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1. Introduction 

In the last few years the power quality has become the target of many researches carried out 

either by academic or by utility companies. Moreover, a desired good power quality is 

essential for the Power Distribution System (PDS). The PDS can have (or impose) inherent 

operational conditions, that affect frequency and three-phase voltage signals. Among the 

main disturbances that indicate a poor power quality, the following can be highlighted: 

voltage sag/swell, overvoltage, undervoltage, interruption, oscillatory transient, noise, 

flicker and harmonic distortion (Dugan et al., 2003). 

Actually, in literature, a diversity of papers can be found concerning detection and 

identification of power quality disturbances by applying intelligent systems, such as 

Artificial Neural Networks (ANN) (Janik & Lobos, 2006; Oleskovicz et. al., 2009; Jayasree, 

Devaraj & Sukanesh, 2010) and Fuzzy Inference Systems (Zhu, Tso & Lo, 2004; Hooshmand 

& Enshaee, 2010; Meher & Pradhan, 2010; Behera, Dash & Biswal, 2010). However, only 

some papers use data pre-processing tools before the application of intelligent systems. 

Among these papers, the use of Discrete Wavelet Transform (DWT) (Zhu, Tso & Lo, 2004; 

Uyar, Yildirim & Gencoglu, 2008; Oleskovicz et. al., 2009) and Discrete Fourier Transform 

(DFT) (Zhang, Li & Hu, 2011) can be highlighted in the pre-processing stage. According to 

the literature, it should also be mentioned that the pre-processing tools help to ensure a 

better detection and identification of disturbances in the power quality context. 

In Hooshmand & Enshaee (2010), the authors propose a new method for detecting and 

classifying power quality disturbances. However, this method can be used both for the 

occurrence of one and multiple disturbances. This is a method that uses techniques for data 

pre-processing combined with intelligent systems. In this case, the authors extracted 

features of a time-varying voltage signal, such as:  

• Fundamental component;  

• Phase angle shift; 

• Total harmonic distortion; 

• Number of the maximums of the absolute value of wavelet coefficients;  

• Calculation of energy of the wavelet coefficients;  
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• Number of zero-crossing of the missing voltage; and  

• Number of peaks of Root Mean Square (RMS) value.  
After the pre-processing step, the authors conducted the detection and classification of 

disturbances by means of an hybrid intelligent system where two fuzzy systems were 

developed (one being the detector and other the classifier of the disturbances). However, 

what classifies this intelligent system as hybrid is the use of Particle Swarm Optimization 

(PSO) to tune/adjust the membership functions. The results obtained tries to validate the 

proposed methodology, where it was found satisfactory correctness rate. 

In the paper done by Jayasree, Devaraj & Sukanesh (2010), the authors employ the Hilbert 

Transform (HT) as pre-processing stage instead of the Fourier or Wavelet Transforms, which 

are commonly used for the same purpose (detect and/or classify power quality 

disturbances). So, after obtaining the coefficients from the HT, the following calculations are 

performed: mean, standard deviation, peak value and energy. Thus, each of these statistical 

calculations are submitted to the inputs of the Radial Basis Function (RBF) neural network 

that is responsible for classifying the disturbances contained in the measured voltage signal. 

Despite the good results achieved by the proposed method, tests were also performed, 

where was replaced the HT by DWT and S-Transform. Another test was done by replacing 

the RBF neural network by a Multilayer Perceptron (MLP) with Backpropagation training 

algorithm and by a Fuzzy ARTMAP. Thus, the proposed method, which is based on HT and 

RBF neural network, presents better response in terms of accuracy.  

In Zhu, Tso & Lo (2004), a wavelet neural network was proposed for disturbances 

classification. However, a pre-processing step based on entropy calculation was 

accomplished. The results presented evidenced the potential of the proposed method for 

disturbances classification even under the influence of noise. 

Among the intelligent systems used for power quality analysis, ANN and Fuzzy Inference 

Systems are the most applied, as mentioned before. Intelligent systems are used because 

they present, as inherent characteristics, the possibility of extracting the system dynamic and 

being able to generalize the response provided from the system. The intelligent systems are 

normally applied to the pattern recognition, functional approximation and processes 

optimization. 

