
Optimising Microservice-based Reliable NFV
Management & Orchestration Architectures

Thomas Soenen∗, Wouter Tavernier∗, Didier Colle∗ and Mario Pickavet∗
∗Ghent University - imec: {firstname.lastname}@ugent.be

Abstract—A highly reliable set up of Management and Orches-
tration (MANO) functionality is crucial for telecom operators in
order to support demanding NFV-powered telecom services such
as elastic emergency or security services, or other applications
requiring fast, dynamic and reliable (re-) provisioning processes.
NFV MANO functionality controls the entire life cycle of such
services, from instantiation and configuration to monitoring,
migrating, scaling and terminating them. In this paper, we
introduce tunable and scalable mechanisms that provide MANO
with high availability and fault recovery, two reliability facets
that are barely covered in the data plane dominated state-of-
the-art. The mechanisms use state sharing and distributed load
balancing in the context of both a centralised and distributed
microservice-based architecture. The proposed mechanisms are
unique as they are able to quantitatively characterise the trade-
offs between both the degree of reliability and the associated cost
in terms of bandwidth and computing power. This feature allows
us to introduce a cost function to determine which configuration
of the mechanism is optimal with respect to an operator’s needs.

I. INTRODUCTION

Through the adoption of Network Function Virtualisation
(NFV), telecom operators aim to become more agile in pro-
viding services to customers, while simultaneously reducing
operational costs. Instead of implementing network functions
(e.g load balancers, firewalls and proxy servers) as dedicated
hardware devices in a telecom operator’s network, they get
deployed as software applications in data centers on general
purpose hardware. By steering traffic through a chain of such
virtual network functions (VNF), operators create network ser-
vices such as VPNs, Content Delivery Networks and Security
Services. The advantages [1] of this approach are numerous: it
allows operators to (i) deploy network services on demand, (ii)
optimise resource usage, (iii) improve the Quality of Service
(QoS), and (iv) reduce maintenance costs as it lowers the
number of dedicated hardware in their network.

To capitalise on these potential advantages, operators need
to automate and optimise their NFV processes. Satisfying
a customer’s request for a new network service requires
calculating where in the network the VNFs are best deployed.
VNFs should be monitored throughout their life cycles, so that
they can be migrated or scaled in case more or other resources
(e.g. compute power, storage and memory) are required. By
automating these and other NFV processes, services become
available on demand and the customer’s QoS improves. This
explains the current emphasis on NFV Management and
Orchestration (MANO) frameworks [2], as they automatically
manage and orchestrate the life cycles of services, VNFs and
the infrastructure on which they run. Multiple MANO frame-
work implementations, such as OSM [3] and SONATA [4],

NFV Orchestrator (NFVO)

NS 
Catalogue

VNF 
Catalogue

NFV 
Instances

NFVI 
Resources

VNF Manager (VNFM)

Virtualized Infrastructure 
Manager (VIM)

OSS/BSS

EM

VNF

NFVI

ETSI NFV MANagement and Orchestrat oni

Fig. 1: ETSI MANO framework architecture.

are being developed. To prevent a wild grow of frameworks
with incompatible APIs, the European Telecommunications
Standards Institute (ETSI) streamlined the MANO framework
design by proposing a functional software architecture [5] (Fig.
1) that has been accepted throughout the sector.

The ETSI MANO framework architecture has three main
components: the NFV orchestrator (NFVO), the VNF manager
(VNFM) and the Virtual Infrastructure Manager (VIM). The
NFVO manages all tasks on the network service level. It
interacts with the operator’s operations and business support
system (OSS/BSS), through which customers make requests
(e.g. instantiate, update and terminate a service). The NFVO
processes a request through a set of tasks, such as on-boarding
a VNF and steering traffic. The NFVO receives monitoring
feedback which can trigger it to scale the service. The VNFM
operates on the level of the VNF. It receives management (e.g.
deploy, configure and terminate) instructions for VNFs from
the NFVO, which it executes through its interface with the
VNFs. The third major component, the VIM, manages the
bare infrastructure (NFVI) that is used to run the VNFs on.

