
Hardware-accelerator aware VNF-chain recovery
Gourav Prateek Sharma, Wouter Tavernier,

Didier Colle, Mario Pickavet
IDLab, Department of Information Technology

Ghent University - IMEC,
Email: {gouravprateek.sharma, wouter.tavernier, didier.colle, mario.pickavet}@ugent.be

Abstract—Hardware-accelerators in Network Function Virtu-
alization (NFV) environments have aided telecommunications
companies (telcos) to reduce their expenditures by offloading
compute-intensive VNFs to hardware-accelerators. To fully utilize
the benefits of hardware-accelerators, VNF-chain recovery models
need to be adapted. In this paper, we present an ILP model for
optimizing prioritized recovery of VNF-chains in heterogeneous
NFV environments following node failures. We also propose
an accelerator-aware heuristic for solving prioritized VNF-chain
recovery problems of large-size in a reasonable time. Evaluation
results show that the performance of heuristic matches with that of
ILP in regard to restoration of high and medium priority VNF-
chains and a small penalty occurs only for low-priority VNF-
chains.

Index Terms—NFV, hardware accelerator, Recovery, SFC,
FPGA, placement algorithm, allocation

I. INTRODUCTION

In the past few years, exponential growth of the Internet data
traffic has taken place due to the explosion in the number of
total number of the connected-users and network services. This
change has compelled telecommunications companies (telcos)
to look for alternative network-architecture solutions which are
more economical, manageable and scalable. Network Function
Virtualization (NFV) proposes to transform the manner in
which network-services are currently created and managed by
leveraging Information Technology (IT) virtualization technolo-
gies for network-services. With NFV, services which were
earlier implemented using proprietary hardware appliances
(middleboxes) can now be created using virtual network func-
tions (VNFs) or Cloud-native Network Functions (CNFs). As a
result, telcos can significantly reduce their capital expenditures
(CAPEX) by running VNFs (or CNFs) on commercial-off-the-
shelf (COTS) servers (e.g. x86 or ARM) instead of purchasing
costly middleboxes.
In the recent past, hardware-accelerators like Graphics Pro-
cessing Units (GPUs), smartNICs and Field Programmable
Gate Arrays (FPGAs) are also being included in the NFV
infrastructure (NFVi) to address the performance issues with
VNFs [1]. Hardware-accelerators can offload the compute-
intensive tasks from a VNF running on the CPU resulting in a
speedup of execution. This packet-processing offload also frees-
up CPU cores which can be used to run other VNFs resulting
in better server-consolidation.
In order to truly exploit the benefits of NFV, it is essential

to allocate NFVi resources to VNFs as efficiently as possible.
State-of-the-art (SotA) VNF placement models and strategies
only consider usual NFVi infrastructure resources like compute,
storage and network while making their allocation decisions.
This can lead to an inefficient allocation of NFVi resources
in heterogeneous NFVi which contain hardware-accelerators
along with the usual NFVi resources.
Reliability of network-services can be enhanced by utilizing
hardware-accelerators to satisfy the diverse Quality of Ser-
vice (QoS) requirements of service-chains. Therefore, QoS is
not only impacted by re-allocation of usual NFVi resources
(compute, storage and network) after a failure but also by the
hardware-accelerator re-allocation. In the case of server-node
failures, the VNF-chain recovery processes should also take
into account the presence of hardware-accelerator resources
in NFVi along with usual NFVi resources. Moreover, VNF
remapping and accelerator-allocation should be able to priori-
tize traffic according to the QoS requirements. To the best of
our knowledge, no work has addressed this problem in the past.
To this end, we make the following contributions in this paper:

1) Modeling of prioritized VNF-chain recovery problem in
heterogeneous NFV environments using Integer Linear
Programming (ILP) approach.

2) Designing greedy-based heuristic algorithm to solve the
above problem.

3) Evaluations of ILP and heuristic algorithm.

The rest of the paper is organized as follows. The related
work for this paper is discussed in the next section. The
problem of accelerator-aware VNF-chain recovery problem is
formulated using ILP in section III. Afterwards, a heuristic
to solve VNF-chain recovery problem is presented in section
IV. Section V describes the evaluation of ILP and heuristics.
Finally, the conclusion of the paper is presented in section VI.

