k0 where the selective amplification is provided. The inhibition of

noise amplification with ACI’s selective spectral amplification is therefore applicable

for arbitrary objects. Based on Fig. 5.7, we find that the resolution limit can be

in the end extended by more than 40 % when the underlying passive spatial filter is

illuminated with an intensity of about 0.03mW/µm2 (i.e., the intensity amplification

factor A2
0 ≈ 1.6× 105). A coherent light around this level of intensity is accessible for

a superresolution imaging experiment with a relatively less lossy MM structure [80].

Retrieving deep subwavelength information from a low-Q system disturbs the system
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Figure 5.7: Generalization of the ACI to an arbitrary object. The am-
plitude of the Fourier transforms of the object, the corresponding noise-free
and noisy passive images, and the active image are shown by the black, pink,
light green and light blue lines, respectively. The standard deviations for the
noisy passive image and the active image spectra are shown by the dashed
dark green and dark blue lines, respectively. The active image is adequately
compensated within 8k0 ≤ ζ ≤ 12k0 with a very small amplification of SD
noise.

and lets the high spatial frequency modes quickly dissipate. In our calculations we

did not include this effect. Therefore, it is necessary to maintain a sufficiently high

intensity continuous wave illumination to counter this effect. Here, for simplicity,

we consider only one-dimensional imaging. Therefore, the dimension of the pixel

along the z-direction can be taken equal to the length L of the image plane. For two-

dimensional imaging more intensity is needed. Additional noise and speckle associated

with high illumination intensity and small pixel size limit the achievable resolution.

Also, the amplification at high spatial frequencies will be difficult in the presence

of spatial dispersion. Therefore, the designed spatial filter in Fig. 5.1(b) should

support the highest desired spatial frequency. In a future work, an efficient (i.e., low
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power) implementation could replace the spatial filter in Fig. 5.1(b) with a plasmonic

structured illumination [81] that is systematically designed based on Eqs. 5.13 and

5.14. Another possibility could be considered along the lines of [82], where the HMM

is used to collect the low and high spatial frequencies at different polarizations. In our

model, we assume 60 dB spatial SNR (i.e., σsd = 10−3). Since the spectral variance

is constant through the image spectrum (see Fig. 5.7) and proportional to σ2
sd, the

larger the spatial SNR the lower the required power is to reconstruct a specific spatial

frequency.

In the ACI method, once the selective amplification is applied to the spatial frequen-

cies that were previously buried under the noise (see Fig. 5.7), the reconstructed

image can be obtained from deconvolution based on the active transfer function (see

Eq. 5.3). If the optimal Wiener filter [1 + 1/SNRA(ζ)2]−1 [29, 30, 31] is used in the

deconvolution step, the reconstructed image can be written as

Õn,A(ζ) = In,A(ζ)
1

1 + 1
SNRA(ζ)2

1

T (ζ)[1 + A0G(ζ)]
, (5.28)

assuming a constant A0 and general pass-band function G(ζ). For high SNRA(ζ)

(i.e., around low spatial frequencies and regions of selective amplification), this de-

convolution process approaches to “active inverse filtering.” For low SNRA(ζ) (e.g.,

around 7k0 and 13k0 in Fig. 5.7), the optimal Wiener filter does not heavily amplify
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the noise as opposed to the inverse filter [29]. In general, the optimal Wiener filter em-

ploys the image SNR (see Eq. 5.28) to prevent excessive noise amplification [30, 31].

In this regard, the selective amplification in the ACI method has also a similar spirit

as the optimal Wiener filter. However, as shown below in Fig. 5.8, with the ACI even

without the optimal Wiener filter one can restore spatial frequencies that cannot be

restored by a typical optimal Wiener deconvolution [29, 30, 31]. This is achieved by

selectively amplifying those spatial frequencies, while preventing excessive noise am-

plification in accordance with Eqs. 5.13 and 5.14. Furthermore, as given in Eq. 5.28,

when the optimal Wiener filter is integrated with the ACI, this extends the restored

spatial frequency range of the optimal Wiener filter.

Fig. 5.8 compares the passive and active reconstructed images and their correspond-

ing spectra for 4 Gaussian objects separated by 18 nm peak-to-peak distance. The

yellow line corresponds to the unresolved passive image reconstructed with the opti-

mal Wiener filter. The images reconstructed with the ACI are shown with the red

and purple lines in Fig. 5.8(b). The purple line highlights the effect of discretization

assuming ∆y = 5 nm. Consistent with Eq. 5.14, the noise is increased with larger

discretization. It is clearly seen that the objects are fully resolved using ACI, with a

resolution better than λ/20. The selective amplification process of ACI is achieved by

2 overlapping Gaussian pass-bands with FWHMs of 2.3k0 and centered at 7k0 (i.e.,

near the resolution limit of the passive system) and 8.5k0. The incident plane wave

illumination amplitude [see Fig. 5.1(b)] is increased by a constant factor of A0 = 630.
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Finally, the reconstructed images are obtained from deconvolution based on the active

transfer function (see Eq. 5.3) and using the noisy active image spectrum In,A(ζ) [see

blue line in Fig. 5.8(a)].

5.5 Discussion and Conclusion

The ACI is more than a loss compensation in MMs or plasmonics. The ACI concept,

the then-called Π scheme, was first numerically demonstrated as a loss compensation

method in a plasmonic NIM [20], but later rapidly evolved into a scheme for the

mitigation of information loss in noisy and lossy linear systems. The ACI has, since,

turned into a scheme for spectrum manipulation using selective amplification and

correlations [26, 28, 42].

