749 research outputs found

    Neural networks in petroleum geology as interpretation tools

    Get PDF
    Abstract Three examples of the use of neural networks in analyses of geologic data from hydrocarbon reservoirs are presented. All networks are trained with data originating from clastic reservoirs of Neogene age located in the Croatian part of the Pannonian Basin. Training always included similar reservoir variables, i.e. electric logs (resistivity, spontaneous potential) and lithology determined from cores or logs and described as sandstone or marl, with categorical values in intervals. Selected variables also include hydrocarbon saturation, also represented by a categorical variable, average reservoir porosity calculated from interpreted well logs, and seismic attributes. In all three neural models some of the mentioned inputs were used for analyzing data collected from three different oil fields in the Croatian part of the Pannonian Basin. It is shown that selection of geologically and physically linked variables play a key role in the process of network training, validating and processing. The aim of this study was to establish relationships between log-derived data, core data, and seismic attributes. Three case studies are described in this paper to illustrate the use of neural network prediction of sandstone-marl facies (Case Study # 1, Okoli Field), prediction of carbonate breccia porosity (Case Study # 2, Beničanci Field), and prediction of lithology and saturation (Case Study # 3, Kloštar Field). The results of these studies indicate that this method is capable of providing better understanding of some clastic Neogene reservoirs in the Croatian part of the Pannonian Basin

    Comparative Study of Neural Networks Algorithms for Cloud Computing CPU Scheduling

    Get PDF
    Cloud Computing is the most powerful computing model of our time. While the major IT providers and consumers are competing to exploit the benefits of this computing model in order to thrive their profits, most of the cloud computing platforms are still built on operating systems that uses basic CPU (Core Processing Unit) scheduling algorithms that lacks the intelligence needed for such innovative computing model. Correspdondingly, this paper presents the benefits of applying Artificial Neural Networks algorithms in regards to enhancing CPU scheduling for Cloud Computing model. Furthermore, a set of characteristics and theoretical metrics are proposed for the sake of comparing the different Artificial Neural Networks algorithms and finding the most accurate algorithm for Cloud Computing CPU Scheduling

    A seasonal auto-regressive model based support vector regression prediction method for H5N1 avian influenza animal events

    Full text link
    The time series prediction of avian influenza epidemics is a complex issue, because avian influenza has latent seasonality which is difficult to identify. Although researchers have applied a neural network (NN) model and the Box-Jenkins model for the seasonal epidemic series research area, the results are limited. In this study, we develop a new prediction seasonal auto-regressive-based support vector regression (SAR-SVR) model which combines the seasonal auto-regressive (SAR) model with a support vector regression (SVR) model to address this prediction problem to overcome existing limitations. Fast Fourier transformation is also merged into this method to identify the latent seasonality inside the time series. The experiments demonstrate that the developed SAR-SVR method out-performs SVR, Box-Jenkins models and two layer feed forward NN model-both in accuracy and stability in the avian influenza epidemic disease time series prediction. © 2011 Imperial College Press

    Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification

    Get PDF
    Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset

    Color Regeneration from Reflective Color Sensor Using an Artificial Intelligent Technique

    Get PDF
    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages

    Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS

    Get PDF
    Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a) encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b) accessibility of all of the SNNS algorithmic functionality from R using a low-level interface, and (c) a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNS file formats.This work was supported in part by the Spanish Ministry of Science and Innovation (MICINN) under Project TIN-2009-14575. C. Bergmeir holds a scholarship from the Spanish Ministry of Education (MEC) of the \Programa de Formación del Profesorado Universitario (FPU)"
    corecore