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Abstract

The introduction of networks into technical systems for facilitating remote data transmis-
sion, low complexity in wiring and easy diagnosis and maintenance, raises new challenges
in fault detection (FD), such as how to handle network-induced time-varying transmission
delays, packet dropouts, quantization errors and bit errors. These factors lead to increas-
ing interest in developing new structures and design schemes for FD of technical systems
over networks.

In this thesis all network-induced effects are analyzed and modeled systematically at first.
By observing the stochastic inheritance of networks, an FD framework of Markov jumping
linear systems is presented as a basis for the later developments. Then two observer-based
schemes for the purpose of FD over networks with guaranteed false alarm rate (FAR) are
proposed: a remote FD system and an FD system of networked control systems (NCSs).
The remote FD scheme is for detecting faults in technical systems at a remote site, where
system measurements are transmitted via networks. In this scheme, the coding mechanism
of communication channels is investigated from the view point of control engineering and
new methods are developed for optimal residual generation and evaluation by considering
network-induced data loss and corruption. A novel design scheme of FD system is also
developed for NCSs, where the technical system is networked, i.e. controllers, actuators
and sensors are connected with communication channels. In this scheme, network-induced
transmission delays, packet dropouts, quantization errors are taken into account for the
design of the optimal FD system. The linear matrix inequalities (LMIs) and convex opti-
mization techniques are applied for assisting the design procedures. The developed schemes
are tested with numerical examples and implemented in a three-tank system benchmark,
and their superiority to existing solutions is demonstrated.

Existing restrictions are overcome and new observer-based FD schemes over networks are
introduced having the following characteristics: (1) the residual generators in both schemes
are optimal in the sense of achieving the best trade-off between sensitivity to system faults
and robustness against system disturbances and network-induced effects; (2) the proposed
schemes can provide reliability information of rising fault alarms by analyzing the mean
and variance of residual signals. Such information is very useful for practical applications
in industries; (3) the design of residual generators and computation of thresholds can be
efficiently solved by means of existing LMI-solvers.
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1 Introduction

Due to growing demands on system performance and cost efficiency, the complexity and
automation degree of modern technical systems are continuously increasing. In such com-
plex systems, faults or abnormal changes of individual parts, e.g. actuators, sensors and
components, can occur and result in economic dropout, system damage or even catas-
trophe. Hence guaranteeing the system safety and reliability becomes a critical issue on
the design of automatic systems, and is often prescribed by authorities. For this purpose,
the most important thing is to detect the faults in technical systems as early as possible.
Motivated by these facts, the model-based FD technology has been intensively developed
since the early 70’s [3, 18, 30, 31, 87], which can provide valuable information about sys-
tem faults. This technology has been fully integrated into many industrial processes and
automatic control systems, e.g. vehicle control systems, robots, process control, power
systems, transport systems, manufacturing processes. Among these existing model-based
FD schemes, the observer-based technique has received more attention since 1990’s, which
has been developed in the framework of the well-established modern control theory.

Nowadays modern networks are widely used to link data points, which enable remote
data transmission, reduce the complexity in wiring connection and the costs of media and
provide ease in system diagnosis and maintenance. Because of these benefits, networks have
been introduced into technical systems in last decades and new industrial network protocols
have also been developed for the purposes of remote control and factory automation, e.g.
Controller Area Network (CAN), Profibus, Foundation Fieldbus, ControlNet, Industrial
Ethernet. With the decreasing price, increasing bandwidth, widespread usages, numerous
software and applications and well-established infrastructure, general-purpose networks
become major competitors to the mentioned industrial networks [102], such as Ethernet and
Internet, which are originated from Slotted ALOHA [97] and ARPANET [80], respectively.
The so-called NCSs, where the control loops are closed via networks, have been intensively
investigated recently. On one side, new architectures of control systems are under research
in order to take the advantages of the flexibility of networks. On the other side, there
could be time varying transmission delays, packet dropouts, quantization errors and bit
errors, as networks are with digital, shared mediums and have only limited bandwidth.
Hence for the purpose of control over networks, a number of advanced control/filtering
methodologies have been developed in order to handle these network-induced effects [102].

Very recently, the merger of techniques from FD and networks received more attention.
Several new design schemes have been proposed for FD of technical systems over networks
by considering the network-induced effects [1]. This thesis is going to answer the following
two questions: how to design an observer-based remote FD system where the required data
by the FD system are transmitted via networks and how to design an observer-based FD
system for NCSs where the technical system itself is networked.
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1 Introduction

1.1 State of the art

In this section, the current state of the research in related fields, i.e. observer-based FD
technique, control and FD over communication networks, will be given.

1.1.1 Observer-based FD

The basic idea of model-based FD system for a process is demonstrated by Fig. 1.1, where
a process model is running parallel to the physical process and driven by the same inputs.
In fault-free cases, if the process model is perfect and has no disturbances, the process
outputs estimated by the model should follow the measured process outputs. In these
cases the so-called residual, which is the difference between the estimated values and the
measured values, should be zero. If there is a fault, the residual will be divergent from
zero. Hence the residual presents important information about faults of the process. The
procedure of creating the estimation and building the residual is called residual generation,
and the process model including the comparison function is called residual generator. In
fact, no technical systems can be modeled exactly and there are always different kinds
of disturbances. Hence the residual is always influenced by the model uncertainties and
disturbances. In order to extract the useful fault information from the residual signals,
two strategies have been developed:

• replacing the process model with other advanced residual generators which are robust
against model uncertainties and disturbances.

• evaluating the generated residual signals in order to distinguish the faults from dis-
turbances. This procedure is call residual evaluation as shown in Fig. 1.1. The
residual postprocessing and decision logic unit is called residual evaluator.

Process

Process

model

Residual

Post Processing

Decision

logic
- residual

inputs

disturbances

Model based fault detection system

fault

i ormationnf

Residual generation Residual evaluation

faults

Figure 1.1: The model-based fault detection system.
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1.1 State of the art

Residual generation

The observer-based residual generator is one of the most important techniques developed
for replacing the process model based one, which was initialized by Beard and Jones in the
1970’s [2, 59]. The observer was first developed in the area of advanced control theory and
can be used to reconstruct the system states with increased robustness against model un-
certainties and disturbances. Since then the advanced control theory has been introduced
into the development of FD techniques. But even with an observer, there could be esti-
mation errors and thus the residual is still corrupted. With the development of unknown
input decoupling control methods in the 1990’s, a number of techniques were then devel-
oped to design observers which are decoupled from disturbances, such that the residual
can directly indicate the faults (when there is no model uncertainties). The existence con-
ditions of perfect unknown inputs decoupling observers have been given in different terms
in [11, 21, 23, 48]. The frequency domain approach of designing such a decoupling observer
has been proposed in [19, 32], which is based on simple multiplications and additions of
transfer functions. In [88], the eigenstructure assignment approach has been presented.
A geometric approach has also been given in [18, 79] for the decoupling observer design,
in which the observer gain is selected to generate maximal uncontrollable subspace of the
process and observers with low or minimum order can be obtained. There were also a
number of contributions on unknown inputs decoupling observer (UIDO) technique and
unknown inputs observer (UIO) technique, e.g. [41, 47], which have proposed different
approaches to achieve disturbance decoupling. Recently, null matrix formulation has been
applied for disturbance decoupling observer design and corresponding numerical solutions
have been given in [34, 103].

Although there are a great number of approaches in the design of disturbance decoupling
observers for residual generation, these techniques are restricted by their strong existence
conditions and they are not optimal in the sense of fault detection. Many approaches
concentrate on designing the residual generator with minimized H∞ disturbance attenua-
tion [60]. But simply reducing the influence of disturbances does not lead to an optimal
performance of fault detection. For example when the disturbance decoupling is achieved,
some faults may also be decoupled from the residual and thus can not be detected. Hence
as mentioned in [31], the residual generator should be designed to maximize the robustness
against model uncertainties as well as disturbances and simultaneously maximize the sen-
sitivity to faults. A performance index was firstly proposed in [11] and [75] for an optimal
design of parity vector in the parity space approach if a perfect disturbance decoupling is
not achievable. Later a ratio index, i.e. H2/H2, has been introduced in [20] based on the
system induced norm for the optimal design of observer-based residual generators, where
the numerator represents the H2-norm of the transfer function from faults to residuals
and the denominator represents the H2-norm of the transfer function from disturbances to
residuals. Based on it, the time-frequency domain approach has been developed in [112].
Then residual generators have been designed to optimize the index H∞/H∞ in [22, 32, 91]
and H−/H∞ in [73, 90, 104]. In [19] and [118] unified solutions to optimizing Hi/H∞ have
been proposed in a factorization approach for continuous-time system and discrete-time
system, respectively, where Hi represents the i-th nonzero singular value of the transfer
matrix from faults to residuals. Similar solutions to sampled-data systems and periodic
systems can be found in [54, 116].

For the technical systems with both model uncertainties and disturbances, refer-
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1 Introduction

ence residual model strategies were applied to design an optimal residual genera-
tor, in which the original residual generation problem is transformed into a standard
model matching problem (MMP). In most early works [9, 33], only faults were consid-
ered in the reference models. Hence the obtained residual generators were only sensitive
to faults and may not be robust against system disturbances and model uncertainties. In
[121] the residual generator has been designed to minimize the H∞-norm of the difference
between the residual generator and the reference model, where the reference model is an
optimal solution for the robust fault detection under assumption that there is no model
uncertainties. This approach can achieve an optimal trade-off between the sensitivity to
faults and the robustness against model uncertainties and disturbances. Another way
to handle residual generation with uncertainties is to extend the mentioned H−/H∞ or
H∞/H∞ solutions in the H∞/μ framework [46].

Until now the results of observer-based FD for systems with uncertainties are limited.
Especially when the technical system has stochastic parameters, there are only few publi-
cations available. In [18] and [122], the residual generation of special classes of stochastic
systems has been presented by applying the reference model strategy. The FD of uncertain
systems and stochastic systems is one of the most interesting topics.

Residual evaluation

It is clear that if there is no model uncertainty in the process model and no disturbance in
the process, faults can be detected when the residual is not equal to zero. But the residual
is generally corrupted with model uncertainties and disturbances. To achieve successful
fault detection based on available information, a norm-based residual evaluation strategy
was proposed initially by [26] in the early stage of the development of model-based FD
technologies. The basic idea is to distinguish the faults from uncertainties and disturbances
by generating special features of the residual. For this purpose, the root-mean-square norm
of the residual was used as the evaluation function and a threshold regarding to all possible
model uncertainties and disturbances was selected to compare with the evaluated residual.
Exceeding the threshold indicates a fault in the process and a fault alarm will be released.
Based on this pioneering work, residual evaluation problems have been formulated in the
H∞-framework [22, 32, 58, 90], where the l2-norm measuring the energy level of a signal is
adopted as the residual evaluation function. The absolute value and the peak-norm of the
residual were also used as the evaluation functions [18]. For different application purposes,
different residual evaluation functions should be employed.

The major tools for the threshold selection are the robust control theory and the
linear matrix inequality (LMI) technique [4, 94]. The norm-based residual evaluation
strategies consider the worst case and thus may lead to a conservative threshold selec-
tion, but they provide a reliable and reasonable estimate of the threshold, such that false
detections of faults are prevented and at the same time the missing detections of faults are
reduced.

When the system parameters are stochastic, proper residual evaluation methods are still
missing. By simply applying existing results from deterministic systems can result in poor
fault detection performance. Hence the design of suitable residual evaluation methods for
stochastic systems is also attracting more and more interests.
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1.1 State of the art

1.1.2 Control and filtering over networks

In the past few years, one of the important topics in control society is NCSs. Fig. 1.2 shows
a typical structure of NCSs, where networks are used to establish the connection between
the controller and the technical system (also called process) including sensors, plants and
actuators [102]. The controller and process are physically located in different sites. The
control signals are encapsulated in a packet and sent to the process via the network. The
process then returns the process outputs to the controller by putting the sensor sampling
into a packet as well.

Actuators Plant Sensors

Controller

u y

Process

NetworkNetwork

Figure 1.2: The structure of NCS.

Regardless of the type of networks applied, the overall performance of NCSs is always
affected by transmission delays in the control loop since the network is connected with
the control system [70]. Delays can degrade the performance of control systems. Existing
constant time-delay control theory can not be directly used for NCSs, as the transmission
delay is usually time varying and random. In the field of networking, random transmis-
sion delays have been modeled by using various formulations, such as Poisson process and
Markov chain [93], fluid flow model [28] and Autoregressive moving average model [62].
These techniques have been brought into NCS formulations with modifications. For in-
stance, Markov chain was firstly applied in [61, 82] and the stochastic stability of NCSs
with transmission delays has been analyzed. In some early work, the time varying transmis-
sion delays have also been transformed into deterministic delays by using augmentation
and queuing techniques; See [76, 77] and [8]. Then the conventional time-delayed sys-
tem theory can be applied. With the development of robust control theory, a number
of robust control approaches of NCSs have been proposed in last ten years which require
only the upper (and lower) bound of transmission delays rather than their probability
distributions [24, 49]. The main idea is to construct a suitable Lyapunov-Krasovskii func-
tion and then reformulate it in terms of LMIs. The controller design syntheses of NCSs
have also been proposed. In [83], the controller design has been formulated as an linear-
quadratic-Gaussian optimization problem. Later robust controllers have been obtained in
the H∞-framework [38].

Transmission failure is another rising challenge in NCSs. When the network applies
medium access control (MAC), e.g. CSMA/CD, there could be packet collisions which

5



1 Introduction

can result in failures of data transmissions when the network load is high. Besides, dis-
turbances from the environment and networks themselves can also result in failures of
data transmissions, especially in wireless LAN and Internet. Usually the failure of data
transmission is called packet dropout. Similar with transmission delays, packet dropouts
can also degrade control performance. Markov chain is a reasonable model of the packet
delivery characteristic in communication channels and it is widely used in literature. In
[108, 111], stochastic stability conditions for NCSs with packet dropouts have been de-
rived, where the NCSs have been formulated as Markov jumping linear systems (MJLSs)
with some differences among these approaches. In [50, 57, 96] and [27, 109], the Kalman
filtering problems with packet dropouts have been studied, where the packet dropouts have
been modeled as a Bernoulli process or a Markov process.

Since modern networks are digital, analog signals are quantized with a limited resolution
and then transformed into a sequence of binary bits, and finally transmitted via networks.
The number of bits is interpreted as data rate from the view point of control engineering.
Since the data rate is limited, there are always quantization errors. Besides, due to the
noises in communication channels, there could also be bit errors [72]. The fundamental
minimum data rate for the system stability has been intensively studied in [81, 99, 100].
In [100] the necessary and sufficient minimum data rate for the asymptotic observability
and stability with noiseless channels (no bit errors in transmissions) has been derived. In
[99], a necessary condition for the system stability with noisy channels (with bit errors in
transmissions) has been studied. The influence of communications over noisy channels on
linear quadratic Gaussian problem has been investigated in [101]. The main idea of these
works is combining the dynamics of the system with the information theory [36] in order
to derive the fundamental requirements of the information transmission. In [81] a similar
result has been presented for the exponential stability. Besides, quantized feedback control
systems have been analyzed and designed with different techniques in [5, 25, 43, 52, 71].
These works indicated that the feedback information can be useful with different levels
of resolutions for different levels of system performances. In order to stabilize the system
the minimum feedback information must be enough to compensate for the increase in the
uncertainty due to the quantization.

Some papers addressing the analysis or synthesis problems with simultaneous consider-
ation of the mentioned network-induced effects, i.e. transmission delays, packet dropouts
and quantization errors, have been published very recently [37]. This is also the state-of-
the-art of the research on NCSs.

1.1.3 FD over networks

Recently, the FD over communication networks has also attracted more attention. There
are two kinds of schemes considered: the remote FD system and the FD system of NCSs.
The first one is used to monitor technical systems at a remote site, where the data trans-
mission from technical systems to the FD system is via networks. The second one is used
to detect faults in technical systems where the technical systems themselves are NCSs.

There is a few literature contributed to the remote FD system design. In [68], bit
errors appearing in wireless communication channels have been analyzed in the design
of an observer-based residual generator of remote FD system where bit errors have been
transformed into system uncertainties. In [69], a new kind of residual evaluation method
has been proposed for remote FD with bit errors, in which the stochastic properties of bit

6



1.2 Objectives

errors have been investigated in order to compute thresholds. In [66], an observer-based
remote FD system has been designed in a framework of stochastic uncertain systems by
considering packet dropouts and quantization errors.

There are many works contributed to designing FD system of NCSs. A number
of results have been obtained to deal with network-induced transmission delays. In
[105, 106, 113, 114], the structure matrix of transmission delays has been extracted
through Taylor approximation [113], eigendecomposition and Pade approximation [105],
and Cayley-Hamilton theorem [106, 114]. Then conventional robust fault detection meth-
ods have been applied to achieve robustness against transmission delays. In [44, 45, 92],
transmission delays have been modeled as Makrov processes. A deadbeat filter has been
designed in [92] for the purpose of fault isolation. Robust filters minimizing the error be-
tween residuals and faults have been proposed in [44] and [45]. In [74] transmission delays
have been estimated and compensated under a persistent excitation condition such that
false alarms can be avoided in the residual evaluation. The FD problems of NCSs with
packet dropouts have also attracted a lot of interests. In [117] the FD system for NCSs has
been designed by modeling packet dropouts as a Markov process. In [39] the FD problem
for uncertain systems with missing measurements modeled as a Bernoulli process has been
studied. See also [44, 45]. The quantization errors have been considered in the FD design
in [67] where the quantizer has been optimized for the purpose of FD.

To the author’s best of knowledge, most of these approaches concentrated on the residual
generator design and less attention has been paid to the residual evaluation for NCSs, espe-
cially when there are packet dropouts and bit errors. Due to the uncertain and stochastic
properties of NCSs, the residual signals usually can not be well evaluated through existing
methods. One of the current focuses of FD over networks is to find an optimal residual
generator and a suitable residual evaluation approach.

1.2 Objectives

The main objective of this thesis is to develop new observer-based FD technologies, where
networks are used for the purpose of data transmissions. Following problems are addressed:

Process

FD System

y

decy

Local Side

Remote Side

u

Network

Figure 1.3: The structure of remote FD system.
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Figure 1.4: The structure of FD system of NCSs.

• modeling of technical systems and communication networks from the view point
of control engineering. The network-induced transmission delays, packet dropouts,
quantization errors as well as bit errors should be described in a systematic way.

• developing technologies of observer-based FD over networks. Two types of FD
schemes are of interests:

– Remote FD system (Fig. 1.3): The FD system is located at the remote side and
connected to the process via communication channels, i.e. the process outputs
are transmitted over networks to the FD system.

– FD system of NCSs (Fig. 1.4): The FD system is designed for the purpose of
detecting faults in the NCSs, i.e. the controller is connected to actuators and
sensors with networks and the FD system is located together with the controller.

Both of them include two parts: residual generation and residual evaluation. The
design procedures should take the network-induced effects into consideration. The
obtained residual generator should be robust against system disturbances and
networked-induced effects and simultaneously sensitive to system faults. New resid-
ual evaluation methods should be developed, which can deal with stochastic residual
signals.

The first scheme is useful for a long distance monitoring of technical systems. The second
scheme is preferred when the technical systems are NCSs. In fact, the second scheme is
more complicated than the first one, as the network-induced effects will influence the
dynamics of the technical system, while it is not the case in the first scheme. Hence the
focuses and the design procedures of two schemes are quite different.

1.3 Outline

After the introduction, the nominal and faulty behaviors of technical systems are described
in the state-space form in chapter 2. In this chapter, communication networks are mathe-
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1.3 Outline

matically modeled from the view point of control engineering with which network-induced
effects can be easily integrated into the description of technical systems.

In chapter 3, some definitions and preliminary theoretical background on residual gen-
eration and evaluation are given and then a new approach for designing observer-based
FD system of MJLSs is proposed. These are the basis for the results presented in later
chapters. The proposed FD system of MJLSs consists of: (1) an optimal residual gen-
erator which is sensitive to system faults and robust against system disturbances; (2) a
novel residual evaluator with which residuals are evaluated by considering their statistical
properties, such that the probability of the occurrences of false alarms is upper bounded
and at the same time the missing detections of faults are also reduced. Numerical examples
are given to illustrate the feasibility and effectiveness of the proposed approach.

In chapter 4, the remote FD system is presented where the applied communication
channel could be either constant or time varying and the transmissions of measurements
could be either centralized or decentralized. By employing a proper error control strategy in
communications, the design procedure focuses on dealing with bit errors and quantization
errors during transmissions. Their influence is first transformed into stochastic unknown
inputs, and then their statistical properties are used for the design of the optimal residual
generators and evaluators, which can bound the probability of false alarms with an adaptive
threshold. To demonstrate the results, numerical examples are also given.

In chapter 5, the design approach of FD system of NCSs is proposed. The focus is
how to deal with transmission delays, packet dropouts and quantization errors, which
influence not only the FD system but also the dynamics of the NCS. The design problem is
formulated in the framework of MJLSs with uncertainties. The results presented in chapter
3 are extended here. The obtained optimal residual generator has network-dependent
parameters, and it is robust against network-induced effects and sensitive to system faults.
The threshold in residual evaluation is also adaptive to the network-induced effects. A
numerical example is used to illustrate the results.

In Chapter 6, the proposed schemes of FD over networks are applied in a three-tank
system benchmark where the networks are simulated with Truetime toolbox and MAT-
LAB/SIMULINK. The sensor faults, actuator faults and components faults are used to
demonstrate the proposed schemes.

Chapter 7 gives the summary of the results and the outlook of future work.
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2 Models of Technical Systems and
Networks

The objective of this chapter is to model communication networks and technical systems
from the view point of control engineering. The technical system is described in the input-
output description and the state-space form. Different kinds of system uncertainties and
disturbances are introduced. The network-induced effects, i.e. time varying transmis-
sion delays, packet dropouts, quantization errors and bit errors, are then described in a
systematic way which can be integrated into the state-space form of technical systems.

2.1 Description of technical systems

In this thesis, the technical systems are assumed to be linear time invariant (LTI) and their
nominal (disturbance-free and fault-free) behaviors can be described with the following
state-space form:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0

y(k) = Cx(k) +Du(k) (2.1)

where x ∈ R
n is the state vector, x0 the initial condition of the system, u ∈ R

ku the input
vector and y ∈ R

m the output vector. Matrices A,B,C,D are real constant matrices with
appropriate dimensions.

The transfer matrix is an input-output description of the dynamic behavior of an LTI
system in the frequency domain. The system (2.1) can be written as

y(z) = Gyu(z)u(z).

Here Gyu(z) ∈ RH∞m×ku is the transfer matrix and it can be written as

Gyu(z) = C(zI − A)−1B +D.

The system (2.1) is a state-space realization of Gyu(z), and it is assumed that (2.1) is a
minimal realization.

Remark 2.1 The technical systems can also be continuous-time systems. Since the com-
munication networks are digital, the system outputs must be sampled with a given sampling
rate at first, then quantized and transmitted. Such systems are called sampled-data sys-
tems and they can be equivalently written as a discrete-time system [53, 119]. Hence in
this thesis, the discrete-time LTI system is used to describe the technical systems.
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2.1 Description of technical systems

2.1.1 Representation of disturbances and uncertainties

In practice, the environmental interferences, measurements and process noises always ex-
ist in technical systems. These effects are usually modeled as system disturbances. By
denoting d ∈ R

kd as the disturbance vector, the description of the system (2.1) including
disturbances can be written as

x(k + 1) = Ax(k) +Bu(k) + Edd(k), x(0) = x0

y(k) = Cx(k) +Du(k) + Fdd(k) (2.2)

where Ed, Fd are known disturbance distribution matrices of compatible dimensions. The
corresponding input-output representation is

y(z) = Gyu(z)u(z) +Gyd(z)d(z)

where Gyd(z) is the disturbance transfer matrix and

Gyd(z) = C(zI −A)−1Ed + Fd.

