374 research outputs found

    Active fault-tolerant control for an internet-based networked three-tank system

    Get PDF
    This brief is concerned with the active fault-tolerant control (FTC) problem for an Internet-based networked three-tank system (INTTS) serving as a benchmark system for evaluating networked FTC algorithms. The INTTS has two parts located at Tsinghua University in China and at the University of South Wales in the U.K., respectively, which are connected via the Internet. With the INTTS as an experimental platform, the active FTC problem is investigated for a class of nonlinear networked systems subject to partial actuator failures. Once a specific actuator failure is detected and confirmed by a fault diagnosis unit, the control law is then reconfigured based on the information of the detected fault. Both the stability and the acceptable H∞ disturbance attenuation level are guaranteed for the closed-loop system using the remaining reliable actuators. Extensive experiments are carried out on the active FTC problem of the INTTS with partial actuator failures, and the effectiveness of the proposed scheme is illustrated.The work of X. He was supported in part by the Natural Science Foundation of China (NSFC) under Grant 61473163 and Grant 61522309 and in part by the Tsinghua University Initiative Scientific Research Program. The work of Z. Wang was supported by NSFC under Grant 61273156. The work of D. H. Zhou was supported in part by NSFC under Grant 61290324 and Grant 61490701 and in part by the Research Fund for the Taishan Scholar Project of Shandong Province of China. Recommended by Associate Editor L. Xie

    Observer-based fault detection of technical systems over networks

    Get PDF
    The introduction of networks into technical systems for facilitating remote data transmission, low complexity in wiring and easy diagnosis and maintenance, raises new challenges in fault detection (FD), such as how to handle network-induced time-varying transmission delays, packet dropouts, quantization errors and bit errors. These factors lead to increasing interest in developing new structures and design schemes for FD of technical systems over networks. In this thesis all network-induced effects are analyzed and modeled systematically at first. By observing the stochastic inheritance of networks, an FD framework of Markov jumping linear systems is presented as a basis for the later developments. Then two observer-based schemes for the purpose of FD over networks with guaranteed false alarm rate (FAR) are proposed: a remote FD system and an FD system of networked control systems (NCSs). The remote FD scheme is for detecting faults in technical systems at a remote site, where system measurements are transmitted via networks. In this scheme, the coding mechanism of communication channels is investigated from the view point of control engineering and new methods are developed for optimal residual generation and evaluation by considering network-induced data loss and corruption. A novel design scheme of FD system is also developed for NCSs, where the technical system is networked, i.e. controllers, actuators and sensors are connected with communication channels. In this scheme, network-induced transmission delays, packet dropouts, quantization errors are taken into account for the design of the optimal FD system. The linear matrix inequalities (LMIs) and convex optimization techniques are applied for assisting the design procedures. The developed schemes are tested with numerical examples and implemented in a three-tank system benchmark, and their superiority to existing solutions is demonstrated. Existing restrictions are overcome and new observer-based FD schemes over networks are introduced having the following characteristics: (1) the residual generators in both schemes are optimal in the sense of achieving the best trade-off between sensitivity to system faults and robustness against system disturbances and network-induced effects; (2) the proposed schemes can provide reliability information of rising fault alarms by analyzing the mean and variance of residual signals. Such information is very useful for practical applications in industries; (3) the design of residual generators and computation of thresholds can be efficiently solved by means of existing LMI-solvers

    Fault Diagnosis in a Networked Control System under Communication Constraints: A Quadrotor Application

    Get PDF
    This paper considers the problem of attitude sensor fault diagnosis in a quadrotor helicopter. The proposed approach is composed of two stages. The first one is the modelling of the system attitude dynamics taking into account the induced communication constraints. Then a robust fault detection and evaluation scheme is proposed using a post-filter designed under a particular design objective. This approach is compared with previous results based on the standard Kalman filter and gives better results for sensor fault diagnosis

    Fault detection for fuzzy systems with intermittent measurements

    Get PDF
    This paper investigates the problem of fault detection for Takagi-Sugeno (T-S) fuzzy systems with intermittent measurements. The communication links between the plant and the fault detection filter are assumed to be imperfect (i.e., data packet dropouts occur intermittently, which appear typically in a network environment), and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to model the unreliable communication links. The aim is to design a fuzzy fault detection filter such that, for all data missing conditions, the residual system is stochastically stable and preserves a guaranteed performance. The problem is solved through a basis-dependent Lyapunov function method, which is less conservative than the quadratic approach. The results are also extended to T-S fuzzy systems with time-varying parameter uncertainties. All the results are formulated in the form of linear matrix inequalities, which can be readily solved via standard numerical software. Two examples are provided to illustrate the usefulness and applicability of the developed theoretical results. © 2009 IEEE.published_or_final_versio

    Robust H

    Get PDF
    This paper investigates the problem of robust H∞ fault detection for networked Markov jump systems with random time-delay which is introduced by the network. The random time-delay is modeled as a Markov process, and the networked Markov jump systems are modeled as control systems containing two Markov chains. The delay-dependent fault detection filter is constructed. Furthermore, the sufficient and necessary conditions which make the closed-loop system stochastically stable and achieve prescribed H∞ performance are derived. The method of calculating controller, fault detection filter gain matrices, and the minimal H∞ attenuation level is also obtained. Finally, one numerical example is used to illustrate the effectiveness of the proposed method