II. RELATED WORKS

With the growing interest around NFV among industry and
academia, various studies have been carried out related to
modelling of resource allocation for VNFs. Authors in [2]
defined the VNF placement and routing optimization problem
and devised a mixed-ILP (MILP) formulation for it. Bari et al.
also modeled the VNF orchestration problem (VNF-OP) using
ILP approach [3]. They proposed a dynamic programming

approach to solve VNF-OP instances with larger sizes. Au-
thors in [4] have proposed a Hardware Acceleration Resource
Allocation Mechanism (UHAD) for simplifying the integration
of hardware-accelerators in NFVi.
In [5], the authors studied the problem of allocating backup
resources for VNFs and virtual-links such that reliability con-
straints of service-chains are adhered. A scalable heuristic
algorithm, aimed at sharing backup resources in order to
reduce overhead costs due to backups, was also proposed.
A. Tomassilli et al. investigated two different (dedicated and
shared) protection mechanisms for reliable chaining of VNFs
in case of a single-link failure [6]. Evaluation of ILP models
show that the dedicated protection scheme requires more 40%
bandwidth and 60% processing resources as compared to the
shared protection scheme. A study regarding service reliability
using VNF migration and replications was conducted in [7].
The authors recommended jointly performing VNF migra-
tion and replication in order to efficiently utilize server and
link resources. An algorithm is also proposed for optimizing
the provisioning of hardware-accelerators in NFVi nodes. We
also proposed a scheme for dynamic allocation of hardware-
accelerators to VNFs in NFV environments by the use of
specific service managers (SSMs) [8].
Although numerous resource allocation models have been
proposed aiming at optimizing various parameters like cost,
performance, load-balancing, etc, there has been a little focus
on prioritized VNF-chain placement models for heterogeneous
NFV environments. In [9], the authors addressed the problem of
joint scaling, placement and routing for heterogeneous services.
They presented a MILP approach for single-step exact solutions
along with a heuristic algorithm for fast and near-optimum
solutions. We formulated the accelerator-aware VNF placement
problem in the form of an ILP and also proposed a scalable
algorithm based on best-fit heuristic [10].
In summary, the challenge of prioritized VNF-chain recovery
in a heterogeneous environment in case of server-node failures
still remains unaddressed.

III. PROBLEM FORMULATION

The description of various parameters and decision variables
involved in the ILP formulation is given in Table I.
The objective of this ILP formulation is to maximize the total
amount of traffic restored after a failure subject to the resource
capacity. In addition to that, restoration is prioritized based on
traffic class of VNF-chains. In the objective function (1), xs is
the decision variable indicating if the VNF-chain s is restored
after the failure. The product µsxs denotes the amount of
traffic restored after the recovery of VNF-chain s. The scaling
factor µs in the objective function is the cost-gain for restoring
a service-chain s ∈ S. The prioritization of VNF-chains is
performed by calculating µs of VNF-chains based on their
respective traffic-class as explained below.
Depending on the traffic-class of VNF-chains, all VNF-chains
are categorized into three sets, namely– high-priority (SI ⊆ S),

medium-priority (SII ⊆ S) and the low-priority (SIII ⊆ S)
VNF-chains. After any node-failure in NFVi, the preference for
restoration is given to VNF-chains s ∈ S in the following order:
first for s ∈ SI , then for s ∈ SII , and at last for s ∈ SIII . The
requirement for prioritizing the VNF-chain restoration can be
implemented by adding soft-constraints to the ILP formulation.
This is done through the assignment of restoration gain µs for
each VNF-chain s as indicated in (2). Here TII and TIII can
be evaluated using (3). By scaling the throughput values of
traffic (xsts) for each VNF-chain request with a restoration-
gain value µs, we have avoided the requirement for adding
hard-constraints with regards to prioritized restoration of traffic.

obj : max
∑
s∈S

tsµsxs (1)

TABLE I
DESCRIPTION OF PARAMETERS AND DECISION VARIABLES

Input parameters
Notation Description
N Set of all non-failed computational nodes within NFVi.