In this work, we have presented a mathematical analysis of the conceptual framework

of ACI. We showed that selective amplification of a controllable band of spatial fre-

quencies with an auxiliary source can provide sufficient amplification to previously

attenuated spatial frequencies with minimal amplification of noise. It is important

to emphasize that the amplification process in the theory of ACI described here is

fundamentally different than the traditional optical gain media and does not require

a quantum optical model. The ACI is more feasible than optical gain or nonlinear

media, which are more complex and cumbersome due to pumping, gain saturation,
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or amplified spontaneous emission (ASE) [78, 83]. In the coherent model of ACI,

the amplification of the spatial frequencies within the selected band (see Figs. 5.6

and 5.7) is achieved by the coherent superposition of the original object field with

an external auxiliary source, which is correlated with the object field (see Eq. 6.3).

Possible physical generations of the auxiliary source relying on the HMMs and injec-

tion of plasmons have been studied in detail in our previous works [20, 27, 28]. The

implementations for far-field imaging can be made possible with, for example, struc-

tured illumination [68] and spatial filtering [45, 69]. Thus, the ACI does not suffer

from the severe adverse effect of ASE on the SNR associated with the amplification of

weak signals using optical gain media [78, 83]. Also, the imaging system here employs

amplification (e.g., by using a brighter source) prior to the lossy transmission to avoid

the difficulty with the signal amplification at the detection side, especially for the re-

trieval of higher spatial frequencies, and is operated with stronger signals. Moreover,

the classical correlations play an important role in ACI [26, 36]. In practice, the ACI

may not necessarily need increased input power or a separate auxiliary source, but

may only need to locally (selectively) amplify the signal spectrum by redistributing

the spatial frequency content [45, 69].

The present model of ACI is based on linear systems. Therefore, ACI can also compen-

sate the adverse effect of nonlocality [84] on the imaging performance of the system,

as long as the nonlocal system operates in the linear regime. However, since such a
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nonlocal system has a poor transfer function compared to the one without spatial dis-

persion, it will be more difficult to extend the resolution limit. On a similar token, we

have previously shown in [35] that an adverse effect of a deviation from homogeneous

effective medium approximation can also be compensated with ACI.

We provided a detailed analytical explanation of the role and importance of the

various aspects of ACI for greater insights into the previous results [26, 28]. The same

mathematical framework can be further expanded to include incoherent illumination

[42, 45, 68, 69] using the Wiener-Khinchin theorem. We believe that this work can

also theoretically explain the other numerical and experimental results presented in

independent works including pattern uniformity in lithography [40], high-resolution

Bessel beam generation [39], and acoustic real-time subwavelength edge detection

[85], and fosters further explanation of recent simulation and experimental results in

far-field imaging [68, 69].

Eqs. 5.13 and 5.14 can also be used to explain why dark-field imaging [86, 87, 88]

improves the contrast. Blocking the low spatial frequencies reduces the power con-

tained in the signal, hence the flat variance in the Fourier spectrum. Because the

high spatial frequencies are not blocked, however, the spectral SNR increases in this

region, hence the image contrast. In contrast, as can be seen from the active transfer

function in Eq. 5.3, the ACI does not aim to block low spatial frequencies. It rather

aims to selectively amplify the high spatial frequencies buried under the noise without
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excessive noise amplification. Therefore, it does not sacrifice brightness or strongly

enhance artifacts unlike dark-field imaging [87]. The theory presented here can also

be applied to bright field imaging. Guided by Eqs. 5.13 and 5.14, the high spatial

frequencies can be recovered with the selective amplification.

Revealed from the simple mathematical result in Eq. 5.14, we conjecture that the

theoretical concepts of ACI can be potentially generalized to numerous scenarios in

noisy and lossy linear systems (e.g., atmospheric imaging [46, 47, 48, 49], bioimaging

[89], deep-learning based imaging [90], structured illumination [68], tomography [91],

time-domain spectroscopy [50, 51], free space optical communications [52, 53, 54, 55],

PT symmetric non-Hermitian photonics [21, 56, 57], and quantum computing [49,

58, 59], etc.) at different frequencies. Since ACI operates down at the physical layer,

all of these scenarios should benefit from ACI for improved performance. Analogous

equations to Eqs. 5.13 and 5.14 can be derived for different systems to understand the

noise behavior and other effects (e.g., turbulence, scattering, aberration, dispersion,

etc.) in the output spectrum to determine the best amplification strategy.
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(a)

Figure 5.8: The comparison of the image reconstruction using ACI (with-
out optimal Wiener filter) and the passive image reconstruction using the
optimal Wiener filter, in (a) Fourier domain and (b) spatial domain. Õn,P (ζ)
and Õn,A(ζ) refer to passive reconstructed image spectrum obtained by the
optimal Wiener filter and the active reconstructed image spectrum obtained
by the ACI without optimal Wiener filter. õn,P (ξ) and õn,A(ξ) are the re-
spective reconstructed images in the spatial domain. The object (black) and
the noisy images Ĩn,P (ζ) and Ĩn,A(ζ) before deconvolution are also indicated.
Only magnitudes are shown. In (b) the discrete space ξ is interpolated to
guide the eye. The ACI method clearly resolves the 4 objects (see black
lines) separated by 18 nm peak-to-peak distance, using 2 overlapping Gaus-
sian pass-bands with FWHMs of 2.3k0 and centered at 7k0 and 8.5k0. The
constant amplitude amplification factor A0 = 630.
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superlens imaging with loss-compensating hyperbolic near-field spatial filter. Op-

tics Letters, 43(8):1810–1813, 2018.

[29] Michael C Roggemann, David W Tyler, and Marsha F Bilmont. Linear re-

construction of compensated images: theory and experimental results. Applied

Optics, 31(35):7429–7441, 1992.

[30] Jan Biemond, Reginald L Lagendijk, and Russell M Mersereau. Iterative methods

for image deblurring. Proceedings of the IEEE, 78(5):856–883, 1990.

