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Fault Detection for Switched Positive Systems

under Successive Packet Dropouts with

Application to the Leslie Matrix Model
Dong Wang, Zidong Wang, Guoyang Li and Wei Wang

Abstract

In this paper, the problem of fault detection filter design isdealt with for a class of switched positive systems

with packet dropouts on the channel between the sensors and the filters. The phenomena of packet dropouts are

governed by a Bernoulli process and a stochastic switched positive system is established based on the augmented

states of the plants and filters. Two criteria are developed to evaluate the performance of the fault detection for

the system under investigation. Sufficient conditions are established on the existence of the desired filters for

the mean-square stability with anL1 disturbance attenuation level and an index for theL− fault sensitivity is

also derived through constructing a switched Lyapunov function in term of linear programming. Two illustrative

examples, one of which is concerned with the Leslie matrix model, are provided to show the effectiveness and

applicability of the proposed results.

Index Terms

Switched positive system, Packet dropouts, Fault detection, Leslie matrix model.

I. INTRODUCTION

A switched system is a dynamical system that consists of a number of subsystems and a switching

signal indicating a subsystem being activated during a certain interval. Switched positive systems are a

special kind of switched systems whose states are nonnegative. Such systems are universal in practice such

as networks employing transmission control protocol (TCP)[22] and rival mutation treatment dynamics

[14]. Due to their significance in both theory and applications [11], [19]–[21], [32], [33], there has been

an increasing interest in the control problems of switched positive systems, and some methods have been

developed along the similar line of those for switched systems such as the average dwell time technology

[19], the multiple Lyapunov function approach [21] and the switched Lyapunov function approach [20].

With the increasing demand for high safety and reliability standards in industrial process, the problem

of fault detection (FD) has been a hot topic of research for three decades [6], [10], [15]. An extensive
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and effective method is to design fault detection systems based on the plant mathematical model [3],

[13], [17], [24], [30]. The basic idea of such a method is to use state observers or filters to construct a

residual signal and then compare it with a threshold. When the residual evaluation function has a value

larger than the threshold, an alarm is generated. In practice, the parameter uncertainties and unknown

disturbances are often mixed with the faults, and this can lead to false alarms. As such, the FD systems

would have to be sensitive to faults and simultaneously robust to disturbance inputs as well as parameter

uncertainties. Accordingly, some relevant results have been reported [15], [18], [25], where the main idea

is to transform the FD problem into anH−/H∞ or H∞ filtering problem [1], [2], [24], [25]. This idea

has recently been extended to switched positive systems. For example, anL1-filtering design problem

for a continuous-time switched positive delay system has been studied in [30] and the fault detection

of positive switched systems with time-varying delay has been achieved by designing a mixedL−/L∞

observer via the delta operator approach in [18].

On the other hand, in the transmission and processing of measurement data from the sensors to the

filter/estimator/detector, the packet dropout (or missingmeasurements) is usually unavoidable due mainly

to the limited bandwidth of the channels and temporal sensorfailures. Clearly, the packet dropout would

degrade the system performance and its impact on the fault detection problem has been an emerging

challenging problem [16]. So far, a common approach to modelling the packet dropouts has been the

use of a random variable satisfying the Bernoulli binary distribution taking values on either 1 or 0,

where 1 implies the perfect signal delivery and 0 representsthe packet dropout. The fault detection

problem with packet dropouts has received considerable research attention and many important results

have been reported in recent years [7], [12], [13], [28]. In particular, such a problem has been dealt with in

networked systems with distributed sensors [12]. To the best of the authors’ knowledge, the FD problem

for discrete-time switched positive systems with packet dropouts has not gained adequate attention yet,

and this motivates the current investigation with hope to demonstrate the application potential in practical

engineering.

In this paper, the FD problem for switched positive systems subject to random packet dropouts is

investigated, where the Bernoulli distributions are employed to describe the phenomena of the packet

dropouts. When the packet dropout occurs, the data receivedat the last time instant is used for updating

the filter input. This way, theL− andL1 performance indices are established to evaluate the sensitivity of

generated residuals to fault signals in faulty cases and therobustness against the disturbance. By virtue

of linear programming technique, sufficient conditions arepresented on the existence of fault detection

filters. Finally, two examples are provided to show the effectiveness of the proposed results, where the

practical example is concerned with the Leslie matrix modelas one of representative switched positive

systems.