Rcpu(n) Maximum CPU resources (cores) available on n ∈ N .
Racc(n) Maximum accelerator fabric resources (logic elements)

available on n ∈ N .
Rbus(n) Maximum bandwidth (Gbps) of the PCIe bus of node

n ∈ N .
A Set of all available accelerator types.
r(a) Resource requirement (logic elements) of the accelerator

type a ∈ A.
S Set of all service requests, including top (SI), medium

(SII) and low (SIII) priority services.
F s Set of all VNFs corresponding to the service-chain re-

quest s ∈ S.
ts Throughput requirement (Gbps) of the service request

s ∈ S.
cpu0(fs) CPU requirement (cores) of VNF f of the service request

s ∈ S.
cpur(fs) CPU reduction (cores) for VNF f of the service request

s ∈ S.
atype(fs) Type of accelerator needed for acceleration of VNF f of

the service request s ∈ S.
Decision variables

Notation Description
xs Binary decision variable indicates if the service s ∈ S is

restored after the failure.
αn
fs Binary variable indicates if VNF f of service request s

is placed on n after the failure.
βn
fs Binary variable indicates if VNF f of service request s

is accelerated on n after the failure.
δna Binary variable indicates if accelerator of type a is

instantiated on the node n after the failure.

µsIII = 1, µsII tsII = TIII , µsI tsI = TII + TIII

∀sIII ∈ SIII , sII ∈ SII , sI ∈ SI

(2)

TIII =
∑

s∈SIII

µsts, TII =
∑

s∈SII

µsts (3)

A. Node constraints

For each server-node n ∈ N , total number of CPU cores
utilized by all VNFs placed on n is constrained by the number

of cores available on it as indicated in (4). The constraint
on resources available on the hardware-accelerator fabric for
the instantiation of accelerators is shown in (5). Constraint
in (6) ensures PCIe bandwidth required for communication
between VNFs and accelerators does not exceed the available
bandwidth.∑
s∈S,fs∈F s

αn
fscpu0(f

s)− βn
fscpur(f

s) ≤ Rcpu(n) ∀n ∈ N

(4)∑
a∈A

r(a)δna ≤ Racc(n) ∀n ∈ N (5)

∑
s∈S,fs∈F s

2tsβ
n
fs ≤ Rbus(n) ∀n ∈ N (6)

B. Acceleration constraints

The constraint in (7) is a consequence of the fact that a VNF
fs can only be allocated an accelerator on n if the fs is placed
on n. Also, binary decision variable δna is assigned a value of 1
if atleast one VNF is allocated accelerator a on n as indicated
in (8). This constraint can be linearized by the re-formulation
shown in (9a-9b). If no VNF is allocated accelerator a on
n, (9a) forces δna to be equal to zero. Conversely, if atleast
one VNF is assigned accelerator a on n, LHS of (9b) is ≥ 1
resulting in δna to take a value 1. The factor M1 in the RHS of
(9b) is a constant greater than the total number of VNFs in all
VNF-chains, i.e., M1 =

∑
∀s∈S

∀fs∈F s

1.

βn
fs ≤ αn

fs ∀n ∈ N, ∀s ∈ S, ∀fs ∈ F s (7)

δna =

1, if

∑
∀s∈S,∀fs∈F s,
a=atype(fs)

βn
fs ≥ 1

0, otherwise

∀n ∈ N, ∀a ∈ A

(8)

δna ≤
∑

∀s∈S,∀fs∈F s

a=atype(fs)

βn
fs ∀a ∈ A, ∀n ∈ N (9a)

∑
∀s∈S,∀fs∈F s

a=atype(fs)

βn
fs ≤M1δ

n
a ∀a ∈ A, ∀n ∈ N (9b)

C. Other Constraints

A VNF-chain is said to be restored if all the VNFs con-
stituting the VNF are placed on computational nodes. This
requirement is expressed by a set of constraints given in (10).
This constraint can be linearized using the method discussed
before for linearizing the constraint in (8). Constraints in (11)
force binary variables xs, α

n
fs , βn

fs , δna to only take binary
values (0 or 1).

xs =

1, if
∑

∀n∈N

αn
fs = 1, ∀fs ∈ Fc

0, otherwise
∀s ∈ S (10)

xs, α
n
fs , βn

fs , δna ∈ {0, 1} ∀n ∈ N, ∀s ∈ S,∀fs ∈ F s (11)