Usually, it is difficult to obtain an exact model of a technical system due to unknown
changes within the system or in the environment around the system. Hence there is always
difference between the system model and the reality, which is called the model uncertainty.
The representation of uncertainties is given in the state-space form. Consider the extended
form of the system (2.2) given by

x(k + 1) = Ãx(k) + B̃u(k) + Ẽdd(k), x(0) = x0

y(k) = C̃x(k) + D̃u(k) + F̃dd(k)

with

Ã = A+ ΔA, B̃ = B + ΔB, C̃ = C + ΔC,

D̃ = D + ΔD, Ẽd = Ed + ΔE, F̃d = Fd + ΔF

where ΔA,ΔB,ΔC,ΔD,ΔE and ΔF are the model uncertainties. There are two types
of uncertainties widely accepted in literature:

• the norm bounded type[
ΔA ΔB ΔE
ΔC ΔD ΔF

]
=

[
E
F

]
Δ(k)

[
G H J

]
(2.3)

where E,F,G,H, J are known matrices of appropriate dimensions and Δ(k) is un-
known but bounded by

Δ(k)TΔ(k) ≤ I

• the polytopic type[
ΔA ΔB ΔE
ΔC ΔD ΔF

]
= co

{[
ΔA1 ΔB1 ΔE1

ΔC1 ΔD1 ΔF1

]
, · · · ,

[
ΔAl ΔBl ΔEl
ΔCl ΔDl ΔFl

]}
(2.4)
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2 Models of Technical Systems and Networks

where ΔAi,ΔBi,ΔCi,ΔDi,ΔEi,ΔFi, i = 1, · · · , l, are known matrices of appropri-
ate dimensions and co{.} denotes a convex set defined by

co

{[
ΔA1 ΔB1 ΔE1

ΔC1 ΔD1 ΔF1

]
, · · · ,

[
ΔAl ΔBl ΔEl
ΔCl ΔDl ΔFl

]}

=

l∑
i=1

αi

[
ΔAi ΔBi ΔEi
ΔCi ΔDi ΔFi

]
,

l∑
i=1

αi = 1, αi ≥ 0.

2.1.2 Representation of faults

The system faults can be divided into three categories:

• sensor faults which cause the abnormal changes on process measurements,

• actuator faults which cause the abnormal changes in the actuators, and

• component faults which are the malfunctions within the plant.

The widely used way to model faults is to extend the system (2.2) as follows:

x(k + 1) = Ax(k) +Bu(k) + Edd(k) + Eff(k), x(0) = x0

y(k) = Cx(k) +Du(k) + Fdd(k) + Fff(k) (2.5)

where f ∈ R
kf is the vector of faults to be detected and Ef , Ff are the fault distribution

matrices indicating the influence of faults on the system. Here f is assumed to be a
deterministic time function. The corresponding input-output representation is

y(z) = Gyu(z)u(z) +Gyd(z)d(z) +Gyf(z)f(z) (2.6)

where Gyf (z) is the fault transfer matrix and

Gyf(z) = C(zI − A)−1Ef + Ff .

Remark 2.2 According to the way how they affect the system dynamics, the faults de-
scribed in (2.5) are called additive faults. There is another kind of faults called multiplica-
tive fault. Generally, the multiplicative faults can be reformulated as additive faults [18].
Hence this thesis will focus on the detection of additive faults.

2.2 Model of network-induced effects

Recent development in communication theory has contributed toward achieving the re-
liability required by the high speed communication systems, and the use of coding and
decoding has become an integral part in the design of modern communication systems
[15]. Typically such a system may be represented by the block diagram shown in Fig.
2.1. In this case, a physical process is regarded as the information source and its outputs,
which are going to be transmitted to the destination, are continuous variables, e.g. process
outputs y. The source encoder transforms the source outputs into a sequence of kc binary
bits which is called the information sequence. This encoder usually uses a quantizer with

12



2.2 Model of network-induced effects

Source
Encoder

Channel
Encoder

Communication
Channel

Source
Decoder

Channel
Decoder

Noise

Modulator

Demodulator

Process outputs

Decoded outputs

Figure 2.1: The scheme of communication systems.

a finite number of levels. The channel encoder transforms the information sequence into
a discrete encoded sequence, called a codeword, of the length nc (nc ≥ kc) which is also
a binary sequence. The channel encoders are designed and implemented to combat the
noisy environment as the noise may cause some decoding errors. The generated codeword
is encapsulated into a packet and then transmitted via the network channels. The channel
decoder transforms the received sequence into a binary sequence called the estimated in-
formation sequence. The decoding strategies, e.g. hard-decision decoding and soft-decision
decoding, are based on the rules of channel encoding and the noise characteristics of the
channel. The channel decoders are designed and implemented to minimize the probability
of decoding errors. The estimated information sequence can be completely correct or with
detected but uncorrectable bit errors or with undetected bit errors. Bit errors are typical in
wireless communication channels, while the probability of occurring bit errors in wired net-
works could be small. The source decoder transforms the estimated information sequence
into an estimate of the source outputs which is called decoded outputs. The difference
between the process outputs and the decoded outputs is defined as the transmission error.

The networks usually have shared medium with limited bandwidth. Therefore cer-
tain MAC methods are applied to arrange the network communication. For system with
time division multiple access (TDMA), different time slots are assigned to different nodes
for accessing the network. TDMA is used in Fieldbus, bluetooth, etc. The carrier sensing
multiple access/collision avoidance (CSMA/CA) is applied in the standard IEEE 802.3
Protocol in which different nodes in the network compete for the access right in order to
avoid packet collisions. Due to the applied MAC methods, network load and disturbances
in the environment, the packets can be dropped and their arrivals at destination can be
delayed. The transmission delay is the difference between the time instance of sampling
measurement and the time instance of receiving the decoded outputs. It includes the
preprocessing delay in encoding, the waiting time, frame time and propagation time in
channels and the postprocessing time in decoding [70].

Before designing the FD system over networks, it is necessary to describe these features
of networks from the view point of control engineering.
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2 Models of Technical Systems and Networks

2.2.1 Quantization errors

The dictionary definition of quantization is the division of a quantity into a discrete number
of small parts. In digital control systems, the quantization is usually understood as an
analog to digital (A/D) conversion with a limited resolution. More generally, a quantizer
is defined as consisting of a set of partition cells S = {Si, i ∈ I}, where the index set I is a
collection of consecutive integers, together with a set of quantized values C = {Yi, i ∈ I},
so that the quantizer is defined by Q(v) = Yi for v ∈ Si [42]. The quantization error is
defined as the difference between the real values and the quantized values.

There are two kinds of quantizers widely used in different applications: uniform quantizer
and logarithmic quantizer. A quantizer is said to be uniform when the quantized values Yi
are equally spaced and the size of Si is the same. Fig. 2.2 shows an example of the uniform
quantizer. If Yi is at the center of Si, then the quantization error, i.e. Δq = v − Q(v), is
in [−l/2, l/2] with the size of Si being l.

1
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1
Y

2
Y

3
Y

6
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S

Figure 2.2: An example of uniform quantizer.
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Figure 2.3: An example of logarithmic quantizer.

When the size of Si obeys a logarithmic function as shown in Fig. 2.3, then the quantizer
is called the logarithmic quantizer. The position of Yi can be selected as the middle of Si
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2.2 Model of network-induced effects

or according to other criteria. One of the logarithmic quantizer widely accepted in control
applications was proposed in [25], which is

Q(v) =

⎧⎨
⎩

ρiv0 if 1
1+δq

ρiv0 < v ≤ 1
1−δq ρ

iv0, v > 0

0 if v = 0
−Q(−v) if v < 0

(2.7)

where 0 < ρ < 1, v0 > 0 is the maximum possible value of v and

δq =
1 − ρ

1 + ρ
.

It is well known that [35], a suitable model for the logarithmic quantizer Q(v) with pa-
rameter δq consists in the following multiplicative random map

Q(v) = (1 + Δq)v

where Δq ∈ [−δq, δq]. Hence the quantization error is Δqv, which depends on v and the
quantization parameter δq.

2.2.2 Bit errors

In this thesis, the communication channel in networks is assumed to a
binary symmetric channel (BSC). A BSC is a practically important and simple
channel model in communications [72]. For a BSC, as shown in Fig. 2.4, the received bit
can be different from the transmitted one with a probability pb, where pb is called the
bit error rate (BER). Bit errors in different positions of the codeword are independent.
That means if an nc-bit codeword is transmitted, each bit can be incorrectly received with
the probability pb. In other words, a binary error sequence of nc-bit will be added to the
transmitted codeword. Such a binary error sequence is called an error pattern. For nc-bit
codewords, there are 2nc different error patterns.

0

1

0

1

bp

bp

1-

1- bp

bp

Figure 2.4: BSC bit error rate diagram

The probabilities of occurrences of different error patterns can be calculated based on
pb as follows

P e
i = p

w(i)
b (1 − pb)

nc−w(i), i = 1, · · · , 2nc. (2.8)
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2 Models of Technical Systems and Networks

Here w(i) is the weight which is equal to the number of non-zero bits of each error pat-
tern. Generally, the bit error probability pb can be calculated from the knowledge of the
modulator used and the statistical properties of the noise. In this case, the bit error rate
is given by

pb =
1√
2π

∞∫
√

2Es/N0

e−y
2/2dy (2.9)

where Es is the symbol energy level and N0 is the noise energy level [72].

2.2.3 Packet dropouts

The packet dropout is a typical feature of network communications. As shown in Fig. 1.4,
when networks are introduced into technical systems for the purpose of control and FD,
such packet dropouts can result in losses of process inputs or process outputs. The simple
and popular method to model packet dropout behavior is using the i.i.d. Bernoulli model
or the Gilber-Elliott model [107]. In the i.i.d Bernoulli model, a Bernoulli random variable
αk indicates whether the packet at the k-th time step is successfully received or not. If it
is received, then αk = 1, otherwise αk = 0. For any k, αk is i.i.d. distributed with the
probability:

Pr{αk = 1} = λ,Pr{αk = 0} = 1 − λ, λ ∈ [0, 1].

The Gilbert-Elliott model considers the network as a discrete-time Markov chain with
two possible states: ”good” and ”bad”. In the ”good” state, the packet is successfully
received with a higher probability, and in the ”bad” state, the packet is dropped with a
higher probability. The network jumps between two states follow a Markov chain with
transition probability matrix Φ as

Φ =

[
λ00 λ01

λ10 λ11

]
,

where 1 is the ”good” state, 0 is the ”bad” state and λij is the transition probability:

λij = Pr{current state = j|previous state = i}, i, j ∈ {0, 1}.

The Gilbert-Elliott is able to capture the dependence between consecutive packet dropouts,
i.e. bursty packet dropping. The model can be easily extended to Markov chains with
more possible states, but no significant improvement can be obtained to model the packet
dropout behavior [107]. When the sampling period of the process is larger enough, the
dependency between consecutive packet dropouts could be neglected. In this case, the
Bernoulli model can be applied.

2.2.4 Transmission delays

Time-delay systems have been intensively investigated in the past. Hence the time varying
transmission delay is not a completely new problem for control and FD. By extending the
existing results and using existing tools, e.g. Lyapunov-Krasovskii functions, the trans-
mission delay can be handled [24, 49].
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2.2 Model of network-induced effects

In [44, 45, 92], transmission delays were modeled as a Markov chain, i.e.

λij = Pr{τ(k + 1) = j|τ(k) = i},

where {τ(k)} is assumed to take values in the finite state space {−1, 0, · · · , N}, N is a
positive integer. In practice, λij is difficult to obtain.

In [106, 113, 114], the structure matrix of transmission delays were derived and then
the delays were transformed into unknown inputs or system uncertainties. This method
requires only the upper bound and lower bound of transmission delays, which are usually
available. In the rest of this thesis, this description of transmission delays is adopted.
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3 Background and Some Preliminary
Results

In this chapter, the background of FD with focus on the observer-based approach is intro-
duced and then the FD problem of MJLSs is investigated. They are useful for the later
analysis and design of FD system over networks. The key results on residual generation
and residual evaluation for LTI systems are presented at first, including the unified so-
lution to an optimal FD. Based on that, the FD problem of MJLSs is formulated. An
optimal residual generator is designed by applying a new reference residual model and a
novel residual evaluation method is proposed to detect the occurrences of faults with a
guaranteed false alarm rate (FAR).

3.1 FD of linear time-invariant systems

Some standard results on FD problems will be briefly presented here. As mentioned in
the first chapter, the observer-based FD technology includes two steps: residual generation
and residual evaluation. Consider an LTI discrete-time system given in (2.5) and (2.6).
Without loss of generality, the following assumptions are made throughout the thesis:

• (A3.1) (C,A) is detectable.

• (A3.2)

[
A− ejθI Ed

C Fd

]
has full row rank for all θ ∈ [0, 2π).

The two assumptions are standard in robust control theory.
The following notations are used throughout the thesis: XT is the transpose of a matrix

X. X > 0 denotes a positive definite matrix. In a symmetric matrix[
. . . X1

∗ X2

]

where X2 = XT
2 , ∗ denotes the symmetric entry which is equal to X1, and the empty

entries are zeros. [.]j denotes the j-th row of a matrix or vector.

3.1.1 On residual generation

Let (M̂u(z), N̂u(z)) be a left coprime factorization pair of Gyu [123], i.e.

Gyu = M̂u(z)
−1N̂u(z), M̂u(z), N̂u(z) ∈ RH∞.

With assumptions (A3.1) and (A3.2), M̂u(z)Gyd(z), M̂u(z)Gyf (z) ∈ RH∞. In [21], a
parametrization of all LTI residual generators was proposed as follows:

r(z) = R(z)(M̂u(z)y(z) − N̂u(z)u(z)) (3.1)
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Figure 3.1: Observer-based residual generator

where r(z) is the residual vector and R(z) ∈ RH∞ is the so-called post-filter that is
arbitrarily selectable. Obviously, the dynamics of (3.1) is governed by

r(z) = Grd(z)d(z) +Grf(z)f(z)

with
Grd(z) = R(z)M̂u(z)Gyd(z), Grf(z) = R(z)M̂u(z)Gyf (z).

The corresponding observer-based residual generator shown in Fig. 3.1 is given by

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k) − ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)

r(k) = W (y(k) − ŷ(k)) (3.2)

where x̂(k) ∈ R
n is the estimated state vector and ŷ(k) ∈ R

m the estimated output
vector. L,W are the observer gain and the post-filter, respectively, which are both design
parameters.

Define e(k) as the estimation error, i.e.

e(k) = x(k) − x̂(k).

The dynamics of (3.2) in the state-space form can be described through

e(k + 1) = (A− LC)e(k) + (Ed − LFd)d(k) + (Ef − LFf )f(k)

r(k) = W (Ce(k) + Fdd(k) + Fff(k)) (3.3)

and the coprime factors can be expressed as

M̂u(z) = I − C(zI − A+ LC)−1L,

N̂u(z) = D + C(zI −A+ LC)−1(B − LD).
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3 Background and Some Preliminary Results

The observer gain is a constant matrix and it should be selected such that the residual
generator (3.2) is stable. The post-filter is arbitrarily selectable and it can be either
constant or dynamic. The selection of W can be done independent of the selection of L.
If W is constant, then Grd(z) and Grf(z) can be written as

Grd(z) = WFd +WC(zI − A+ LC)(Ed − LFd),

Grf(z) = WFf +WC(zI − A+ LC)(Ef − LFf).

The design of a residual generator has been formulated as following typical fault detec-
tion, isolation and identification problems:

• Perfect disturbance decoupling problem (PDDP), in which R(z) or L and W are
selected such that

Grd(z) = 0, Grf(z) �= 0.

That means the residual signals are only influenced by the faults. It is solvable, if
and only if

rank
[
Grd(z) Grf(z)

]
> rank

[
Grd(z)

]
.

• Perfect fault isolation problem (PFIP), which is going to find R(z) or L and W
satisfying

Grd(z) = 0, Grf(z) = diag{t1(z), · · · , tkf
(z)} ∈ RH∞.

This problem can be reformulated as a set of PDDPs.

• Exact fault identification problem (EFIP), in which

Grd(z) = 0, Grf(z) = Ikf×kf
.

The strict existence condition of EFIP is that Gyf (z) is left invertible in RH∞.

• H∞ optimal fault identification problem, in which R(z) or L and W are selected such
that β is minimized under a given γ, where

‖Grd(z)‖∞ < γ, ‖I −Grf(z)‖∞ < β.

That means the residual signals will robustly reconstruct the faults.

The above formulated problems can not achieve the best trade-off between system ro-
bustness against unknown disturbances and system sensitivity to the faults. Hence the
ratio-type performance index

J =
influence of faults

influence of unknown disturbances
(3.4)

is suggested to address the influence of disturbances and faults on the residual signals
simultaneously. The maximization of (3.4) leads to the optimal design of the residual
generator (3.2), which is formulated as the following optimization problem:

• Hi/H∞ optimal design problem, in which

sup
R(z)∈RH∞

σi(Grf(e
jθ))

‖Grd(z)‖∞ = sup
L,W

σi(WFf +WC(zI − A+ LC)(Ef − LFf ))

‖WFd +WC(zI −A + LC)(Ed − LFd)‖∞ (3.5)

is maximized for all θ ∈ [0, 2π), where σi is the nonzero singular values measuring
the influence of faults in each direction of the subspace spanned by Grf (e

jθ).
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3.1 FD of linear time-invariant systems

The following theorem gives the unified solution for optimizing the index (3.5).

Theorem 3.1 [18] Given a residual generator

r(z) = R(z)(M̂u(z)Gyd(z)d(z) + M̂u(z)Gyf (z)f(z))

for an LTI system

y(z) = Gyu(z)u(z) +Gyd(z)d(z) +Gyf (z)f(z)

where Gyu(z) = M̂u(z)
−1N̂u(z). If

M̂u(e
jw)Gyd(e

jw)G∗
yd(e

jw)M̂∗
u(e

jw) > 0, ∀w ∈ [0, 2π),

then
Ropt(z) = G−1

do (z)

solves the optimization problem (3.5), where

M̂u(z)Gyd(z) = Gdo(z)Gdi(z), M̂u(z), N̂u(z) ∈ RH∞

and Gdo(z) is the RH∞-left-invertible co-outer of M̂u(z)Gyd(z), and Gdi(z) is the co-inner

containing all right half complex plane zeros of M̂u(z)Gyd(z) and satisfying Gdi(z)G
∗
di(z) =

I.

The optimal post filter given above is in frequency domain. In order to compute the
co-outer Gdo(z), the following lemma is introduced.

Lemma 3.2 [51] Consider G(z) realized by (A,B,C,D), without zeros on the unit circle,
and suppose that (A,B,C,D) is stabilizable and has no unreachable null modes and no
unobservable modes on the unit circle. Then G(z) has an inner-outer factorization as
G(z) = Gi(z)Go(z), where

Gi(z) = DΓ + (C +DF )(zI − (A+BF ))−1BΓ

is inner and
Go(z) = Θ − ΘF (zI − A)−1B

is outer, (X,F ) is the stabilizing solution to the following discrete-time algebraic Riccati
system [

ATXA−X + CTC ATXB + CTD
BTXA+DTC DTD +BTXB

] [
I
F

]
= 0

and DTD + BTXB ≥ 0, Θ is an appropriate surjective matrix satisfying ΘTΘ = DTD +
BTXB, Γ is the right inverse of Θ.

Now it is the position to give the optimal post filter R(z) in the state-space form.

Theorem 3.3 [18] Consider system

x(k + 1) = Ax(k) +Bu(k) + Edd(k) + Eff(k), x(0) = x0

y(k) = Cx(k) +Du(k) + Fdf(k) + Fff(k) (3.6)
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3 Background and Some Preliminary Results

with assumptions (A3.1) and (A3.2). Then the residual generator (3.2) with

Lo = −Ld,Wo = Wd

delivers the residual signal r(k) that is the optimum in the sense of maximizing (3.5), where
Wd is the left inverse of a full column rank matrix Hd satisfying

HdH
T
d = CXdC

T + FdF
T
d ,

and (Xd, Ld) is the stabilizing solution to the discrete-time algebraic Riccati system[
AXdA

T −Xd + EdE
T
d AXdC

T + EdF
T
d

CXdA
T + FdE

T
d CXdC

T + FdF
T
d

] [
I
Ld

]
= 0.

3.1.2 On residual evaluation

The residual evaluation problem of deterministic systems has been intensively studied. In
ideal cases, the residual signals should be zero when there is no fault. But considering the
system (3.3), it is clear that the residual signal r(k) is always corrupted by d(k). Hence
the core task of residual evaluation is to distinguish the faults from the disturbances. The
simplest way to evaluate the residual signal is computing its size at each time instant and
then comparing it with threshold, where the threshold is computed considering all possible
disturbances and uncertainties in the system.

Naturally, various norms of residual are used to measure its size, e.g. l2-norm measuring
the energy level and peak-norm measuring the maximum absolute value. The l2-norm is
widely accepted as the residual evaluation function [23, 32], which is

‖r(k)‖2 =

{ ∞∑
i=0

r(i)T r(i)

} 1
2

where ||.||2 stands for the l2-norm of a signal. Since an evaluation of residual over the
whole time is usually unrealistic, the evaluation function is computed in a time window,
which is

‖r(k)‖e = ‖r(k)‖T =

√√√√ k∑
j=k−T+1

r(j)T r(j) (3.7)

with T being the length of the evaluation window and ||.||e denoting the evaluation function
of residual. In case of no fault, the residual is determined by d(k). According to (3.3),

‖r(k)‖2 ≤ ||Grd(z)||∞‖d(k)‖2.

If ‖d(k)‖2 ≤ δd,2, in fault-free cases

‖r(k)‖T ≤ ‖r(k)‖2 ≤ ||Grd(z)||∞δd,2.

Hence the threshold should be tolerant to disturbances. As widely accepted in literature,
the threshold can be selected as

Jth = min
γ
γδd,2
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3.1 FD of linear time-invariant systems

subject to

γ > sup
d∈l2

‖r(k)‖2

‖d(k)‖2
.

The following theorem gives the method to select Jth.

Theorem 3.4 [18] Given the system (3.6), the residual generator (3.2), the residual eval-
uation function (3.7) and ‖d(k)‖2 ≤ δd,2, then the threshold can be set as

Jth = γ̌δd,2 (3.8)

where γ̌ is the minimum of the optimization problem

min
P>0

γ

subject to the following LMI⎡
⎢⎢⎣

−P P (A− LC) P (Ed − LFd) 0
∗ −P 0 (WC)T

∗ ∗ −γ2I (WFd)
T

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0.

With the optimal residual generator proposed in Theorem 3.3, it follows Jth = δd,2.
Similarly, the peak value of the residual can be taken as the residual evaluation function

as follows
‖r(k)‖e = ‖r(k)‖peak = sup

k≥0

(
r(k)T r(k)

) 1
2 (3.9)

with ||.||peak standing for the peak-norm of a signal. The threshold can be set as

Jth = sup
fault-free, k ≥ 0

‖r(k)‖peak

The following theorem gives the method to select Jth.

Theorem 3.5 [18] Given the system (3.6), the residual generator (3.2), the residual eval-
uation function (3.9) and ‖d(k)‖peak ≤ δd,∞, then the threshold can be set as

Jth = γ̌δd,∞ (3.10)

where γ̌ is the minimum of the optimization problem

min
P>0,κ>0,μ>0

γ

subject to the following matrix inequalities⎡
⎣ −P P (A− LC) P (Ed − LFd)

∗ (κ− 1)P 0
∗ ∗ −μI

⎤
⎦ < 0,

⎡
⎣ −κP 0 (WC)T

∗ (μ− κ)I (WFd)
T

∗ ∗ −γI

⎤
⎦ < 0.
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3 Background and Some Preliminary Results

Then the occurrences of faults can be tested by a comparison between the residual
evaluation function and the calculated threshold. It can be expressed as the following
decision logic

‖r(k)‖e > Jth ⇒ fault alarm,

‖r(k)‖e ≤ Jth ⇒ fault-free. (3.11)

For the residual evaluation, the notations of the false fault alarm and the false alarm
rate (FAR) are defined as follows:

Definition A fault alarm is called the false fault alarm, when ‖r(k)‖e > Jth, ‖f‖e = 0.
The probability of the occurrences of false alarms is called the FAR.

With the norm-based residual evaluation approaches for LTI systems, false alarms are
prevented, i.e. FAR = 0, and the missing detections of faults are minimized.