    Networked gain-scheduled fault diagnosis under control input dropouts without data delivery acknowledgement

    Get PDF
    This paper investigates the fault diagnosis problem for discrete‐time networked control systems under dropouts in both control and measurement channel with no delivery acknowledgment. We propose to use a proportional integral observer‐based fault diagnoser collocated with the controller. The observer estimates the faults and computes a residual signal whose comparison with a threshold alarms the fault appearance. We employ the expected value of the arriving control input for the open‐loop estimation and the measurement reception scenario for the correction with a jump observer. The jumping gains are scheduled in real time with rational functions depending on a statistic of the difference between the control command being applied in the plant and the one being used in the observer. We design the observer, the residual, and the threshold to maximize the sensitivity under faults while guaranteeing some minimum detectable faults under a predefined false alarm rate. Exploiting sum‐of‐squares decomposition techniques, the design procedure becomes an optimization problem over polynomials

    Dynamic State Estimation of Microgrid With Imperfect Data Communication

    Get PDF
    Dynamic state estimation of power systems is essential for wide area control purposes. In this thesis, we present the results of dynamic state estimation for a grid-connected microgrid including two synchronous generators and three loads. The Unscented Kalman filter (UKF) and the Extended Kalman filter (EKF) are implemented using a classical generator model connected to a Thevenin equivalent of the remainder of the microgrid. The model is used to estimate the six states variables of the generator; namely, rotor angle, speed variant, d- and q- axis transient voltages, d-axis damper flux, and q-axis second damper flux. Both real power and reactive power are used as measurements in our state estimation algorithm. The estimation results are compared with the true values to demonstrate the accuracy of the state estimator. In addition to data loss or delay, sensor measurements may include outliers that distort state estimation. We utilized the Generalized Maximum Likelihood-extended Kalman filter (GM-EKF), as a robust estimator, which exhibits good tracking capabilities suppressing the effects of bad data (outliers). We also used two methods of state estimation on UKF to deal with bad data. Simulation results obtained from the UKFs are compared with those of GM-EKF. We present simulation results at a high frequency of 1 kHz of state estimation for different scenarios that include normal operation, fault at Point of Common Coupling (PCC), loss of generator, and loss of load. We also developed a scheme to use delayed data in Kalman filter estimation and used it to simulate the effect of data loss and/or delay in the communication system of the microgrid. For the same scenarios, we also present simulation results at 50 Hz, which is compatible with Phasor Measurement Units (PMU), including bad data as well as data loss or delay. Our results demonstrate that while both filters successfully detect bad data, the UKF methods provide better estimates than those of the GM-EKF

    Fault detection and isolation in a networked multi-vehicle unmanned system

    Get PDF
    Recent years have witnessed a strong interest and intensive research activities in the area of networks of autonomous unmanned vehicles such as spacecraft formation flight, unmanned aerial vehicles, autonomous underwater vehicles, automated highway systems and multiple mobile robots. The envisaged networked architecture can provide surpassing performance capabilities and enhanced reliability; however, it requires extending the traditional theories of control, estimation and Fault Detection and Isolation (FDI). One of the many challenges for these systems is development of autonomous cooperative control which can maintain the group behavior and mission performance in the presence of undesirable events such as failures in the vehicles. In order to achieve this goal, the team should have the capability to detect and isolate vehicles faults and reconfigure the cooperative control algorithms to compensate for them. This dissertation deals with the design and development of fault detection and isolation algorithms for a network of unmanned vehicles. Addressing this problem is the main step towards the design of autonomous fault tolerant cooperative control of network of unmanned systems. We first formulate the FDI problem by considering ideal communication channels among the vehicles and solve this problem corresponding to three different architectures, namely centralized, decentralized, and semi-decentralized. The necessary and sufficient solvability conditions for each architecture are also derived based on geometric FDI approach. The effects of large environmental disturbances are subsequently taken into account in the design of FDI algorithms and robust hybrid FDI schemes for both linear and nonlinear systems are developed. Our proposed robust FDI algorithms are applied to a network of unmanned vehicles as well as Almost-Lighter-Than-Air-Vehicle (ALTAV). The effects of communication channels on fault detection and isolation performance are then investigated. A packet erasure channel model is considered for incorporating stochastic packet dropout of communication channels. Combining vehicle dynamics and communication links yields a discrete-time Markovian Jump System (MJS) mathematical model representation. This motivates development of a geometric FDI framework for both discrete-time and continuous-time Markovian jump systems. Our proposed FDI algorithm is then applied to a formation flight of satellites and a Vertical Take-Off and Landing (VTOL) helicopter problem. Finally, we investigate the problem of fault detection and isolation for time-delay systems as well as linear impulsive systems. The main motivation behind considering these two problems is that our developed geometric framework for Markovian jump systems can readily be applied to other class of systems. Broad classes of time-delay systems, namely, retarded, neutral, distributed and stochastic time-delay systems are investigated in this dissertation and a robust FDI algorithm is developed for each class of these systems. Moreover, it is shown that our proposed FDI algorithms for retarded and stochastic time-delay systems can potentially be applied in an integrated design of FDI/controller for a network of unmanned vehicles. Necessary and sufficient conditions for solvability of the fundamental problem of residual generation for linear impulsive systems are derived to conclude this dissertation
    corecore