This paper is organized as follows. A system description is given and the fault detection problem of

switched positive systems with packet dropouts is formulated in Section II. Two types of performance

indices (i.e., theL− andL1 indices) of the fault detection system are analyzed in Section III. Sufficient

conditions on the existence of fault detection filters are presented in Section IV, followed by examples

and conclusion in Section V and Section VI, respectively.
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Notations: The notation used in this paper is fairly standard.A � 0 (�,≻,≺) means that all entries

of matrix A are nonnegative (nonpositive, positive, negative ). diag{· · ·} indicates a block-diagonal

matrix. The superscriptT and −1 stand for the transposition of vectors or matrices and the inverse

matrix of nonsingular square matrix, respectively.R (R+), Rn (R+
n ) and Rn×n (R+

n×n) denote the set of

the real (positive real) scalars,n dimensional vectors andn× n dimensional matrices in the Euclidean

space with the norm‖x‖ = (xT x)1/2 and E{·} represents the mathematical expectation operator. 1n is
[

1 · · · 1
]T

1×n
. l1[0, ∞) is the space of summable infinite sequences with the norm‖w‖1 = ∑ n

k=0 |wk|.

II. PROBLEM FORMULATION

Consider the discrete-time switched positive systems described by

xk+1 = Aσkxk +Bσkwk +Gσk fk

yk = Cσkxk +Dσk fk (1)

wherexk ∈ Rn is the system state,yk ∈ Rm is the measured output,wk is the disturbance andfk is the

fault belonging to theL1 space.σk : [0, ∞)→ ∆ = {1,2...N} is an arbitrary switching sequence withN

being the number of subsystems. Forσk = i, theith subsystem is active with its parametersAi, Bi, Gi, Di

andCi being positive constant matrices or vectors with appropriate dimensions. The initial conditionx0

is assumed to be nonnegative.

Definition 1 ( [21] ) System (1) is said to be positive if, for the nonnegative initial conditionsx0, wk

and fk and arbitrary switching signalsσk, the corresponding state trajectoryxk ≥ 0 and outputyk ≥ 0

hold for all k ≥ 0.

Lemma 1 ( [21] ) System (1) is positive if and only ifAi � 0, Bi � 0, Ci � 0, Di � 0 andGi � 0, i ∈ ∆.

An FD system consists of a residual generator and a residual evaluation stage including an evaluation

function and a threshold. For the purpose of residual generation, the following fault detection filter is

constructed as a residual generator

x̂k+1 = Âσk x̂k + B̂σk ȳk

rk = Ĉσk x̂k + D̂σk ȳk (2)

where ˆxk is the state vector of a fault detection filter,rk is the so-called residual signal, ¯yk is the system

measurement output received by a filter,Âi, B̂i,Ĉi and D̂i are positive matrices to be determined.

In practical systems, it is often the case that the packet dropout is inevitable because of resource (i.e.,

bandwidth and energy) constraint, intermittent sensor failures, etc. One of the approaches to dealing

with such phenomenon is to assume that the package dropout isgoverned by a Bernoulli distributed

sequence. In the present paper, the measurement outputyk is transmitted to the filter (2). Let’s introduce

the Bernoulli variable sequenceαk satisfying the probability distribution law as follows:

Prob{αk = 1}=E {αk}= ᾱ

Prob{αk = 0}=1−E {αk}= 1− ᾱ.
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If yk is successfully received by the filter, thenαk = 1, otherwiseαk = 0 (i.e., the measurement output

is lost or the packet dropout occurs). In case of the packet dropouts, a natural method is to employ the

last available measurement and the received data is described by

ȳk = αkyk +(1−αk)ȳk−1. (3)