Taking this into account, the main purpose of this chapter is to present a collection of tools 

for data pre-processing including the DWT (Addison, 2002), fractal dimension calculation 

(Al-Akaidi, 2004), Shannon entropy (Shannon, 1948) and signal energy calculation (Hu, Zhu 

& Zhang, 2007). In addition to the detailed implementation of these tools, this chapter will 

be developed focusing on the pre-processing efficiency, considering and analyzing 

simulated data, when used before the intelligent system application. The results from this 

application show that the global performance of intelligent systems, together with the pre-

processing data, was highly satisfactory concerning accuracy of response. 
The performance of the methodology proposed was analyzed by simulated data via ATP 
software (EEUG, 1987). In this case, a lot of measures were obtained by the power 
distribution system simulated under power quality disturbances conditions, such as: voltage 
sags, voltage swells, oscillatory transients and interruptions. The next step was to submit the 
voltage measured in the substation to the windowing. Thus, the intelligent systems have 
been tested on data with and without pre-processing stage. This methodology allowed to 
verify the improvement in power quality analysis. The results showed the efficiency of the 
pre-processing tools combined with the intelligent systems. 
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2. Pre-processing tools 

In this chapter, four main pre-processing tools will be presented, which are: Discrete 

Wavelet Transform, Fractal Dimension, Shannon Entropy and Signal Energy. 

2.1 Discrete Wavelet Transform 

The Wavelet Transform (WT) has been widely used because of its most relevant features: the 

possibility of examining a signal simultaneously in time and frequency (Addison, 2002). 

Although the WT have arisen in the mid-1980s, it started to be used only by engineering in 

the 1990s (Addison, 2002). It is worth mentioning that the WT calculation can be performed 

in a continuous or discrete manner, however, in the power quality area and, more 

specifically in detection and classification of disturbances, it is common to use the Discrete 

Wavelet Transform (DWT) (Oleskovicz et. al., 2009; Moravej, Pazoki & Abdoos, 2011). The 

DWT can be better understood through Figure 1. 

 

Original Signal (Measured) in Time Domain

Approximation 

Approximation

Detail 

Detail

Level 1

Level 2

Approximation Detail

Level N

 

Fig. 1. Illustrative example of decomposition performed by wavelet transform 

As shown in Figure 1, the WT allows the decomposition of a discrete signal in time into two 
levels, which are called approximation and detail. The approximations store the information 
concerning the low frequency components, while the details store the high frequency 
information. As the WT is applied to the signal, it is decomposed into other levels. Such 
levels are known as the leaves of the decomposition wavelet tree. 
From level 1, the filtered signal is decomposed into other levels from the leaf of detail, 
resulting in the process of downsampling by 2 (Walker, 1999), where the number of samples 
is reduced to half (approximation and detail of level 2) of the parent leaf (detail of level 1), as 
well as the frequency. This process allows us to say that with the increment of 
decomposition levels, the resolution in frequency increases, but the resolution in time 
decreases. 
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Normally, in some literature, the term multi-resolution can be found linked with WT. This 

term refers to the time-frequency decomposition; however, in this case it is necessary to 

finish the wavelet decomposition in an intermediate level. This way, a good resolution both 

in frequency and time domain can be ensured. 

In summary, the WT can also be defined as the application of an analysis filter, which is 

composed by two filters (low-pass and high-pass). However, the inverse process can be 

performed, where a synthesis filter can be applied to obtain the original signal from the 

decomposed/filtered signal. These process can be viewed in Figure 2. 

 

Original Signal (Measured) in Time Domain

Analysis Filter Synthesis Filter 

Filtered Signal in Time and Frequency Domain

 

Fig. 2. Bank of filters used by wavelet transform 

These filters are applied to the signal through the temporal convolution of its coefficients 
with the signal coefficients. 
It is important to mention that there are a lot of filter families, but these filters can only be 

characterized as a Wavelet Transform if the synthesis and analysis filters are orthogonal to 

each other (Daubechies, 1992).  

Another important factor to be taken into account is that the response of WT is better if the 

filters have more coefficients. However, this amount of coefficients must respect the size of 

the original signal, because of delays and processing time. 

