10 research outputs found

    Hardware-accelerator aware VNF-chain recovery

    Get PDF
    Hardware-accelerators in Network Function Virtualization (NFV) environments have aided telecommunications companies (telcos) to reduce their expenditures by offloading compute-intensive VNFs to hardware-accelerators. To fully utilize the benefits of hardware-accelerators, VNF-chain recovery models need to be adapted. In this paper, we present an ILP model for optimizing prioritized recovery of VNF-chains in heterogeneous NFV environments following node failures. We also propose an accelerator-aware heuristic for solving prioritized VNF-chain recovery problems of large-size in a reasonable time. Evaluation results show that the performance of heuristic matches with that of ILP in regard to restoration of high and medium priority VNF-chains and a small penalty occurs only for low-priority VNF-chains

    2020 22nd International Conference on Transparent Optical Networks (ICTON)

    Get PDF
    Producción CientíficaNetwork Function Virtualization (NFV) is a promising networking paradigm that will ease the network manageability and increase its flexibility, while reducing costs. In this paradigm, operators must solve the Virtual Network Function (VNF) placement and chaining problems. It is also important to provide backup resources to ensure the survivability of the offered services when a node failure happens. In this paper, we compare two different protection approaches to ensure the service resilience: individual VNF protection and end-to-end protection. Results show the benefits in terms of use of computing resources and energy consumption of protecting each VNF individually, compared to the end-to-end protection approach.Ministerio de Economía, Industria y Competitividad (grant TEC2017-84423-C3-1-P)Ministerio de Industria, Comercio y Turismo (fellowship BES-2015-074514)Research network Go2Edge (grant RED2018-102585-T)Interreg V-A Spain-Portugal (POCTEP) programme 2014- 202

    International Conference on Broadband Communications, Networks and Systems

    Get PDF
    Producción CientíficaNetwork Function Virtualization (NFV) is considered to be one of the enabling technologies for 5G. NFV poses several challenges, like deciding the virtual network function (VNF) placement and chaining, and adding backup resources to guarantee the survivability of service chains. In this paper, we propose a genetic algorithm that jointly solves the VNF-placement, chaining and virtual topology design problem in WDM metro ring network, with the additional capacity of providing node protection. The simulation results show how important is to solve all of these subproblems jointly, as well as the benefits of using shared VNF and network resources between backup instances in order to reduce both the service blocking ratio and the number of active CPUs.Ministerio de Economía, Industria y Competitividad (grant TEC2017-84423-C3-1-P)Ministerio de Industria, Comercio y Turismo (grant BES 2015-074514)INTERREG V-A España-Portugal (POCTEP) (grant 0677_DISRUPTIVE_2_E)

    CoShare: An Efficient Approach for Redundancy Allocation in NFV

    Full text link
    An appealing feature of Network Function Virtualization (NFV) is that in an NFV-based network, a network function (NF) instance may be placed at any node. On the one hand this offers great flexibility in allocation of redundant instances, but on the other hand it makes the allocation a unique and difficult challenge. One particular concern is that there is inherent correlation among nodes due to the structure of the network, thus requiring special care in this allocation. To this aim, our novel approach, called CoShare, is proposed. Firstly, its design takes into consideration the effect of network structural dependency, which might result in the unavailability of nodes of a network after failure of a node. Secondly, to efficiently make use of resources, CoShare proposes the idea of shared reservation, where multiple flows may be allowed to share the same reserved backup capacity at an NF instance. Furthermore, CoShare factors in the heterogeneity in nodes, NF instances and availability requirements of flows in the design. The results from a number of experiments conducted using realistic network topologies show that the integration of structural dependency allows meeting availability requirements for more flows compared to a baseline approach. Specifically, CoShare is able to meet diverse availability requirements in a resource-efficient manner, requiring, e.g., up to 85% in some studied cases, less resource overbuild than the baseline approach that uses the idea of dedicated reservation commonly adopted for redundancy allocation in NFV