3.2 FD of Markov jumping linear systems

The MJLS is one of the hybrid systems in which a state takes values in a countable
finite set, referred to as the mode. It can be used to represent a class of linear systems
subject to abrupt changes in their structures due to random components failures, repairs,
sudden environment disturbances, change of the operation points of a linearized model of
nonlinear systems, e.g. electric power systems, aircraft flight control and especially NCSs
(for reasonable model of the packet delivery characteristic in communication channels).
There are many theoretical works contributed in the field of MJLSs. The results on the
stability of MJLSs have been presented in [12, 56]. The linear quadratic Gaussian control
problem has been studied by [10, 55]. The bounded real lemma for MJLSs has been fully
developed by [95] in the form of LMIs. The H∞-control problems have been discussed in
[14, 29], where a controller stabilizing a linear system ensures that the l2 induced norm
from disturbances to the outputs is bounded. In [13, 17], the H∞ filtering for MJLSs has
been studied as the dual problem of control. For NCSs, recently there were also many new
results obtained by applying the MJLS theorem; see for example [57, 108, 111].

Although there is intensive research in FD and MJLS, the design of FD system for
MJLSs has just begun. In [117], the packet dropout in NCSs was modeled as a Markov
chain and an FD system has been designed in terms of LMIs. In [68], the FD system over
noisy communication channels has also been described via an MJLS in order to model
the transitions between different channel states. In [39], a fault detection filter has been
proposed for systems whose measurements missing phenomenon is associated with a binary
Bernoulli process. In [122], the design of FD system for MJLSs has been formulated as an
H∞-filtering problem. These approaches mainly concentrated on the residual generation,
where residual generators have been designed to minimize the influence of disturbances
[68, 117] or to minimize the difference between residual signals and (weighted) faults [39,
122], and the applied residual evaluation methods were similar to those for LTI systems.
However, by only considering the disturbances or faults in the design, the residual generator
usually can not achieve an optimal performance in the sense of the best trade-off between
the robustness against disturbances and the sensitivity to faults [18]. Besides, further
statistical properties of residual signals were not analyzed and considered in the design
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3.2 FD of Markov jumping linear systems

procedure and a proper residual evaluation methods for MJLSs is still missing to the best
of author’s knowledge. It will be shown that, the usual norm based residual evaluation
methods in literature can not be directly applied in the FD design of MJLSs, and without
taking the variance of residual signals into account the evaluation will result in a possible
high FAR.

In this section, the FD system design of MJLSs is formulated as a set of optimization
problems. The residual generator is designed to stochastically match a deterministic refer-
ence residual model which can achieve an optimal trade-off between the system robustness
and the fault sensitivity. The reference residual model is selected according to the statisti-
cal properties of the MJLS. For the stationary MJLS, in which the distributions of Markov
modes at different time instances remain the same, a new bounded real lemma is also de-
rived. Then the stochastic model matching problem is solved by optimizing the H∞-norm
of an MJLS subject to variance constraints. In the residual evaluation, the absolute value
of each residual signal is selected as the evaluation function and the corresponding thresh-
olds are computed by considering their means and variances. These statistical properties of
evaluated residual signals are calculated with the help of (iterative) LMIs based on convex
optimization problems. An upper bound of the FAR is also derived in this evaluation
method. The FD problem of non-stationary MJLSs is then addressed in a similar way.
Finally a numerical example is given to illustrate the feasibility and effectiveness of the
proposed design approaches.

3.2.1 Problem formulation

The considered MJLS is defined as follows

x(k + 1) = A(θk)x(k) +B(θk)u(k) + Ed(θk)d(k) + Ef (θk)f(k)

y(k) = C(θk)x(k) +D(θk)u(k) + Fd(θk)d(k) + Ff (θk)f(k) (3.12)

where x ∈ R
n denotes the state vector, u ∈ R

p denotes the control inputs, y ∈ R
m denotes

the measured output vector, d ∈ R
nd denotes the disturbances and f ∈ R

nf is the vector
of faults to be detected. {θk} is a discrete homogeneous Markov chain taking values in a
finite mode space ψ = {1, 2, · · · , N} with transition probability matrix Φ = [λij ]i,j∈ψ, and

λij is defined as
λij = Pr{θk+1 = j|θk = i}

which are subject to the restriction λij ≥ 0,
∑N

j=1 λij = 1 for any i, j ∈ ψ. For notation,
define P (k) as the vector of mode probabilities

P (k) =
[
p1(k) p2(k) · · · pN(k)

]T
,

pi(k) = Pr{θk = i}, i ∈ ψ.

The Markov chain with the following assumption is considered:

• (A3.3) {θk} is homogeneous and λij > 0.

This assumption means that, in such a Markov chain it is possible to get to any mode from
any mode. It is well known that,

Φk → constant, P (k) → P (∞), when k → ∞ (3.13)
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3 Background and Some Preliminary Results

where P (∞) is a unique constant vector called the stationary mode distribution of a Markov
chain with the assumption (A3.3) and P (∞) can be computed according to

P (∞) = ΦP (∞).

It is clear that, θk is asymptotically stationary with P (0) �= P (∞). When P (0) = P (∞),
then P (0) = P (1) = · · · = P (∞), which means the mode probabilities are independent
of time, i.e. the Markov chain is in the stationary state. According to the initial mode
distribution P (0), two kinds of MJLSs are defined:

Definition With assumption (A3.3) and P (0) = P (∞), system (3.12) is a stationary
MJLS.

Definition With assumption (A3.3) and P (0) �= P (∞), system (3.12) is a non-stationary
MJLS.

For the FD purpose, it can be generally assumed that the MJLS under consideration is
operating in its stationary state before a fault occurs. Hence the next subsection will first
focus on the design of the FD system for stationary MJLSs and then an FD system for
non-stationary MJLSs will also be given.

Residual generator design

Residual generation is the first step of FD. The following residual generator for the system
(3.12) is proposed:

x̂(k + 1) = A(θk)x̂(k) +B(θk)u(k) + L(θk)(y(k) − ŷ(k))

ŷ(k) = C(θk)x̂(k) +D(θk)u(k)

r(k) = W (θk)(y(k) − ŷ(k)) (3.14)

where x̂(k) and ŷ(k) are the estimated state vector and output vector, respectively. r(k)
is the residual. The matrices L(θk) and W (θk) are to be designed. For the convenience,
denote the matrices associated with θk = i ∈ ψ by

Ai = A(θk), Bi = B(θk), Ed,i = Ed(θk), Ef,i = Ef(θk), Li = L(θk),

Ci = C(θk), Di = D(θk), Fd,i = Fd(θk), Ff,i = Ff(θk),Wi = W (θk).

With e(k) = x(k) − x̂(k), the residual dynamics of (3.14) can be written as

e(k + 1) = AL(θk)e(k) + Ed,L(θk)d(k) + Ef,L(θk)f(k)

r(k) = W (θk)(C(θk)e(k) + Fd(θk)d(k) + Ff(θk)f(k)) (3.15)

where

AL(θk) = A(θk) − L(θk)C(θk),

Ed,L(θk) = Ed(θk) − L(θk)Fd(θk),

Ef,L(θk) = Ef(θk) − L(θk)Ff (θk).
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3.2 FD of Markov jumping linear systems

The objective of the design is to generate residual signals which are robust against
disturbances and sensitive to faults. It is clear that system (3.15) itself can be an MJLS
instead of a deterministic system. The Markov mode θk is not known as a prerequisite.
Hence a reference residual model which can achieve an optimal trade-off between system
robustness and fault sensitivity, is proposed and then the residual generator is designed to
match the reference residual model in a stochastic sense. In this approach the matrices
L(θk) and W (θk) in (3.14) should be selected such that

sup
f,d

‖rref − r‖E
‖
[
d
f

]
‖2

(3.16)

is minimized subject to

‖(rref−r)−E[rref−r]‖2
E = E

[ ∞∑
k=0

{(r(k) − r̄(k))T (r(k) − r̄(k))}
]
< α2‖

[
d
f

]
‖2

2 (3.17)

where α > 0, r̄(k) = E[r(k)] with E[.] denoting the expectation of a stochastic variable,
||.||E represents the l2-norm of a stochastic signal, i.e.

‖rref − r‖E =

√√√√E

[ ∞∑
k=0

(rref(k) − r(k))T (rref(k) − r(k))

]
,

and rref denotes the residual generated by the reference residual model in the form of

eref (k + 1) = (Aref − LoCref)eref (k) + (Ed,ref − LoFd,ref)d(k) + (Ef,ref − LoFf,ref)f(k)

rref(k) = WoCreferef (k) +WoFd,refd(k) +WoFf,reff(k). (3.18)

Here Lo and Wo are chosen by applying the unified solution proposed in Theorem 3.3, such
that

J(Lo,Wo) ≥ J(L,W ) =
σi(Grf(e

jθ))

‖Gr,d‖2

=
σi(WFf,ref +WCref(zI − Aref + LCref)

−1(Ef,ref − LFf,ref ))

‖WFd,ref +WCref(zI −Aref + LCref)−1(Ed,ref − LFd,ref)‖∞
for any L,W and θ ∈ [0, 2π), where σi represents the i-th nonzero singular value ofGrf(e

jθ).
Since r(k) is a stochastic vector, usually the expectation, ‖rref−r‖E, is not enough to char-
acterize its behavior. Hence the constraint (3.17) is applied to ensure that the summation
of variances of each residual signal over time is bounded by an expected value α2.

Remark 3.1 A significant difference between the reference model for the purpose of FD
adopted here and the one in literature is that disturbances d(k) is included in the model
such that an optimal trade-off between system robustness against disturbances and sensi-
tivity to faults can be achieved. As mentioned before, simply reducing the influence of d(k)
or increasing the sensitivity to f(k), does not automatically lead to an optimal trade-off.
Hence it is necessary to take both of d(k) and f(k) into account in the reference model. It
has been proved in [18] that, the reference model (3.18) does provide a better performance
for the purpose of fault detection.
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3 Background and Some Preliminary Results

Recall (3.13), which means that as time goes by, the Markov chain forgets its initial
condition and converges to its stationary distribution. Hence it is reasonable to set the
following matrices

Aref =
N∑
i=1

Aipi(∞), Ed,ref =
N∑
i=1

Ed,ipi(∞), Ef,ref =
N∑
i=1

Ef,ipi(∞),

Cref =
N∑
i=1

Cipi(∞), Fd,ref =
N∑
i=1

Fd,ipi(∞), Ff,ref =
N∑
i=1

Ff,ipi(∞),

such that the reference residual model describes the optimal stationary expected behavior
of the MJLS (3.15).

In fact, the MJLS (3.15) consists of two groups of states: the system states e(k) and the
Markov mode θk. In the robust control system design, the initial condition of system state
is usually assumed to be zeros (so-called zero initial condition). Comparably, the following
two assumptions are made for the MJLS:

• (A3.4) e(0) is deterministic and e(0) = 0,

• (A3.5) θ0 is independent of e(0).

The problem of residual generator design of an MJLS is then summarized as follows.
Problem RGFD (Residual generator for FD): Given system (3.12) and the reference

residual model (3.18), determine the matrices Li and Wi, i ∈ ψ, of the residual generator
in the form of (3.14) under assumption (A3.1)-(A3.5), such that the residual dynamics
described by (3.15) minimizes (3.16) and at the same time (if possible) satisfies (3.17).

Residual evaluation design

The residual evaluation problem of deterministic systems has been intensively studied.
One important evaluation strategy is the so-called norm based residual evaluation [18] as
shown in the last section. The residual evaluation function can be chosen as (3.7) and
the corresponding threshold can be selected as (3.8), such that false fault alarms can be
prevented (FAR = 0) and meanwhile missing detection of faults can be reduced as much
as possible.

The residual signals of an MJLS are stochastic variables. Their statistical properties are
associated with a Markov chain and determined by (3.15). It is possible to compute γ,
such that

γ > sup
d∈l2

‖r(k)‖E
‖d(k)‖2

(3.19)

in a similar way as stated in [95], and to set Jth = min γ‖d(k)‖2 subject to (3.19) as given
in literature. In this case only the expectation of the l2-norm of r(k) is considered for the
computation of the threshold. Due to the variance of r(k), there could be false alarms and
the FAR is not known. It is difficult to determine how reliable the rising fault alarm is.
Therefore the following residual evaluation problem is formulated:

Problem REFD (Residual evaluation for fault detection): Given system (3.12) and
the residual generator (3.14), determine proper residual evaluation functions ‖r(k)‖e and
the corresponding threshold Jth under assumptions (A3.3)-(A3.5), such that FAR is not
larger than a given constant and the missing detections of faults are reduced.
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3.2 FD of Markov jumping linear systems

3.2.2 FD of stationary MJLSs

In this section the FD system design approach of a stationary MJLS is given.

Residual generation

For the design of residual generator (3.14), the dynamics of r(k) − rref(k) is described at
first. Then the existing bounded real lemma for MJLSs is reviewed and a new bounded
real lemma is derived for the stationary MJLSs. Based on those lemmas, the solution to
RGFD is presented.

In this section, denote pi(k) = pi for all k. According to (3.14) and (3.18), the dynamics
of r(k) − rref(k) can be written as

xo(k + 1) = Ao(θk)xo(k) + Eo(θk)d̃(k)

r(k) − rref(k) = Co(θk)xo(k) + Fo(θk)d̃(k) (3.20)

where

xo =

[
e
eref

]
, d̃ =

[
d
f

]
.

For convenience, denote the matrices associated with θk = i ∈ ψ by

Ao,i =

[
Ai − LiCi 0

0 Aref − LoCref

]
, Co,i =

[
WiCi −WoCref

]
,

Eo,i =

[
Ed,i − LiFd,i Ef,i − LiFf,i

Ed,ref − LoFd,ref Ef,ref − LoFf,ref

]
, Fo,i =

[
(WiFd,i −WoFd,ref)

T

(WiFf,i −WoFd,ref)
T

]T
.

Before giving the solution, the following useful lemmas are introduced. The first one is
the bounded real lemma for MJLSs which is slightly different from the standard one given
by [95].

Lemma 3.6 Consider the system

x(k + 1) = A(θk)x(k) +B(θk)d(k)

y(k) = C(θk)x(k) +D(θk)d(k) (3.21)

for k = 0, 1, · · · , where x(k), y(k), A(θk), B(θk), C(θk), D(θk) and θk are defined as
in (3.12), d(k) ∈ R

nd is the l2-norm bounded input sequence. Given a constant γ > 0,
x(0) = 0 and any possible initial mode distribution P (0), then

sup
d∈l2

‖y‖E
‖d‖2

< γ (3.22)

if there exist Qi > 0, i ∈ ψ satisfying the following LMI:

[
Ai Bi

Ci Di

]T [
Q̄i 0
0 I

] [
Ai Bi

Ci Di

]
−
[
Qi 0
0 γ2I

]
< 0, Q̄i =

N∑
j=1

λijQj . (3.23)
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Proof Here a short proof is given. Define the Lyapunov function

V (i, k) = x(k)TQix(k)

for some Qi > 0, i ∈ ψ. Given x(0) = 0, V (θ0, 0) = 0, it turns out

∞∑
k=0

E[V (θk+1, k + 1) − V (θk, k)] = E [V (θ∞,∞)] .

Then

E[‖y(k)‖2
E] − γ2‖d(k)‖2

2 ≤ E

∞∑
k=0

y(k)Ty(k) − γ2d(k)Td(k) + V (θk+1, k + 1) − V (θk, k)

=

∞∑
k=0

E

[[
x(k)
d(k)

]T
R(θk)

[
x(k)
d(k)

]]
(3.24)

where

R(θk) =

[
A(θk) B(θk)
C(θk) D(θk)

]T [
E[Qθk+1

] 0
0 I

] [
A(θk) B(θk)
C(θk) D(θk)

]
−
[
E[Qθk

] 0
0 γ2I

]
.

With R(θk) < 0, for d(k) ∈ l2, it turns out ‖y‖E < γ‖d‖2.
Notice θk can be any possible mode in ψ with different probability. It is clear that, no

matter what P (0) we have, (3.23) implies R(θk) < 0 for each k. Thus the lemma is proved.

Remark 3.2 The standard bounded real lemma in [95] assumed that θ0 is deterministic. In
Lemma 3.6, θ0 is assumed to be a stochastic value and the distribution of θ0 is considered
as the initial condition. The deterministic θ0 is a special case with a specific P (0), for

example P (0) =
[

0 1 0 · · · 0
]T

means θ0 = 2.

The second lemma gives an equivalent expression of (3.23).

Lemma 3.7 Consider the system (3.21). Given a constant γ > 0, x(0) = 0 and any
possible initial mode distribution P (0), then (3.23) with Qi > 0, i ∈ ψ are feasible, if and
only if there exist matrices Qi > 0 and Gi > 0 such that the following LMI⎡

⎢⎢⎣
Q̄i − (Gi +GT

i ) GT
i Ai GT

i Bi 0
∗ −Qi 0 CT

i

∗ ∗ −γ2I DT
i

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0

hold for i ∈ ψ.

Proof Following the similar procedure in [85], the lemma can be proved.

By observing that, θk is independent of θk−1 in a stationary MJLS, the following bounded
real lemma can be obtained:
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3.2 FD of Markov jumping linear systems

Lemma 3.8 Assume (3.21) is a stationary MJLS, where x(k), y(k), A(θk), B(θk), C(θk),
D(θk) and θk are defined as in (3.12), d(k) ∈ R

nd is the l2-norm bounded input sequence.
Given a constant γ > 0, x(0) = 0, then (3.22) is satisfied, if there exists S > 0 satisfying
the following LMI:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
p1
S SA1 SB1

− 1
p1
I C1 D1

. . .
...

...
− 1
pN
S SAN SBN

− 1
pN
I CN DN

∗ ∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (3.25)

Proof In a stationary MJLS, the expectation terms of R(θk) in (3.24) are

E[Qθk+1
] = E[Qθk

] =

N∑
i=1

piQi.

Hence R(θk) in (3.24) can be written as

R =

N∑
i=1

pi

[
Ai Bi

Ci Di

]T [
S 0
0 I

] [
Ai Bi

Ci Di

]
−
[
S 0
0 γ2I

]
.

with S =
∑N

i=1 piQi.
If R < 0, then for d(k) ∈ l2, ‖y‖E < γ‖d‖2. Applying Shur-complement and congruence

transformation with diag{S, I, · · · , S, I, I, I}, R < 0 can be formulated as (3.25).

Remark 3.3 When the number of modes of {θk} is 1, Lemma 3.6 and Lemma 3.8 reduce to
the standard bounded real lemma for deterministic systems [94]. It is clear that, inequality
(3.23) in Lemma 3.6 implies (3.25). But Lemma 3.8 not only requires less computational
efforts but also provides less conservative results as shown in the following example.

Example Given ψ = {1, 2}, λ11 = λ21 = 0.2, λ12 = λ22 = 0.8 and

A1 =

[
0.2 1
0 0.1

]
, A2 =

[
0.8 1
0 0.5

]
, B1 =

[
1 0
0 1

]
, B2 =

[
0.5 0
0 0.1

]
,

C1 = C2 =

[
1 0
0 1

]
, D1 = D2 =

[
0 0
0 0

]
,

we have p1(∞) = 0.2, p2(∞) = 0.8. Let P (0) = P (∞), then minQi>0 γ
2 = 12.88 according

to Lemma 3.6 and minS>0 γ
2 = 6.17 according to Lemma 3.8.

The fourth lemma is given to compute the bound of summation of variances over time
for a stationary MJLS.

Lemma 3.9 Assume (3.21) is a stationary MJLS , where x(k), y(k), A(θk), B(θk), C(θk),
D(θk) and θk are defined as in (3.12), d(k) ∈ R

nd is the l2-norm bounded input sequence.
Given x(0) = 0 and a constant α > 0, then

∞∑
j=0

E
[
(y(j) − ȳ(j))T (y(j) − ȳ(j))

]
< α2‖d(k)‖2

2
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if there exists S > 0 satisfying the following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
p1
S SAσ,1 SBσ,1

− 1
p1
I Cσ,1 Dσ,1

. . .
...

...
− 1
pN
S SAσ,N SBσ,N

− 1
pN
I Cσ,N Dσ,N

∗ ∗ ∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ ∗ ∗ −α2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

for i ∈ ψ, with

Aσ,i =

[
Ai 0

0
∑N

l=1 plAl

]
, Bσ,i =

[
Bi∑N

l=1 plBl

]
,

Cσ,i =
[
Ci −∑N

l=1 plCl
]
, Dσ,i = Di −

N∑
l=1

plDl.

Proof The expected behavior of a stationary (3.21) is described by

x̄(k + 1) = (

N∑
l=1

plAl)x̄(k) + (

N∑
l=1

plBl)d(k)

ȳ(k) = (
N∑
l=1

plCl)x̄(k) + (
N∑
l=1

plDl)d(k)

Then the dynamics of y(k) − ȳ(k) can be written as

[
x(k + 1)
x̄(k + 1)

]
= Aσ(θk)

[
x(k)
x̄(k)

]
+Bσ(θk)d(k),

y(k) − ȳ(k) = Cσ(θk)

[
x(k)
x̄(k)

]
+Dσ(θk)d(k).

Following the similar procedure in Lemma 3.8, the result can be obtained.

Now it is the position to give the theorem for solving RGFD of a stationary MJLS.

Theorem 3.10 Assume (3.12) is a stationary MJLS. Given a constant α > 0 and under
assumptions (A3.1)-(A3.5), the optimal L(θk) and W (θk) of the residual generator (3.14)
in the sense of minimizing (3.16) and satisfying (3.17) can be obtained by solving the
following optimization problem

min
Yi,Wi,S1>0,S2>0

γ2

32



3.2 FD of Markov jumping linear systems

subject to

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...
Πii Πi(N+1) Πi(N+2)

. . .
...

...
∗ ∗ ∗ Π(N+1)(N+1) 0
∗ ∗ ∗ ∗ −γ2I

⎤
⎥⎥⎥⎥⎥⎦ < 0

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...
Γii Γi(N+1) Γi(N+2)

. . .
...

...
∗ ∗ ∗ Γ(N+1)(N+1) 0
∗ ∗ ∗ ∗ −α2I

⎤
⎥⎥⎥⎥⎥⎦ < 0

where

Πii =

⎡
⎣ − 1

pi
S1 0 0

0 − 1
pi
S2 0

0 0 − 1
pi
I

⎤
⎦ ,

Πi(N+1) =

⎡
⎣ S1Ai − YiCi 0

0 S2(Aref − LoCref)
WiCi −WoCref

⎤
⎦ ,

Πi(N+2) =

⎡
⎣ S1Ed,i − YiFd,i S1Ef,i − YiFf,i
S2(Ed,ref − LoFd,ref) S2(Ef,ref − LoFf,ref)
WiFd,i −WoFd,ref WiFf,i −WoFf,ref

⎤
⎦ ,

Γii =

⎡
⎣ − 1

pi
S1 0 0

0 − 1
pi
S1 0

0 0 − 1
pi
I

⎤
⎦ ,

Γi(N+1) =

⎡
⎣ S1Ai − YiCi 0

0 S1

∑N
l=1 plAl −

∑N
l=1 plYlCl

WiCi −∑N
l=1 plWlCl

⎤
⎦ ,

Γi(N+2) =

⎡
⎣ S1Ed,i − YiFd,i S1Ef,i − YiFf,i∑N

l=1 pl(S1Ed,l − YlFd,l)
∑N

l=1 pl(S1Ef,l − YlFf,l)

WiFd,i −
∑N

l=1 plWlFd,l WiFf,i −
∑N

l=1 plWlFf,l

⎤
⎦

for i ∈ ψ and

Π(N+1)(N+1) =

[ −S1 0
0 −S2

]
,

Γ(N+1)(N+1) =

[ −S1 0
0 −S1

]
.

The optimal Li is then given by S−1
1 Yi.

Proof With Lemma 3.8 and Lemma 3.9, the proof is straightforward and thus omitted.
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Residual evaluation

In this section, a new residual evaluation approach for the stationary MJLS is proposed in
order to solve the REFD problem. Define a set of residual evaluation functions as follows

‖rj(k)‖e = |rj(k)| (3.26)

where j = 1, · · · , m and rj(k) is the j-th residual signal. That means the absolute value
of each residual signal is selected as the evaluation function. For the evaluation function
(3.26), the following threshold is suggested:

Jj,th = sup
k

(|r̄j(k)|) + β sup
k

(σj(r(k)))

where |r̄j(k)| is the absolute value of the mean of rj(k) and

σ2
j (k) = E[(rj(k) − r̄j(k))

2]

is its variance, and β > 0 is some constant. The bounds of the mean and the variance
of (3.26) are first computed by using the peak-norm and the generalized H2-norm of the
MJLS in fault-free cases. Then the threshold is determined and the upper bound of the
guaranteed FAR is obtained.

The following lemma gives the computation of |r̄j(k)| in terms of the peak-norm.