2.2 Shannon entropy 

In the analysis of signals, the entropy is defined as a measure of knowledge lack about the 

information in the signal. Therefore, less noisy signals also have lower entropy (Shannon, 

1948). The calculation of the Shannon entropy can be done according to equation (1): 

 
1

log( )
N

i i

i

S p p
=

= ⋅  (1) 

where, N corresponds to the i-th window of the signal and p  represents the normalized 

energy of the window. 
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2.3 Signal energy 

The signal energy is calculated to achieve the full potential of a signal (Hu, Zhu & Zhang, 
2007). However, some signals have negative sides and therefore a quadratic sum of the 
sampled points must be calculated as shown in the equation (2): 

 
M

2
i, j

1 j=1

signal
N

i

E
=

=   (2) 

where, N  corresponds to the i-th window and M  represents the j-th point of the 

window. 

2.4 Fractal dimension 

The fractal dimension has been calculated by using the DWT at the maximum level of the 

signal. The maximum level of a window or signal can be obtained by the following 

equation: 

 max

log( )

log(2)

n
level =   (3) 

where n is the number of points of each considered window/signal. 

It is important to emphasize that, for a better response of the fractal dimension, the mother-

wavelet used by DWT must normally have a lot of support coefficients (over 15), because 

this ensures a more symmetrical response to the impulse (Al-Akaidi, 2004).  

After the DWT is applied, two vectors, [.]x  and [.]y  were generated, containing the 

details length of each wavelet sub band and the energy of each of these sub bands 

respectively. The procedure for the creation of vectors [.]x  and [.]y  can be seen in Figure 

3. In this figure the calculation of fractal dimension about a 32-point-window was 

considered. Once the vectors are determined, the fractal dimension can be calculated 

according to equation (4): 

 
1

2
2

D
β −

= −    (4) 

where, β  is the angle of the average line that sets the points given by the vectors [.]x  

(length of each leaf) and [.]y  (energy of each leaf), by means of the least squares method. 

The calculation of least squares can be done according to the following equation: 

 
2 2 2 2

2 2
2 2

log ( ) log ( ) log ( ) log ( )

log ( ) log ( )

k k k k

k k k

k k

k k

j x y y x

j x x

β

⋅ − ⋅

=
 

−  
 

  

 
    (5) 

where, j  is the signal length, kx corresponds to the vector [.]x  at its k-th position and ky  

corresponds to the vector [.]y  at its k-th position. 
The DWT employed in this study was configured using a Symmlet mother-wavelet with 16 

support coefficients. 
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x[.] = length of each Detail leaf
y[.] = energy of each Detail leaf

 

Fig. 3. Calculation of fractal dimension using DWT 

3. Intelligent systems 

Since the 1990s, intelligent systems have been widely used in researches related to electrical 

engineering, where the Artificial Neural Networks and Fuzzy Systems are highlighted. 

However, in recent years the development of hybrid intelligent tools, that combine neural 

networks and fuzzy systems together with evolutionary algorithms (genetic algorithms and 

particle swarm optimization), has been increasing. Following the outlined context, this 

section aims to present the foundations of intelligent systems, namely, artificial neural 

networks, adaptive neural-fuzzy inference systems and neural-genetic. 

3.1 Artificial Neural Networks 

Artificial Neural Networks are computational models inspired in human brain, which may 

acquire and maintain the knowledge. In this chapter, only ANN with MLP architecture will 

be presented. This architecture is generally applied in pattern recognition, functional 

approximation, identification and control (Haykin, 1999). Hence, considering the pattern 

recognition task, this architecture might be applied to disturbances classification. The MLP 

architecture previously commented is shown in Figure 4. 
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Fig. 4. Architeture of MLP neural networks 

The MLP neural networks commonly use as training algorithm the Backpropagation (BP), 

however, other algorithms such as Levenberg-Marquardt (LM) and Resilient 

Backpropagation (RPROP) should be employed. In this chapter, these algorithms will be 

used and will have its performance evaluated. 

Backpropagation training algorithm was employed because it is commonly used to train 

MLP neural networks. The Levenberg-Marquardt training algorithm was employed due to 

its capacity of accelerating the convergence process. This training algorithm consists in one 

approximation of the Newton method to non-linear systems (Hagan & Menhaj, 1994). On 

the other hand, the Resilient Backpropagation was employed due to its capacity of 

eliminating the harmful effect. This effect is caused by the partial derivatives in the training 

process. Thus, only the signal of partial derivatives is used to update the synaptic weights 

(Riedmiller & Braun, 1993). 