    Resource Requirements for Reliable Service Function Chaining

    Get PDF
    International audienceIn the context of Software-Defined Networks (SDN), Network Function Virtualization (NFV) is a new network paradigm in which network functions are implemented in software as Virtual Network Functions (VNFs). To meet the demand, VNFs are next interconnected to form different complete end-to-end services, also known as a Service Function Chains (SFCs). We study the problem of deploying reliable Service Function Chains over a virtualized network function architecture. While there is a need for reliable service function chaining, there is a high cost to pay for it in terms of bandwidth and VNF processing requirements. We investigate two different protection mechanisms and discuss their resource requirements, as well as the latency of their paths. For each mechanism, we develop a scalable exact mathematical model using column generation

    A deep reinforcement learning-based algorithm for reliability-aware multi-domain service deployment in smart ecosystems

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-020-05372-xThe transition towards full network virtualization will see services for smart ecosystems including smart metering, healthcare and transportation among others, being deployed as Service Function Chains (SFCs) comprised of an ordered set of virtual network functions. However, since such services are usually deployed in remote cloud networks, the SFCs may transcend multiple domains belonging to different Infrastructure Providers (InPs), possibly with differing policies regarding billing and Quality-of-service (QoS) guarantees. Therefore, efficiently allocating the exhaustible network resources to the different SFCs while meeting the stringent requirements of the services such as delay and QoS among others, remains a complex challenge, especially under limited information disclosure by the InPs. In this work, we formulate the SFC deployment problem across multiple domains focusing on delay constraints, and propose a framework for SFC orchestration which adheres to the privacy requirements of the InPs. Then, we propose a reinforcement learning (RL)-based algorithm for partitioning the SFC request across the different InPs while considering service reliability across the participating InPs. Such RL-based algorithms have the intelligence to infer undisclosed InP information from historical data obtained from past experiences. Simulation results, considering both online and offline scenarios, reveal that the proposed algorithm results in up to 10% improvement in terms of acceptance ratio and provisioning cost compared to the benchmark algorithms, with up to more than 90% saving in execution time for large networks. In addition, the paper proposes an enhancement to a state-of-the-art algorithm which results in up to 5% improvement in terms of provisioning cost.This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777067 (NECOS project) and the national project TEC2015-71329-C2-2-R (MINECO/FEDER). This work is also supported by the " Fundamental Research Funds for the Central Universities " of China University of Petroleum (East China) under Grant 18CX02139APeer ReviewedPostprint (author's final draft

    Greedy nominator heuristic: virtual function placement on fog resources

    Get PDF
    Fog computing is an intermediate infrastructure between edge devices (e.g., Internet of Things) and cloud systems that is used to reduce latency in real-time applications. An application can be composed of a collection of virtual functions, between which dependency constraints can be captured in a service function chain (SFC). Virtual functions within an SFC can be executed at different geo-distributed locations. However, virtual functions are prone to failure and often do not complete within a deadline. This results in function reallocation to other nodes within the infrastructure; causing delays, potential data loss during function migration, and increased costs. We proposed Greedy Nominator Heuristic (GNH) to address these issues. GNH is based on redundant deployment and failure tracking of virtual functions. GNH places replicas of each function at multiple locations—taking account of expected completion time, failure risk, and cost. We make use of a MapReduce-based mechanism, where Mappers find suitable locations in parallel, and a Reducer then ranks these locations. Our results show that GNH reduces latency by up to 68%, and is more cost effective than other approaches which rely on state-of-the-art optimization algorithms to allocate replicas