Lemma 3.11 Assume (3.15) is a stationary MJLS. Given a constant γj,1 > 0 and as-
sumption (A3.3)-(A3.5), j = 1, · · · , m, then in fault-free cases

|r̄j(k)| < γj,1‖d(k)‖peak
if there exist S > 0, μ > 0 and 0 < κ < 1 such that⎡

⎣ −S S
∑N

i=1 pi(Ai − LiCi) S
∑N

i=1 pi(Ed,i − LiFd,i)
∗ (κ− 1)S 0
∗ ∗ −μI

⎤
⎦ < 0, (3.27)

⎡
⎣ −γj,1I

∑N
i=1 pi[WiCi]j

∑N
i=1 pi[WiFd,i]j

∗ −κS 0
∗ ∗ (μ− γj,1)I

⎤
⎦ < 0. (3.28)

Proof The expected behavior of a stationary (3.15) in fault-free cases is just described by

ē(k + 1) = Āē(k) + Ēd(k)

r̄(k) = C̄ē(k) + F̄ d(k) (3.29)

with

Ā =
N∑
i=1

pi(Ai − LiCi), Ē =
N∑
i=1

pi(Ed,i − LiFd,i), C̄ =
N∑
i=1

piWiCi, F̄ =
N∑
i=1

piWiFd,i.

The expected residual dynamics is governed by (3.29), which is a time-invariant system.
The results can be easily obtained by following the idea in [94]. Thus the rest of the proof
is omitted.
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3.2 FD of Markov jumping linear systems

The variance of rj(k) can be computed in terms of the peak-norm by using the following
lemma.

Lemma 3.12 Assume (3.15) is a stationary MJLS. Given a constant γj,2, and assumption
(A3.3)-(A3.5), j = 1, · · · , m, then in fault-free cases

σj(k) < γj,2‖d(k)‖peak
if there exist S > 0, μ > 0 and κ > 0 such that:⎡

⎢⎢⎢⎢⎢⎣

− 1
p1
S SAσ,1 SEσ,1

. . .
...

...
− 1
pN
S SAσ,N SEσ,N

∗ ∗ ∗ (κ− 1)S 0
∗ ∗ ∗ ∗ −μI

⎤
⎥⎥⎥⎥⎥⎦ < 0, (3.30)

⎡
⎢⎢⎢⎢⎢⎣

−γj,2

p1
I [Cσ,1]j [Dσ,1]j

. . .
...

...
−γj,2

pN
I [Cσ,N ]j [Dσ,N ]j

∗ ∗ ∗ −κS 0
∗ ∗ ∗ ∗ (μ− γj,2)I

⎤
⎥⎥⎥⎥⎥⎦ < 0. (3.31)

for i ∈ ψ with

Aσ,i =

[
Ai − LiCi 0

0
∑N

l=1 plAL,l

]
, Eσ,i =

[
Ed,i − LiFd,i∑N

l=1 pl(Ed,l − LlFd,l)

]
,

Cσ,i =
[
WiCi −∑N

l=1 plWlCl
]
, Dσ,i = WiFd,i −

N∑
l=1

plWlFd,l. (3.32)

Proof From (3.15) and (3.29), it turns out[
e(k + 1)
ē(k + 1)

]
= Aσ(θk)

[
e(k)
ē(k)

]
+ Eσ(θk)d(k)

r(k) − r̄(k) = Cσ(θk)

[
e(k)
ē(k)

]
+Dσ(θk)d(k) (3.33)

with matrices defined in (3.32). Define

χ(k) =

[
e(k)
ē(k)

]
, V (χ, i) = χTQiχ

for some Qi > 0, i ∈ ψ, and assume that

E[V (χ(k), θk)] <
μθk

κ
(3.34)

for 0 < κ < 1 and μθk
> 0. Note that E[V (χ(k), θk)] satisfying

E[V (χ(k + 1), θk+1) − (κ− 1)V (χ(k), θk)] < μθk
(3.35)
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and V (χ(0), θ0) = 0, is bounded by (3.34). The inequality

E

[[
χ(k)
d(k)

]T
R1

[
χ(k)
d(k)

]]
< 0 (3.36)

with

R1 =
N∑
i=1

pi

[
ATσ,i
ET
σ,i

]
S
[
Aσ,i Eσ,i

]− [ (1 − κ)S 0
0 μI

]
, S =

N∑
i=1

piQi, μ =
N∑
i=1

piμi,

ensures (3.35) and thus (3.34). Noticing that

σ2
j (k) = E

[[
χ(k + 1)
d(k + 1)

]T
R2

[
χ(k + 1)
d(k + 1)

]]

with

R2 =

N∑
l=1

pl

[
[Cσ,l]

T
j

[Dσ,l]
T
j

] [
[Cσ,l]j [Dσ,l]j

]
and E[V (χ(k), θk)] = E

[
χ(k)TSχ(k)

]
, then the inequality

γ−1
j,2R2 <

[
κS 0
0 (γj,2 − μ)I

]
(3.37)

can be obtained which implies

σ2
j (k) < γj,2(γj,2d(k)

Td(k) + κE[V (χ(k + 1), θk+1)] − μ) < γ2
j,2‖d(k)‖2

peak.

Applying Shur-complement and congruence transformation, (3.36) and (3.37) can be re-
formulated as (3.30) and (3.31), respectively.

Remark 3.4 The matrix inequalities in Lemma 3.11 and Lemma 3.12 can be solved via
iterative LMI techniques.

The methods for computing the mean and the variance of r(k) based on the generalized
H2-norm of the MJLS in fault-free cases are also proposed. The following lemma gives the
computation of |r̄j(k)|.
Lemma 3.13 Assume (3.15) is a stationary MJLS. Given γj,1 > 0, γj,2 > 0 and under
assumption (A3.3)-(A3.5), j = 1, · · · , m, then in fault-free cases

|r̄j(k)| <
√√√√γ2

j,1

k−1∑
i=0

d(i)Td(i) +
√
γ2
j,2d(k)

Td(k),

if there exists S > 0 satisfying the following LMIs:⎡
⎣ −S S

∑N
i=1 pi(Ai − LiCi) S

∑N
i=1 pi(Ed,i − LiFd,i)

∗ −S 0
∗ ∗ −γ2

j,1I

⎤
⎦ < 0, (3.38)
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3.2 FD of Markov jumping linear systems

[ −I ∑N
i=1 pi[WiCi]j

∗ −S
]
< 0, (3.39)

[ −I ∑N
i=1 pi[WiFd,i]j

∗ −γ2
j,2I

]
< 0. (3.40)

Proof The proof is similar to that of Lemma 3.11.

The computation of σj(k) based on the generalized H2-norm is given in the following
lemma.

Lemma 3.14 Assume (3.15) is a stationary MJLS. Given γj,3 > 0, γj,4 > 0 and assump-
tion (A3.3)-(A3.5), j = 1, · · · , m, then in fault-free cases

σj(k) <

√√√√γ2
j,3

k−1∑
i=0

d(i)Td(i) +
√
γ2
j,4d(k)

Td(k), (3.41)

if there exists S > 0, i ∈ ψ satisfying the following LMIs:⎡
⎢⎢⎢⎢⎢⎣

− 1
p1
S Aσ,1 Eσ,1

. . .
...

...
− 1
pN
S Aσ,N Eσ,N

∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ −γ2

j,3I

⎤
⎥⎥⎥⎥⎥⎦ < 0. (3.42)

⎡
⎢⎢⎢⎣

− 1
p1
I [Cσ,1]j

. . .
...

− 1
pN
I [Cσ,N ]j

∗ ∗ ∗ −S

⎤
⎥⎥⎥⎦ < 0. (3.43)

⎡
⎢⎢⎢⎣

− 1
p1
I [Dσ,1]j

. . .
...

− 1
pN
I [Dσ,N ]j

∗ ∗ ∗ −γ2
j,4I

⎤
⎥⎥⎥⎦ < 0. (3.44)

with Aσ,i,Eσ,i,Cσ,i,Dσ,i defined in (3.32).

Proof In fault-free cases, the dynamics of rj(k) − r̄j(k) is governed by (3.33). Define

χ(k) =

[
e(k)
ē(k)

]
, V (χ) = χTQiχ

for some Qi > 0, i ∈ ψ. Consider that

E[V (χ(k + 1), θk+1) − V (χ(k), θk)] < γ2
j,3d(k)

Td(k) (3.45)

implies

E [V (χ(k), θk)] = E

[
χT

N∑
i=1

piQiχ

]
< γ2

j,3

k−1∑
i=0

d(i)Td(i).

37



3 Background and Some Preliminary Results

The inequality (3.45) is equivalent with

E

[[
e(k)
d(k)

]T
R

[
e(k)
d(k)

]]
< 0 (3.46)

where

R =

N∑
i=1

pi

[
ATσ,i
ET
σ,i

]
S
[
Aσ,i ET

σ,i

]− [ S 0
0 γ2

j,3I

]
, S =

N∑
i=1

piQi.

Then (3.41) is guaranteed, if
N∑
i=1

pi[Cσ,i]
T
j [Cσ,i]j < S (3.47)

and
N∑
i=1

pi[Dσ,i]
T
j [Dσ,i]j < γ2

j,4I. (3.48)

Applying Shur-complement and congruence transformation, (3.46)-(3.48) can be refor-
mulated as (3.42)-(3.44), respectively.

Based on above results, the following theorem gives the solution to REFD for a sta-
tionary MJLS.

Theorem 3.15 Assume (3.15) is a stationary MJLS. Given a constant β > 0, assumption
(A3.3)-(A3.5) and the residual evaluation function (3.26),

• and ‖d‖peak < δd,∞, then the threshold can be set as

Jj,th = (γ̃j,1 + βγ̃j,2)δd,∞ (3.49)

where γ̃j,1, γ̃j,2 are the optimum of the constrained optimization problem:

min γj,1 subject to (3.27) - (3.28),

min γj,2 subject to (3.30) - (3.31).

• and ‖d‖2 < δd,2, ‖d‖peak < δd,∞, then the threshold can be set as

Jj,th = (γ̃j,1 + βγ̃j,3)δd,2 + (γ̃j,2 + βγ̃j,4)δd,∞ (3.50)

where γ̃j,1, γ̃j,2, γ̃j,3 and γ̃j,4 are the optimum of the constrained optimization problem:

min γj,1, γj,2 subject to (3.38) - (3.40),

min γj,3, γj,4 subject to (3.42) - (3.44).

The false alarm rate is upper bounded as

FAR ≤ 1

β2
. (3.51)
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Before proving the lemma, the following lemma on Tchebycheff Inequality is given at
first.

Lemma 3.16 [86] Given a random number x with mean η and variance σ2. For any
0 < ε,

Pr{|x − η| ≥ ε} ≤ σ2

ε2
.

Proof of Theorem 3.15 The computation of the threshold based on the generalized
H2-norm is taken as an example. With Lemma 3.13 - 3.14,

sup
k

(|rj(k)|) < γ̃j,1δd,2 + γ̃j,2δd,∞, sup
k

(σj(k)) < γ̃j,3δd,2 + γ̃j,4δd,∞

in fault-free cases. Hence it is reasonable to set the threshold as in (3.50), such that

Jj,th ≥
√√√√γ̃2

j,1

k−1∑
i=0

d(i)Td(i) +
√
γ̃2
j,2d(k)

Td(k) + β

⎛
⎝
√√√√γ̃2

j,3

k−1∑
i=0

d(i)Td(i) +
√
γ̃2
j,4d(k)

Td(k)

⎞
⎠

for all k. According to the Tchebycheff Inequality,

Pr{|rj(k) − r̄j(k)| ≥ ε} ≤ σ2
j (k)

ε2
, ε > 0

which yields

Pr{rj(k) ≥ r̄j(k) + β sup
k

(σj(k))} ≤ σ2
j (k)

β2 supk(σ
2
j (k))

≤ σ2
j (k)

β2σ2
j (k)

=
1

β2
.

Hence

Pr{|rj(k)| ≥ Jj,th} ≤ 1

β2

which means the FAR is upper bounded with 1
β2 .

The proofs for the other case is similar.

Now the threshold for each evaluated residual signal is obtained. The fault can be detected
if one of the evaluated residual signals exceeds its threshold, e.g.

|rj(k)| ≤ Jj,th ⇒ fault-free,

|rj(k)| > Jj,th ⇒ fault alarm.

A false alarm occurs when there is no fault but |rj(k)| > Jj,th. Its probability is upper
bounded by (3.51).

Remark 3.5 If the number of Markov mode is 1, then the computed σ2
j (r(k)) will be zero.

The proposed approaches reduce to the standard norm-based residual evaluation methods.

The evaluated residual |rj(k)| is a stochastic variable. By using the mean and the
variance of rj(k) for the computation of the threshold, an upper bound of FAR is obtained.
Such a bound is very useful in practice, as it can provide reliability information of a rising
fault alarm. Without considering the variance in the residual evaluation, the FAR can be
very high and no bounds of FAR can be established. Since there are disturbances in the
system, only the upper bounds of the mean and the variance can be derived. Its higher
order moments are difficult to obtain, which are lacking physical means.
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3.2.3 FD of non-stationary MJLSs

When the MJLS is in its non-stationary state, i.e. P (k) �= P (∞), the distribution of θk is
time varying. In this case the mean value of r(k) is difficult to obtain, and thus (3.17) can
not be established. Moreover the residual evaluation approach presented in last section
can not be applied. Hence in this subsection, an observer-based FD system is proposed
for the non-stationary MJLS. At first the residual generator is designed to minimize (3.16)
and the solution to RGFD is given in the following theorem.

Theorem 3.17 Given the system (3.12) under assumptions (A3.1)-(A3.5), the optimal
L(θk) and W (θk) of the residual generator (3.14) in the sense of minimizing (3.16) can be
obtained by solving the following optimization problem for all i ∈ ψ:

min
Yi,Wi,Gi,Qi>0

γ2

subject to

[N i
pq]7×7 = [N i

pq]
T
7×7 < 0 (3.52)

where the nonzero elements of Npq are

N i
11 = Q̄i11 −Gi11 −GT

i11, N
i
12 = Q̄i12, N

i
13 = GT

i11Ai − YiCi, N
i
15 = GT

i11Ed,i − YiFd,i,

N i
16 = GT

i11Ef,i − YiFf,i, N
i
22 = Q̄i22 −Gi22 −GT

i22, N
i
24 = GT

i22(Aref − LoCref),

N i
25 = GT

i22(Ed,ref − LoFd,ref), N
i
26 = GT

i22(Ef,ref − LoFf,ref), N
i
33 = −Qi11,

N i
34 = −Qi12, N

i
37 = CT

i W
T
i , N

i
44 = −Qi22, N

i
47 = CT

refW
T
o , N

i
55 = −γ2In×n,

N i
57 = F T

d,iW
T
i − F T

d,refW
T
o , N

i
66 = −γ2In×n, N i

67 = F T
f,iW

T
i − F T

f,refW
T
o , N

i
77 = −In×n,

where

Qi =

[
Qi11 Qi12

QT
i12 Qi22

]
> 0, Q̄i =

[
Q̄i11 Q̄i12

Q̄T
i12 Q̄i22

]
> 0,

and

Q̄i =

N∑
j=1

λijQj , Gi =

[
Gi11 0
0 Gi22

]
.

The optimal Li is then given by (GT
i11)

−1Yi.

Proof By applying Lemma 3.6 and 3.7 and setting Yi = GT
i11Li, the LMI (3.52) can be

easily obtained for system (3.20). Notice that

Q̄i11 −Gi11 −GT
i11 < 0

implies that Gi11 is non-singular. Therefore the feasibility of (3.52) always ensures the
existence of optimal Li and Wi.

Then (3.7) is selected as the evaluation function and the corresponding threshold is
suggested as

Jth = β sup
d∈l2

‖r(k)‖E, β > 0, (3.53)
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3.2 FD of Markov jumping linear systems
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Figure 3.2: FD of a stationary MJLS based on peak-norm: γ̃1,1 = 0.16, γ̃1,2 = 0.98, the fault
f is an impulse function with amplitude 25 at the 500th time step.

where supd∈l2 ‖r(k)‖E can be easily obtained based on the H∞-norm of (3.15) by applying
Lemma 3.6. According to the Markov Inequality [86],

Pr{‖r(k)‖2
2 ≥ ε2} ≤ ‖r(k)‖2

E

ε2
, ε > 0.

which yields

Pr{‖r(k)‖e ≥ β sup
d∈l2

‖r(k)‖E} ≤ ‖r(k)‖2
E

β2 supd∈l2 ‖r(k)‖2
E

≤ 1

β2
.

Hence the FAR is bounded by 1
β2 with the threshold (3.53). The solution to REFD of

the non-stationary MJLS is summarized as the following theorem.

Theorem 3.18 Given the system (3.12) under assumptions (A3.3)-(A3.5), the residual
generator (3.14) and the evaluation function (3.7), the threshold can be set as (3.53) and
the FAR is then upper bounded by 1

β2 .

Remark 3.6 The evaluation method suggested in Theorem 3.18 can also be used for the
stationary MJLS. The variance of ‖r(k)‖E, which is difficult to obtain, is not directly in-
volved in the computation of the threshold. But its influence is implicitly considered. When
the variance of ‖r(k)‖E is very small, this evaluation method can be fairly conservative.
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3 Background and Some Preliminary Results
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Figure 3.3: FD of a stationary MJLS based on the generalized H2-norm: γ̃1,1 = 0.0459,
γ̃1,2 = 0.0738, γ̃1,3 = 0.3606, γ̃1,4 = 0.2449, the fault f is an impulse function with amplitude
25 at the 500th time step.

3.2.4 A numerical example

To illustrate the proposed methods, the following two-mode discrete-time MJLS is consid-
ered:

A1 =

[
0.6 −0.9
0 0.7

]
, A2 =

[
0.1 0.3
0 0.1

]
, Ed,1 =

[
0.03 0.02
0.01 0.03

]
, Ed,2 =

[
0.01 0.01
0.02 0.01

]
,

Ef,1 = Ef,2 =

[
0.01
0.01

]
, B1 = B2 = 0, C1 = C2 =

[
1 0
0 1

]
, Ff,1 = Ff,2 = 0,

Fd,1 =

[
0 0.1
0 0.1

]
, Fd,2 =

[
0 0.2
0 0.2

]
.

The transition probability matrix and the corresponding P (∞) are

Φ =

[
0.2 0.8
0.2 0.8

]
, P (∞) =

[
0.2 0.8

]T
.

Its reference residual model has

Aref =

[
0.2 0.06
0 0.22

]
, Ed,ref =

[
0.014 0.012
0.018 0.014

]
, Ef,ref =

[
0.01
0.01

]
,

Cref =

[
1 0
0 1

]
, Fd,ref =

[
0 0.012
0 0.012

]
, Ff,ref =

[
0
0

]
and

Lo =

[
3.53 −2.53
4.26 −3.09

]
,Wo =

[ −22.84 −26.83
−450.11 383.21

]
.
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3.3 Conclusion

For a stationary MJLS with P (0) = P (∞) and α = 1, apply Theorem 3.10 and then
obtain:

L1 =

[
0.639 −0.845
0.134 0.547

]
, L2 =

[ −0.3835 0.070
−0.509 −0.189

]
,

W1 =

[ −27.088 −1.173
−18.476 −1.405

]
,W2 =

[
5.038 −0.136
1.815 −0.1665

]
.

For a non-stationary MJLS with P (0) �= P (∞), apply Theorem 3.17 and then obtain:

L1 =

[
0.593 −0.959
−0.007 0.651

]
, L2 =

[
0.1 0.282

0.001 0.071

]
,

W1 =

[ −1.401 −7.599
−1.447 −4.650

]
,W2 =

[
0.8172 1.954
−0.233 0.353

]
.

During the simulation, assume that the disturbances are discrete-time random numbers
uniformly distributed between [−1, 1]. Two kinds of faults are generated: a small fault as
a step function and a large fault as an impulse function. These faults appear at the 500th
discrete time step.

For the stationary case, the residual signals are evaluated as in (3.26) and the thresholds
are computed based on the peak-norm and the generalized H2-norm. The first residual
signal of the system is taken as an example to show the results. The thresholds J1,th are
computed according to Theorem 3.15 with β = 2, i.e. FAR ≤ 25%. The simulation
results are given in the Fig. 3.2 and Fig. 3.3, where Jth,e is the threshold calculated
only based on the mean value of residual signal, i.e. Jth,e = γ̃1,1δd,∞ in Fig. 3.2 and
Jth,e = γ̃1,1δd,2 + γ̃1,2δd,∞ in Fig. 3.3. Figures show that, many false alarms arise with Jth,e,
while the number of false alarms is significantly reduced by using J1,th and the fault is
detected.

For the non-stationary case, the residual signals are evaluated as in (3.7) and the thresh-
olds are computed based on the H∞-norm. The threshold Jth is computed according to
Theorem 3.18 with β = 3. The simulation results are given in the Fig. 3.4, where Jth,e is
the threshold calculated according to (3.19) and Jth,s is the threshold calculated with the
switched system theory [16]. With Jth,s, theoretically there is no false fault alarm. Figure
shows that, with Jth, which is much smaller than Jth,s, the fault can be detected with the
guaranteed FAR, i.e. FAR ≤ 11.1%. In this case Jth,e is shown to be too small such
that it results in too high FAR and can not effectively detect the faults, and Jth,s is too
conservative to detect the fault.

3.3 Conclusion

In this chapter, background of observer-based FD has been given and the design approaches
for FD system of the stationary and non-stationary MJLSs have been proposed. The
major focus of the work devoted on dealing with the stochastic properties of MJLSs. The
main contributions include: (1) the residual generator has been designed to stochastically
match an optimal reference residual model in order to achieve an optimal trade-off between
robustness against disturbances and sensitivity to faults, where a way to choose the proper
reference residual model has also been given; (2) novel residual evaluation methods based
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Figure 3.4: FD of a non-stationary MJLS based on H∞-norm: γ̃ = 0.0409, the fault f is a
step function with amplitude 5 since the 500th time step and T = 20.

on the peak-norm, the generalized H2-norm as well as H∞-norm have been proposed for
MJLSs, which can guarantee an expected FAR and meanwhile reduce missing detections
of faults. In these evaluation methods, not only the mean values of evaluated residuals
but also their variances have been taken into account for the computation of thresholds.
The proposed FD system can reduce false fault alarms and provide reliability information
of the rising fault alarms, which allows a practical application in real physical systems.
This chapter provides also a basis for the later design of FD over networks. Especially, the
developed FD system of MJLSs is ready for applications in NCSs with packet dropouts.
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4 Remote FD System

The major objective of this chapter is to design observer-based FD systems as shown in Fig.
1.3, where the measured outputs of technical systems are transmitted via communication
channels and the channels could be either constant or time-varying. In such scenarios,
the transmission delay plays a small role. There is no feedback from the FD system
to the technical systems, so that the dynamics of the technical system is not influenced
by the transmission delay. By applying the error control strategy in communications,
the main focus of this chapter is to deal with bit errors and quantization errors in the
design procedure. For this purpose, the characteristics of communication channels are first
studied and the relation between bit errors, quantization errors and transmission errors
is derived. The residual generators are then designed to achieve an optimal trade-off
between the robustness against transmission errors and the sensitivity to faults. The way
to integrate the statistics of the generated residual signals into the residual evaluation
and the threshold computation is also proposed. The remote FD systems with centralized
transmission and decentralized transmission are designed separately. Finally, the achieved
results are illustrated by numerical examples. Parts of this chapter are based on [69] and
[65].

Process Source
Encoder

Channel
Encoder
with ARQ

Communication
Channel

Source
Decoder

Channel
Decoder
with ARQ

FD System

Noise

Modulator

Demodulator

y

decy

Codeword

Received
codeword

Local Side

Remote Side

u

Networks

Figure 4.1: The detailed structure of remote FD system.
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4 Remote FD System

4.1 Problem formulation

The detailed scheme of the remote FD system is depicted in Fig. 4.1, where the FD system
is located at a remote site. Consider the following discrete-time LTI process:

xp(k + 1) = Apxp(k) +Bpu(k) + Ep,dd(k) + Ep,ff(k)

y(k) = Cpxp(k) +Dpu(k) + Fp,dd(k) + Fp,ff(k)

u(z) = K(z)y(z) (4.1)

where xp ∈ R
n denotes the state vector, u ∈ R

p denotes the control inputs, y ∈ R
m denotes

the measured output vector, d ∈ R
nd denotes the unknown inputs and f ∈ R

nf are the
faults to be detected. Ap, Bp, Cp, Dp, Ep,d, Ep,f Fp,d and Fp,f are known real matrices
of compatible dimensions. K(z) stands for the output feedback controller applied in the
process, i.e.