3.2 Adaptive Neural-Fuzzy Inference Systems (ANFIS) 

Fuzzy inference systems are capable of dealing with highly complex processes, which are 

represented by inaccurate, uncertain and qualitative information. Normally, fuzzy inference 

systems are based on linguistic rules of type "if ... then", in which the fuzzy set theory 

(Zadeh, 1965) and fuzzy logic (Zadeh, 1996) provide the necessary mathematical basis to 

deal with inaccurate information and with the linguistic rules. 

In general, fuzzy inference systems are often based on three steps: fuzzification, inference 

procedures and defuzzification. Normally, in fuzzy inference systems, non-fuzzy inputs 

(crisp) are considered; resulting from observations or measurements, that is the case of most 

practical applications. As a result, it is necessary to make a mapping of these data to the 

fuzzy sets (input). The fuzzification is a mapping from the input variable domain to the 

fuzzy domain, representing the assignment of linguistic values (primary terms), defined by 

membership functions, to the input variables. The fuzzy inference procedure is responsible 

for evaluating the primary terms of the input variables, by applying production rules 
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(stored on fuzzy rule base) in order to obtain the fuzzy output value of inference system. 

Once the fuzzy output set is obtained, in the stage of defuzzification, an interpretation of 

this information is performed. This step is necessary because, in practical applications, 

accurate outputs are normally required. The defuzzification is typically used to assign a 

numerical value to the fuzzy output set. Thus, defuzzification can be considered a kind of 

synthesis of the final fuzzy output set by means of a numerical value. In the Figure 5, a block 

diagram representing the components of fuzzy inference systems commented above can be 

visualized. 

 

Fuzzification Defuzzification

Linguistic 
Rules Base

Procedure of 
Inference

Inputs Outputs

Fuzzy Inference System

 

Fig. 5. Structure of a fuzzy inference system 

However, this subsection is intended to neural-fuzzy inference systems that differ from a 

conventional fuzzy system for obtaining and tuning/adjustment of the linguistic rules base. 

When using a neural-fuzzy inference system, rules and fuzzy sets are adjusted and tuned by 

information contained in the data set. It is worth commenting also that the adaptive neural-

fuzzy inference system is based on the Takagi-Sugeno inference model (Takagi & Sugeno, 

1985), where a linguistic rule is given as follows: 

iR : If 1µ  is 1A  and 2µ  is 2A  Then i iy B=  

and, the final result is obtained by the weighted average of all results found in each 

activated rule ( iR ), i.e.: 

  1

1

N

i i

i
N

i

i

y

y

µ

µ

=

=

⋅

=



 (6) 

where, y  is the output of the system, N  denotes the total number of rules activated and iµ   

is the membership degree to each activated rule. 

3.3 Neural-genetic 

The neural-genetic system presented in this subsection has been fully based on the 

architecture of an MLP neural network as well as that presented in Figure 4. However, the 
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neural network training step is performed by a genetic algorithm instead of the methods 

normally used for this type of network (Backpropagation, Levenberg-Marquardt, Resilient 

Backpropagation). Thus, the genetic algorithm becomes responsible for estimating the best 

matrix of synaptic weights, i.e., a good solution inside the search space. 

Genetic Algorithms (GA) are methods applied to search and optimization, which are based 

on the principles of natural selection and survival of the best individuals as defined by 

Charles Darwin in 1859. In addition, the functioning of genetic algorithms depends on the 

adjustment of the genetic operators (selection, crossover and mutation). Thus, the Figure 6 

illustrates a flowchart representing the operation of a basic genetic algorithm. 

 

BEGIN

Yes

Selection

Crossover

Mutation

G
e

n
et

ic
 O

p
e

ra
to

rs

IF
MSE < MSEdesired

OR
Generation 

<  
Generation max

No
END

Individuals Ranking
according with the 
Objective Function

Initialize Population

 