Operators require their NFV platforms to be carrier grade
[6], i.e. highly reliable and well tested. Existing reliability
research in NFV focuses on the data plane by ensuring the
deployed network services run without hiccups. Monitoring
probes [4] [7] deployed near or inside VNFs quickly detect
issues with resources or connectivity, and services are mapped
so they are protected against resource failure [8]. In this paper
we focus as one of the first on the control plane (i.e. MANO
framework) aspect of reliability in NFV platforms. Section

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/141870163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 2: NFVO design for the network service instantiation workflow with a centralised manager.

II explains why our work focuses on MANO frameworks
implemented as microservices. In Section V, we propose two
mechanisms to add reliability, in terms of high availability and
fast fault recovery, to such MANO frameworks. Section VI
demonstrates these mechanisms and aids in configuring them
for optimal reliability.

II. MANO FRAMEWORK AND MICROSERVICES

To explain why we focus on MANO frameworks imple-
mented as microservices, we first take a closer look at the
NFVO. It needs to support a range of workflows such as
instantiating, scaling and migrating network services. The
instantiation workflow creates a new service, while the scaling
workflow changes how a running service is constructed to
increase or decrease its processing power. Such a change can
include adding more VNFs, replacing a running VNF with a
new and more performant VNF or granting the running VNFs
more resources. A migration workflow relocates running VNFs
to different infrastructure.

With such workflows in mind, the NFVO design can be
refined by introducing a set of modules which execute well-
defined subsets of the workflows. Fig. 2 shows how the
instantiation workflow can be performed by 5 such modules.
The Service Life Cycle Manager (SLM) receives a service
instantiation request from a customer trough the BSS. The
SLM fetches descriptors containing deployment and manage-
ment information for the service from the Catalogue. Next, the
SLM requests the Resource Manager, the interface between
the NFVO and the VIM, for infrastructure information (e.g.
topology and usage). The SLM forwards this to the Placement
Manager, which calculates the optimal placement for the
service. The obtained information is used to provide the
VNFM with instructions to deploy and connect the different
VNFs. After the SLM instructs the Monitoring Manager to

start monitoring the VNFs, it informs the BSS that the service
is deployed.

Fig. 2 is an example of an NFVO design for the instantiation
workflow with 5 modules: one SLM invokes 4 other modules
in the correct order and provides them with the data they
require to perform their task. Fig. 3 shows a different NFVO
design for the same workflow, without a centralised module
managing it. Here, each module invokes the next module in
the chain directly. The information that is being gathered and
shared by the modules is the state of the request. Throughout
the workflow, it accumulates data such as service and VNF
descriptors and infrastructure topologies. Due to the complex-
ity and size of the topology, the size of the state can run high.
As (parts of) this state are being transmitted, one should make
sure that the network is not overloaded. One way of dealing
with this is using abstractions of the topology [9] which are
considerably smaller.

To obtain the complete set of modules in the NFVO design,
charts such as shown on Figs. 2 and 3 should be made for
every workflow. Modules can off course be reused by multiple
workflows. Which type of design to follow for the NFVO is
up for discussion, whether it is the one with the centralised
component in Fig. 2 or the more distributed one in Fig. 3.
An advantage of the centralised case is that the SLM only
sends a subset of the (large) state to each module, while in
the distributed case each module forwards the entire state. An
advantage of the distributed design is that it doesn’t require the
implementation of a complex centralised manager. This paper
does not argue which design is better. We describe reliability
mechanisms for both designs and propose a cost function
to determine which design provides the best reliability with
respect to the resources it consumes.

State-of-the-art MANO frameworks [4] [10] implement the
ETSI MANO architecture as microservices. The term mi-
croservice emerged in the context of cloud computing and De-



Fig. 3: distributed NFVO design for the network service instantiation workflow.

vOps [11] to indicate a software architecture that structures an
application as a collection of loosely coupled services. These
fine grained services are developed and deployed as stand-
alone processes, i.e. microservices [12], and interact through
remote calls over a network. Designing software through
microservices enables incremental and iterative releases that
rapidly change the application. The decomposed nature of the
architecture allows autonomous teams to develop and run the
modules in parallel without the need to shut down and restart
the entire application. NFV is heavily supported and stim-
ulated by open source initiatives, so the microservice-based
architecture allows multiple organisations to work together
autonomously to build MANO framework functionalities.