IV. PROPOSED ALGORITHM

The algorithm we propose to solve prioritized VNF-chain
recovery problem is based on the greedy heuristic. The pseudo-
code for the algorithm is presented in Alg. 1. The algorithm
takes as an input the following: a list of all VNF-chains S,
a list of non-broken chains S′ = {s ∈ S : xs = 1}),
VNF assignments (α) before failure, accelerator allocations (β)
before failure and a set of all non-failed server-nodes (N) with
their respective resource usages.
A sorted list Sb of all broken-chains in the order of their
decreasing priorities, which is based on their µs values is
created (1). Also, a list of all chains Srev in increasing priority
is created (2).
For accelerator-agnostic VNF-chain recovery, placement de-
cisions are agnostic to the availability of accelerators. As a
result, placement decisions are based solely on CPU resources
and accelerator-allocation is done only if hardware-accelerator
resources are available on that node. In other words, no explicit
effort is made by the heuristic to allocate an accelerator to
a VNF resulting in an inefficient resource-utilization. The
algorithm for accelerator-agnostic VNF-chain recovery does not
contain lines (10-16) of Alg. 1.
With accelerator-aware allocation, the decision for accelerator
allocation is decoupled from other placement decisions. As
opposed to the accelerator-agnostic placement, accelerator-
aware placement makes use of accelVNF procedure for the
explicit allocation of an accelerator to a VNF. The pseudo-
code for accelVNF procedure is shown in Alg. 2. First, it is
checked if enough resources are available on any server-node
with an attached hardware-accelerator by using AccAlloc
procedure. If not, a node with a hardware-accelerator is ran-
domly selected (na) from a list (Na) of server-nodes with
hardware-accelerator sorted in the order of increasing available
CPU. To accommodate fs on na, CPU, bus or accelerator
resources are made available by removing VNFs of the lowest
priority VNF-chain if the priority of VNF-chain s is more than
sb (9-20). A VNF-chain is selected in-order from Sb for its
restoration and the set of non-placed VNFs is assigned to F b.
For every VNF f b which has an accelerator implementation
available in A, its placement is first tried on a server-node with
hardware-accelerator available using the procedure accelVNF
(Alg. 2). If procedure accelVNF returns None, its placement
is continued as usual.
If not enough CPU resources are available on any server-node,
VNF-chains are removed sequentially in the greedy manner
i.e. lower-priority chain first (19-26) from Srev . The removed
VNF-chain sr is added to the sorted-list of the broken chain Sb

and resources are updated using the RemoveVNFs procedure.
In the case when all VNFs of sb are placed successfully,

S′ is updated and the next VNF-chain with the lower priority

Algorithm 1: VNF-chain recovery algorithm
Input : S, S′, α, β, N
Output: S′

1 Sb ← sorted list of broken chains in decreasing priorities;
2 Srev ← sorted list of chains in increasing priorities;
3 ib, ir ← 0;
4 l← 0;
5 while ib < |Sb| do
6 sb ← Sb[ib];
7 Fb ← {fs ∈ F sb : VNFs in F sb which are not placed};
8 fail← False;
9 for fb in Fb do

10 if atype(fb)∈ A then
11 na ← accelVNF(fb, N);
12 if na 6= None then
13 α[fb], β[fb]← na, na;
14 break;
15 end
16 end
17 np ← argmax

n∈N
Rcpu(n) ;

18 while cpu0(f
b) > Rcpu(n) and ir ≤ |Srev| do

19 sr ← Srev[ir];
20 if ChainPrior(sb)>ChainPrior(sr) then
21 RemoveVNFs(F b);
22 np ← argmax

n∈N
Rcpu(n) ;

23 ir ← ir + 1;
24 else
25 break;
26 end
27 end
28 if cpu0(f

b) > Rcpu(np) then
29 α[fb]← np;
30 else
31 fail← True;
32 break
33 end
34 end
35 if fail == True then
36 RemoveVNFs(F b);
37 else
38 S′ ← S′ ∪ sb;
39 end
40 ib ← ib + 1;
41 end
42 end

is considered for recovery. At the end of the algorithm S′

contains all the VNF-chains which have all its VNFs restored.