[31] Anthony Zaknich. Principles of adaptive filters and self-learning systems.

Springer Science & Business Media, 2005.

[32] Wyatt Adams, Mehdi Sadatgol, Xu Zhang, and Durdu Ö Güney. Bringing the
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Chapter 6

Superresolution enhancement with

active convolved illumination and

correlations1

1Reproduced from A. Ghoshroy, W. Adams, and D. O. Guney, “Superresolution enhancement with
active convolved illumination and correlations,” Proc. SPIE 11081, Active Photonic Platforms XI,
1108128 (2019) ©2020 SPIE.”
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6.1 Introduction

Recently Sadatgol et al. proposed an alternative solution to manage the losses in

metamaterials named “plasmon injection (PI or Π) scheme” [1]. The process modi-

fies the field incident on a lossy metamaterial with an auxiliary source. This source

amplifies an arbitrary field thereby enhancing transmission through the lossy meta-

material. Since amplification is achieved by a coherent superposition of the original

incident field with the auxiliary source, the process is fundamentally different from

conventional optical gain medium. This avoids typical problems associated with gain

medium such as stability, gain saturation [2, 3] and noise generation due to amplified

spontaneous emission [4]. The Π scheme was theoretically implemented with near-

field imaging systems employing negative index materials [5], superlenses [6], and

hyperlenses [7, 8] to show significant performance improvements. These implemen-

tations were shown to emulate linear deconvolution [5]. Later studies investigated

the advantages of generating the auxiliary source through a convolution process with

the original field to selectively amplify a controllable band of spatial frequencies [9].

The auxiliary source which is now correlated [9, 10] with the original object field was

shown to be substantially resistant to noise amplification when implemented with

coherent [11] and incoherent [12] illumination. The introduction of correlations [13]

into the auxiliary source marked a significant milestone towards the development of
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an effective alternative to previously conceived loss mitigation approaches. This moti-

vated a generalization of the earlier variants of the Π scheme to a more encompassing

active convolved illumination (ACI) [12] since the physical convolution operation is

the cornerstone of the process and is not specific to plasmons.

In this study we review the ACI and present potential implementations with different

imaging systems with the goal of pushing their resolutions beyond existing limits. We

also discuss a possible extension of the ACI theory to quantum computing. This work

is motivated by a recently developed theoretical framework which provides extensive

mathematical analysis of the fundamental concept of ACI for coherent illumination

[14]. Particular emphasis was directed at the required mechanisms, such as selective

amplification and physical convolution to accentuate their role in enabling recovery of

attenuated spatial frequencies with minimal noise amplification with ACI. We briefly

summarize the framework presented in [14] in a more general perspective to facilitate

the development of subsequent discussions.

6.2 Brief review of the theory of ACI

Figure 6.1 shows a generalized schematic of a system which attempts to extract useful

information from an object. A source of light Ein(~k) with wavevector ~k acts as the

carrier and interacts with an object resulting in the spectrum O(~k). This propagates

185



Figure 6.1: A generalized schematic of an imperfect information trans-
mission and collection system with the inclusion of ACI.

through an imperfect classical processor such as standard optical or metamaterial

lenses, fibers, aerosol laden or random media and is collected by a detector before be-

ing converted into meaningful data. However, during the propagation process, O(~k)

is distorted by attenuation or partial decorrelation. Material losses, diffraction, scat-

tering or random fluctuations in material or structural properties within the classical

processor are few of the contributing factors. The propagation step is described with

a point spread function (PSF) and I(~k) = O(~k)T (~k) is the signal reaching the de-

tector, where T (~k) is the Fourier transform of the PSF. Additionally, the imperfect

detector which samples the information incorporates further noise into the measured

signal. Let us assume that the information is measured as a periodic sequence of

M ×M spatial samples along the yz plane. The resulting noisy signal is described
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with the signal modulated noise model as

in(ξy, ξz) = i(ξy, ξz) + f{i(ξy, ξz)}γnsd + nsi, (6.1)

where ξy and ξz are the sample points along the y and z axis and nsd and nsi are ran-

dom variables with standard deviations σ1 and σ2, respectively. i(ξy, ξz) and in(ξy, ξz)

are the ideal and noisy versions of the image and i(ξy, ξz) = o(ξy, ξz) ∗ PSF (ξy, ξz).

The second and third terms in Eq. 6.1 are the signal-dependent and independent

noise processes and with 0 < γ < 1. The overall variance of noise in the Fourier

domain is [14]

σ2
ζky ,ζkz

=
1

M2

∑

ζky

∑

ζkz

|I(ζky , ζkz)|2σ2
1 + σ2

2. (6.2)

Implementation of ACI involves modifying the illumination fed into the classical pro-

cessor as shown by the dashed black box in figure 6.1. A classical correlator taps into

O(~k) and selectively amplifies the portion of the spectrum which is most vulnerable

to distortion. This selectively amplified spectrum OAux(~k), referred to as auxiliary

source is superimposed with O(~k) resulting in OA(~k) and is fed into the classical

processor. The spectrum measured at the detector without and with the selective

amplification block is

IP (ζky , ζkz) = O(ζky , ζkz)T (ζky , ζkz), (6.3a)

IA(ζky , ζkz) = O(ζky , ζkz)T (ζky , ζkz)[1 + A0G(ζky , ζkz)], (6.3b)
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respectively where T (ζky , ζkz) = F{PSF (ξy, ξz)} is the transfer function describing

the transmission of ζky and ζkz spectral components through the classical processor.