For this reason, we focus our reliability work on NFVOs
and MANO frameworks where each module in the design is
implemented as a separate microservice which communicates
with the other microservices over a network.

III. PROBLEM DESCRIPTION

Telecom operators require their NFV platform to be carrier
grade, implying it is highly reliable and well tested. In terms
of reliability, it should provide a high availability and a fast
fault recovery. This paper focuses on reliability in the MANO
framework part of NFV platforms. In terms of high availability,
the MANO framework should be processing as many of the
requests as possible in a timely manner, especially time-critical
requests such as the deployment of emergency services or
monitoring messages reporting resource scarcity for running
services. In terms of fault recovery, the MANO framework
is vulnerable to a range of faults. It is subject to low-level
hardware failures of the infrastructure hosting a microservice.
Natural disasters like earthquakes and power outages can cause
the hosting resources to fail, as can malicious attacks. These

faults can cause the loss of state during a workflow, making
the MANO framework unable to finish it. Looking at Figs. 2
and 3, such a loss of state occurs if one of the microservices
crashes when it is processing the request.

In this paper, we provide mechanisms that make MANO
frameworks implemented as microservices highly available
and tolerant against faults that cause the loss of state. To the
best of our knowledge, this has not been described before
in the state-of-the-art. To ensure high availability, we will
deploy additional instances of the microservices and a state
preservation mechanism between these microservices prevents
that workflows are restarted from the beginning if a fault oc-
curred. We will show that the responsiveness of both the fault
recovery and the availability is related to the characteristics of
the mechanisms and their resource usage. This allows us to
quantify and optimise the trade-offs between the availability,
in terms of the added time ratio (Ra), fast fault tolerance, as
the recovery ratio (Rr), and resource usage, with

Ra =
tc
tm
, Rr =

tr
tc

(1)

where tc is the time it takes to finish a workflow without
a fault occurring, tr is the worst case time interval it takes to
finish a workflow in case one fault occurs and tm is the time
it takes to manage a workflow by a monolithic implemented
framework without a reliability mechanism. A lower value
for Ra indicates that the reliability mechanism doesn’t add
much to the processing time of a workflow, while a lower
value for Rr indicates a faster fault recovery, and thus a better
predictability of how long a workflow is going to take.

IV. RELATED WORK

Reliability in MANO frameworks is barely covered in
scientific work. [13] mentions it as a challenge. Looking at



Fig. 4: Abstracted centralised network of microservices.

microservice research, some work has discussed reliability in
terms of recovering from faults. The available solutions for
fault tolerance are based on redundancy. Multiple instances
of the same microservice are running, ensuring that if one
crashes, another takes over its tasks. Examples of such solu-
tions are Serfnode [14], Kubernetes [15] and Akka [16]. What
they lack compared to our solution is state preservation. If a
microservice goes down, our mechanism preserves parts of the
already accumulated state for a workflow, ensuring a faster
recovery from the fault, while their mechanisms just restart
the workflow. Our mechanisms also have the advantage of
being able to minimise the recovery time, in terms of resource
consumption.

[17] proposes a microservice architecture that enables scal-
able and resilient self-management of microservices. This
architecture selects a leader that is responsible to restart failed
microservices. Although this architecture looks familiar to our
centralised architecture shown in Fig. 4, it lacks any concern
for the built-up state in a microservice or for the duration of
the recovery.

V. SOLUTION

In this section, we describe our scalable mechanisms that
add fault recovery and high availability to a both a cen-
tralised and distributed microservice-based implementation of
the MANO framework architecture.

A. Centralised MANO framework

Fig. 4 shows an abstraction of the design in Fig. 2. The
orchestrator is the microservice with the central role, like the
SLM in Fig. 2. It receives the requests and calls the other
microservices in a specific order to go through the workflow.