Based on (1), (2) and (3), the system states are augmented as ˜xT
k =

[

xT
k x̂T

k ȳT
k

]

and the resulting

system becomes

x̃k+1 = Ãσk x̃k + B̃σkwk + G̃σk fk +(αk − ᾱ)(Āσk x̃k + Ḡσk fk)

rk = C̃σk x̃k + D̃σk fk +(αk − ᾱ)(C̄σk x̃k + D̄σk fk) (4)

where

Ãσk =







Aσk 0 0

ᾱB̂σkCσk Âσk (1− ᾱ)B̂σk

ᾱCσk 0 (1− ᾱ)I







Āσk =







0 0 0

B̂σkCσk 0 −B̂σk

Cσk 0 −I







B̃σk =







Bσk

0

0







C̃σk =
[

ᾱD̂σkCσk Ĉσk (1− ᾱ)D̂σk

]

C̄σk =
[

D̂σkCσk 0 −D̂σk

]

D̃σk = ᾱD̂σkDσk ,

D̄σk = D̂σkDσk ,

G̃σk =







Gk

ᾱB̂σkDσk

ᾱDσk







Ḡσk =







0

B̂σkDσk

Dσk






.

The following definitions are introduced for quantifying the fault detection performance that is essential

for our derivation.

Definition 2 (L1 performance). Given a positive scalarβ , system (4) withf (k) = 0 is said to satisfy

a prescribedL1 performanceβ under zero-initial condition if

E

{

∞

∑
k=0

‖rk‖1

}

≤ β
∞

∑
k=0

‖wk‖1 (5)

holds.
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Definition 3 (L− performance). Given a positive scalarγ, system (4) withw(k) = 0 is said to satisfy

a prescribedL− performanceγ under zero-initial condition if

E

{

∞

∑
k=0

‖rk‖1

}

≥ γ
∞

∑
k=0

‖ fk‖1 (6)

holds.

Remark 1. The L1 performanceβ characterizes the disturbance attenuation level of the filter for the

addressed switched positive system, which is similar to thefrequently usedH∞ index in the non-positive

systems. On the other hand, theL− performanceγ represents a measure for the fault sensitivity of the

switched positive system, which is parallel to theH− performance index in the non-positive systems.

As a mixed performance index,H−/H∞ has been proposed to deal with the fault detection problem for

non-positive systems in [25] and, similarly, a mixed performanceL−/L1 has been established to such a

problem in the continuous time switched positive systems [18]. The present paper aims at solving such

a problem in the discrete time switched positive systems.

For the residual evaluation stage, an evaluation function and a threshold are required. Here, the residual

evaluation function is selected as [18]

Jr(T ) =
T

∑
k=k0

‖rk‖1 (7)

whereT is the evaluation time window. Furthermore, whether a faultoccurs or not is determined by the

following logical relationship

Jr(T ) > Jth ⇒ Alarm,

Jr(T ) ≤ Jth ⇒ No Alarm

where

Jth = sup
wk∈l1[k0,∞], fk=0

Jr(T ).

Remark 2. The selection of the evaluation time windowT is crucial to detect the occurred fault. If

T is relatively large, the sensitivity to detect the fault will be reduced while the false alarm rate will

rise whenT becomes small. Therefore, it is of great importance to determine T in accordance with the

practical experience.

The objective of this paper is to design an FD filter (2) to detect the fault occurred in system (1) with

random packet dropouts such that the augmented system (4) satisfies the following conditions:

1). System (4) is asymptotically stable and the effects of disturbances on residuals are minimized in

the fault-free case, namely, the minimum ofβ is found to satisfyL1 performance requirement (5).

2). The effects of fault signal on residuals are maximized inthe faulty case, namely, the maximum of

γ is found to satisfyL− performance (6).

III. FAULT DETECTION ANALYSIS

In this section, aL1/L− fault detection scheme for switched positive systems is presented based on

the switched Lyapunov function approach such that system (4) satisfies performance specifications (5)

and (6).
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A. L1 performance

The following theorem presents a sufficient condition underwhich the disturbance attenuation perfor-

mance of (4) is guaranteed.