The second term in Eq. 6.3b is the residual auxiliary source where A0 is the amplifi-

cation provided and G(ζky , ζkz) is a band-limited function identifying the selectively

amplified the portion of the spectrum. The variance of noise for IP (ζky , ζkz) and

IA(ζky , ζkz) are denoted by σ2
ζky ,ζkz ,P

and σ2
ζky ,ζkz ,A

respectively, and the latter can be

written as [14] σ2
ζky ,ζkz ,A

= σ2
ζky ,ζkz ,P

+ σ2
ζky ,ζkz ,Aux according to Eq. 6.2 where the sec-

ond term is the additional noise contribution from the residual auxiliary source in Eq.

6.3b. It was shown [14] how the selective amplification block (see figure 6.1) can con-

tribute towards the adequate amplification in the signal while minimizing σ2
ζky ,ζkz ,Aux.

In general, ACI can be implemented with temporal or spatial frequencies and the

placement of the selective amplification block (see figure 6.1) is configurable and can

be before the object block as well. However, the current variant of ACI restricts

placement of the selective amplification block before the imperfect processor stage.

6.3 Implementations of ACI

In this work, we discuss some of the potential implementations and extensions of

ACI with three separate systems. We provide a brief description of each system to

emphasize the commonalities with figure 6.1 followed by proposing potential methods

of including the selective amplification block into the system. The factors which limit
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the performance of each system is briefly discussed followed by an argument on how

it can be extended with ACI.

6.3.1 Imaging through scattering and random media

We propose an implementation of ACI for imaging through scattering and random

media. This topic is of considerable theoretical and practical importance particularly

in free-space optical communications, imaging and targeting systems where the origins

of turbulence and scattering may be terrestrial, atmospheric and ionospheric (e.g.,

plasma) [15, 16, 17]. In the subsequent discussion, an imaging process involving wave

propagation through an aerosol laden atmosphere is adopted. The presence of various

molecular species and aerosols in a turbulent medium results in attenuation and

blurring of the propagating electromagnetic wave. Attenuation is attributed primarily

to absorption and Rayleigh scattering. Stochastic variations in the propagation path

due to turbulence and Mie scattering results in photons being intercepted by adjacent

pixels and produces a blurred image [18, 19].

The schematic in figure 6.2 shows a generalized atmospheric imaging scenario. A

perfect Lambertian surface along the yz plane has a spectral degree of reflectance

ρ(y, z) and is defined as the target. It is illuminated by a monochromatic source of

wavelength λ with an intensity distribution E0(y, z). Light from the source is assumed
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to propagate though the atmosphere before hitting the target. Therefore, object has

an intensity distribution o(y, z) = E(y, z)ρ(y, z) where E(y, z) = E0(y, z)e−τatm(λ)

and τatm(λ) is the atmospheric optical depth. o(y, z) propagates a distance d through

the aerosol laden atmosphere before being intercepted by a standard imaging system

with focal length f and an entrance aperture of area A. The radial PSF of the

camera system shown in figure 6.2 is a diffraction-limited Airy disc pattern denoted

by PSFAiry(r) described by a Bessel function of the first kind and order 1. The

effect of atmospheric aerosols broadens PSFAiry(r) and the radial distribution of the

effective PSF (denoted by PSFeff (r)) is

PSFeff (r) = e−τatm(λ)PSFAiry(r) + PSFsca(r) , (6.4)

where PSFsca(r) is the radial intensity distribution of the scattered radiation[17,

20, 21, 22, 23, 24]. The convolution between o(y, z) and PSFeff (r) is the resulting

image which is recorded by the detector. The first term in Eq. 6.4 is essentially

an attenuated Airy disk pattern (unscattered light) superimposed with the scattered

intensity distribution. Therefore, the convolution between o(y, z) and the second term

in Eq. 6.4 is the scattered intensity which is temporally and spatially uncorrelated

from the input field and results in a blurred halo on the image plane. In addition

to the aerosol-induced blurring, the statistical nature of photon detection also adds

shot noise with Poissonian statistics. Therefore, the noisy intensity distribution of
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Figure 6.2: Atmospheric imaging schematic.

the image is written by modifying Eq. 6.1 as

in(r) = e−τatm(λ)i(r) + f{ieff (r)}γnsd + nsi, (6.5)

where i(r) and ieff (r) are the convolutions of o(r) with PSFAiry(r) and PSFeff (r),

respectively in Eq. 6.4 and o(r) is the radial distribution of the object intensity.

The effects of scattering and absorption from aerosols are included into PSFeff (r) in

Eq. 6.4 by applying a discretized scattering theory where particles are assumed to

be sparse (compared to the wavelength) in the propagation medium [22]. The optical

properties of the propagation medium are described with the volume absorption kabs,

scattering ksca, and extinction kext coefficients related by kext = ksca + kabs. For a

polydisperse collection of particles (such as an aerosol laden atmosphere) , kext is
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written as

kext(λ) =

∞
∫

0

πα2[Qsca(α, λ) +Qabs(α, λ)]n(α)dα, (6.6)

where Qsca, Qabs scattering and absorption efficiency factors (related to the extinction

efficiency factor as Qext = Qsca + Qabs) and n(α) in the particle size distribution

function with radius α. n(α) which can be a multimodal lognormal or modified

Gamma distribution depending on the type of aerosol [22].