K(z) =

[
Ac Bc

Cc Dc

]
(4.2)

which is located at the process side and can be a static one or a dynamic one.
In this remote FD system only the process measurements are transmitted over channels,

and thus u is not directly available for the FD system. However it is reasonable to assume
that, the control law K(z) is known to the FD system. Denote

x(k) =

[
xp(k)
xc(k)

]
where xc(k) is the state of the output feedback controller K(z). With (4.2), the close-loop
system of (4.1) can be written as

x(k + 1) = Ax(k) + Edd(k) + Eff(k)

y(k) = Cx(k) + Fdd(k) + Fff(k) (4.3)

with

A =

[
Ap +BpDcCp BpCc

BcCp Ac

]
, Ed =

[
Ep,d +BpDcFp,d

BcFp,d

]
, Ef =

[
Ep,f +BpDcFp,f

BcFp,f

]
,

C =
[
Cp +DpDcCp DpCc

]
, Fd =

[
Fp,d +DpDcFp,d

]
, Ff =

[
Fp,f +DpDcFp,f

]
.

Then the following residual generator is proposed for the purpose of fault detection:

x̂(k + 1) = Ax̂(k) + Lk(ydec(k) − ŷ(k))

ŷ(k) = Cx̂(k),

r(k) = Wk (ydec(k) − ŷ(k)) (4.4)

where x̂ and ŷ are estimated state vector and output vector, respectively; r(k) ∈ R
m is the

vector of residual signals; ydec is the decoded outputs received by the FD system; Lk and
Wk are free parameters and should be designed properly, such that r(k) is robust against
network-induced effects as well as disturbances d(k) and simultaneously sensitive to faults
f(k). Notice that, Lk and Wk could be time varying.

In the residual evaluator, the residual signals are evaluated as in (3.7) over a time window
T , and then a threshold Jth should be selected such that the occurrence of fault can be
tested according to the logic rule (3.11).

In the rest of this chapter, the design of Lk and Wk in (4.4) and the selection of Jth for
the evaluation function (3.7) will be studied.
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4.2 Communication over noisy channels

4.2 Communication over noisy channels

The communication part of the networked FD system consists of the source en-
coder/decoder, the channel encoder/decoder and the communication channel as shown
in Fig. 2.1. This section investigates the characteristics of transmission errors induced by
networks.

4.2.1 Coding and decoding

The source encoder is usually an A/D converter. The quantized value Yi, i = 1, · · · , 2kc,
is used to represent the range of one process measurement from (Yi − 0.5l) to (Yi + 0.5l],
where l is the length of the quantization cells.

In communication theory, two kinds of error control strategies based on the
channel coding/decoding can be applied to improve the communication reliability.
One is the forward error correction (FEC) which employs the error-correcting codes
that automatically correct errors detected at the receiver. The other one is the
automatic repeated request (ARQ). In an ARQ system, when errors are detected at the re-
ceiver, a request is sent to the transmitter to repeat the codeword until there is no detected
bit error in the received codeword [72]. For the remote FD system, applying the ARQ is
preferred, which can minimize the probability of decoding errors. When the channel qual-
ity is relatively good, the kc-bit information sequence can also be directly transmitted and
an acceptable FD performance can still be guaranteed with low transmission load and low
computation effort for decoding. In this case, nc = kc.

Remark 4.1 If the ARQ strategy is applied, the codeword may be retransmitted for
several times. Here it is assumed that, the codeword can be received with a bounded delay
which is smaller than the sampling period of the process.

4.2.2 Transmission errors

The i-th decoded measurement can be written as

yi,dec = yi + Δi,

ydec(k) =
[
y1,dec(k) · · · ym,dec(k)

]T
where Δi stands for the transmission error of the i-th measurement.

In coding, a unique codeword is assigned to each quantized value. This procedure is
usually called the binary labeling in communication theory. Here a definition on binary
labeling is given as follows.

Definition A binary labeling L(nc, kc) is a set of pairs

L(nc, kc) = {(Ci, Yi)}, Ci ∈ {0, 1}nc, i = 1, · · · , 2kc, Ci �= Cj, i �= j,

where Ci is the codeword belonging to an (nc, kc)-code and Yi is the quantized physical
value represented by Ci.
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4 Remote FD System

Figure 4.2: Uniform quantizer with 3 bits information sequence binary labeling and 7 bits
codeword binary labeling. The (7,3)-code is a cyclic code.

Fig. 4.2 shows the (3, 3) binary labeling and the (7, 3) cyclic codeword binary labeling.
Before going further, the following assumptions and notations for the system are made in
this chapter:

• (A4.1) The ARQ error control strategy is applied in the communication system,
where the data transmission is repeated until an nc-bit codeword belonging to the
(nc, kc)-code is received. With the ARQ, the reliability of communication channels
can be significantly improved.

• (A4.2) Each measurement of the process is assumed to be quantized with a uni-
form quantizer individually, and each quantization cell is represented by an (nc, kc)-
codeword. Denote Ct

i (k) and Cr
i (k), i = 1, · · · , m, as the transmitted and received

codeword representing the i-th measurement at the k-th time step, respectively.
Hence for each time step, there is a set of codewords, i.e. (Ct

1(k), · · · , Ct
m(k)), should

be transmitted. Define a decoding operator φ, which transfers the codeword to its
represented physical value, then

yi(k) = φ(Ct
i (k)) + Δq(k), yi,dec(k) = φ(Cr

i (k)) (4.5)
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4.2 Communication over noisy channels

where Δq(k) is the quantization error.

• (A4.3) The communication channel is assumed to be a BSC. The different mea-
surements of the process could be transmitted via different channels. Then the
probabilities of bit errors at the k-th time step can be denoted as

pb(k) =
[
p1,b(k) · · · pm,b(k)

]T
,

pi,b(k) ∈ [0, 1], i = 1, · · · , m
which is called the BER vector. pi,b(k) represents BER of the i-th measurement at
the k-th time step. Denote the upper bound of pi,b(k) as p̄i,b.

Remark 4.2 With assumption (A4.1), packet dropouts in networks can be prevented by
the ARQ strategy. It is worth to mention that, the proposed approaches in this chapter
do not depend on the employed error control strategies. With slight modifications, they
can also be applied with FEC.

The influence of bit errors is to be analyzed in terms of error patterns. If the weight of
the error pattern is zero, then the correct codeword is received; if the weight of the error
pattern is not zero, the received codeword is the wrong one. For instance, if the codeword
0011101 in Fig. 4.2 is transmitted, then the received one can possibly be 1101001 due
to the error pattern 1110100, or 0111101 due to the error pattern 0100000. In the first
case, the received codeword is a valid one and no bit error is detected. That means if the
error pattern is one of the valid codewords, it can not be detected [72] and there exists a
transition between codewords due to the error pattern. In the second case, the received
message is not a codeword and thus bit errors are detected. With ARQ, the codeword
will be retransmitted until a valid one is received. The transitions between codewords are
illustrated by Fig. 4.3. With assumption (A4.1)-(A4.3), the transition probability from
Ct
i (k) to Cr

i (k) can be calculated according to (2.8) as follows:

PCr
i (k),Ct

i (k)
= pi,b(k)

h(Cr
i (k),Ct

i (k))(1 − pi,b(k))
nc−h(Cr

i (k),Ct
i (k)) (4.6)

where h(.) stands for the hamming distance between two codewords. The BER actually
indicates the reliability of the communication channels.

Figure 4.3: Transitions between codewords due to different error patterns, M = 2kc
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4 Remote FD System

According to (4.5), the difference between the i-th decoded and original measurement,
i.e. the transmission error of the i-th measurement, can be written as

Δi(k) = yi,dec(k) − yi(k), i = 1, · · · , m.
Apparently, Δi(k) is also a stochastic variable. The conditional expectation of Δi(k) is

ηi(k) = E[Δi(k)|Ct
i (k)] =

2kc∑
j=1

PCj ,Ct
i (k)

(φ(Cj) − φ(Ct
i (k))) + Δq(k) (4.7)

and its second moment is

σi,2(k) = E[Δi(k)
2|Ct

i (k)] =
2kc∑
j=1

PCj ,Ct
i (k)

(φ(Cj) − φ(Ct
i (k)) − Δq(k))

2. (4.8)

Besides, its forth moment is also of interest, i.e.

σi,4(k) = E[Δi(k)
4|Ct

i (k)] =
2kc∑
j=1

PCj ,Ct
i (k)

(φ(Cj) − φ(Ct
i (k)) − Δq(k))

4. (4.9)

Now the remote FD system applies the ARQ error control strategy and the resulting
transmission error is characterized by (4.7)-(4.9).

4.3 Remote FD systems over constant communication
channels

In this section, the remote FD system is designed when the measurements are transmitted
over a constant communication channel, i.e. p1,b(k) = · · · = pm,b(k) = pb, where pb is a
constant value.

4.3.1 Residual generation

Since the BER are constant, Lk,Wk in (4.4) are also constant. As

yi,dec(k) − ŷi(k) = yi(k) − ŷi(k) + yi,dec(k) − yi(k),

the residual generator (4.4) can be rewritten into

x̂(k + 1) = Ax̂(k) + L(y(k) − ŷ(k) + Δt(k))

ŷ(k) = Cx̂(k)

r(k) = W (y(k) − ŷ(k) + Δt(k)) . (4.10)

where
Δt(k) =

[
Δ1(k) · · · Δm(k)

]T
denotes the transmission error. Define e(k) = x(k) − x̂(k) and

d̃(k) =

[
d(k)
Δt(k)

]
,
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4.3 Remote FD systems over constant communication channels

then the dynamics of the residual generator (4.4) can be written as

e(k + 1) = (A− LC)e(k) + (Ẽd − LF̃d)d̃(k) + (Ef − LFf )f(k)

r(k) = W (Ce(k) + F̃dd̃(k) + Fff(k)) (4.11)

where

Ẽd =
[
Ed 0

]
, F̃d =

[
Fd I

]
.

In the frequency domain, it can be written as

Grd̃(z) = WF̃d +WC(Iz −A + LC)(Ẽd − LF̃d),

Grf(z) = WFf +WC(Iz −A+ LC)(Ef − LFf ).

By selecting L and W the performance of the FD system (4.10) can be optimized with
the Theorem 3.3.

4.3.2 Residual evaluation

It is evident that the residual r(k) is corrupted by the unknown disturbance d(k) and
the transmission error Δt(k). In order to reduce false alarms caused by d(k),Δ(k) and
simultaneously ensure a high fault detectability, the residual evaluation function (3.7) is
applied. According to (4.11), the threshold can be set as

Jth = ‖Grd̃‖∞ sup ‖d̃(k)‖T (4.12)

where ‖Grd̃‖∞ denotes the H∞-norm of the transfer matrix Grd̃(z). Then the computation

of Jth is given in two steps. First, consider the bound of ‖d̃(k)‖T . Note that

‖d̃(k)‖2
T = ‖d(k)‖2

T + ‖Δt(k)‖2
T (4.13)

with

‖Δt(k)‖2
T =

k∑
j=k−T+1

Δt(j)
TΔt(j), ‖d(k)‖2

T =

k∑
j=k−T+1

d(j)Td(j).

Recall that Δt(k) is a stochastic variable. An estimate of the upper bound of ‖Δt(k)‖2
T

can be

E
[‖Δt(k)‖2

T

]
+ β
√
E[(‖Δt(k)‖2

T −E[‖Δt(k)‖2
T ])2]

where β > 0 is a factor indicating the confidence interval of the estimate. The larger β
is, the more confident the estimate becomes. The following lemma gives a relationship
between the estimate of the upper bound of ‖Δ(k)‖2

T and the confidence interval.

Lemma 4.1 Given a binary labeling L(nc, kc) and a BSC channel with the BER vector
pb(k). The expectation of ‖Δi(k)‖2

T , i = 1, · · · , m, is

ηi,T (k) =

k∑
j=k−T+1

σi,2(j)
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4 Remote FD System

and its variance is

σ2
i,T (k) =

k∑
j=k−T+1

σi,4(j) −
k∑

j=k−T+1

σ2
i,2(j).

Then
‖Δi(k)‖2

T < ηi,T (k) + βσi,T (k) (4.14)

and
‖Δt(k)‖2

T < ηT (k) + βσT (k)

with the probability larger than 1 − 1
β2 , where

ηT (k) =
m∑
i=1

ηi,T (k), σT (k) =
m∑
i=1

σi,T (k).

Proof With the given binary labeling, it turns out

ηi,T (k) = E[‖Δi(k)‖2
T ]

= E[
k∑

j=k−T+1

Δi(j)
2]

=

k∑
j=k−T+1

E[Δi(j)
2]

=

k∑
j=k−T+1

σi,2(j).

Since error patterns occurred at different time steps are independent, it yields

σ2
i,T (k) = E[(‖Δi(k)‖2

T − ηi,T (k))2]

= E[(‖Δi(k)‖2
T )2] − η2

i,T (k)

=
k∑

j=k−T+1

E[Δi(j)
4]

+

m�=n∑
m,n=k−T,..,k

2σi,2σi,2

−
k∑

j=k−T+1

(E[Δi(j)
2])2

−
m�=n∑

m,n=k−T,..,k
2σi,2σi,2

=

k∑
j=k−T+1

σi,4(j) −
k∑

j=k−T+1

σ2
i,2(j).

With Lemma 3.16 and by setting
ε = βσT (k),
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4.3 Remote FD systems over constant communication channels

it turns out

Pr{ηT (k) + βσT (k) > ‖Δt(k)‖2
T} ≥ 1 − 1

β2
. (4.15)

Lemma 4.1 provides us with an estimate of the upper bound on ‖Δ(k)‖2
T under a given

confidence probability 1− 1
β2 . Unfortunately the received codeword may be different from

the transmitted one due to bit errors. Since Lemma 4.1 is based on the transmitted
codeword, it can not be directly used at the receiver side. Hence, only the worst case can
be considered by the FD system. Let

σi,2,max = max
Ct

i

σi,2,

σi,2,min = min
Ct

i

σi,2,

σi,4,max = max
Ct

i

σi,4, i = 1, · · · , m (4.16)

and
ηi,T,max = Tσi,2,max ≥ ηi,T (k),

σ2
i,T,max = T (σi,4,max − σ2

i,2,min) ≥ σ2
i,T (k).

Finally

‖Δt(k)‖2
T ≤ ηT,max + βσT,max, ηT,max =

m∑
i=1

ηi,T,max, σT,max =

m∑
i=1

σi,T,max (4.17)

with probability larger than 1− 1
β2 . With (4.7), (4.8) and (4.9), σi,2 and σi,4 can be off-line

calculated with the given BER and the binary labeling L(nc, kc). Therefore (4.16) can be
off-line determined and ‖Δt(k)‖2

T can be obtained from (4.17) for the worst case.
It is interesting to note that, according to (4.15) and (4.17) following inequality holds

Pr{‖Δ(k)‖2
T > ηT,max + βσT,max} ≤ 1

β2

which provides an upper bound of FAR, if the threshold is set to be

Jth = ‖Grd̃‖∞
√
δ2
d,2 + ηT,max + βσT,max.

As a result, the following theorem for the threshold computation can be obtained.

Theorem 4.2 Given the system (4.3), residual generator (4.10), BER pb, the binary la-
beling L(nc, kc), ‖d‖2 < δd,2 and FAR ≤ 1

β2 . Under the residual evaluation function (3.7),
the threshold Jth can be set as

Jth = γ̌
√
δ2
d,2 + ηT,max + βσT,max (4.18)

where γ̌ is the optimum of constrained optimization problem:

min γ
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with following LMI admitting a solution S > 0:⎡
⎢⎢⎣

−S Π12 Π13 0
∗ −S 0 CTW T

∗ ∗ −γI F̃ T
d W

T

∗ ∗ ∗ −γI

⎤
⎥⎥⎦ < 0 (4.19)

with
Π12 = SA− SLC,

Π13 = S(Ẽd − LF̃d).

Proof According to the bounded real lemma [123], the feasibility of (4.19) is equivalent
to

‖Grd̃(z)‖∞ < γ.

Thus the threshold can be computed based on an iterative procedure of checking the
feasibility of (4.19) till the minimum γ is found. Then according to Lemma 4.1, (4.13) and
(4.17), the threshold can be calculated with (4.18).

4.3.3 A numerical example

In this section, the above derived results are illustrated by following LTI process:

A =

[
1.1 0.3
0 0.65

]
, B =

[
1
1

]
, C =

[
1 0.8

]
,

Ed =

[
0.1
0

]
, Fd = 0.5, Ef =

[
1
1

]
, Ff = 0, K = −0.3.

The sampling time of the system is 1s. An 8-bit linear A/D converter is applied and the
range of the valid measurement y is assumed to be (−1, 1). The unknown disturbance d
is simulated as a uniform random number in the range of [−0.1, 0.1]. The measurement is
decoded according to (4.5) and L, W are designed as

L =

[ −0.01
−0.06

]
,W = 0.883

by solving the optimization problem according to Theorem 3.3.
The time window is selected as T = 5s and the simulation time is 10000s. A bias actuator

fault is generated at t = 5000s with f = 0.2. Fig. 4.4 shows the original measurement y
of the process.

First, the 8-bit information sequence is directly transmitted without channel coding.
The decoded measurements under different BERs are shown in Fig. 4.5 and 4.7. It is clear
that the transmission error can be really large due to the bit errors. The influence of such
transmission errors in residual evaluation can be observed in Fig. 4.6 and 4.8. With the
given FAR, Jth is calculated according to (4.18) for different BERs. For a lower BER, a
smaller threshold can be obtained with an acceptable FAR.

With ARQ applying (15, 8)-cyclic code, most of the bit errors are detected and the
transmission errors are reduced as shown in Fig. 4.9 and 4.11. In the case of pb = 0.01,
even no transmission error is observed from the simulation results. From Fig. 4.10 and 4.12,
it can observed that, a smaller Jth is obtained from (4.18) in this case with a desired FAR.
The above results demonstrate the relation between BER and FAR, and the efficiency of
the proposed approach for threshold computation.
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Figure 4.4: Original measurement from the process
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Figure 4.5: Decoded measurement without channel coding. BER is 0.01.
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Figure 4.6: ‖r(k)‖T without channel coding. BER is 0.01.
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Figure 4.7: Decoded measurement without channel coding. BER is 0.001.
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Figure 4.8: ‖r(k)‖T without channel coding. BER is 0.001.
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Figure 4.9: Decoded measurement with (15, 8) cyclic code. BER is 0.1.
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Figure 4.10: ‖r‖T with (15, 8)-cyclic code. BER is 0.1.
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Figure 4.11: Decoded measurement with (15, 8)-cyclic code. BER is 0.01.
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Figure 4.12: ‖r‖T with (15, 8)-cyclic code. BER is 0.01.

4.4 Remote FD over time-varying communication
channels

Until now communication channels are assumed to be constant, i.e. BERs are time-
invariant. But in real communication systems, the quality of transmissions may be always
changing, as communication is influenced by disturbances or interferences from the envi-
ronment, especially when wireless networks are applied. Hence suitable remote FD system
over such time-varying communication channels is desired.

Over time-varying communication channels, the dynamics of (4.4) is still described by
(4.10), while ‖Δt(k)‖2

T apparently depends on the time varying BER. Its expectation ηi,T (k)
and variance σi,T (k) could be time-varying. As shown with (2.9), BER can be calculated
for given channels according to the current quality of signals, which means that the relia-
bility information about channels can be provided by communication systems and online
available. Hence in this section, a design procedure of remote FD system is proposed by
using the knowledge of BER, such that the FD system can adapt to the channels. Without
loss of generality, divide (0, p̄i,b] into l equivalent intervals, e.g.

(0, pi,b,1], (pi,b,1, pi,b,2], · · · , (pi,b,l−1, p̄i,b], 0 = pi,0 < pi,b,1 < pi,b,2 < · · · < pi,b,l−1 < pi,b,l = p̄i,b.
(4.20)

When pi,b(k) belongs to (pi,b,s(k)−1, pi,b,s(k)], s(k) = 1, · · · , l, the communication channel is
said to be in the s(k)-th reliability class at the k-th time step. With the online reliability
information, s(k) of each measurement is known to the remote FD system. It is clear that,
for the s(k)-th reliability class the upper bound of the transition probability from one
codeword to another codeword, PCr

i ,C
t
i
, can be computed according to (4.6). Consequently

the expectation of the peak norm of Δi(k) in the s(k)-th reliability class can be computed
according to (4.8). For convenience, denote θi,s(k) = σi,2(k).
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Define

d̃(k) =

[
d(k)
Δ̄t(k)

]
where

Δ̄i(k) = Δi(k)
δd,∞√
mθi,s(k)

, ‖d(k)‖peak = sup
k

√
d(k)Td(k) < δd,∞. (4.21)

Then the dynamics of (4.4) can be written as

e(k + 1) = (A− LkC)e(k) + (Ẽd,k − LkF̃d,k)d̃(k) + (Ef − LkFf)f(k)

r(k) = Wk(Ce(k) + F̃d,kd̃(k) + Fff(k)) (4.22)

with
Ẽd,k =

[
Ed 0

]
, F̃d,k =

[
Fd Nk

]
and

Nk =

⎡
⎢⎢⎢⎣
N1,k 0 · · · 0
0 N2,k · · · 0

0 0
. . . 0

0 0 0 Nm,k

⎤
⎥⎥⎥⎦ , Ni,k =

√
mθi,s(k)

δd,∞
, i = 1, · · · , m.

The expectation of Δt(k) is normalized and

E
[‖Δ̄t(k)‖2

] ≤ δ2
d,∞.

In this way, with (4.6), (4.8) and (4.21) the online reliability information is represented by
a time-varying matrix Nk and a stochastic vector, which is a part of the system dynamics
(4.22). It is obvious that,

θi,1 < θi,2 < · · · < θi,l, i = 1, · · · , m.
Now the question is: how to design Lk,Wk according to the reliability information. The

objective of the design is to generate the residual signals which are robust against distur-
bances and sensitive to faults. Although for linear time-invariant systems with additive
unknown inputs, the optimal residual generator has been obtained as mentioned in chapter
3, as to time-varying systems, it is still an open problem. Following the idea in FD system
design of MJLSs, a reference residual model is proposed and then the dynamics of the
residual generator (4.22) is designed to match the reference model. In this approach the
matrices Lk and Wk are selected such that

sup
f,d∈l2

‖rref − r‖2

‖
[
d̃
f

]
‖2

(4.23)

is minimized, where rref denotes the residual signals generated by the reference residual
model. As pointed out in [18], the reference model should be realistic and achieve an
optimal trade-off between system robustness and fault sensitivity. Hence the reference
residual model is suggested as

eref(k + 1) = (Aref − LoCref)eref(k) + (Ed,ref − LoFd,ref)d(k) + (Ef,ref − LoFf,ref)f(k)

rref(k) = WoCreferef(k) +WoFd,refd(k) +WoFf,reff(k) (4.24)
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4.4 Remote FD over time-varying communication channels

The matrices are selected as

Aref = A,Ed,ref =
[
Ed 0

]
, Ef,ref = Ef , Cref = C, Fd,ref =

[
Fd 0

]
, Ff,ref = Ff ,

which means the nominal dynamics of (4.22) without transmission errors are considered
as the reference residual model. Lo and Wo can be chosen in a similar way as the ones in
(4.11), such that an optimal fault detection performance for the nominal system can be
guaranteed.

It is clear that, the dynamics of r(k) − rref(k) is governed by

xo(k + 1) = Ao(k)xo(k) + Eo(k)

[
d̃(k)
f(k)

]

r(k) − rref(k) = Co(k)xo(k) + Fo(k)

[
d̃(k)
f(k)

]
(4.25)

where

xo =

[
e
eref

]
and

Ao(k) =

[
A− LkC 0

0 Aref − LoCref

]
,

Co(k) =
[
WkC −WoCref

]
,

Eo(k) =

[
Ẽd,k − LkF̃d,k Ef − LkFf

Ed,ref − LoFd,ref Ef,ref − LoFf,ref

]
,

Fo(k) =

[ (
WkF̃d,k −WoFd,ref

)T
(WkFf −WoFd,ref)

T

]T
.