Theorem 1. Given a scalarβ > 0, system (4) withf (k) = 0 is asymptotically stable and satisfies the

performance specification (5) if there exist positive vectors ϑi and i, j ∈ ∆ such that

ÃT
i ϑ j −ϑi +C̃T

i � 0

B̃T
i ϑ j −β � 0. (8)

Proof. When f (k) = 0, system (4) is transformed into

x̃k+1 = Ãσk x̃k + B̃σkwk +(αk − ᾱ)Āσk x̃k

rk = C̃σk x̃k +(αk − ᾱ)C̄σk x̃k. (9)

Select the following Lyapunov function

V (k) = x̃T
k ϑσk (10)

whereϑσk are positive vectors. Then, the mathematical expectation of Lyapunov function (10) at the next

time instant is

E{V (k+1)|V(k)}

=E{x̃T
k ÃT

σk
ϑσk+1 +ωT

k B̃T
σk

ϑσk+1 +(αk − ᾱ)x̃T
k ĀT

σk
ϑσk+1}

=x̃T
k ÃT

σk
ϑσk+1 +wT

k B̃T
σk

ϑσk+1.

Using switched Lyapunov function method and calculating the forward difference of (10) along the

trajectories of system (9) lead to

E{∆V (k)} = E{V (k+1)|V(k)}−V(k)

= x̃T
k (Ã

T
σk

ϑσk+1 −ϑσk)+wT
k B̃T

σk
ϑσk+1. (11)

It is seen from (11) thatE{∆V (k)}< 0 whenÃT
i ϑ j −ϑi � 0 andwk = 0 are satisfied, which implies

that system (4) without disturbances is asymptotically stable if (8) holds.

The following performance index is defined to obtain theL1 performance of system (9):

J1 = E

{

∞

∑
k=0

(‖rk‖1−β‖wk‖1)

}

.
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Based on the zero-initial conditions ˜xT
0 = 0, andV (k)≥ 0, we can get

J1 =E

{

∞

∑
k=0

(‖rk‖1−β‖wk‖1)

}

=E

{

∞

∑
k=0

(‖rk‖1−β‖wk‖1)

}

+E

{

∞

∑
k=0

∆V (k)

}

− lim
k→∞

E {V (k+1)|V(k)}

≤
∞

∑
k=0

E {‖rk‖1−β‖wk‖1+∆(V (k))}

=
∞

∑
k=0

{

x̃T
k (Ã

T
σk

ϑσk+1 −ϑσk +C̃T
σk
)+wT

k (B̃
T
σk

ϑσk+1 −β )
}

=
∞

∑
k=0

ξ T
k Ξk,k+1

where

ξ T
k =

[

x̃T
k wT

k

]

Ξk,k+1 =

[

ÃT
σk

ϑσk+1 −ϑσk +C̃T
σk

B̃T
σk

ϑσk+1 −β

]

. (12)

Obviously, J1 ≤ 0 holds if Ξk,k+1 � 0. Letting σk = i and σk+1 = j based on (12), we can have the

inequality (8) which means that, if (8) holds, system (4) in the fault-free case is asymptotically stable

and the performance index (5) is ensured. The proof is complete.

It is observed that, the smaller the value ofβ is, the worse the disturbance attenuation performance

of the system would be. Ifβ becomes larger, the fault could be regarded as the disturbance resulting in

the missing alarm.

B. L− performance

The following theorem deals with the fault sensitivity performanceγ.

Theorem 2. Given a scalarγ > 0, system (4) withw(k) = 0 satisfies the performance specification (6)

if there exist positive vectorsυi and i, j ∈ ∆ such that

ÃT
i υ j −υi −C̃T

i � 0

G̃T
i υ j + γ − D̃T

i � 0 (13)

holds.

Proof. Whenw(k) = 0, system (4) is rewritten as

x̃k+1 = Ãσk x̃k + G̃σk fk +(αk − ᾱ)(Āσk x̃k + Ḡσk fk)

rk = C̃σk x̃k + D̃σk fk +(αk − ᾱ)(C̄σk x̃k + D̄σk fk). (14)

Choosing the following Lyapunov candidate

V (k) = x̃T
k υσk (15)
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whereυσk are positive vectors, we have

E{V (k+1)|V(k)}

=x̃T
k ÃT

σk
υσk+1 + f T

k G̃T
σk

υσk+1.