The mechanism to make this design reliable starts by de-
ploying additional instances of the orchestrator. There should
be at least one additional instance, more can be deployed
when the mechanism scales up. In what follows, we describe
the mechanism for the case with two instances. Extrapolating
to a scenario with more instances is straightforward. The
SLMs send heartbeat messages to each other at a fixed rate
hr, indicating they are alive. If an SLM does not receive a
heartbeat from the other orchestrator for a period longer than
time-out interval th, it assumes it encountered a fault.

The source, the BSS in case of an instantiation workflow,
sends the request to both SLMs. To prevent both orchestrators
from processing the same requests, they share the load in a
distributed way. When initialised, each orchestrator generates
a Universally Unique Identifier (UUID) [18] and includes it
in the heartbeat message. By comparing these orchestrator
UUIDs, each SLM gets a rank. By matching this rank to the
parity of the request UUID, we ensure that only one SLM
processes a request.

Each SLM logs the requests that the other orchestrator is
processing. If it stops receiving heartbeat messages from the
other instance, it uses this log to process the requests that the
other instance did not finish. This assures that no requests
remain unfinished if an orchestrator encounters a fault. To
reduce the fault recovery time, both SLMs share the state
that is built up throughout the workflow. The orchestrator
that processes a request sends the accumulated state to the
other orchestrator after a microservice completed a task in the
workflow. If the processing orchestrator fails, the other SLM
continues the workflow onward from the last task it received
an updated of. This reduces the orchestrator failure recovery
time, as the recovering orchestrator does not need to restart the
workflow from the beginning. For example, if the SLMs in Fig.
2 share the state after the Resource Manager responds, and if
the processing SLM crashes while the Monitoring Manager is
called, the recovering SLM can continue this workflow from
the request to the Placement Manager onward. The frequency
of these state sharing events is a parameter of the mechanism.

The state sharing mechanism adds fault recovery to the
MANO framework. High availability is reached due to the
scalability of the mechanism, as we can increase the number
of SLMs without adding complexity. If the number of orches-
trators is higher than 2, the orchestrators perform a modulo
calculation on the request UUID to decide which one processes
it, instead of using the parity. To ensure availability from the
non-orchestrator microservices, they can be duplicated as well
and also send a heartbeat message to the orchestrators.

Based on this description, we can derive expressions for tc
and tr, for a design with an SLM delegating to n microser-
vices. Each microservice mi requires ti time to finish. to is
the time the orchestrator needs between tasks to process the
input and to prepare the data for the next task. li,a is the
latency for messages from the orchestrator to mi, li,b from
mi to the orchestrator. tc can be written as the sum of the
time it takes each microservice to complete its task, the time
the SLM intervenes and the latency between them:

tc =
∑
i

ti + (n+ 1)to +
∑
i

(li,a + li,b) (2)

tr can be written as tc + tl, with

tl = lhb+th+max
{
∀j ∈ [sp, n] :

j∑
k=j−sp−1

tk+lk,a+lk,b+to

}
(3)



Fig. 5: Abstracted distributed network of microservices.

where lhb is the latency of the heartbeat message. The
processing SLM shares the state every sp tasks. We can
now write the worst case time interval that is lost due to an
orchestrator fault tl as Eq. 3. If the SLM crashes directly after
sending out a heartbeat, the other orchestrator will take th
time to notice the fault. If the state is shared every sp tasks,
we need to derive which combination of sp adjacent tasks adds
the most time to tl. This is done in the last term of Eq. 3. Its
easy to see that the lost time due to a crashed non-orchestrator
microservice will not increase tr if its heartbeat rate and time-
out are identical to hr and th, as long as there is always an
instance of the microservice running. This factor is therefore
not considered in Eq. 3.

To measure the impact of this mechanism on resource usage,
we can evaluate the consumed bandwidth. The total bandwidth
Btot is the sum of the bandwidth of the normal microservice-
based design Bop and the bandwidth added by the reliability
mechanism Brel, with

Brel = hm + hshr +
sz
tc
(1 + trunc((n− so)/sp)) (4)

Bop =
1

tc

∑
i

(Pi,a + Pi,b), (5)

where hs is the size of the heartbeat message, sz the size
of the shared state, trunc the truncation operator and so the
state sharing offset that indicates after how many tasks the first
state sharing event takes place. Pi,a is the size of the message
from the orchestrator to mi and Pi,b the size from mi to the
orchestrator. hm is the bandwidth by heartbeat messages from
the non-orchestrator microservices.