According to different application scenarios, the transmission manners of process mea-
surements can be different. In the following, the residual generators and evaluators with
centralized and decentralized transmissions will be designed separately.

4.4.1 When all measurements are transmitted via the same channel

In case of centralized transmission, all the measurements are transmitted via the same
channel. Therefore the BERs of different measurements are the same, i.e.

p1,b(k) = p2,b(k) = · · · = pm,b(k).

Then the system can be modeled as a switched system, where the switching signal is
the variation of the channel reliability class and it can take its values in the finite set
ψ = {1, · · · , l} with l being the number of reliability classes. That means each reliability
class is corresponding to a switching value. Denote

Li = Lk,Wi = Wk, Ẽd,i = Ẽd,k, F̃d,i = F̃d,k

and
Ao,i = Ao(k), Co,i = Co(k), Eo,i = Eo(k), Fo,i = Fo(k),
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when s(k) = i, i ∈ ψ.
Before giving the solution for minimizing (4.23), the following useful lemma is introduced.

Lemma 4.3 (Zhang, Shi, Wang and Gao [115]) Consider the system (4.25). Given a
constant γ > 0, xo(0) = 0, if there exist matrices Xi > 0 and Gi > 0 such that the
following LMI ⎡

⎢⎢⎣
Xj − (Gi +GT

i ) GT
i Ao,i GT

i Eo,i 0
∗ −Xi 0 CT

o,i

∗ ∗ −γ2I F T
o,i

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0

holds for all i, j ∈ ψ, then
‖r − rref‖2

‖
[
d̃
f

]
‖2

< γ.

The following theorem gives the solution to (4.23).

Theorem 4.4 Consider the remote FD system with the centralized transmission. Given
the system (4.25), xo(0) = 0, the L(nc, kc), the reliability classes (4.20) and a constant
γ > 0, the optimal Li and Wi of the residual generator (4.4) in the sense of minimizing
(4.23) can be obtained by solving the following optimization problem

min
Xj>0,Yi,Wi,Qi

γ2

subject to
[Πgh]7×7 = [Πgh]

T
7×7 < 0

for all i, j ∈ ψ, with[
Π11 Π12

∗ Π22

]
=

[
Xj,11 −Qi,11 −QT

i,11 Xj,12

∗ Xj,22 −Qi,22 −QT
i,22

]

and other nonzero terms

Π14 = Qi,11A− YiC,Π16 = Qi,11Ed − YiF̃d,i,Π17 = Qi,11Ef − YiFf ,

Π25 = Qi,22(A− LoC),Π26 = Qi,22(Ed − LoFd),Π27 = Qi,22(Ef − LoFf ),

Π33 = −I,Π34 = WiC,Π35 = −WoC,

Π36 = WiF̃d,i −WoFd,ref ,Π37 = WiFf −WoFd,ref ,

Π44 = −Xj,11,Π45 = −Xj,12,Π55 = −Xj,22,

Π66 = −γ2In×n,Π77 = −γ2In×n,

where

Xj =

[
Xj,11 Xj,12

∗ Xj,22

]
, Qi =

[
Qi,11 0

0 Qi,22

]
,

then the optimal Li = Q−1
i,11Yi.
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4.4 Remote FD over time-varying communication channels

Proof With Lemma 4.3, the proof is straightforward with Yi = Qi,11Li.

The following algorithm gives a way to set the threshold in case of the centralized
transmission.

Algorithm • Step 1: Given the system (4.3), the residual generator (4.4) and a con-
stant γ > 0, solve the following constrained optimization problem

min
Xj>0

γ2

subject to ⎡
⎢⎢⎣

−Xj Xj(A− LiC) Xj(Ẽd,i − LiF̃d,i) 0
∗ −Xi 0 (WiC)T

∗ ∗ −γ2I (WiF̃d,i)
T

∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0.

for all i, j ∈ ψ. Denote γ̆ as the solution to the above optimization problem.

• Step 2: according to Lemma 4.1, the threshold can be set as

Jth(k) = γ̆
√
δ2
d,2 + η̄T,max(k) + βσ̄T,max(k) (4.26)

where

η̄T,max(k) =

m∑
i=1

k∑
j=k−T+1

max
Ct

i

δ2
d,∞

mθi,s(j)
σi,2(j)

and

σ̄2
T,max(k) =

m∑
i=1

k∑
j=k−T+1

max
Ct

i

δ4
d,peak

m2θ2
i,s(j)

(
σi,4(j) − σ2

i,2(j)
)
.

The worst-case η̄T,max(k) and σ̄T,max are employed in (4.26), as Ct
i (k) is unknown to the

remote FD system. The FAR is upper bounded by 1
β2 .

4.4.2 When measurements are transmitted via different channels

In case of the decentralized transmission, different sensor signals are transmitted via dif-
ferent channels, i.e. the BERs of different measurements are different. Then the system is
no longer proper to be modeled as a switched system, as the the set of switching values
may be too large, which is lm. It is clear that, Nk is a polytopic type time-varying matrix,
i.e. Nk can be written as

Nk =
2m∑
i=1

ai(k)Vi,
2m∑
i=1

ai(k) = 1, ai(k) ≥ 0

where Vi is the i-th vertex and

Vi =

⎡
⎢⎢⎢⎣
v1 0 · · · 0
0 v2 · · · 0
...

. . .
. . .

...
0 0 · · · vm

⎤
⎥⎥⎥⎦ , vj ∈ {

√
mθj,1

δd,∞
,

√
mθj,l

δd,∞
}, j = 1, · · · , m,
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V1 �= V2 �= · · · �= V2m .

Then it turns out
F̃d,k =

[
Fd 0

]
+
[

0
∑2m

i=0 ai(k)Vi
]
.

Denote
F̃d,i =

[
Fd 0

]
+
[

0 Vi
]
, i = 1, 2, · · · , 2m.

With the reliability information provided by the communication systems, ai(k) is known
to the remote FD system. The following theorem gives the solution to (4.23).

Theorem 4.5 Consider the remote FD system with the decentralized transmission. Given
the system (4.25), xo(0) = 0, the L(nc, kc), the reliability classes (4.20) and a constant
γ > 0, the optimal Lk and Wk of the residual generator (4.4) in the sense of minimizing
(4.23) can be obtained by solving the following optimization problem

min
X1>0,X2>0,Yi,Wi

γ2

subject to⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X1 0 X1A− 1
2
(Yi + Yj)C 0 X1Ed − 1

2
(Yi + Yj)Fd

∗ −X2 0 X2(A− LoC) X2(Ed − LoFd)
∗ ∗ −X1 0 0
∗ ∗ ∗ −X2 0
∗ ∗ ∗ ∗ −γ2I
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

−1
2
(YiVj + YjVi) X1Ef − 1

2
(Yi + Yj)Ff 0

0 X2(Ef − LoFf ) 0
0 0 1

2
(WiC +WjC)T

0 0 (−WoC)T

0 0 (1
2
(Wi +Wj)Fd −WoFd)

T

−γ2I 0 1
2
(WiVj +WjVi)

T

∗ −γ2I (1
2
(Wi +Wj)Ff −WoFf)

T

∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(4.27)
for i, j = 1, · · · , 2m. Then the optimal Lk and Wk can be chosen as

Lk =
2m∑
i=1

ai(k)Li,Wk =
2m∑
i=1

ai(k)Wi,

where Li = X−1
1 Yi.

Proof Rewrite (4.25) as

xo(k + 1) =
2m∑
i=1

2m∑
j=1

μiμj

{
1

2
(Ao,i + Ao,j)xo(k) +

1

2
(Eo,i + Eo,j)

[
d̃(k)
f(k)

]}

r(k) − rref(k) =
2m∑
i=1

2m∑
j=1

μiμj

{
1

2
(Co,i + Co,j)xo(k) +

1

2
(Fo,i + Fo,j)

[
d̃(k)
f(k)

]}
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where

Ao,i =

[
A− LiC 0

0 Aref − LoCref

]
, Ao,j =

[
A− LjC 0

0 Aref − LoCref

]
,

Co,i =
[
WiC −WoCref

]
, Co,j =

[
WjC −WoCref

]
,

Fo,i =

[ (
WiF̃d,j −WoFd,ref

)T
(WiFf −WoFd,ref)

T

]T
, Fo,j =

[ (
WjF̃d,i −WoFd,ref

)T
(WjFf −WoFd,ref)

T

]T
,

Eo,i =

[
Ẽd,i − LiF̃d,j Ef − LiFf

Ed,ref − LoFd,ref Ef,ref − LoFf,ref

]
,

Eo,j =

[
Ẽd,j − LjF̃d,i Ef − LjFf

Ed,ref − LoFd,ref Ef,ref − LoFf,ref

]
,

2m∑
i=1

μi = 1,
2m∑
j=1

μj = 1, μi ≥ 0, μj ≥ 0.

Define a Lyapunov function V (k) = xo(k)
TXxo(k), where

X =

[
X1 0
0 X2

]
> 0.

With xo(0) = 0, it turns out

∞∑
k=0

V (k + 1) − V (k) = V (∞) ≥ 0.

Then

‖r(k) − rref(k)‖2
2 − γ2‖

[
d̃(k)
f(k)

]
‖2

2

≤
∞∑
k=1

(r(k) − rref(k))
T (r(k) − rref(k)) − γ2

[
d̃(k)
f(k)

]T [
d̃(k)
f(k)

]
+ V (k + 1) − V (k)

≤
⎡
⎣ xo(k)

d̃(k)
f(k)

⎤
⎦
T

Rij

⎡
⎣ xo(k)

d̃(k)
f(k)

⎤
⎦

where

Rij =

(
1

2

N∑
i=1

N∑
j=1

μiμj

[
Ao,i + Ao,j Eo,i + Eo,j
Co,i + Co,j Fo,i + Fo,j

]T)[
X 0
0 I

]
×

(
1

2

N∑
i=1

N∑
j=1

μiμj

[
Ao,i + Ao,j Eo,i + Eo,j
Co,i + Co,j Fo,i + Fo,j

])
−
[
X 0
0 −γ2I

]
.

If Rij < 0 for any i, j = 1, 2, · · · , 2m, then for any

[
d̃(k)
f(k)

]
∈ l2 it turns out

‖rref − r‖2

‖
[
d̃
f

]
‖2

< γ.
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Obviously,[
1
2
(Ao,i + Ao,j)

1
2
(Eo,i + Eo,j)

1
2
(Co,i + Co,j)

1
2
(Fo,i + Fo,j)

]T [
X 0
0 I

] [
1
2
(Ao,i + Ao,j)

1
2
(Eo,i + Eo,j)

1
2
(Co,i + Co,j)

1
2
(Fo,i + Fo,j)

]

−
[
X 0
0 γ2I

]
< 0 (4.28)

implies Rij < 0. By defining Yi = X1Li and applying Schur-complement as well as con-
gruency transformation, (4.28) can be rewritten as in (4.27).

The following algorithm gives a way to set the threshold in case of the decentralized
transmission.

Algorithm • Step 1: Given the system (4.3), the residual generator (4.4) and a con-
stant γ > 0, solve the following constrained optimization problem

min
X>0

γ2

subject to⎡
⎢⎢⎣

−X XA− 1
2
X(LiC + LjC) XEd,i − 1

2
X(LiF̃d,j + LjF̃d,i) 0

∗ −X 0 1
2
((Wi +Wj)C)T

∗ ∗ −γ2I 1
2
(WiF̃d,j +WjF̃d,i)

T

∗ ∗ ∗ −I

⎤
⎥⎥⎦

< 0

for all i, j ∈ ψ. Denote γ̆ as the solution to the above optimization problem.

• Step 2: the threshold can be set as in (4.26).

The FAR is upper bounded by 1
β2 . It is worth to notice that with given maximum BERs,

the observer gain can be designed for all possible N(k) within the polytopic space.

4.4.3 A numerical example

In this section, a numerical example is given to illustrate the effectiveness of the proposed
methods. Consider the following closed-loop system:

A =

⎡
⎣ 0.1 0.2 0.3

0 0.65 0.3
0 0 0.3

⎤
⎦ , Ed =

⎡
⎣ 0.2 0

0.1 0
0.4 0.2

⎤
⎦ , Ef =

⎡
⎣ 0.2

0
0.1

⎤
⎦ ,

C =

[
1 0 1
0 0 1

]
, Fd =

[
0.1 0.4
0.2 0.3

]
, Ff = 0.

The sampling time of the system is 1s. The 8-bit uniform quantizer is applied for both
measurements in the source encoder and the range of the each valid measurement is as-
sumed to be (0, 4). The unknown disturbances d(k) is simulated as a uniform random
number in the range of [−0.1, 0.1]. The simulation time is 500s. A bias actuator fault
is generated at t = 250s. The measurements are decoded according to (4.5). The upper
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0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

Time [k]

re
si

du
al

 e
va

lu
at

io
n

 

 
||r(k)||

T

J
th

(k)

Figure 4.13: with (15, 8) channel coding, β = 2, f = 3, centralized transmission.

Table 4.1: δi,2 and δi,4, i = 1, 2 with (8, 8)-code. a with the probability larger than 75%.

(0,0.05] (0.05,0.1] (0.1,0.15] (0.15,0.2]
δi,2 < 0.0733 < 0.1597 < 0.2593 < 0.3721
δi,4 < 0.0716 < 0.1831 < 0.3396 < 0.5360
‖Δi(k)‖T a < 2.36 < 4.1 < 5.89 < 7.7

bound of pb(k) is assumed to be
[

0.2 0.2
]T

and four reliability classes are considered,
i.e.

(0, 0.05], (0.05, 0.1], (0.1, 0.15], (0.15, 0.2].

Two kinds of codes are applied to illustrate the results. The first is an (8, 8)-code. That
means the 8-bit binary sequence after quantization is directly transmitted without further
channel coding. By selecting β = 2 and T = 10, then according to (4.14) the expectation of
the energy level of Δt(k) is approximated. In Table 4.1, the important statistical properties
of the code are given. The second code is a (15, 8)-cyclic code, in which the 8-bit binary
sequence after quantization is encoded by the channel encoder with the (15, 8)-cyclic code
and then transmitted over communication channels. With β = 2 and T = 10, its statistical
properties can be found in Table 4.2.

When all the measurements are transmitted over the same channels, i.e. centralized
transmission, according to Theorem 4.4, the optimal residual generator for channels ap-
plying (8, 8)-code are with

L1 =

⎡
⎣ 0.2194 0.0785

0.1474 0.0536
0.1212 0.0594

⎤
⎦ , L2 =

⎡
⎣ 0.2274 0.0814

0.1432 0.0522
0.1282 0.0557

⎤
⎦ ,
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Figure 4.14: with (15, 8) channel coding, β = 2, f = 3, decentralized transmission.

Table 4.2: δi,2 and δi,4, i = 1, 2 with (15, 8)-code. a with the probability larger than 75%.

(0,0.05] (0.05,0.1] (0.1,0.15] (0.15,0.2]
δi,2 < 0.6524 · 10−4 < 0.0014 < 0.0103 < 0.0504
δi,4 < 0.999 · 10−4 < 0.0022 < 0.0172 < 0.0869
‖Δi(k)‖T a < 0.063 < 0.31 < 0.93 < 2.33

L3 =

⎡
⎣ 0.2178 0.0784

0.1336 0.0489
0.1245 0.0520

⎤
⎦ , L4 =

⎡
⎣ 0.2002 0.0725

0.1219 0.0448
0.1156 0.0475

⎤
⎦ ,

W1 =

[
0.0090 −0.0252
−0.0012 0.0223

]
,W2 =

[
0.0053 −0.0154
0.0034 0.0150

]
,

W3 =

[
0.0027 −0.0117
0.0063 0.0123

]
,W4 =

[
0.0007 −0.0098
0.0078 0.0108

]
and for channel applying (15, 8)-code are with

L1 =

⎡
⎣ 0.1807 0.0984

0.1448 0.0723
0.0051 0.3253

⎤
⎦ , L2 =

⎡
⎣ 0.2081 0.0809

0.1518 0.0604
0.0900 0.1256

⎤
⎦ ,

L3 =

⎡
⎣ 0.2508 0.0887

0.1581 0.0589
0.1326 0.0807

⎤
⎦ , L4 =

⎡
⎣ 0.3192 0.1108

0.1624 0.0593
0.1803 0.0772

⎤
⎦ ,

W1 =

[
0.1783 −0.4882
−0.1413 0.3942

]
,W2 =

[
0.0530 −0.1440
−0.0400 0.1169

]
,

68



4.4 Remote FD over time-varying communication channels

W3 =

[
0.0204 −0.0542
−0.0130 0.0448

]
,W4 =

[
0.0087 −0.0236
0.0013 0.0217

]
.
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Figure 4.15: with (8, 8) coding, β = 2, f = 5, centralized transmission.

When different measurements are transmitted over different channels, i.e. decentral-
ized transmission, according to Theorem 4.5, the optimal residual generator for channels
applying (8, 8)-code are with

L1 =

⎡
⎣ 0.2445 0.0873

0.1539 0.0574
0.1364 0.0606

⎤
⎦ , L2 =

⎡
⎣ 0.2043 0.1370

0.1264 0.0846
0.1155 0.0887

⎤
⎦ ,

L3 =

⎡
⎣ 0.2590 0.0463

0.1619 0.0312
0.1466 0.0325

⎤
⎦ , L4 =

⎡
⎣ 0.2117 0.0820

0.1319 0.0508
0.1215 0.0534

⎤
⎦ ,

W1 =

[
0.0079 −0.0181
−0.0001 0.0166

]
,W2 =

[
0.0046 −0.0167
0.0028 0.0176

]
,

W3 =

[
0.0050 −0.0104
0.0031 0.0095

]
,W4 =

[
0.0016 −0.0105
0.0060 0.0112

]
and for channel applying (15, 8)-code are

L1 =

⎡
⎣ 0.2577 0.0755

0.1610 0.0610
0.1282 0.0924

⎤
⎦ , L2 =

⎡
⎣ 0.3051 0.2485

0.1476 0.1350
0.1620 0.1767

⎤
⎦ ,

L3 =

⎡
⎣ 0.2966 0.0145

0.1792 0.0183
0.1607 0.0291

⎤
⎦ , L4 =

⎡
⎣ 0.3487 0.1256

0.1665 0.0672
0.1955 0.0887

⎤
⎦ ,
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Figure 4.16: with (8, 8) coding, β = 2, f = 5, decentralized transmission.

W1 =

[
0.0336 −0.0887
−0.0242 0.0723

]
,W2 =

[
0.0232 −0.0617
−0.0136 0.0536

]
,

W3 =

[
0.0154 −0.0375
−0.0088 0.0302

]
,W4 =

[
0.0089 −0.0298
0.0002 0.0263

]
.

Fig. 4.13-4.16 shows the results. It can be seen that, the obtained thresholds are adaptive
to BERs. In Fig. 4.13 and Fig. 4.15 the transmissions are over the same channel, while
in Fig. 4.14 and Fig. 4.16 the transmissions of the two measurements are over different
channels. In Fig. 4.13 and Fig. 4.14, the (15, 8)-cyclic code is applied and f = 3. In Fig.
4.15 and Fig. 4.16, no channel coding is applied and f = 5. By comparing the results,
it can be concluded that, the influence of bit errors is significantly reduced with channel
coding and thus the fault of smaller size can be detected. The FAR is upper bounded by
25%.

4.5 Conclusions

In this chapter an observer-based remote FD system with channel reliability information
has been designed. With the knowledge of the encoder/decoder in communication systems,
the statistical properties of bit errors have been investigated, and based on that, the
influence of bit errors and quantization errors are described through stochastic unknown
inputs with constant or time-varying polytopic type distribution matrices. The reference
residual model has been suggested in order to design an optimal residual generator for
time-varying systems, and then thresholds have been selected by considering the stochastic
behavior introduced by bit errors. The design procedures for centralized transmission and
decentralized transmission have been given separately. The later one is much meaningful
for practical applications in industry.
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5 FD of Networked Control Systems

In this chapter, the design scheme of the FD system for NCSs considering time varying
transmission delays, packet dropouts and quantization errors, is proposed. The design of
the residual generator is formulated in the H∞ framework, where the transmission delays
are described as polytopic uncertainties, quantization errors are modeled as norm bounded
uncertainties and packet dropouts are described as a binary Bernoulli process. The dy-
namics of residual generator is shown to be governed by an MJLS with both polytopic
and norm bounded uncertainties. Based on the results obtained in chapter 3, the residual
generator is designed to match a reference model such that it is sensitive to system faults
and robust against network-induced effects and system disturbances. Then the absolute
value of each residual signal is selected as the evaluation function and the computation
of its mean value and variance is given in terms of LMIs. The corresponding threshold is
calculated based on the mean value and variance, which can on one side ensure the upper
bound of the FAR and on the other side reduce the miss detections of faults. Parts of this
chapter are based on [64].

5.1 NCS model and problem formulation

In this chapter the NCS with the structure shown in Fig. 1.4 is considered, where sensors,
actuators and controller are connected with networks and the FD system is located together
with the controller. Consider the continuous-time process

ẋ(t) = Acx(t) +Bcu(t) + Ec,dd(t) + Ec,ff(t)

y(t) = Ccx(t) + Fc,dd(t) + Fc,ff(t) (5.1)

where x ∈ R
n denotes the state vector, u ∈ R

p denotes the control inputs applied in
the plant, y ∈ R

m denotes the measured output vector, d ∈ R
nd denotes the unknown

inputs and f ∈ R
nf are the faults to be detected. Ac, Bc, Cc, Ec,d, Ec,f , Fc,d, Fc,f are known

matrices of appropriate dimensions.

It is assumed that, the sensors are clock driven and their sampling period is Ts, while the
actuators are event driven and immediately apply the new control inputs when they arrive.
The sum of the transmission delays from sensors to controller/FD and from controller/FD
to actuators is denoted as τk. Suppose that, τk is bounded by μ1Ts ≤ τk < μ2Ts, where μ1

and μ2 are known nonnegative constant integers and the packets arrive in the right order
as in [37]. Then there will be at most μ + 1 (μ = μ2 − μ1) control inputs applied at the
actuator during [kTs, (k + 1)Ts), and in this case h = τk−1 ≥ τk0 ≥ τk1 ≥ · · · ≥ τkμ = 0 where
kT + τki (i = 0, · · · , μ) denotes the time instant at which u(k − μ1 − i) applied. When
u(k − μ1 − i) arrives before kTs, set τki = τki+1 = · · · = τkμ = 0. Now the process (5.1) can
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be rewritten as a discrete-time system as follows

x(k + 1) = Adx(k) +

μ∑
i=0

Γki u(k − μ1 − i) + Ed,dd(k) + Ed,ff(k)

y(k) = Cdx(k) + Fd,dd(k) + Fd,ff(k)

where Γki =
∫ τk

i−1

τk
i

eAc(τk
i−1−t)Bcdt and

Ad = eAcTs, Cd = Cc, Fd,d = Fc,d, Fd,f = Fc,f ,

Ed,d =

Ts∫
0

eAc(Ts−t)Ec,ddt, Ed,f =

Ts∫
0

eAc(Ts−t)Ec,fdt.

As shown in [40] and [106], Γki belongs to a convex hull co{Ui,1, · · · , Ui,2n}. Hence the
above system can be reformulated as the following augmented system

ξ(k + 1) = A(k)ξ(k) +B(k)u(k − μ1) + Edd(k) + Eff(k)

y(k) = Cξ(k) + Fdd(k) + Fff(k) (5.2)

where

ξ(k) =
[
x(k)T u(k − μ1 − 1)T · · · u(k − μ2)

T
]T
,

Ed =
[
ET
d,d 0 · · · 0

]T
, Ef =

[
ET
d,f 0 · · · 0

]T
,

C =
[
Cd 0 0 · · · 0

]
, Fd = Fd,d, Ff = Fd,f ,

and

A(k) =

⎛
⎝A0 +

(2n)µ∑
i=1

αkiAVi

⎞
⎠ , B(k) =

⎛
⎝B0 +

(2n)µ∑
i=1

αkiBVi

⎞
⎠

with

A0 =

⎡
⎢⎢⎢⎢⎢⎣

Ad 0 0 · · · 0
0 0 0 · · · 0
0 I 0 · · · 0
...

. . .
. . .

...
0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦ , BVi

=

⎡
⎢⎢⎢⎢⎢⎣

−∑μ
j=1Uj,ij
I
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

AVi
=

⎡
⎢⎢⎢⎢⎢⎣

0 U1,i1 U2,i2 · · · Uμ,iµ
0 0 0 · · · 0
0 0 0 · · · 0
...

. . .
. . .