ACI is implemented into the system by incorporating the selective amplification block

(see dashed red box in figure 6.1). Note that the atmospheric propagation from the

object to the camera in figure 6.2 is the analogue of the imperfect classical proces-

sor stage in figure 6.1. The placement of the selective amplification block requires

some consideration. Typical propagation distances through the atmosphere are quite

large and can be in the order of kilometers. Therefore, selective amplification block

cannot be placed after the object. However, according to Eq. 6.3b, we require an

active object spectrum with the form OA(ky, kz) = O(ky, kz) + A0G(ky, kz)O(ky, kz)

which in the spatial domain can be written as oA(y, z) = o(y, z) + oAux(y, z). The

second term is the spatial distribution of the auxiliary source which can be written as

ES(y, z)ρ(y, z) where ES(y, z) is a structured illumination pattern. Therefore, ACI

can be implemented by moving the selective amplification block over to the illumina-

tion side. The modified illumination incident on the object is written as

EA(y, z) = E(y, z) + ES(y, z) (6.7)
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where ES(y, z) interacts with ρ(y, z) to generate the auxiliary source

A0G(ky, kz)O(ky, kz). As an example, the functional form of the required in-

tensity distribution can be written as

ES(y, z)ρ(y, z) = F−1{A0G(ky, kz)[ρ(ky, kz) ∗ E(ky, kz)]}, (6.8)

for a specific object where ρ(ky, kz) = F{ρ(y, z)}. Eq. 6.7 can be readily solved for

ρ(y, z) 6= 0 to determine the resulting ES(y, z). However, this would make the process

dependent on the object which is undesirable. Therefore, the next challenge would

require formulating a general form of the structured field ES(y, z) which can generate

oAux(y, z) with no prior knowledge of ρ(y, z). Additionally, effect of the scattering

medium should be considered during the design of ES(y, z). According to Eq. 6.5, the

overall noise at each radial position on the image plane is dependent on the ieff (r).

Since ieff (r) is the total intensity containing a contribution from the scattered field,

the auxiliary source will also have a finite contribution to the overall noise similar to

Eq. 6.2 and the framework developed in [14]. The additional noise can be described

by the convolution between PSFsca(r) in Eq. 6.4 and OAux(y, z). Therefore, the

design process of ES(y, z) should respect Eq. 6.8 and in order to ensure that the

resulting amplification in scattered field is minimized.
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6.3.2 THz time domain spectroscopy

Imaging and spectroscopy with THz radiation [25] is a rapidly evolving multidisci-

plinary field with various practical applications a few of which are industrial envi-

ronments [26], pharmaceutical [27] and biomedical [28], agriculture and food industry

[29], defense and security [30], art conservation [31], material characterization [32] and

holography [33]. THz radiation is capable of penetrating most dielectric materials and

can probe interior structures with meaningful contrast. The non-ionizing nature of

THz light offers unique opportunities of non-destructive imaging [34]. THz time do-

main spectroscopy (THz-TDS) which is high resolution imaging technique has seen

rapid development since its inception. THz-TDS is particularly useful in non-invasive

identification of spectral fingerprints of different bio-molecular species [35] many of

which have absorption bandwidths for vapour rotational [36] or vibrational modes

[37] in the THz domain. However, the maximum spectral resolution of the spectro-

scopic measurement is limited by noise from three sources [36]. Noise is contributed

from the emitting antenna, which manifests itself as random temporal fluctuations

in the pulse intensity and is transmitted from the emitter to the detector. The re-

maining two sources of noise are shot noise and Johnson—Nyquist (electronic) noise.

While shot noise imposes a fundamental limit on the maximum resolvable spatial and

temporal frequency especially in transmission mode THz-TDS, noise from the source

can result in artifacts and obscure the measured spectroscopic data[38] especially for
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complex targets with finer structural and spectroscopic signatures. Therefore, an im-

plementation of ACI with THz imaging systems would serve to improve the accuracy

in measurement and extend the fundamental noise-limited resolution limit.

Figure 6.3: (a) General schematic of a THz-TDS setup in transmission
mode and (b) trace of the electric field extracted from different positions
across an example sample. (a) Adapted and (b) reprinted with permission
from [34] ©The Optical Society.

In the subsequent discussion we consider a classic THz-TDS setup in transmission

mode and analyze potential ways of implementing ACI. A generalized schematic of

the setup is shown in the schematic in figure 6.3(a). A collimated laser pulse is

focused on a sample of thickness L and the response is collected on the image plane

as a function of time. The sample or the source is mechanically or optically steered to

obtain a 2d scan along the yz plane. A reference pulse is propagated with the same

configuration without the sample and both measurements are Fourier transformed

into the temporal frequency domain. Figure 6.3(b) shows a plot of a reference plot

(red line) and other time domain plots of the same pulse after propagation through

an example sample. The amplitude and phase of the two spectra are then analyzed
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to obtain useful information about the optical properties of the sample. The overall

variance of noise in the temporal frequency domain is [36]

σ2
ξy ,ξz ,ω

= T 2(ω)σ2
E(ω) + σ2

shot(ω) + σ2
elec(ω) , (6.9)

were σ2
shot(ω) and σ2

elec(ω) are the variances of the shot and electronic noise, respec-

tively and are the temporal frequency analogues of the second and third terms on

the RHS of Eq. 6.1. T 2(ω)σ2
E(ω) is the variance of the source noise and T (ω) is the

transfer function of the system.

One possible implementation of ACI for THz-TDS imaging systems in the temporal

frequency domain by modifying the source spectrum as

EA,i(ω) = E0,i(ω) + A0G(ω) , (6.10)

where E0,i(ω) is the original pulse, which is superimposed [39] with a band-limited

secondary pulse G(ω). The spectral components of G(ω) are selectively amplified

by a factor A0. The interaction of the second term with the sample shown in figure

6.3 generates the auxiliary source. For example, consider an example target with a

spatially varying refractive index ñ = n − iκ. For simplicity, let us assume the THz

beam is a plane wave normally incident on the target with spectral components given
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by Eq. 6.10. The THz beam transmitted through the sample is [40, 41]

EA,t(ω) = EA,i(ω)τ(ñ, ω)P (ñ, ω, L)

∞
∑

p=0

[r(ñ, ω)P 2(ñ, ω, L)]p (6.11)

where τ(ñ, ω) and r(ñ, ω) are the squares of the transmission and reflection coeffi-

cients of the sample, respectively. P (ñ, ω, L) is a coefficient of propagation through

the sample and the summation term accounts for backward and forward reflections

similar to the Fabry-Perot effect. Each term of the summation in Eq. 6.11 corre-

sponds to a temporal echo and directly transmitted beam is indicated by p = 0. The

summation term has been included since the secondary pulse (second term in Eq.