    Virtualisation and resource allocation in MECEnabled metro optical networks

    Get PDF
    The appearance of new network services and the ever-increasing network traffic and number of connected devices will push the evolution of current communication networks towards the Future Internet. In the area of optical networks, wavelength routed optical networks (WRONs) are evolving to elastic optical networks (EONs) in which, thanks to the use of OFDM or Nyquist WDM, it is possible to create super-channels with custom-size bandwidth. The basic element in these networks is the lightpath, i.e., all-optical circuits between two network nodes. The establishment of lightpaths requires the selection of the route that they will follow and the portion of the spectrum to be used in order to carry the requested traffic from the source to the destination node. That problem is known as the routing and spectrum assignment (RSA) problem, and new algorithms must be proposed to address this design problem. Some early studies on elastic optical networks studied gridless scenarios, in which a slice of spectrum of variable size is assigned to a request. However, the most common approach to the spectrum allocation is to divide the spectrum into slots of fixed width and allocate multiple, consecutive spectrum slots to each lightpath, depending on the requested bandwidth. Moreover, EONs also allow the proposal of more flexible routing and spectrum assignment techniques, like the split-spectrum approach in which the request is divided into multiple "sub-lightpaths". In this thesis, four RSA algorithms are proposed combining two different levels of flexibility with the well-known k-shortest paths and first fit heuristics. After comparing the performance of those methods, a novel spectrum assignment technique, Best Gap, is proposed to overcome the inefficiencies emerged when combining the first fit heuristic with highly flexible networks. A simulation study is presented to demonstrate that, thanks to the use of Best Gap, EONs can exploit the network flexibility and reduce the blocking ratio. On the other hand, operators must face profound architectural changes to increase the adaptability and flexibility of networks and ease their management. Thanks to the use of network function virtualisation (NFV), the necessary network functions that must be applied to offer a service can be deployed as virtual appliances hosted by commodity servers, which can be located in data centres, network nodes or even end-user premises. The appearance of new computation and networking paradigms, like multi-access edge computing (MEC), may facilitate the adaptation of communication networks to the new demands. Furthermore, the use of MEC technology will enable the possibility of installing those virtual network functions (VNFs) not only at data centres (DCs) and central offices (COs), traditional hosts of VFNs, but also at the edge nodes of the network. Since data processing is performed closer to the enduser, the latency associated to each service connection request can be reduced. MEC nodes will be usually connected between them and with the DCs and COs by optical networks. In such a scenario, deploying a network service requires completing two phases: the VNF-placement, i.e., deciding the number and location of VNFs, and the VNF-chaining, i.e., connecting the VNFs that the traffic associated to a service must transverse in order to establish the connection. In the chaining process, not only the existence of VNFs with available processing capacity, but the availability of network resources must be taken into account to avoid the rejection of the connection request. Taking into consideration that the backhaul of this scenario will be usually based on WRONs or EONs, it is necessary to design the virtual topology (i.e., the set of lightpaths established in the networks) in order to transport the tra c from one node to another. The process of designing the virtual topology includes deciding the number of connections or lightpaths, allocating them a route and spectral resources, and finally grooming the traffic into the created lightpaths. Lastly, a failure in the equipment of a node in an NFV environment can cause the disruption of the SCs traversing the node. This can cause the loss of huge amounts of data and affect thousands of end-users. In consequence, it is key to provide the network with faultmanagement techniques able to guarantee the resilience of the established connections when a node fails. For the mentioned reasons, it is necessary to design orchestration algorithms which solve the VNF-placement, chaining and network resource allocation problems in 5G networks with optical backhaul. Moreover, some versions of those algorithms must also implements protection techniques to guarantee the resilience system in case of failure. This thesis makes contribution in that line. Firstly, a genetic algorithm is proposed to solve the VNF-placement and VNF-chaining problems in a 5G network with optical backhaul based on star topology: GASM (genetic algorithm for effective service mapping). Then, we propose a modification of that algorithm in order to be applied to dynamic scenarios in which the reconfiguration of the planning is allowed. Furthermore, we enhanced the modified algorithm to include a learning step, with the objective of improving the performance of the algorithm. In this thesis, we also propose an algorithm to solve not only the VNF-placement and VNF-chaining problems but also the design of the virtual topology, considering that a WRON is deployed as the backhaul network connecting MEC nodes and CO. Moreover, a version including individual VNF protection against node failure has been also proposed and the effect of using shared/dedicated and end-to-end SC/individual VNF protection schemes are also analysed. Finally, a new algorithm that solves the VNF-placement and chaining problems and the virtual topology design implementing a new chaining technique is also proposed. Its corresponding versions implementing individual VNF protection are also presented. Furthermore, since the method works with any type of WDM mesh topologies, a technoeconomic study is presented to compare the effect of using different network topologies in both the network performance and cost.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione
    corecore