Using switched Lyapunov function method and calculating the forward difference of (15) along the

trajectories of system (14), we have

E{∆V (k)}=E{V (k+1)|V(k)}−V (k)

=x̃T
k (Ã

T
σk

υσk+1 −υσk)+ f T
k G̃T

σk
υσk+1.

In order to obtain theL− performance of system (14), the following performance index is defined

J− = E

{

∞

∑
k=0

(‖rk‖1− γ‖ fk‖1)

}

.

Based on the zero-initial conditions ˜xT
0 = 0 andV (k)≥ 0, we obtain

J− =E

{

∞

∑
k=0

(‖rk‖1− γ‖ fk‖1)

}

=E

{

∞

∑
k=0

(‖rk‖1− γ‖ fk‖1)

}

−E

{

∞

∑
k=0

∆V (k)

}

+ lim
k→∞

E {V (k+1)|V(k)}

≥
∞

∑
k=0

E {‖rk‖1− γ‖ fk‖1−∆V (k)}

=
∞

∑
k=0

{

x̃T
k (−ÃT

σk
υσk+1 +υσk +C̃T

σk
)+ f T

k (−G̃T
σk

υσk+1 − γ + D̃T
σk
)
}

=−
∞

∑
k=0

ς T
k Θk,k+1

where

ς T
k =

[

x̃T
k f T

k

]

Θk,k+1
=

[

ÃT
σk

υσk+1 −υσk −C̃T
σk

G̃T
σk

υσk+1 + γ − D̃T
σk

]

. (16)

It is obvious thatJ− ≥ 0 when Θ � 0 is satisfied. Lettingσk = i and σk+1 = j based on (16), we

can have the inequality (13). It can now be concluded that, if(13) holds, the performance index (6) is

satisfied and the proof is complete.

It is seen from Theorem 2 thatγ is regarded as a measure of the fault sensitivity [18]. If it is relatively

small, the disturbance could be treated as a fault that leadsto the false alarm.

Remark 3. In [25], a mixed performanceH−/H∞ has been proposed for the fault detection problem

for non-positive systems. Such an idea has been applied to handle the continuous-time switched positive

systems by designing a mixedL−/L1 observer via delta operator approach in [18]. In the presentpaper,

this idea has been employed to deal with the discrete-time switched positive systems. In addition, the
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phenomenon of packet dropouts, which might contribute to the increase of the false alarm rate, is taken

into account. To be more specific, if an FD filter is designed according to Theorem 1 and Theorem 2

with proper parametersβ andγ, then system (4) is sensitive to fault signals in the faulty cases and robust

against the disturbance in the absence of faults.

IV. DESIGN OFFAULT DETECTION FILTERS

Now we are in a position to present a solution to the fault detection filters design problem.

Theorem 3. For system (1) and filter (2), let two positive scalarsγ andβ be given. The fault detection

problem with packet dropouts is solvable if there exist positive matricesKi1 ∈ R+
n×n,Ki2 ∈ R+

1×n,Ki3 ∈

R+
1×n,Ki4 ∈ R+,υi1 ∈ R+

n×1,V2 =
[

v21,v22, · · · ,v2n

]T
∈ R+

n×1,υi3 ∈ R+
m×1,ϑi1 ∈ R+

n×1,ϑi3 ∈ R+
m×1(i, j ∈ ∆)

such that system (4) satisfies performance specifications (5) and (6) with the following constraints:

AT
i ϑ j1+ ᾱCT

i K j21n + ᾱCT
i ϑ j3−ϑi1+ ᾱCT

i KT
i4 � 0

(1− ᾱ)K j21n +(1− ᾱ)ϑ j3−ϑi3+(1− ᾱ)KT
i4 � 0

AT
i υ j1+ ᾱCT

i K j21n + ᾱCT
i υ j3−υi1− ᾱCT

i KT
i4 � 0

(1− ᾱ)K j21n +(1− ᾱ)υ j3−υi3− (1− ᾱ)KT
i4 � 0

GT
i υ j1+ ᾱDT

i K j21n + ᾱDT
i υ j3+ γ − ᾱDT

i KT
i4 � 0

Ki11n −V2−KT
i3 � 0

Ki11n −V2+KT
i3 � 0

BT
i ϑ j1−β � 0 (17)

Moreover, if there is a feasible solution, the filter parameter matrices can be constructed as follows

ÂT
i = Ki1V̄

−1
2 , B̂T

i = Ki2V̄−1
2

Ĉi = Ki3, D̂i = Ki4 (18)

whereV̄2 is a diagonal matrix diag{v21,v22· · ·v2n}.

Proof. By Theorems 1 and 2, if system (4) under arbitrary switching signals satisfies (5) and (6), then

the FD problem of system (1) is solvable by designing filter (2). Hence, sufficient conditions on the

existence of filters have to guarantee (8) and (13). Defining

Ki1 = ÂT
i V̄2, Ki2 = B̂T

i V̄2

Ki3 = Ĉi, Ki4 = D̂i

υi =







υi1

V2

υi3






, ϑi =







ϑi1

V2

ϑi3






(19)

and substituting (19) into (17) lead to (8) and (13), which implies that if there exist positive matrices

Ki1 ∈ R+
n×n, Ki2 ∈ R+

1×n, Ki3∈ R+
1×n, Ki4 ∈ R+

1×1, υi1 ∈R+
n×1, υi3 ∈ R+

m×1, ϑi1 ∈ R+
n×1, ϑi3∈ R+

m×1(i, j ∈ ∆)
such that (17) are satisfied, then the performance specifications (5) and (6) are guaranteed for system (4).

As such, the system (4) is not only sensitive to fault signal but also robust against the disturbance. At
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last, by simple transformation of (19), the filter parameters can be obtained and thus the fault detection

problem is solved. The proof is now complete.

Remark 4. It should be noted that a mixedH−/H∞ fault detection problem has been investigated in

[25]. However, because of the nonnegative property of positive systems, a straightforward application of

FD filter designs for non-positive dynamical systems to positive systems is not applicable [18]. Instead,

an L− index as a new sensitivity measure of the residual signal to faults is introduced for the design of

positive fault detection filter. It is required that the designedL−/L1 filter not only ensures the robustness

against disturbance inputwk and the sensitivity to fault inputfk but also guarantees the positivity of the

augmented system (4).

Remark 5. Compared with [18], our results have the following distinguishing features: (1) the discrete-

time system is considered in our paper while the continuous-time case has been dealt with in [18]; (2)

our focus is to consider the effect of packet dropouts on FD problem, which is closer to engineering

applications.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide two illustrative examples to verify the effectiveness of Theorem 3.

Example 1. Consider system (1) withn = 2, N = 2 and matrices as follows:

Subsystem 1:

A1 =

[

0.1 0.15

0.8 0.4

]

, B1 =

[

0.2

0.1

]

, G1 =

[

0.1

0.4

]

C1 =
[

0.7 0
]

, D1 = 0.3

Subsystem 2:

A2 =

[

0.3 0.2

0.9 0.5

]

, B2 =

[

0.5

0.3

]

, G2 =

[

0.15

0.2

]

C2 =
[

0.4 0
]

, D2 = 0.6.

Given ᾱ = 0.7,β = 8 andγ = 0.1, by Theorem 3, a feasible solution for (17) is found:

K11 =

[

4.9466 3.2491

3.0209 1.2796

]

, K12 =
[

0.8072 0.8072
]

K13 =
[

1.4942 1.3388
]

, K14 = 4.0881

K21 =

[

6.2803 2.9470

3.2660 1.2159

]

, K22 =
[

0.5775 0.5775
]

K23 =
[

1.1841 1.2840
]

, K24 = 4.1546

V2 =
[

12.2610 7.8367
]T

.