V. EVALUATION

The ILP model for accelerator-aware VNF-chain recovery
problem is implemented in CPLEX (v12.9) framework us-
ing doCPLEX Python API [11] and the heuristic algorithm
proposed in Alg. 1 is implemented using Python language.
In this section, we describe the evaluations carried out in
order to assess the efficiency of the ILP and the heuristic
with regards to the VNF-chain recovery problem. First, the

Algorithm 2: VNF accelerator allocation procedure
1 Procedure accelVNF(fs, N):
2 Na ← sorted list of nodes N with accelerator in

increasing CPU;
3 for na in Na do
4 if AccAlloc(fs, na)== True then
5 return na;
6 end
7 end
8 na ← RandomChoice(Na);
9 if cpu0(f

s)− cpur(f
s) > Rcpu(na) then

10 sb ← lowest priority chain with atleast one VNF
placed on na.;

11 if ChainPrior(s)>ChainPrior(sb) then
12 RemoveVNFs({fsb ∈ Fsb : α[fsb] = na});
13 end
14 end
15 if 2ts > Rcpu(na) or r(atype(fs)) > Racc(na)

then
16 sb ← lowest priority chain with atleast one VNF

allocated accelerator on na.;
17 if ChainPrior(s)>ChainPrior(sb) then
18 RemoveVNFs({fsb ∈ Fsb : α[fsb] = na});
19 end
20 end
21 if AccAlloc(fs, na)== True then
22 return na;
23 else
24 return None;
25 end
26 end

placement and accelerator allocation of VNFs is performed by
using the heuristic which we proposed in [10]. The result of
this heuristic is used as an input allocation for both the ILP
and heuristic. A fixed number of server-nodes are chosen at
random from all the server-nodes to cause the failure. In order
to highlight the impact of accelerator-allocation criterion on the
traffic-restoration, we compared the performance of accelerator-
agnostic and accelerator-aware heuristics.
These evaluations were carried on a machine with Intel Xeon
CPU and 16GB of memory running Ubuntu 16.04. Table II
describes the value (or range) of various parameters involved
in evaluations of ILP and heuristic.

TABLE II
DESCRIPTION OF PARAMETERS AND DECISION VARIABLES

Parameter Value or range Parameter Value or range
| S | 15, 150 co(fc) 3-5

Rcpu(n) 20-28 ci(f
c) (0.40 - 0.60)co(fc)

Racc(n) 0,1 fvnf
acc , fnacc 0.20

Rbus(n) 80-120 (Gbps) accel. type a1 a2 a3
Chain length 4 accel. size 0.40 0.28 0.30

ts 1.0-5.0 (Gbps) Traffic-class I II III
Prob. 0.10 0.20 0.70

A. Execution time

The comparison of maximum execution times for the ILP
model and heuristic method with a single-node failure is shown
in Table III. As expected, the computational time for ILP
model increases rapidly with the number of VNF-chains. This
becomes an issue, especially for the case when the total number
of VNF-chains is greater than 15 and execution time for ILP
becomes orders of magnitude higher than that of heuristic.
Therefore, solving VNF-chain recovery for problem instances
of large-sizes becomes infeasible using the ILP model. How-
ever, the heuristic method can be used for larger problems as
discussed in the next section.

TABLE III
COMPARISON OF MAXIMUM EXECUTION TIME FOR ILP MODEL AND

HEURISTIC ALGORITHM

Total chains (| S |) ILP time Heuristic time
10 230 ms 1.3 ms
15 350 ms 1.8 ms
20 > 100 s 3 ms

B. ILP and Heuristic comparison

Here, we compare the average amount of traffic lost fol-
lowing node failures for each priority-class without any traffic-
recovery scheme with the amount of traffic lost after running
the ILP-based traffic recovery model and heuristic approach.
The comparison of traffic-lost for the single-node and multi-
node failure is depicted in Fig. 1 and 2 with an input of 15
chains.
As expected an exact approach like ILP always has the mini-
mum amount of lost-traffic. However, it can be observed that
the performance of the heuristic is close to the ILP method. For
VNF-chains of high and medium priorities amount of traffic
lost is equal with ILP and heuristic approach. The amount of
traffic lost for the lowest-priority with the heuristic is not more
than 15% as that of ILP in all cases. Moreover, the proposed
heuristic can be be used to solve the problem instances of large-
sizes.