These equations can be used to tune the reliability mech-
anism. By adjusting parameters like the number of microser-
vices, the heartbeat rate and the state sharing period, we
can look for optimal values for Ra, Rr and Btot. Such an
evaluation is demonstrated in Section VI.

B. Distributed MANO framework

To add reliability to the distributed design shown in Fig. 5,
we deploy two instances of each microservice. Both instances
share a heartbeat to indicate they are alive. Both receive every
request and share the load similar to the centralised case. The

instance that is not processing the request logs it, to continue
the workflow when it no longer receives a heartbeat. Once a
microservice is done with its task, it informs the other one.
tc for this design can be written as

tc =
∑
i

ti +

n−1∑
i=0

li,i+1 (6)

where li,i+1 is the latency for messages sent from mi-
croservice mi to mi+1. The worst case lost time due to a
microservice encountering a fault is

tl = max{∀i ∈ [1, n] : lhb,i + th,i + ti} (7)

where lhb,i is the latency of the heartbeat and th,i is the
heartbeat time-out interval for mi.

As each microservice needs to receive the entire state, we
can express Brel and Bop as

Brel =
∑
i

hshr,i +
1

tc

(
n−1∑
i=0

Pi,i+1 +
∑
i

pc

)
(8)

Bop =
1

tc

n−1∑
i=0

Pi,i+1 (9)

where hr,i is the heartbeat rate for mi, pc is the message
size that a microservice sends to indicate it finished. Pi,i+1 is
the size of the state sent from mi to mi+1.

VI. EVALUATION

Varying the characteristics of the proposed reliability mech-
anisms and the MANO framework (e.g. the number of tasks
and the heartbeat rate) results in different values for added
time ratio Ra, recovery ratio Rr, bandwidth Btot and compute
power usage Qr. As operators want to minimise each of
these metrics, they can find the optimal configuration for their
MANO framework by minimising the following cost function:

C(z) = αRa(z) + βRr(z) + γBtot(z) + δQr(z) (10)

z represents one configuration of all the parameters that
define the system. Ra and Rr can be obtained using the
equations in Eq. 1 and Section V. Qr represents the additional
compute power compared to the monolithic implementation.
This is proportional to the number of microservices, i.e.
n+2−1 for the centralised case and 2n−1 for the distributed
one. α, β, γ and δ are parameters that allow the operator to
tweak the importance of each metric in the cost function. For
example, if the quality of the reliability greatly out weights
the resource consumption for an operator, α and β should be
chosen high, while γ and δ are chosen low.



Fig. 6: Rr (red for th = 5hi, yellow for th = 3hi) and Btot

(blue) for varying hr.

A. Ranges

We start by defining some ranges for z. Looking at Fig. 2,
the time ti that it takes mi to finish depends on the task. Some
tasks finish quickly, e.g. fetching the descriptors (< 1s), while
others take more time, e.g. calculating the optimal placement
(> 60s) which is NP-hard and installing monitoring probes
(> 20s). Therefore, the range for ti is [1s, 60s]. The workflows
in the SONATA [4] show a range of [5, 15] for n. tm, the
processing time of a monolithic implemented workflow, is the
sum of ti of each microservice in the workflow. Since the tasks
vary for each workflow, the range for tm is [10s, 120s].

A heartbeat message only contains a UUID and is very
small, i.e. hs = 0.1kB. Since microservices will mostly
run in data centers which have fast ISP connections, we
set a low range (depending on the distance) for the latency
of the heartbeat at [0.01s, 0.2s]. Since the size of data sent
between microservices is still small compared to the available
bandwidth in data centers, its delay is dominated by the latency
between the microservices, which is the same as the latency
range of the heartbeat.