The following filter parameters can be obtained from (18) :
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Fig. 1. Switching signal

Filter 1:

Â1 =

[

0.4034 0.2464

0.4146 0.1633

]

, B̂1 =

[

0.0658

0.1030

]

Ĉ1 =
[

1.4942 1.3388
]

, D̂1 = 4.0881

Filter 2:

Â2 =

[

0.5122 0.2664

0.3761 0.1551

]

, B̂2 =

[

0.0471

0.0737

]

Ĉ2 =
[

1.1841 1.2840
]

, D̂2 = 4.1546.

The external disturbance is selected as the absolute value of a normal distribution with mean value 0

and variance 0.01. The fault signalfk is set up as

fk =

{

0.5, 15≤ k ≤ 25

0, others.

The initial state is chosen asx0 = [2 4]T . The switching signal, the states and the generated residual

rk are shown in Fig. 1, Fig. 2 and Fig. 3, respectively. Fig. 4 displays the number of consecutive packet

losses intuitively and Fig. 5 shows the evolution of residual evaluation functionJr(T ). The threshold can

be determined asJr(T ) = 177.7655 for k=50 and the simulation results show thatJr(19) = 178.3691>

177.7655, which means that the faultfk can be detected after four sample time of its occurrence.

The simulation is provided to show the effectiveness of the proposed design methods. Though affected

by the loss of data, the fault detection is achieved successfully. Next, a practical example is presented to

the possible application.

Example 2. Consider a certain pest’s structured population dynamicsdescribed by the Leslie matrix

model named after British ecologist P. H. Leslie who popularized age structured models for animal
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Fig. 2. States of the system

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

k

R
es

id
ua

l s
ig

na
l r

(k
)

Fig. 3. Residual signalrk

populations in the mid-twentieth century. The Leslie matrix model is the following [23]:

xk+1 =







f1 f2 f3
p1,2 0 0

0 p2,3 0






xk +







b1 b2

0 0

0 0






uk

yk =
[

0 c c
]

xk

xk =
[

x1(k) x2(k) x3(k)
]T

wherex1(k) is the number of juvenile pests at time k,x2(k) is the number of immature pests at time k

and x3(k) is the number of adult pests at time k.fi denotes a birth rate for parents in theith age class
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Fig. 4. The number of consecutive package dropout
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Fig. 5. Evolution of residual evaluation functionJr(T )

and pi, j, i, j ∈ {1,2,3} is a survival rate for those in theith age class passing into the(i+1)th time

instant. The structure of the input matrix means that only birth rates can be affected by external inputs.

The outputyk is the sum of number of immature and adult pests which can be observed. The parameters

of the Leslie matrix model are

f1 = 0.3011±0.0220, f2 = 0.5915±0.0282

f3 = 0.5235±0.0022, p1,2 = 0.8868±0.0128

p2,3 = 0.7894±0.0194, b1 = 0.9000±0.0200

b2 = 0.5000±0.0050, c = 1±0.01.
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In practice, the number of pests of all ages can be reduced by spraying pesticide. Suppose that the

state feedback controller is designed asuk = Kxk with

K =

[

−0.1680 −0.1192 −0.0667

−0.2438 −0.1445 −0.1563

]

,

whereK is related to the amount of pesticide.

Due to the existence of uncertainties in the system, it is able to model as a switched positive system

with two subsystems,

A1 = (A
¯
+B

¯
K) =







0.0106 0.3869 0.3896

0.8740 0 0

0 0.7700 0







A2 =
(

Ā+ B̄K
)

=







0.0454 0.4371 0.3854

0.8996 0 0

0 0.8088 0







Bw1 =







0.60

0.30

0.83






, Bw2 =







0.78

0.34

0.67







C1 = [ 0 0.99 0.99 ]

C2 =
[

0 1.01 1.01
]

G1 =







0.105

0.85

0.87






, G2 =







0.12

0.45

0.88







D1 = 1.2, D2 = 1.4.