...
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ , B0 =

⎡
⎢⎢⎢⎢⎢⎣

∑μ
i=0 Γki
I
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

where Vi represents a possible set of {ij}, ij ∈ {1, 2, · · · , 2n} and Uj,ij are known matrices

and
∑(2n)µ

i=1 αki = 1 at each time step k. Please refer to [106] for the details about Uj,ij . Here
it is assumed that, the sampled measurements y(k) are first quantized via the logarithmic
quantizer (2.7) before transmissions and the quantized measurements are denoted as yq(k).

72



5.1 NCS model and problem formulation

For the augmented uncertain system (5.2), the following residual generator is proposed:

ξ̂(k + 1) = A0ξ̂(k) +B0ur(k − μ1) + L(θk)(yr(k) − ŷ(k))

ŷ(k) = Cξ̂(k)

r(k) = W (θk)(yr(k) − ŷ(k)) (5.3)

where ur(k) is the vector of control inputs computed by the controller, yr(k) the vector
of quantized measurements received by the residual generator, r(k) the vector of residual
signals, ξ̂(k) the estimate of ξ(k) and ŷ(k) the estimated measurements. When yq(k)
arrives at the FD system, the residual generator compute the new residual r(k). Hence the
transmission delay of yq(k) does not influence the dynamics of (5.3). Due to disturbances
in the network, there can be packet dropouts during the transmissions of ur(k) and yq(k).
Here it is assumed that the following rule adapted in the actuators:

u(k) = u(k − 1), if packet dropout of ur(k),

u(k) = ur(k), otherwise

and the estimated measurements are used instead of yq(k) if packet dropout of the mea-
surement occurs, i.e.

yr(k) = ŷ(k) if packet dropout of yq(k),

yr(k) = yq(k) otherwise. (5.4)

The matrices L(θk) and W (θk) are design parameters of the residual generator (5.3). They
can be time varying and selected according to the occurrences of packet dropouts of ur(k)
and yq(k), which are assumed to be two independent binary Bernoulli processes with
probabilities αu and αy, respectively. Hence (5.3) is associated with a Bernoulli process
{θk}, where θk takes values in a four state space ψ = {1, 2, 3, 4} with probabilities Φ =
[λi]i∈ψ, and λi is defined as

λi = Pr{θk = i}
which is subject to the restriction λi ≥ 0 and

∑N
i=1 λi = 1. Clearly, (5.3) is a special kind

of stationary MJLSs.
For the convenience, denote the matrices associated with θk = i ∈ ψ by

Ωi = Ω(θk)

where Ω can be L, W , etc., and Ω1,2,··· represents the enumeration of Ω1, Ω2, · · · .
In the NCS, i = 1 represents no packet dropouts, i = 2 represents packet dropout of

ur(k), i = 3 represents packet dropout of yq(k) and i = 4 represents packet dropouts of
ur(k) and yq(k). Obviously λi can be calculated as follows

λ1 = (1 − αu)(1 − αy),

λ2 = αu(1 − αy),

λ3 = (1 − αu)αy,

λ4 = αuαy.

A negative acknowledgement will be sent back from actuators, if there is no new con-
trol inputs received within an expected time delay. Since the residual generator has the
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knowledge of dropouts of yq(k), therefore the state of θk is fully observable. With (5.4), a
trivial solution for L3,4 and W 3,4 can be

L3,4 = 0,W 3,4 = 0.

Since r(k) is a stochastic vector, its statistical properties should be taken into consider-
ation in selecting the evaluation function and computing the threshold.

5.2 Residual generation

In order to find the best trade-off between the robustness against disturbances and the
sensitivity to faults, the proposed residual generator is designed to match a reference
model by following the idea introduced in chapter 3. Since the probability of packet
dropouts is usually a small value, θk = 1 can be regarded as the dominant mode of the
Bernoulli process. Hence the optimal residual generator for (5.2) without considering the
network-induced effects is taken as the reference residual model, which is given as

eref (k + 1) = Areref (k) + Ed,rd(k) + Ef,rf(k)

rref(k) = Creref(k) + Fd,rd(k) + Ff,rf(k))

with
Ar = A0 − LrefC,Ed,r = Ed − LrefFd,

Ef,r = Ef − LrefFf , Cr = WrefC, Fd,r = WrefFd, Ff,r = WrefFf .

Here Lref and Wref are selected according to Theorem 3.3.

Define e(k) = ξ(k) − ξ̂(k). The dynamics of the matching error re(k) and the residual
signal r(k) is governed by

ζ(k + 1) = Ã(θk)ζ(k) + B̃(θk)ω(k)

r(k) = C̃(θk)ζ(k) + D̃(θk)ω(k)

re(k) = C̃e(θk)ζ(k) + D̃e(θk)ω(k) (5.5)

where re(k) = rref(k) − r(k) and

ζ(k) =

⎡
⎣ eref(k)

ξ(k)
e(k)

⎤
⎦ , ω(k) =

⎡
⎢⎢⎣

u(k − μ1)
ur(k − μ1) − u(k − μ1)

d(k)
f(k)

⎤
⎥⎥⎦ .

By denoting θk = i ∈ ψ,

C̃i = C̃i
00 + ΔCi, D̃i = D̃i

00 + ΔDi,

C̃i
e = C̃i

e,00 + ΔCi
e, D̃

i
e = D̃i

e,00 + ΔDi
e,

Ãi = Ãi00 +

(2n)µ∑
j=1

αkj Ã
i
j + ΔAi, B̃i = B̃i

00 +

(2n)µ∑
j=1

αkj B̃
i
j + ΔBi
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with

Ã1,2
00 =

⎡
⎣ Ar 0 0

0 A0 0
0 0 A0 − L1,2C

⎤
⎦ , Ã3,4

00 =

⎡
⎣ Ar 0 0

0 A0 0
0 0 A0

⎤
⎦ ,

B̃1,3
00 =

⎡
⎣ 0 0 Ed,r Ef,r
B0 0 Ed Ef
0 0 Ed − L1,3Fd Ef − L1,3Ff

⎤
⎦ ,

B̃2,4
00 =

⎡
⎣ 0 0 Ed,r Ef,r
B0 0 Ed Ef
0 B0 Ed − L2,4Fd Ef − L2,4Ff

⎤
⎦ ,

C̃1,2
00 =

[
0 0 W 1,2C

]
, C̃3,4

00 = 0,

D̃1,2
00 =

[
0 0 W 1,2Fd W 1,2Ff

]
, D̃3,4

00 = 0,

C̃1,2
e,00 =

[
WrefC 0 −W 1,2C

]
, C̃3,4

e,00 =
[
WrefC 0 0

]
,

D̃1,2
e,00 =

[
0 0 Fd,r −W 1,2Fd Ff,r −W 1,2Ff

]
,

D̃3,4
e,00 =

[
0 0 Fd,r Ff,r

]
.

The norm bounded uncertainties can be reformulated as⎡
⎣ ΔAi ΔBi

ΔCi ΔDi

ΔCi
e ΔDi

e

⎤
⎦ =

⎡
⎣ Ei

F i

F i
e

⎤
⎦Δ(k)

[
Gi H i

]
,ΔT (k)Δ(k) ≤ I

where

Ei =
[

0 0 (Li)T
]T
, F i = F i

e = W i,

Gi =
[

0 δqC 0
]
, H i =

[
0 0 δqFd δqFf

]
and the vertices of the polytopic uncertainties are

Ã1,3
j =

⎡
⎣ 0 0 0

0 AVj
0

0 AVj
0

⎤
⎦ , B̃1,3

j =

⎡
⎣ 0 0 0 0
BVj

0 0 0
BVj

0 0 0

⎤
⎦ ,

Ã2,4
j = 0, B̃2,4

j = 0.

It can be seen that, (5.5) is also a special stationary MJLS with system uncertainties,
where λij = λi, i, j ∈ ψ. Following the idea in the FD system design of MJLS, the model
matching problem

min sup
ω(k)∈l2

‖re(k)‖E
‖ω(k)‖2

(5.6)

is solved by choosing L(θk) and W (θk) such that r(k) is robust against the transmission
delays, packet dropouts, quantization errors and disturbances and simultaneously sensitive
to faults.

The following lemma is useful to deal with the norm bounded uncertainty.
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Lemma 5.1 [110] Let G, M and N be real matrices of appropriate dimensions with G
symmetrical, then

G+MΔ(k)N +NTΔ(k)TMT < 0

where ΔT (k)Δ(k) ≤ I, if and only if there exists a scalar ε > 0 such that

G+
√
εMMT +

1√
ε
NTN < 0. (5.7)

In order to solve the model matching problem, the lemma concerning the H∞-norm of the
system (5.5) is introduced.

Lemma 5.2 Consider the system (5.5). Given a constant γ > 0, ζ(0) = 0 and θ0 ∈ ψ,
then

sup
ω(k)∈l2 �=0

‖re(k)‖E
‖ω(k)‖2

< γ (5.8)

if there exist positive matrices Si > 0 and a scalar ε > 0 such that⎡
⎢⎢⎢⎢⎢⎢⎣

−S̄ Π12 Π13 0 S̄Ei 0

∗ −Si 0 (C̃i
e,00)

T 0 (Gi)T

∗ ∗ −εγ2I (D̃i
e,00)

T 0 (H i)T

∗ ∗ ∗ −εI εF i
e 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (5.9)

is satisfied for all i = 1, · · · , 4 and j = 1, · · · , (2n)μ, where

S̄ =
4∑
i=1

λiSi

and
Π12 = S̄(Ãi00 + Ãij),Π13 = S̄(B̃i

00 + B̃i
j).

Proof Following the similar procedure in Lemma 3.6, define

V (ζ, i) = ζTQiζ.

for some Qi > 0, i = 1, · · · , 4. Given ζ(0) = 0 for any initial mode θ(0) ∈ ψ, then

∞∑
k=0

E{V (ζ(k + 1), θk+1)} −E{V (ζ(k), θk)} = E{V (ζ(∞), θ(∞))} ≥ 0.

Denoting θk = i and

Ri =

[
Ãi B̃i

C̃i
e D̃i

e

]T [
Q̄ 0
0 0

] [
Ãi B̃i

C̃i
e D̃i

e

]
−
[
Qi 0
0 γ2I

]

with

Q̄ =
4∑
i=1

λiQi,
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5.2 Residual generation

it turns out

‖re‖2
E − γ2‖ω‖2

2

≤
∞∑
k=0

(
re(k)

T re − ω(k)Tω(k) −E{V (ζ(k), θk)}
)

+

∞∑
k=0

(E{V (ζ(k + 1), θk+1)})

= E{
∞∑
k=0

[
ζ(k)
ω(k)

]T [
Ã(θk) B̃(θk)

C̃e(θk) D̃e(θk)

]T

×
[
Qθk+1

0
0 0

] [
Ã(θk) B̃(θk)

C̃e(θk) D̃e(θk)

]

−
[
Qθk

0
0 γ2I

] [
ζ(k)
ω(k)

]
}

= E{
[
ζ(k)
ω(k)

]T
R(θk)

[
ζ(k)
ω(k)

]
} (5.10)

It is clear that, if Ri < 0, i ∈ ψ, then (5.10) < 0, i.e. ‖re‖2
E < γ2‖ω‖2

2, for any
ω ∈ l2. With schur-complement and congruency transformation, the above inequality can
be reformulated as ⎡

⎢⎢⎣
−Q̄ Q̄Ãi Q̄B̃i 0

∗ −Qi 0 C̃i
e

∗ ∗ −γ2I D̃i
e

∗ ∗ ∗ −I

⎤
⎥⎥⎦ ≤ 0

which is equivalent with Ri
j < 0 for all i ∈ ψ and j = 1, · · · , (2n)μ, with

Ri
j =

⎡
⎢⎢⎣

−Q̄ Q̄(Ãi00 + Ãij + ΔAi) Q̄(B̃i
00 + B̃i

j + ΔBi) 0

∗ −Qi 0 (C̃i
e,00 + ΔCi

e)
T

∗ ∗ −γ2I (D̃i
e,00 + ΔDi

e)
T

∗ ∗ ∗ −I

⎤
⎥⎥⎦ .

Then Ri
j can be rewritten as follows

Ri
j =

⎡
⎢⎢⎣

−Q̄ Q̄(Ãi00 + Ãij) Q̄(B̃i
00 + B̃i

j) 0

∗ −Qi 0 (C̃i
e,00)

T

∗ ∗ −γ2I (D̃i
e,00)

T

∗ ∗ ∗ −I

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
Q̄Ei

0
0
F i
e

⎤
⎥⎥⎦Δ(k)

[
0 Gi H i 0

]
+
[

0 Gi H i 0
]T

Δ(k)

⎡
⎢⎢⎣
Q̄Ei

0
0
F i
e

⎤
⎥⎥⎦
T

By applying Lemma 5.1, congruency transformation with diag{√ε,√ε,√ε,√ε, I} and
defining Si = εQi, then Ri

j < 0 if and only if (5.9) is satisfied for all i ∈ ψ and
j = 1, · · · , (2n)μ.
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With Lemma 5.2, it is easy to obtain the following theorem which solves (5.6).

Theorem 5.3 For the system (5.5), if there is a solution for the optimization problem

min γ

subject to

M i = (M i)T = [Mαβ ]8×8 < 0 (5.11)

admitting a solution for Si > 0, W 1, W 2, Y 1, Y 2 and

P =

[
P1 0
0 P2

]

for all i ∈ ψ and j = 1, · · · , (2n)μ, where

[
M11 M12

MT
12 M22

]
= S̄ − (P + P T ), S̄ =

4∑
i=1

λiSi,

and the other nonzero Mαβ are

M13 = P T
1

[
Ar 0 0
0 A0 0

]
+ P T

1

[
0 0 0
0 AVj

0

]
,

M1,2
23 =

[
0 0 P T

2 A0 − Y 1,2C
]
+
[

0 P T
2 AVj

0
]
,

M3,4
23 =

[
0 0 P T

2 A0

]
,

M1,3
14 = P T

1

[
0 0
B0 0

]
+ P T

1

[
0 0
BVj

0

]
,

M1,3
24 =

[
P T

2 BVj
0
]
,M2,4

24 =
[

0 P T
2 B0

]
,

M2,4
14 = P T

1

[
0 0
B0 0

]
,M15 = P T

1

[
Ed,r Ef,r
Ed Ef

]
,

M1,2
25 =

[
P T

2 Ed − Y 1,2Fd P T
2 Ef − Y 1,2Ff

]
,

M3,4
25 =

[
P T

2 Ed P T
2 Ef

]
,M1,2

27 = Y 1,2,

M33 = −Si,M1,2
36 =

[
WrefC 0 −W 1,2C

]T
,

M3,4
36 =

[
WrefC 0 0

]T
,M38 =

[
0 C 0

]T
,

M44 = −εγ2I,M55 = −εγ2I,

M1,2
56 =

[
Fd,r −W 1,2Fd Ff,r −1,2 Ff

]T
,

M58 =
[
Fd Ff

]T
,M66 = −I,M1,2

67 = W 1,2,

M77 = −I,M88 = −I.

Then the optimal parameters for the residual generator (5.3) minimizing (5.6) can be set
as

L1
opt = P−1

2 Y 1, L2
opt = P−1

2 Y 2, L3,4
opt = 0,W 1,2

opt = W 1,2,W 3,4
opt = 0. (5.12)

Proof From the discussion in section 5.1, it is known that L3,4 = W 3,4 = 0.
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With (5.12), it is clear that (5.11) can be reformulated as⎡
⎢⎢⎢⎢⎢⎢⎣

Π11 Πi
12 Πi

13 0 Πi
14 0

∗ −Si 0 (C̃i
e,00)

T 0 ε(Gi)T

∗ ∗ −εγ2I (D̃i
e,00)

T 0 ε(H i)T

∗ ∗ ∗ −I εF i
e 0

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (5.13)

where
Π11 = S̄ − (P + P T ),Πi

12 = P T (Ãi00 + Ãij)

Πi
13 = P T (B̃i

00 + B̃i
j),Π

i
14 = P TEi.

Note that, S̄ is positive definite and (5.11) implies that P (as well as P2) is nonsingular.
Therefore (S̄ − P )T S̄−1(S̄ − P ) ≥ 0 which yields

−P T S̄P ≤ S̄ − (P + P T ).

By replacing Π11 with −P T S̄P and performing a congruence transformation to (5.13) with
diag{S̄(P T )−1, I, I, I, I, I}, it can be shown that (5.13) implies (5.9). Hence the feasibility
of (5.11) means that, (5.8) is satisfied. Then by minimizing γ, the parameters for the
residual generator (5.3) can be obtained according to (5.12).

Remark 5.1 The inequality (5.9) also implies (5.13), which can be seen by defining S̄ =
P = P T . The matrix P is structured in order to obtain the solution of L1,2, which will
introduce some conservatism in the computation.

5.3 Residual evaluation

The dynamics of the designed residual generator (5.3) is governed by (5.5) with the optimal
parameters obtained in Theorem 5.3. Obviously the residual r(k) is a stochastic vector,
which is associated with a Bernoulli process. As in the FD of MJLSs, define a set of
residual evaluation functions as follows

‖rh(k)‖e = |rh(k)|
= |[C̃(θk)]he(k) + [D̃(θk)]hω(k)| (5.14)

where h = 1, · · · , m and rh(k) is the h-th residual signal. Here the absolute value of each
residual signal is selected as the evaluation function. The threshold for the h-th evaluated
residual signal is set as

Jh,th = sup
k

(|r̄h(k)|) + sup
k

(βσh(r(k)))

where
|r̄h(k)| = |E[rh(k)]|

is the absolute value of the mean value of rh(k) and

σ2
h(r(k)) = E[(rh(k) − r̄h(k))

2]

79



5 FD of Networked Control Systems

is its variance. β > 0 is some constant. As shown later in Theorem 5.6, the upper bound
of FAR can be guaranteed.

In order to compute supk(|r̄(k)|) and supk(σh(r(k))), the dynamics of r̄(k) is given at
first. Defining

ζ̄(k) = E[ζ(k)]

then

ζ̄(k + 1) = Ā0ζ̄(k) + B̄0ω(k),

r̄(k) = C̄0ζ̄(k) + D̄0ω(k) (5.15)

with

Ā0 =
4∑
i=1

λi(Ã
i
00 + ΔAi) +

4∑
i=1

(2n)µ∑
j=1

λiα
k
j Ã

i
j,

B̄0 =
4∑
i=1

λi(B̃
i
00 + ΔBi) +

4∑
i=1

(2n)µ∑
j=1

λiα
k
j B̃

i
j ,

C̄0 =
4∑
i=1

λi(C̃
i
00 + ΔCi), D̄0 =

4∑
i=1

λi(D̃
i
00 + ΔDi).

For the FD of NCSs, the generalized H2-norm is applied for the residual evaluation. The
following lemma gives the computation of |r̄h(k)| by extending the Lemma 3.13 to MJLSs
with uncertainties.

Lemma 5.4 Given the system (5.15), γh,1 > 0 and γh,2 > 0, then

|r̄h(k)| <
√√√√γ2

h,1

k−1∑
i=0

ω(i)Tω(i) +
√
γ2
h,2ω(k)Tω(k),

if there exist S > 0 satisfying the following matrix inequalities for all j = 1, · · · , (2n)μ:⎡
⎢⎢⎢⎢⎣

−S Π12 Π13 S
∑4

i=1 λiE
i 0

∗ −S 0 0
∑4

i=1 λi(G
i)T

∗ ∗ −εγ2
h,1I 0

∑4
i=1 λi(H

i)T

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎦ < 0 (5.16)

⎡
⎢⎢⎣

−ε ε
∑4

i=1 λi[C̃
i
00]h ε

∑4
i=1 λi[F

i]h 0

∗ −S 0
∑4

i=1 λi[G
i]Th

∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0 (5.17)

⎡
⎢⎢⎣

−ε ε
∑4

i=1 λi[D̃
i
00]h ε

∑4
i=1 λi[F

i]h 0

∗ −εγ2
h,2I 0

∑4
i=1 λi[H

i]Th
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ < 0 (5.18)

with

Π12 = S
4∑
i=1

λi(Ã
i
00 + Ãij),Π13 = S

4∑
i=1

λi(B̃
i
00 + B̃i

j).
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Proof According to Lemma 3.13 and with the similar manipulation in Lemma 5.2, the
lemma can be proved.

In a similar way, σh(r(k)) can be computed. Defining

rσ(k) = r(k) − r̄(k), eσ(k) = ζ(k) − ζ̄(k),

then

χ(k + 1) = Ā(θk)χ(k) + B̄(θk)ω(k)

rσ(k) = C̄σ(θk)χ(k) + D̄σ(θk)ω(k) (5.19)

where

χ(k) =

[
ζ̄(k)
eσ(k)

]
and

Ā(θk) =

[
Ā0 0

Ã(θk) − Ā0 Ã(θk)

]
,

B̄(θk) =

[
B̄0

B̃(θk) − B̄0

]
,

D̄σ(θk) = D̃(θk) − D̄0,

C̄σ(θk) =
[
C̃(θk) − C̄0 C̃(θk)

]
.

The following lemma gives the results.

Lemma 5.5 Given the system (5.19), γh,3 > 0 and γh,4 > 0, then

σh(r(k)) <

√√√√γ2
h,3

k−1∑
i=0

ω(i)Tω(i) +
√
γ2
h,4ω(k)Tω(k), (5.20)

if there exist S > 0, ε > 0 satisfying the following matrix inequalities for all j =
1, · · · , (2n)μ: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
λ1
S Π15,j Π16,j Π17 0

. . .
...

...
...

...
− 1
λ4
S Π45,j Π46,j Π47 0

∗ ∗ ∗ −S 0 0 Π58

∗ ∗ ∗ 0 −εγ2
h,3I 0 Π68

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (5.21)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−εI εΠ1C εΠ1F 0
. . .

...
...

...
−εI εΠ4C εΠ4F 0

∗ ∗ ∗ −S 0 ΠH

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (5.22)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−εI εΠ1D εΠ1F 0
. . .

...
...

...
−εI εΠ4D εΠ4F 0

∗ ∗ ∗ −εγ2
h,4I 0 ΠH

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (5.23)

with

Πi5,j = S

4∑
l=1

λl

[
Ãl00 + Ãlj 0

Ãi00 + Ãij − (Ãl00 + Ãlj) Ãi00 + Ãij

]
,

Πi6,j = S

4∑
l=1

λl

[
B̃l

00 + B̃l
j

B̃i
00 + B̃i

j − (B̃l
00 + B̃l

j)

]
,

Πi7 = S

4∑
l=1

λl

[
El 0
−El Ei

]
,Π58 =

4∑
l=1

λl

[
Gl 0
Gi Gi

]T
,

Π68 =

4∑
l=1

λl
[
H l H i

]T
,

ΠiC =
4∑
l=1

λl
[
C̃i

00 + C̃i
j − (C̃ l

00 + C̃ l
j) C̃i

00 + C̃i
j

]
h
,

ΠiF =
4∑
l=1

λl
[
F l −F i

]
h
,ΠG =

4∑
l=1

λl

[
Gl Gi

0 Gi

]T
,

ΠiD =
4∑
l=1

λl
[
C̃i

00 + C̃i
j − (C̃ l

00 + C̃ l
j)
]
h
,

ΠH =
4∑
l=1

λl
[
H l H i

]T
.

Proof According to Lemma 3.14 and with the similar manipulation in Lemma 5.2, the
lemma can be proved.

Now it is the position to give the theorem for the computation of the threshold.

Theorem 5.6 Given the system (5.1), residual generator (5.3) whose dynamics is gov-
erned by (5.5), ‖ω(k)‖2 < δω,2, ‖ω(k)‖peak < δω,∞ and the residual evaluation function
(5.14), then the threshold can be set as

Jh,th = (γ̌h,1 + βγ̌h,3)δω,2 + (γ̌h,2 + βγ̌h,4)δω,∞ (5.24)

where β > 0, γ̌h,1, γ̌h,2, γ̌h,3 and γ̌h,4 are the optimum of the constrained optimization
problem:

min γh,1, γh,2 subject to (5.16) - (5.18),

min γh,3, γh,4 subject to (5.21) - (5.23).
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Then the false alarm rate is upper bounded as

FAR ≤ 1

β2
(5.25)

Proof See Theorem 3.15.