6.10) has a longer temporal duration. Therefore, the corresponding temporal echoes

may not be sufficiently separated to allow time windowing. Note that by substitut-

ing EA,i(ω) from Eq. 6.10 into Eq. 6.11, we can obtain an equation of the active

image analogous to Eq. 6.3b. Another potential method of implementing ACI can

involve structuring the spatial field distribution of the THz source itself similar to

the atmospheric imaging implementation. This would permit selective amplification

of the higher-spatial frequency features of the target. For example, G(ω) in Eq. 6.10

can be replaced with G(y, z;ω) which represents a structured illumination at the fre-

quency ω. In a THz source, such as semiconductor-based dipole antennas operated

with femtosecond laser pulses [42], each E0,i(ω) in Eq. 6.10 has an illumination profile

which can be approximated with a Gaussian illumination distribution [42, 43] such

as a TEM00 mode. Therefore, the THz pulse, shown in figure 6.3(b) can be thought
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of as a superposition of multiple Gaussian beams with frequencies ranging form a few

100 GHz to several THz. The spatial structuring of the THz pulse can be done by

superimposing E0,i(ω) in Eq. 6.10 with a secondary beam where a controlled num-

ber of temporal frequencies have higher order modes. Since higher spatial frequency

features of the target typically have lower transmission [34], and are more susceptible

to distortion from shot noise especially in transmission mode THz-TDS. Implement-

ing ACI with the THz pulse in both temporal and spatial domains according to the

proposed methods may not only improve measurement accuracy but also potentially

extend system operation beyond existing limits. The above implementations of ACI

can be incorporated in the recently proposed analytical model of the THz imaging

equation [44].

6.3.3 Quantum computing

The working principle of the ACI in the classical picture is recapped in figure 6.4 (left

panel) to relate with quantum computing. In the classical picture, the input Oin(~k) is

first copied to obtain two identical copies, then one of the copies is modified to create

an auxiliary input Ocr(~k) correlated with the other copy. The both are then sent to

imperfect classical processor giving an output Oout(~k) with higher fidelity than the

otherwise possible with no correlations. In the context of imaging [1, 5, 10, 11, 12],

Oin(~k), Ocr(~k), and Oout(~k) correspond to the object, auxiliary source, and the image
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Figure 6.4: The ACI technique (left) using classical correlations is mapped
to quantum picture (right). The feedback between classical (left) and quan-
tum (right) pictures may lead to advanced hybrid classical-quantum infor-
mation processing that optimally employs correlations for the best practical
performance (see text).

with enhanced superresolution, respectively, while the imperfect classical processor

corresponds to an imperfect imaging system. The steps for cloning and generation of

correlations (see dashed rectangle) are performed by using a hyperbolic metamaterial

(HMM)[10, 11] in the classical picture.

The classical picture can be mapped to the quantum picture (panel on right in figure

6.4). In the quantum picture, first, a correlated state |φcr〉 is generated from the input

state |ψin〉, which is next sent to universal quantum cloning machine (Buzek-Hillery)

[45] to generate approximate copies in a new correlated state |ψ̃in〉. It is this state

which is fed into imperfect quantum processor to obtain the desired output state

|ψout〉 with higher fidelity than the otherwise possible with |ψin〉⊗ |0〉 alone (i.e., with

no correlations and copies) [46, 47].
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Suggested by the classical problem [1, 5, 10, 11, 12, 48, 49], where the classical cor-

relations improve the fidelity of a linear system in the presence of noise and loss of

information, the idea in the classical domain can be translated to purely quantum or

hybrid classical-quantum systems to improve the fidelity of imperfect quantum pro-

cesses. The classical picture may guide toward a hybrid photonic classical-quantum

processing, which may in turn enable the modification of the original classical system

for the best possible performance. After multiple iterations of feedback an efficient

hybrid information processing [50, 51, 52] may be possible by bringing together the

best of two worlds, quantum and classical, on a common platform.

6.4 Conclusion

In conclusion, we provided a brief summary of ACI and discussed its potential im-

plementations and extensions with three different systems involving imaging through

scattering and random media, THz-TDS, and quantum computing. The three re-

search directions have commonalities with the system conceptualized shown in figure

6.1 can potentially benefit from the implementation of ACI. Of course, possible fu-

ture extensions of ACI should not be limited with these three systems presented here.

We believe that the analysis presented here is only a glimpse from the tip of an ice-

berg. The process of implementation of ACI can be diversified to cover many other