The size sz of the state greatly depends on the size of the
topology. The size of a large topology, including usage infor-
mation, can run into the mBs, while abstractions of it contain
less detail with a size of ∼ 100kBs. Based on the SONATA
project, the range for sz is [100kB, 500kB]. The size of the
data sent between the orchestrators and other microservices is,
based on which part they need, [10kB, 300kB].

In between tasks, the orchestrator processes the received
content and selects the section of the state for the next task.
Based on profiling in SONATA, we set the duration for to
as 0.15s. The heartbeat rate hr should be deducted by the
operator by evaluating its influence on Eq 10. The time-out
th of the heartbeat should be at least three times the heartbeat
interval hi = 1/hr, to prevent false negatives due to latency.

B. Analysis

Fig. 6 shows the influence of the heartbeat rate hr on Rr and
Btot. Red lines show Rr in function of hr for th = 5hi, the

Fig. 7: Rr and Ra for n. Red, blue and yellow lines show
centralised case (sp = 3, 2, 1), green lines distributed case.

yellow lines for th = 3hi. The blue lines show Btot, which is
independent from th. Other parameters are within their ranges
defined in Section VI-A. A full line shows the centralised case
(sp = 1), a dashed line the distributed one. The figure shows
that Rr drops logarithmic with increasing heartbeat rate for
every scenario. Once hr > 1, the gain in Rr diminishes, i.e.
the recovery time doesn’t imrpove anymore with increasing
hr. Although an increase in hr has a bandwidth cost, Fig. 6
shows that the heartbeat part of Btot is minimal for both the
centralised and distributed case. Btot is significantly higher
for the distributed case.

Fig. 7 shows how Rr (full lines) and Ra (dashed lines) vary
with the number of tasks n. The red (sp = 3), blue (sp = 2)
and yellow (sp = 1) lines show the centralised case, the green
lines show the distributed case. Ra is independent of sp, so
only the red line is shown for the centralised case. Based on
Fig. 6 a value of 2 was chosen for hr. Fig. 7 shows that
increasing the frequency of state share events in the centralised
case by lowering sp decreases Rr, implying that more share
events result in a faster fault recovery. While Rr decreases
with increasing n for every scenario, this increases the overall
time the workflow takes, as indicated by an increasing Ra.
Fig. 7 also shows that Rr for the distributed case and for the
centralised case with sp = 1 are almost similar in this scenario.

Fig. 8 shows the cost function from Eq. 10 for changing n
and various combinations of α, β, γ and δ. Other parameters
are the same as in the previous experiments. For the green
line, the cost function was tweaked to favour high availability
through Ra and recovery time through Rr over resource
minimisation. It shows that for both the centralised (full) and
distributed case (dashed) the optimal number of tasks lays
between 5 and 8. For the red line, the cost function was
tweaked to only favour Rr, showing an optimal n of 20 for
both systems. This implies that if you only care for a fast
recovery time, you divide the workflow in as much tasks as
possible. If the minimisation of resources is favoured (blue
lines), the cost function shows an optimal n of 3, i.e. the
lowest value for n in the experiment.



Fig. 8: Cost function for different weights α, β, γ and δ.

With the mechanisms proposed in Section V and the cost
function in Eq. 10, we have provided tools to make MANO
frameworks implemented with microservices reliable, in terms
of high availability and fast fault recovery. The quality of this
reliability can be optimised by tweaking the characteristics
of the mechanism, as shown in this section, in terms of
resource consumption. To obtain the optimal reliable design,
the operator goes through the following steps: i) Adapt the
weights in the cost function to quantify the importance of the
reliability and the resource consumption. ii) Calculate C(z) for
a wide range of configurations z for both the centralised and
distributed cases and iii) determine which z minimises C. This
cost function can now be combined by telecom operators with
other, non-reliability, MANO framework research to decide on
which design, centralised or distributed, is best fitted for their
needs.

VII. FUTURE WORK

In future work, Eq. 10 can be further analysed to see how
the different parameters are impacting its minimum. We can
study whether the cost function shows a clear bias towards
centralised or distributed mechanisms over the complete con-
figuration space. To this end, we will investigate how the cost
function can be extended with metrics that quantify the ease-
of-use for the developer and owner of both the centralised and
distributed case.