Fig. 6. Flowchart of a basic genetic algorithm 

Through the Figure 6, firstly the population of individuals or chromosomes is initialized by 

means of a uniform distribution. Each individual represents a solution to the problem that is 

subsequently evaluated by the objective function, which becomes, in this case, the 

calculation of the Mean Square Error (MSE). Thus, it can be noted that the individual must 

be better if the MSE is minor. It is important to mention that the GA does not stop its 

execution until a stopping criterion is satisfied. In this case, two variables are normally 

employed as stopping criterion: the maximum number of generations and the expected 

value of MSE. In this chapter, the GA used was parameterized in order to have an elitist 

selection (De Jong, 1975), i.e., only the best individual was maintained for the next 

generation. In addition, a BLX-α crossover and a Gaussian mutation were used. So, the 

individuals of the next generation were obtained by using the following equation: 

  1 2 1( )m p p pα= + −  (7) 
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where, 1p  is the actual individual, 2p  is the best individual of the current generation, α  is a 

free parameter that must belong to the search space and m  represents the new individual. 

After the new individuals are obtained, a portion of these individuals has to go through the 

Gaussian mutation. This mutation replaces a gene of the individual by a random number 

provided by a Gaussian distribution. Thus, given an individual p  with its n-th gene 

selected, an individual m  will be obtained as follows: 

 
( ), ,  if i

i

D p i n
m

p

σ =
= 


    (8) 

where, ( ),iD p σ  is a Gaussian distribution with its mean in ip  and a standard deviation of  

σ  that is a free parameter. However, the mutation operator is usually dynamic, so it checks 

whether the best individual is improving or not during a certain number of generations. If 

the best individual is kept during this pre-defined number of generations, a greater number 

of individuals will be mutated. This strategy is adopted as an attempt to avoid local minima 

points (Goldberg, 1989). The parameters of GA used are shown by means of Table 1. 

 

Selection Method Elitism 

Crossover Method BLX-α 

Mutation Method Gaussian 

α parameter (crossover) 0.3 

Standard deviation (mutation) 0.5 

Minimum MSE (stopping criterion) e-9 

Maximum of Generations (stopping criterion) 1000 

Table 1. Parameters of the genetic algorithm 

4. Distribution power system simulated 

The computer simulation has been developed using the ATP (Alternative Transients 

Program) software, which is properly used for modeling a real distribution system. It 

should be emphasized that the system has been designed by using data provided by a local 

utility. The ATP software enables the configuration of all parameters needed to construct the 

model and the variables to extract the disturbances data. Then, it can be stated that it was 

modeled to have great similarity with those found in the field. For all simulated situations, 

the sampling rate of 7680Hz has been considered. The power system modeled through ATP 

can be seen in Figure 7. 

With respect to Figure 7, the substation transformer (138 Δ/13.8 Y kV, 25MVA), the 

distribution transformers T3 and T13 (45kVA) and the particular transformer TP4 (45kVA) 

has been modeled according to their real saturation curves. The other transformers have 

been modeled without considering their saturation curves. It should be noticed that both the 

distribution transformers and the particular ones have YΔ −  connections with the 

grounding resistance of zero ohm. 
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Fig. 7. Distribution Power System Simulated 
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Fig. 8. Moving window process 

The loads connected to these transformers represent a similar approach to that found in 

practice.  

It can also be verified that, in the distribution system previously mentioned, there are three 

banks of capacitors, two of them been modeled for 600kVAr and the other for 1,200kVAr. 

The cabling of the main feeder consists of a CA-477 MCM bare cable in a conventional 

overhead structure represented by coupled RL elements. 
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As the analyzed power system has been simulated, the extraction of data is given by the 

ATP software at a sampling rate of 7680 Hz. 

In order to test the proposed technique, 89 cases have been generated to form a 

representative database, which was divided in:  

• 34 cases of voltage sags; 

• 28 cases of voltage swells; 

• 15 cases of oscillatory transients; and 

• 12 cases of interruptions. 
Considering these events, windowing of data signal has been necessary to create a 

homogeneous database, and to better prepare the data to the pre-processing stage. Thus, a 

window containing 32 samples/points, which corresponds to a quarter of the cycle of the 

analyzed voltage signal has been used. It is worth mentioning that the window of data 

moves in a step of 8 samples. An example of this window is showed in Figure 8. 