Given ᾱ = 0.7,β = 10 andγ = 0.1, by Theorem 3, a feasible solution for (17) is obtained:

K11 =







8.7005 4.0282 6.2246

14.6368 4.9573 4.9573

7.7872 5.0176 5.0176






, K12 =

[

0.0539 0.0539 0.0539
]

K13 =
[

3.1117 2.9465 2.9556
]

, K14 = 0.9006

K21 =







6.2345 9.0464 3.9701

10.0352 6.8591 6.8591

2.7153 7.1269 7.1269






, K22 =

[

0.0462 0.0462 0.0462
]

K23 =
[

3.0261 3.1761 1.2003
]

, K24 = 0.6642

V2 =
[

27.5049 32.5325 25.8349
]T

.

Thus, the filter parameters are obtained from (18):
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Filter 1:

Â1 =







0.3163 0.5322 0.2831

0.1238 0.1524 0.1542

0.2409 0.1919 0.1942






, B̂1 =







0.0020

0.0017

0.0021







Ĉ1 =
[

3.1117 2.9465 2.9556
]

, D̂1 = 0.9006

Filter 2:

Â2 =







0.2267 0.3648 0.0987

0.2781 0.2108 0.2191

0.1537 0.2655 0.2759






, B̂2 =







0.0017

0.0014

0.0018







Ĉ2 =
[

3.0261 3.1761 3.2003
]

, D̂2 = 0.6642.

In order to draw the curves, some selections are made as follows. Since it is possible that there are

pests coming into the testing area frequently, the externaldisturbance is selected as absolute value of

normal distribution whose mean value is 0 and variance is 0.25. The fault fk can be the controller failure

or the mutant of state such as the failure of pesticides caused by rain after just spraying and the influx

of a large number of pests from external region. Then, the fault signal fk is set up as

fk =

{

e×5× (k−10), 10≤ k

0, others

wheree ∈ {0,1} is a flag number,e = 1 indicates that the fault exists ande is set to 0 if the fault is

removed. The initial state is chosen asx0 = [20 50 30]T . Fig. 6 shows the random switching signal

and Fig. 7 displays the number of consecutive package dropout. The number of immature pestsx2(k)

and adult pestsx3(k) are shown in Fig. 8. Fig. 9 shows the evolution of residual evaluation function

Jr(T ). The threshold can be determined asJr(T ) = 3069.0 for k=60 and the simulation results shows

that Jr(14) = 3168.9> 3069.0, which means that the faultfk can be detected after four sample time of

its occurrence.

In Example 2, we study a pest’s population dynamics model that is of practical significance in

agriculture and forestry. Since the Leslie matrix model is stabilized by designing a state feedback

controller, it is unstable when the controller failure occurs. Once a fault is detected, some actions shall be

taken in time. Otherwise, the number of pests will have a rapid growth resulting in economic losses. As

shown in Fig. 8, after the fault happening atk = 10, it is detected atk = 14. Subsequently, measurements

are taken to remove the fault ande changes from 1 to 0. Finally, pests are controlled effectively, which

proves it is feasible to design the fault detection filter forLeslie matrix systems with packet dropouts in

accordance with Theorem 3.

VI. CONCLUSION

The fault detection problem of switched positive systems with packet dropouts has been studied in

the paper. The packet dropout is assumed to abide by the Bernoulli distributed (binary switching) white
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Fig. 6. Switching signal
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Fig. 7. The number of consecutive package dropout

sequence. By the algebraic operation, the stochastic information has been transferred into the parameters

of an augmented stochastic dynamic system. Two criteria forthe augmented systems have been utilized

to address FD problem of the original system based on FD filter. Sufficient conditions for the existence

of such filter have been obtained by constructing a switched Lyapunov function and the construction

of filter has been provided. At last, the fault detection method has been applicable to the Leslie matrix

model, which is very useful for agriculture and forestry. One of the future research topics is to extend

the main results to more complicated systems [4], [5], [8], [9], [26], [27], [29], [31] such as stochastic

systems, nonlinear systems and networked control systems.



SUBMITTED 17

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

k

nu
m

be
r 

of
 p

es
ts

 

 

immature pests
adult pests

Fig. 8. Immature pestsx2(k) and adult pestsx3(k)
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