VIII. CONCLUSION

A highly reliable Management and Orchestration framework
is crucial for telecom operators to support demanding NFV-
powered telecom services such as elastic emergency or secu-
rity services, or other applications requiring fast, dynamic and
reliable (re-) provisioning processes. In this paper, we propose
mechanisms for both centralised and distributed microservice-
based MANO framework designs giving them high availability
and fast fault recovery. Our mechanisms use distributed load
balancing techniques and dynamic state sharing events to allow
the framework to recover from failures, and the scalability
of the mechanism ensures high availability. The mechanisms

are tunable and allow the quality of the reliability to be
quantified. Therefore, we were able to create a cost function
that represents the trade-offs between the availability and the
responsiveness of the fault recovery on one hand, and resource
consumption by the mechanisms in terms of bandwidth and
compute power on the other hand. This serves as a useful
tool for telecom operators as it allows them to determine the
optimal MANO framework configuration for their needs.

ACKNOWLEDGEMENT

This research has been partly funded by the European
Commission H2020 5G-PPP projects 5GTANGO (761493)
and SONATA (671517). The authors would also like to ac-
knowledge Sinews for their motivational and spiritual lyrics.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[2] R. Mijumbi, J. Serrat, J.-l. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, “Management and orchestration challenges in network
functions virtualization,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 98–105, 2016.

[3] (2016, Dec) The OSM website. [Online]. Available: https://osm.etsi.org/
[4] (2016, Dec) The SONATA website. [Online]. Available:

http://www.sonata-nfv.eu/
[5] N. ETSI, “Gs nfv-man 001 v1. 1.1 network function virtualisation (nfv);

management and orchestration,” 2014.
[6] AT&T Technology and Operations, “Ecomp (enhanced control

orchestration management policy) architecture white paper,” 2016.
[Online]. Available: http://aboutatt.com/content/dam/snrdocs/ecomp.pdf

[7] G. Gardikis, I. Koutras, G. Mavroudis, S. Costicoglou, G. Xilouris,
C. Sakkas, and A. Kourtis, “An integrating framework for efficient
nfv monitoring,” in NetSoft Conference and Workshops (NetSoft), 2016
IEEE. IEEE, 2016, pp. 1–5.

[8] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of service
function chains,” in Network Function Virtualization and Software
Defined Networks (NFV-SDN), IEEE Conference on. IEEE, 2016, pp.
128–133.

[9] T. Soenen, S. S. Sahhaf, W. Tavernier, P. Sköldström, D. Colle, and
M. Pickavet, “A model to select the right infrastructure abstraction
for service function chaining,” in IEEE NFV-SDN2016, the IEEE
Conference on Network Function Virtualization and Software Defined
Networks, 2016, pp. 1–7.

[10] (2016, Dec) The OpenBaton website. [Online]. Available:
http://openbaton.github.io/

[11] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, pp. 1–10, 2016.

[12] S. Newman, Building Microservices. ” O’Reilly Media, Inc.”, 2015.
[13] J. Keeney, S. v. d. Meer, and L. Fallon, “Towards real-time management

of virtualized telecommunication networks,” in CNSM, Nov 2014, pp.
388–393.

[14] J. Stubbs, W. Moreira, and R. Dooley, “Distributed systems of microser-
vices using docker and serfnode,” in Science Gateways (IWSG), 2015
7th International Workshop on. IEEE, 2015, pp. 34–39.

[15] (2016, Dec) The Kubernetes website. [Online]. Available:
http://kubernetes.io/docs/user-guide/replication-controller/

[16] (2017, Mar) The Akka Website. [Online]. Available: akka.io/
[17] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds,

“An architecture for self-managing microservices,” in Proceedings of
the 1st International Workshop on Automated Incident Management in
Cloud. ACM, 2015, pp. 19–24.

[18] P. J. Leach, M. Mealling, and R. Salz, “A universally unique
identifier (uuid) urn namespace,” Internet Requests for Comments, RFC
Editor, RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4122.txt