5. Data pre-processing and disturbances analysis 

In this section, the disturbances detection will be presented by means of fractal dimension 

calculation, which is based on WT. It is worth mentioning that the method can be applied 

to both entire signal and window of signal. In the sequence, four examples of fractal 

dimension calculation applied to disturbances detection are shown by Figures 9 to 13. As 

the fractal dimension uses a Wavelet Transform, this one was configured using a Symmlet 

mother-wavelet with 16 support coefficients. The windowing of the signal was done using 

a 32-points window, which corresponds to a quarter of the cycle of original measured 

signal. 
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Fig. 9. Fractal dimension calculation applied to a voltage signal containing sag 
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Fig. 10. Fractal dimension calculation applied to a voltage signal containing swell 
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Fig. 11. Fractal dimension calculation applied to a voltage signal containing interruption 
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Fig. 12. Fractal dimension calculation applied to a voltage signal containing oscillation 
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Fig. 13. Fractal dimension calculation applied to a voltage signal containing interruption and 
noise 
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The figures above show an easy characterization of the disturbances, as well as its temporal 

positions. 

It is noteworthy that after the detection of disturbances, there is still a need to classify them. 

Following this premise, classifiers were implemented based on intelligent systems, which 

were previously mentioned in Section 3. The disturbances classification was first 

accomplished by providing a 32-points window of signal directly to the inputs of intelligent 

systems. This test was done in order to show that the pre-processing is an extremely 

important step for classification of power quality disturbances. The results obtained by this 

classification are shown in Table 2. 

 

 
Accuracy of MLP Neural Networks 

(%) 
Accuracy of Hybrid Intelligent 

Systems (%) 

Disturbances BP LM RPROP ANFIS Neural-Genetic 

Sags 75.9 98.1 98.3 - 59.0 

Swells 95.9 96.4 98.1 - 67.1 

Interruptions 96.6 100 100 - 85.9 

Oscillations 84.4 99.0 96.8 - 83.3 

      

Mean (%) 88.2 98.4 98.3 - 73.7 

Table 2. Performance of intelligent systems without pre-processing stage 

Some disturbances presented by Table 2 reach good results, but the mean percentage, 

mainly for neural-genetic and MLP with Backpropagation training algorithm were low. 

Besides of this, ANFIS is not capable to run because of the huge number of input signals. 

In this way, a new test was performed, where a pre-processing stage was used based on 

fractal dimension, Shannon entropy and energy. The results for this new test can be 

verified in Table 3. 

 

 MLP Neural Networks Hybrid Intelligent Systems 

Disturbances BP LM RPROP ANFIS Neural-Genetic 

Sags 94.2 100 99.5 94.0 85.8 

Swells 92.2 100 99.8 94.8 88.8 

Interruptions 99.9 100 100 100 83.2 

Oscillations 89.9 100 99.6 88.8 98.5 

      

Mean 94.1 100 99.7 94.4 89.1 

Table 3. Performance of intelligent systems with pre-processing stage 

Comparing Table 3 with Table 2, it is evident that the pre-processing stage is essential for 

the proper classification of the disturbances that affect the power quality. It is necessary to 

comment that the neural networks (with BP, LM and RPROP training algorithms), as well 
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as, the neural-genetic hybrid system use a MLP architecture with 15 neurons in the first 

hidden layer, 20 neurons in the second hidden layer and 1 neuron in the output layer. All 

hidden layers use a hyperbolic tangent as activation function and the output layer uses a 

linear activation function.  

6. Conclusions 

This chapter consisted in developing an alternative technique for signals pre-processing 

based on calculations of the fractal dimension, Shannon entropy and signal energy that 

enables the classification of disturbances occurring in electrical power distribution systems. 

It is possible to highlight that the proposed methodology for pre-processing has provided a 

good data preparation for the disturbances classification stage, improving the convergence 

of the intelligent systems, which has consequently supplied satisfactory results for 

identifying disturbances associated with power quality. 

It is important to say that this methodology has been developed carrying out certain data 

window of the signals that characterize the simulated events, where, for each window, the 

dimension of fractal, the Shannon entropy and the energy have been calculated. After this 

data pre-processing stage, intelligent systems are parameterized and the variables calculated 

in the pre-processing stage are provided as inputs. 

The results show that the intelligent systems present better results with pre-processing 

stage. Therefore, the contribution of pre-processing tools for disturbances classification is 

evidenced here. 

Thus, for future works the application of the methodology used in data pre-processing in 

different tasks of classification of disturbances should be used, such as to detect the 

saturation of the transformers, and other problems related to electrical power distributions 

systems. 
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