applications of fundamental and practical interest.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Program name: Simulation of near-field superresolution enhancement
 with
% Active Convolved Illumination.
% Author: Anindya Ghoshroy
% Creation Date: 05/26/2020
% Most recent update: 08/11/2020
% Function: Simulates the propagation of a magnetic field distribution
% containing four subwavelength Gaussian features though a silver
 plasmonic
% lens at wavelength 365nm. Simulation is conducted with and without
 ACI in
% the presense of signal-dependent shot noise. Final reconstructed
 images after
% deconvolution are generated for the systems with and woithout ACI.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% IMPORTANT NOTE: ALL units are in SI system an spatial dimentions are
 in
% micrometers.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Recent Comments : Added Weiner filter in final reconstruction step
 as
% requested by referee.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
close all
clear all
clc
format long
CRIMSON                = 1/255*[220,20,60];
BLACK                  = 1/255*[0,0,0];
DEEP_PINK              = 1/255*[255,20,147];
HOT_PINK               = 1/255*[255,105,180];
MEDIUM_SLATE_BLUE    = 1/255*[123,104,238];
GREEN                  = 1/255*[0, 255, 114];
MEDIUM_SPRING_GREEN    = 1/255*[0,250,154];
OLIVE                  = 1/255*[128,128,0];
TEAL                   = 1/255*[0,128,128];
DODGER_BLUE            = 1/255*[30,144,255];
DARK_SLATE_GREY        = 1/255*[47,79,79];
PURPLE                 = 1/255*[128,0,128];
ORANGE_RED             = 1/255*[255,69,0];
ORANGE                 = 1/255*[124,255,124];
DARK_VIOLET            = 1/255*[148,0,211];
BLUE                   = 1/255*[0,0,255];
GOLD                   = 1/255*[255,215,0];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
c = 2.99792458e8;            % Speed of light in free space [m]
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Lda = 0.3657*10^-6;          % Wavelength [m]
freq = c /Lda;               % Frequency  [Hz]
k0 = 2*pi*freq/c;            % Free space wavenumber [1/m]
Limit = (Lda*10^6)*80;       % Length of image and object planes [um]
y_step = 0.005;              % Spatial discretization [um]
y = -Limit/2:y_step:Limit/2;
Obj_sep = Lda/20;            % Peak-to-peak separation of objects
y = y * 10^-6;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% OBJECT FIELD DISTRIBUTION [A/m]
point_source_y = Lda/12;
sigma = point_source_y/12;
FWHM = 2.35482*sigma;
Amplitude = 1;
%4 Aperture object illuminated with a normally incident TM-plane wave.
Object_field =  Amplitude*exp(-((y -  Obj_sep/2).^2)/(2*sigma^2)) +
 Amplitude*exp(-((y+Obj_sep/2).^2)/(2*sigma^2))+Amplitude*exp(-((y - 
 3*Obj_sep/2).^2)/(2*sigma^2)) + Amplitude*exp(-((y+3*Obj_sep/2).^2)/
(2*sigma^2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Discretized Fourier transform setup
sampling_space = 1;
sampling_k = 2*pi/sampling_space;
L = length(Object_field);
N_fft = 1*(L);
M=L;
ky_sam = pi/(max(y)*1e-6);
ky_step = 0.5*pi/(y_step*1e-6);                % Delta k_y [1/m]
ky = (2*(0:(N_fft)-1)/N_fft)*(ky_step/k0);     % [1/m]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Fourier transform of Object
FFT_Object_field = fft(Object_field, N_fft);  % [A]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Transmission coefficient of a 50nm Ag film at 365nm [Dimensionless]
T_dielectric2    = 50*10^-9;
d = 50*10^-9;
T_dielectric1    = T_dielectric2/2;
T_dielectric3    = T_dielectric2/2;
eps_dielectric1  = 2.2752;
eps_dielectric2  = -1.8752 - 1i*0.5947;
eps_dielectric3  = 2.2752;
kx1 = sqrt(eps_dielectric1 - ky.^2).*k0;
kx2 = 1i*sqrt(ky.^2 - eps_dielectric2).*k0;
kx3 = sqrt(eps_dielectric3 - ky.^2).*k0;
r12 = (kx1./eps_dielectric1 - kx2./eps_dielectric2)./(kx1./
eps_dielectric1 + kx2./eps_dielectric2);
r23 = (kx2./eps_dielectric2 - kx3./eps_dielectric3)./(kx2./
eps_dielectric2 + kx3./eps_dielectric3);
t12 = 1 + r12;
t23 = 1 + r23;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Passive transfer function [Dimensionless]
TF  = (t12.*t23)./(exp(-1i*kx2*d) + r12.*r23.*
 exp(1i*kx2*T_dielectric2)).*exp(1i*kx1*T_dielectric1).*exp(1i*kx1*T_dielectric3);
% ACI filter finction [Dimensionless]
Aux = 1 + 100*exp(-((ky -  7).^2)/(1)) + 10000*exp(-((ky -  8.8).^2)/
(1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%
% Calculate passive and active image spectrum
FFT_Output_field          = FFT_Object_field.*TF;
FFT_Active_Output_field   = FFT_Object_field.*TF.*Aux;
Output_field              = fftshift(ifft(FFT_Output_field));
Active_Output_field       = fftshift(ifft(FFT_Active_Output_field));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Create noisy fields in the spatial domain
[Passive_Noise_SD, Passive_Noise_SI, Passive_Noise_Total] =
 noiseGen(abs(Output_field),0.001);
[Active_Noise_SD,  Active_Noise_SI,  Active_Noise_Total]  =
 noiseGen(abs(Active_Output_field ),0.001);
% Build noisy images [Only signal-dependent noise is used]
Output_field_noisy                = (abs(Output_field)        +
 Passive_Noise_SD).*exp(1j*angle(Output_field));
Active_Output_field_noisy         = (abs(Active_Output_field) +
 Active_Noise_SD ).*exp(1j*angle(Active_Output_field));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
FFT_Output_field_noisy            = fft(Output_field_noisy);
FFT_Active_Output_field_noisy     = fft(Active_Output_field_noisy);
FFT_Passive_Noise_SD              = fft(Passive_Noise_SD);
FFT_Active_Noise_SD               = fft(Active_Noise_SD);
FFT_sigma_q_Passive               = FFT_Active_Noise_SD.*0 + sqrt((1/
M)*sum((abs(FFT_Output_field)*0.001).^2));
FFT_sigma_q_Active                = FFT_Active_Noise_SD.*0 + sqrt((1/
M)*sum((abs(FFT_Active_Output_field)*0.001).^2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Reconstruction
% Passive Weiner Filter
SNR = (FFT_sigma_q_Passive./abs(FFT_Output_field)).^2;
WF                                = 1./(1+SNR);
FFT_Output_field_noisy_rec        = WF.*FFT_Output_field_noisy./(TF);
FFT_Active_Output_field_noisy_rec = FFT_Active_Output_field_noisy./
(TF.*Aux);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Spectral cut-off
delta_k = ky(3)- ky(2);
Cut_off = 11;
ky_trunc1   = 0:delta_k:Cut_off;
FFT_Active_Output_field_noisy_rec_abs   = interp1(ky,
 abs(FFT_Active_Output_field_noisy_rec),    ky_trunc1, 'pchip');
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FFT_Active_Output_field_noisy_rec_phase = interp1(ky,
 angle(FFT_Active_Output_field_noisy_rec),  ky_trunc1, 'pchip');
FFT_Output_field_noisy_rec_trunc        = FFT_Output_field_noisy_rec;
%FFT_Output_field_noisy_rec_trunc        =
 FFT_Output_field_noisy_rec_abs.*exp(1j*FFT_Output_field_noisy_rec_phase);
FFT_Active_Output_field_noisy_rec_trunc =
 FFT_Active_Output_field_noisy_rec_abs.*exp(1j*FFT_Active_Output_field_noisy_rec_phase);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
Output_field_noisy_rec_trunc            =
 fftshift(ifft(FFT_Output_field_noisy_rec_trunc,         N_fft));
Active_Output_field_noisy_rec_trunc     =
 fftshift(ifft(FFT_Active_Output_field_noisy_rec_trunc,  N_fft));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
% Figure 8 published in
% A. Ghoshroy, W. Adams, and D. Ö. Güney, "Theory of coherent active
 convolved
% illumination for superresolution enhancement," J. Opt. Soc. Am. B
 37,
% 2452 (2020).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%
figure(1);
%subplot(2,1,1)
hold on;
plot(ky, abs(FFT_Object_field),                  'Color',  BLACK,     
      'linewidth',   16);
plot(ky, abs(FFT_Output_field_noisy),            'Color',  GREEN,     
      'linewidth',   16);
plot(ky, abs(FFT_Output_field_noisy_rec),        'Color',  GOLD ,     
      'linewidth',   12) ;
plot(ky, abs(FFT_Active_Output_field_noisy),     'Color', 
 DODGER_BLUE,     'linewidth',   8) ;
plot(ky, abs(FFT_Active_Output_field_noisy_rec), 'Color',  CRIMSON,   
      'linewidth',   8) ;
grid off;
box on;
set(gca,'TickLabelInterpreter','latex')
set(gca, 'YScale','log');
set(gca,'YMinorTick','off')
xlabel('$\mathbf{\zeta/
k_0}$','interpreter','latex','fontsize',27,'fontWeight','bold');
ylabel('$\mathbf{Magnitude
 (A)}$','interpreter','latex','fontsize',27,'fontWeight','bold');
set(gca,'fontsize',27,'fontWeight','bold','linewidth',2);
L = legend('$\mathbf{|O(\zeta)|}$','$\mathbf{|I_{n,P}(\zeta)|}$','$
\mathbf{|\tilde{O}_{n,P}(\zeta)|}$','$\mathbf{|I_{n,A}(\zeta)|}$','$
\mathbf{|\tilde{O}_{n,A}(\zeta)|}$ ','Location','southwest');
set(L,'Interpreter','latex')
axis([0 12 1e-14 30000]);
set(gca,'YTick',[1e-12 1e-8 1e-4 1e0 1e4]);
set(gca,'XTick', [0:2:12]);
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%save('test1.mat','Object_field','Active_Output_field_noisy_rec_trunc','Output_field_noisy_rec_trunc','y');
% Previously obtained data from same code was saved and reopened here
 to build the figure as
% reqested by the referee.
Data_1        = open('test1.mat');
Data_2        = open('test.mat');