C. Impact of accelerator allocation criterion

In order to highlight the impact of accelerator-allocation
on the amount of lost-traffic, we compare the performance of
accelerator-agnostic heuristic with our heuristic as depicted in
Fig. 3 with an input consisting of 150 chains.
As the higher-priority VNF-chains are restored equally by both
ILP and heuristic, we focused only on the lowest-priority traffic.
It can be observed that with the accelerator-aware heuristic
about 30% of more traffic can be restored as compared to
the accelerator-agnostic heuristic. This can be explained by
the fact that a better VNF consolidation is achieved with the
accelerator-aware heuristic in contrast with the accelerator-
agnostic heuristic.

I II III
Traffic class

0

2

4

6

8

10

To
ta

l L
os

t t
ra

ffi
c

(G
bp

s)

No recovery
With recovery (ILP)
With recovery (heuristic)

Fig. 1. Performance comparison of ILP and heuristic for a single node failure
in terms of lost traffic.

I II III
Traffic class

0

5

10

15

20
To

ta
l L

os
t t

ra
ffi

c
(G

bp
s)

No recovery
With recovery (ILP)
With recovery (heuristic)

Fig. 2. Performance comparison of ILP and heuristic for multi-node (three)
failure in terms of lost traffic.

3 4 5 6
Failed nodes

0

2

4

6

8

10

12

14

To
ta

l L
os

t t
ra

ffi
c

(G
bp

s)

After recovery (accel-agnostic)
After recovery (accel-aware)

Fig. 3. Impact of accelerator allocation on the heuristic performance in terms
of lost traffic.

VI. CONCLUSION

Advantages of integrating hardware-accelerators in NFVi
includes performance speed-ups and cost savings due to the
reduction in VNF CPU usage. In order to minimize losses
incurred to telcos due to failures in heterogeneous NFV en-
vironments, VNF-chain recovery models need to be modified.
This paper presented an ILP formulation to model accelerator-
aware, prioritized VNF-chain recovery problem.
As the execution time for exact-methods like ILP is high, a
greedy-based heuristic is introduced to solve larger instances of
this problem. The performance of the heuristic is on a par with
ILP as far as the restoration of high and medium priority VNF-
chains is concerned, with a slight penalty only for low-priority
VNF-chains. The evaluation also shows that the performance of
accelerator-aware heuristic is 30% better than the accelerator-
agnostic heuristic in terms of the total amount of traffic lost.
For future work, we would investigate the availability of
VNF-chains hardware-accelerators along-with usual reliability
parameters like VNF and server-node reliabilities.

VII. ACKNOWLEDGMENT

This work was funded through NGPaaS, under the grant
number 761557, in the scope of the European Commission
Horizon 2020 and 5G-PPP programs.

REFERENCES

[1] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance acceler-
ation techniques for network function virtualization,” Proceedings of the
IEEE, vol. 107, no. 4, pp. 746–764, 2019.

[2] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions
placement and routing optimization,” in 2015 IEEE 4th International
Conference on Cloud Networking (CloudNet). IEEE, 2015, pp. 171–
177.

[3] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in 2015 11th International Conference
on Network and Service Management (CNSM), Nov 2015, pp. 50–56.

[4] H. Fan, Y. Hu, S. Zhang, and Q. Ren, “Hardware acceleration resource
allocation mechanism for vnf,” Procedia computer science, vol. 131, pp.
746–755, 2018.

[5] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of
service function chains,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016, pp.
128–133.

[6] A. Tomassilli, N. Huin, F. Giroire, and B. Jaumard, “Resource require-
ments for reliable service function chaining,” in 2018 IEEE International
Conference on Communications (ICC). IEEE, 2018, pp. 1–7.

[7] F. Carpio and A. Jukan, “Improving reliability of service function
chains with combined vnf migrations and replications,” arXiv preprint
arXiv:1711.08965, 2017.

[8] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “Dynamic
hardware-acceleration of vnfs in nfv environments,” in 2019 Sixth Inter-
national Conference on Software Defined Systems (SDS). IEEE, 2019,
pp. 254–259.

[9] S. Dräxler and H. Karl, “Spring: Scaling, placement, and routing of
heterogeneous services with flexible structures,” in 2019 IEEE Conference
on Network Softwarization (NetSoft). IEEE, 2019, pp. 115–123.

[10] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “VNF-AAP:
Accelerator-aware Virtual Network Function Placement,” Sep. 2019,
working paper or preprint. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-02292930

[11] IBM, “IBM ILOG CPLEX optimization studio.” [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