figure(2);
hold on;
plot(Data_1.y.*1000, (Data_1.Object_field),                        
                                                  'Color',  BLACK,  
  'linewidth',   12);
plot(Data_1.y.*1000, abs(Data_1.Output_field_noisy_rec_trunc),      
  'Color',  GOLD,  'linewidth',   8);
plot(Data_1.y.*1000,
 abs(Data_1.Active_Output_field_noisy_rec_trunc), 'Color',  CRIMSON,  
  'linewidth',   8);
plot(Data_2.y.*1000,
 abs(Data_2.Active_Output_field_noisy_rec_trunc), 'Color', 
 MEDIUM_SPRING_GREEN,    'linewidth',   8);
box on;
grid off;
xlabel('$\mathbf{\xi
 (nm)}$','interpreter','latex','fontsize',27,'fontWeight','bold');
ylabel('$\mathbf{|H(\xi)| Am^{-1}}$
 ','interpreter','latex','fontsize',27,'fontWeight','bold');
L = legend('\boldmath{$|O(\xi)|$}','\boldmath{$|\tilde{O}_{n,P}
(\xi)|$}','\boldmath{$|\tilde{O}_{n,A}(\xi)| \ \Delta
 y=0.5$}\textbf{nm}','\boldmath{$|\tilde{O}_{n,A}(\xi)| \ \Delta
 y=5$}\textbf{nm}','Location','northwest');
set(L,'Interpreter','latex')
set(gca,'TickLabelInterpreter','latex')
set(gca,'fontsize',27,'fontWeight','bold','linewidth',2);
set(gca,'YMinorTick','off')
axis([-100 100 0 1.25]);
set(gca,'XTick', [-100:10:100]);
set(gca,'YTick', [0:0.25:1.25]);
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