Remark 5.2 It is clear that, for the fault-free system

δ2
ω,2 = ‖d(k)‖2

2 + ‖u(k)‖2
2 + ‖u(k) − ur(k)‖2

2.

In many practical cases, the bound of δω,2 is not known. As in literature, the norms of
unknown inputs are assumed to be upper bounded with

‖d(k)‖2 ≤ δd,2, ‖d(k)‖peak ≤ δd,∞,

while ‖u(k)‖2, ‖u(k) − ur(k)‖2 are approximated with

‖u(k)‖e =

√√√√ k∑
j=k−T+1

u(j)Tu(j)

and

‖u(k) − ur(k)‖e =

√√√√ k∑
j=k−T+1

(u(j) − ur(j))T (u(j) − ur(j)),

respectively. Then δ2
ω,2 can be estimated online. Clearly, ‖u(k)‖∞ and ‖u(k) − ur(k)‖∞

can also be estimated online. Hence in practice the threshold can be set as

Jh,th(k) =
√
γ̌2
h,1δω,e(k)

2 +
√
γ̌2
h,2δω,∞(k)2

+β
(√

γ̌2
h,3δω,e(k)

2 +
√
γ̌2
h,4δω,∞(k)2

)
with

δω,e(k)
2 = δ2

d,2 + ‖u(k)‖2
e + ‖u(k) − ur(k)‖2

e

and

δω,∞(k)2 = δ2
d,∞ + ‖u(k)‖2

peak + ‖u(k) − ur(k)‖2
peak.

Hence the threshold is an adaptive one.

Remark 5.3 The assumption of the negative acknowledgement from actuators is for the
purpose of simplifying the derivation of the threshold and improving the fault detection
performance (reducing miss detections of faults), as ‖u(k) − ur(k)‖e can be calculated
exactly. If there is no such acknowledgements, it is difficult to get the knowledge of packet
dropouts of ur(k). Consequently, L1 and L2 should be the same by setting Y1 = Y2 in
Theorem 5.3 and only the estimated upper bound of ‖u(k) − ur(k)‖e can be used in the
computation of thresholds.
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Figure 5.1: Fault detection of NCS: the first evaluated residual signal, β = 5.

5.4 A numerical example

In this section, a numerical example is given to illustrate the effectiveness of the proposed
methods. Consider the following continuous-time system:

Ac =

[ −1.609 6.931
0 −2.303

]
, Bc =

[
2.012 −5.466

0 2.558

]

Ec,f =

[ −1.439 −0.8921
0.7675 0.5117

]
, Ec,f =

[
1
0

]
,

Cc =

[
1 0
0 1

]
, Fc,d =

[
0.1 0
0 0.1

]
, Fc,f = 0.

Assume that Ts = 1s, the transmission time delay τ(k) is a random sequence uniformly
distributed between 0 and Ts, the unknown input d is a white noise with zero mean and 0.1
variance, a step fault f = 2 occurs at t = 500s, the parameter of the logarithmic quanitzer
is δq = 0.12 and the packet dropout probability is αu = αy = 0.05. The reference model is
set as the optimal residual generator of the system without considering the network, i.e.

Ar =

⎡
⎢⎢⎣

0.2000 0.0000 0 0
−2.4000 −0.0000 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Ed,r =

⎡
⎢⎢⎣

0 0
0.0500 −0.0500

0 0
0 0

⎤
⎥⎥⎦ , Ed,r =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,
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5.4 A numerical example

Cr =

[ −3.2044 −3.6298 0 0
−15.4833 13.6684 0 0

]
,

Fd,r =

[ −0.6834 −0.6834
−0.1815 −0.1815

]
.

By applying the method proposed in Theorem 5.3 based on MATLAB LMI Control
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Figure 5.2: Fault detection of NCS: the second evaluated residual signal, β = 5.

Toolbox, the respective optimal L and W are

L1 =

⎡
⎢⎢⎣

0.2523 1.0129
0.2329 0.1656
0.0053 0.0046
0.0031 0.0030

⎤
⎥⎥⎦ , L2 =

⎡
⎢⎢⎣

0.2570 1.0060
0.2371 0.1618
0.0086 0.0011
0.0051 0.0008

⎤
⎥⎥⎦ ,

W 1 =

[ −0.227 −0.073
−0.060 −0.011

]
,W 2 =

[ −0.226 −0.069
−0.059 −0.013

]
,

L3 = L4 = 0,W 3 = W 4 = 0

and γ1,1 = 0.0141, γ1,2 = 0.0424, γ1,3 = 0.05, γ1,4 = 0.0001, γ2,1 = 0.0015, γ2,2 =
0.0101,γ2,3 = 0.013,γ2,4 = 0.0001.

Setting the evaluation window T = 30, Fig. 5.1 and Fig. 5.2 give the simulation results.
The thresholds J1 and J2 are computed based on only the mean values of r1 and r2, i.e.
J1 = ˇγ1,1δω,2 + ˇγ1,2δω,∞, J2 = ˇγ2,1δω,2 + ˇγ2,2δω,∞, respectively. It can be observed that, there
are lots of false alarms in the first 500 seconds. The thresholds J1,th(k) and J2,th(k) are
computed according to Theorem 5.6 with β = 5, such that the FAR is upper bounded
by 4%. As shown in the figures, the number of false alarms is significantly reduced. By
selecting a proper β, the FAR can be guaranteed to be below an acceptable level and at
the same time the miss detections of faults can be reduced.
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5 FD of Networked Control Systems

5.5 Conclusion

In this chapter the FD problem of NCSs considering time varying transmission delays,
packet dropouts and quantization errors was addressed. The design approaches for the
residual generation and evaluation have been given. These network-induced effects have
been first transformed into system uncertainties and stochastic parameters governed by a
Bernoulli process. The dynamics of the residual generator was then characterized in the
framework of MJLSs with both norm bounded and polytopic uncertainties. A method
has been proposed for designing residual generator which can achieve the optmial trade-
off between robustness against network-induced effects and sensitivity to faults. Then a
new residual evaluation approach was proposed for the FD of NCSs. In this approach,
the mean values and variances of the evaluated residual signals have been used to com-
pute the thresholds, such that the FAR can be significantly reduced and upper bounded.
The simulation results have also been given to illustrate the effectiveness of the proposed
approaches.
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6 Simulation Results - Networked
Three-tank System Benchmark

6.1 Description of the three-tank system

The three-tank system has the typical characteristics of tanks, pipelines and pumps used
in chemical industry, and thus it often serves as the benchmark process in laboratories for
process control. The three-tank system introduced in this thesis is shown in Fig. 6.1. It
consists of three cylindrical tanks with the cross section area Ac. The tanks are connected
to each other through cylindrical pipes with the cross sectional area sn. There is an outlet
pipe in tank 2 for the liquid outflow. The outflow liquid goes to the reservoir. There are
two pumps P1 and P2 which pump the liquid to tank 1 and tank 2 with flow rates of Q1

and Q2, respectively. The fluid levels in the three tanks, h1, h2, h3, are measured. If the
liquid level in tank 1 or tank 2 exceeds a maximum level Hmax, the corresponding pump is
automatically switched off. Table 6.1 shows the technical data of the three-tank system.
The so-called component faults such as leakage, plugging in pipes and actuator faults as
well as sensor faults are defined. The control objective is to maintain the liquid levels in
tank 1 and tank 2.

6.1.1 Nonlinear model

Using the incoming and outgoing mass flows under consideration of Torricellies law the
dynamics of the three-tank system is modeled by:

Acḣ1(t) = Q1(t) −Q13(t)

Acḣ2(t) = Q2(t) +Q32(t) −Q20(t)

Acḣ3(t) = Q13(t) −Q32(t)

Q13(t) = a1snsgn(h1(t) − h3(t))
√

2g|h1(t) − h3(t)|
Q32(t) = a3snsgn(h3(t) − h2(t))

√
2g|h3(t) − h2(t)|

Q20(t) = a2sn
√

2gh2(t) (6.1)

where Q1(t), Q2(t) are incoming mass flows and h1(t), h2(t), h3(t) are the liquid levels in
tanks and can be measured. The three circular tanks have the same cross section Ac and
are interconnected via circular pipes with the cross sections sn. The outlet pipe is also
circular with the cross section sn. a1,a2 and a3 are scaling constants and g is the gravity
constant.

Define

x =

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ h1

h2

h3

⎤
⎦ , u =

[
u1

u2

]
=

[
Q1

Q2

]
.
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Table 6.1: Parameters of the three-tank system

Parameters Symbol Value Unit
cross section area of tanks Ac 154 cm2

cross section area of pipes sn 0.5 cm2

max. height of tanks Hmax 62 cm2

max. flow rate of pump 1 Q1max 100 cm3/sec
max. flow rate of pump 2 Q2max 100 cm3/sec
coeff. of flow for pipe 1 a1 0.46
coeff. of flow for pipe 2 a2 0.60
coeff. of flow for pipe 3 a3 0.45

Tank 3� Tank 2�
Tank 1�

A� A�A�

s�n�

Pump 1� Pump 2�

H
� m

�a
�x�

h�2�

h�3�

h�1�

Figure 6.1: Three-tank system

Then (6.1) can be written as follows:

ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t)) (6.2)

where

f(x(t)) =
1

Ac

⎡
⎣ −Q13(t)
Q32(t) −Q20(t)
Q13(t) −Q32(t)

⎤
⎦ ,

g(x(t)) =
1

Ac

⎡
⎣ 1 0

0 1
0 0

⎤
⎦ ,

h(x(t)) =

⎡
⎣ x1(t)
x2(t)
x3(t)

⎤
⎦ .
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6.1 Description of the three-tank system

6.1.2 Linearized model

By using the Taylor series expansion around an operating point with x0 = [x10 x20 x30]
T ,

u0 = [u10 u20]
T and y0 = x0 and neglecting the higher order terms, system (6.2) is linearized

as the following system:

Δẋ(t) = AΔx(t) +BΔu(t)

Δy(t) = CΔx(t) (6.3)

with
Δx = x− x0,Δu = u− u0,Δy = y − y0

and

A =
1

Ac

⎡
⎣ −θ13 0 θ13

0 − (θ32 + θ20) θ32
θ13 θ32 − (θ13 + θ32)

⎤
⎦ ,

B =
1

Ac

⎡
⎣ 1 0

0 1
0 0

⎤
⎦ , C =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

where θ13 = a1sn
√

g
2|x10−x30| , θ32 = a3sn

√
g

2|x30−x20| and θ20 = a2sn
√

g
2x20

. In the above

linearization, the only assumption is made that x10 �= x20 �= x30. By taking x10 = 45,
x20 = 15 and x30 = 30, u10 = 43.1, u20 = 17.1 as the operating point, the linearized model
is given by:

A =

⎡
⎣ −0.0085 0 0.0085

0 −0.0195 0.0084
0.0085 0.0084 −0.0169

⎤
⎦ ,

B =

⎡
⎣ 0.0065 0

0 0.0065
0 0

⎤
⎦ , C =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

The linearized model of the three-tank system is discretized with the sampling time
being Ts = 0.1s. The system matrices of the discrete-time system are given as follows:

Ad =

⎡
⎣ 0.992 0 0.000849

0 0.998 0.000839
0.000849 0.000839 0.9833

⎤
⎦ , Bd =

⎡
⎣ 0.000649 0

0 0.000649
0 0

⎤
⎦ ,

Cd =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , Dd =

⎡
⎣ 0 0

0 0
0 0

⎤
⎦ .

6.1.3 Modeling of faults and disturbances

Following types of faults are presented in the three-tank system:

• Sensor faults: scaling faults from 0% to 100% are defined in all three sensors mea-
suring h1, h2, h3, and they are denoted as f1, f2 and f3, respectively.
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• Actuator faults: scaling faults from 0% to 100% are defined in pump 1 and pump 2.
The faults are represented by f4 and f5, respectively.

The measurement noises in three liquid level sensors are considered as disturbances in
the system. It is possible to incorporate the faults and disturbances in the state space
realization of the system as follows:

Δx(k + 1) = AdΔx(k) +BdΔu(k) + Eff(k)

Δy(k) = CdΔx(k) + Fdd(k) + Fff(k)

Fd =

⎡
⎣ 0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ , d(k) ∈ R

3,

fT = [f1 f2 · · · f5], Ef = [0 Bd] ∈ R
3×5, Ff = [I3×3 0] ∈ R

3×5.

6.1.4 Control of three-tank system

In the benchmark, the control objective is to maintain the liquid levels in tank 1 and tank
2. Hence a nonlinear controller is implemented which decouples the three-tank system into
two independent linear subsystems of the first order and a nonlinear system of the first
order. The controller can be described as follows:

u1 = Q1 = Q13 + Ac(a11h1 + v1(w1 − h1)),

u2 = Q2 = Q20 −Q32 + Ac(a22h2 + v2(w2 − h2))

where a11, a22 ≤ 0, v1, v2 represent two pre-filters and w1, w2 represent the reference signals
of tank 1 and tank 2, respectively. Then the nominal closed loop model is:

⎡
⎣ ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎢⎣

(a11 − v1)
(a22 − v2)

a1sgn(x1(t)−x3(t))
√

2g|x1(t)−x3(t)|−a3sgn(x3(t)−x2(t))
√

2g|x3(t)−x2(t)|
Ac

⎤
⎥⎦

+

⎡
⎣ v1 0

0 v2

0 0

⎤
⎦[ w1(t)

w2(t)

]
.

The linearized closed-loop system around the operating point x10 = 45, x20 = 15, x30 = 30,
u10 = 43.1, u20 = 17.1 is

Δẋ(t) =

⎡
⎣ (a11 − v1) 0 0

0 (a22 − v2) 0
0.0085 0.0084 −0.0169

⎤
⎦Δx(t) +

⎡
⎣ v1 0

0 v2

0 0

⎤
⎦[ Δw1(t)

Δw2(t)

]

+

⎡
⎣ 0.0085 + (a11 − v1) 0 −0.0085 0.0065 0

0 0.0195 + (a22 − v2) 0.0084 0 0.0065
0 0 0 0 0

⎤
⎦ f(t)
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6.2 Benchmark setup

with Δw1 = w1 − x10,Δw2 = w2 − x20. In the benchmark study, the parameters are set as
a11 = a22 = 0, v1 = v2 = 0.01. Then the corresponding discretized system with sampling
time being Ts = 0.1s is

Δx(k + 1) =

⎡
⎣ 0.9990 0 0

0 0.9990 0
0.0008 0.0008 0.9983

⎤
⎦Δx(k) +

⎡
⎣ 0.0009995 0

0 0.0009995
0 0

⎤
⎦[ Δw1(k)

Δw2(k)

]

+

⎡
⎣ −0.0001499 0 −0.0008496 0.0006497 0

0 0.0009495 0.0008396 0 0.0006497
0 0 0 0 0

⎤
⎦ f(k)

Δy(k) =CdΔx(k) + Fdd(k) + Fff(k). (6.4)

6.2 Benchmark setup

The complete simulation of the networked three-tank system is realized in MAT-
LAB/SIMULINK. It consists of two parts: the simulation of the three-tank system and
the simulation of the networks.

6.2.1 Simulation of three-tank system

A nonlinear model of the three-tank system is implemented based on the first principle law
(6.1) in SIMULINK and the sensor and actuator faults are also simulated. Additionally, a
group of component faults are defined, which are

• the leakages in three tanks: leakage in tank 1, leakage in tank 2 and leakage in tank
3, and

• the plugging in three pipes: plugging of Q13, plugging of Q32 and plugging of Q20.

In the following part, these faults are called as f6, f7, f8, f9, f10 and f11, respectively.

6.2.2 Simulation of networks

Two types of networks are simulated: wireless network and wired network. In the remote
FD system, a wireless network is considered where bit errors are typical. While in the FD
of NCSs, a wired networked is applied.

The real-time simulation of network is the current research interest. There are different
tools available, e.g. NS2 [84], NIST Net [6] and Truetime [7]. NS2 provides substantial
support for simulation of TCP, routing, and multicast protocols over wired and wireless
networks, which concentrates on the low level simulation. NIST net network emulator is a
general purpose tool for emulating a variety performance dynamics in IP network. Truetime
is a Matlab/Simulink-based simulator for real-time control systems, which facilitates co-
simulation of controller task execution in real-time kernels, network transmissions and
continuous plant dynamics. It can describe typical features of networks through simulating
communication protocols, such as transmission delays and packet dropouts. Since Truetime
is Matlab/Simulink based, it can be easily integrated with existing Simulink models. Hence
Truetime toolbox is applied to simulate the wired networks in the benchmark.
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6 Simulation Results - Networked Three-tank System Benchmark

Table 6.2: statistical properties of the (8, 8) code. a: with the probability larger than 96%

(0,0.0025] (0.0025,0.005] (0.005,0.0075] (0.0075,0.01]
δi,2 < 0.8374e− 3 < 0.0017 < 0.0025 < 0.0034
δi,4 < 0.1694e− 3 < 0.3443e− 3 < 0.5274e− 3 < 0.7107e− 3
‖Δi(k)‖T a < 0.3557 < 0.5060 < 0.6252 < 0.7241

The wireless network is simulated with the help of Communication Blockset in
SIMULINK, which provides different kinds of models of wireless communication channels
and coding methods.

6.3 Implementation of the remote FD System

In this section, the remote FD system for the closed-loop system (6.4) over time-varying
communication channels is implemented. The reference signals are

w1(k) = 45, w2(k) = 15

and they are known by the remote FD system.
The 8-bit uniform quantizer is applied for all measurements in the source encoder and the

range of the each valid measurement is assumed to be (0, 0.6). The unknown disturbances
d(k) is simulated as a uniform random number in the range of [−0.1, 0.1]. The simulation
time is 1000s. In each simulation, one type of faults is generated at 500s as a step function.

The channel is selected to be a BSC simulated with SIMULINK. The upper bound of

BER, pb(k), is set to be
[

0.01 0.01
]T

, and four reliability classes are considered, i.e.

(0, 0.0025], (0.0025, 0.005], (0.005, 0.0075], (0.0075, 0.01].

In order to illustrate the results, an (8, 8)-code is employed. That means the 8-bit
binary sequence after quantization is directly transmitted without further channel coding.
By selecting β = 5 and T = 10, then according to (4.14), the expectation of the energy
level of Δt(k) is approximated. In Table 6.2, the important statistical properties of the
code are given.

When all the measurements are transmitted over the same channel, i.e. centralized
transmission, according to Theorem 4.4 the optimal residual generator for channel applying
(8, 8)-code are with

L1 =

⎡
⎣ 0.0006 −0.0000 −0.0008

−0.0003 0.0016 0.0007
0.0002 −0.0001 0.0001

⎤
⎦ , L2 =

⎡
⎣ 0.0005 −0.0001 −0.0008

−0.0003 0.0016 0.0007
0.0002 −0.0001 0.0001

⎤
⎦ ,

L3 =

⎡
⎣ 0.0005 −0.0001 −0.0007

−0.0003 0.0015 0.0007
0.0002 −0.0001 0.0001

⎤
⎦ , L4 =

⎡
⎣ 0.0005 −0.0001 −0.0007

−0.0002 0.0015 0.0007
0.0002 −0.0001 0.0001

⎤
⎦ ,

W1 =

⎡
⎣ 8.0171 −0.2082 −5.0109

−0.0696 14.5763 4.6398
−0.1903 1.5287 9.1559

⎤
⎦ ,W2 =

⎡
⎣ 7.1710 −0.3680 −4.7255

−0.1054 14.0571 4.7948
−0.1266 1.7024 8.7467

⎤
⎦ ,
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Figure 6.2: Remote FD of the scaling sensor fault in tank 1, i.e. f1 = 30%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.

W3 =

⎡
⎣ 6.5308 −0.4848 −4.4988

−0.1271 13.6200 4.9044
−0.0827 1.8321 8.4101

⎤
⎦ ,W4 =

⎡
⎣ 5.9338 −0.5920 −4.2805

−0.1451 13.1785 4.9899
−0.0449 1.9521 8.0766

⎤
⎦

and γ = 3.4059.

Fig. 6.2 - Fig. 6.12 show the simulation results. The obtained thresholds are adaptive
ones, and they are adjusted according to the reliability classes of the signals. As shown in
Fig. 6.2 - Fig. 6.4, even small-size sensor faults can be detected in time. From Fig. 6.5
and 6.6, it is known that the remote FD system is not very sensitive to the pump faults,
and only sufficient large pump faults can be detected. Middle-size leakage faults in tank
1 and 2 can be detected, but the leakage fault in tank 3 is insensitive; See Fig. 6.7 - Fig.
6.9. The plugging faults of middle-size are detected; See Fig. 6.10 - Fig. 6.12. The FAR
is always upper bounded by 4%.

When different measurements are transmitted over different channels, i.e. decentral-
ized transmission, according to Theorem 4.5 the optimal residual generator for channels
applying (8, 8)-code are with

L1 =

⎡
⎣ 0.0006 −0.0001 −0.0009

−0.0005 0.0019 0.0006
0.0002 −0.0000 0.0001

⎤
⎦ , L2 =

⎡
⎣ 0.0005 0.0000 −0.0007

−0.0003 0.0016 0.0003
0.0001 −0.0000 0.0001

⎤
⎦ ,

L3 =

⎡
⎣ 0.0005 −0.0001 −0.0008

−0.0004 0.0019 0.0006
0.0001 −0.0000 0.0001

⎤
⎦ , L4 =

⎡
⎣ 0.0006 0.0000 −0.0007

−0.0005 0.0016 0.0003
0.0002 −0.0000 0.0001

⎤
⎦ ,
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Figure 6.3: Remote FD of the scaling sensor fault in tank 2, i.e. f2 = 50%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.4: Remote FD of the scaling sensor fault in tank 3, i.e. f3 = 30%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.5: Remote FD of the scaling fault in pump 1, i.e. f4 = 70%, centralized transmission.
Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is the evaluated
residual signal and the dash line is the threshold Jth.
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Figure 6.6: Remote FD of the scaling fault in pump 2, i.e. f5 = 100%, centralized trans-
mission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is the
evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.7: Remote FD of the scaling leakage fault in tank 1, i.e. f6 = 50%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.8: Remote FD of the scaling leakage fault in tank 2, i.e. f7 = 70%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.9: Remote FD of the scaling leakage fault in tank 3, i.e. f8 = 100%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.10: Remote FD of the scaling plugging fault in Q13, i.e. f9 = 50%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.11: Remote FD of the scaling plugging fault in Q32, i.e. f10 = 70%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.12: Remote FD of the scaling plugging fault in Q20, i.e. f11 = 100%, centralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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6.4 Implementation of the FD of NCSs
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Figure 6.13: Remote FD of the scaling sensor fault in tank 1, i.e. f1 = 30%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.

W1 =

⎡
⎣ 8.5440 0.1473 −5.4158

−0.0612 14.3865 3.3906
−0.3021 0.9741 9.0037

⎤
⎦ ,W2 =

⎡
⎣ 6.2189 0.5715 −4.5564

0.0033 12.4878 0.9929
−0.1993 −0.0874 7.6537

⎤
⎦ ,

W3 =

⎡
⎣ 6.5830 0.0239 −5.2963

−0.0711 14.3853 3.3906
−0.2456 0.9774 9.0000

⎤
⎦ ,W4 =

⎡
⎣ 8.4795 0.7021 −4.7092

−0.0854 12.4892 1.0073
−0.3131 −0.0904 7.6661

⎤
⎦

and γ = 3.0659.
The performance of the remote FD system with decentralized transmission is similar to

that of the centralized one, where the thresholds are also adaptive variables. Fig. 6.13 -
Fig. 6.23 show the simulation results.

6.4 Implementation of the FD of NCSs

In this section, the closed loop system (6.4) is assumed to be networked, where w1(t) and
w2(t) generated by reference generator are sent over networks and the FD system is located
together with the reference signal generator. Since the three-tank system is nonlinear, w1

and w2 are set to be closely around the operating point, i.e.

w1(t) = x10 + sin(20πt), w2(t) = x20 + sin(20πt).

A logarithmic quantizer with δq = 0.12 is applied. Ethernet is simulated with Truetime
in SIMULINK and the probability of packet dropouts is set to be 0.1. The simulation time
is 500s and all types of faults are generated at 250s as step functions. Other settings are the
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6 Simulation Results - Networked Three-tank System Benchmark
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Figure 6.14: Remote FD of the scaling sensor fault in tank 2, i.e. f2 = 50%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.15: Remote FD of the scaling sensor fault in tank 3, i.e. f3 = 30%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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6.4 Implementation of the FD of NCSs

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

Time [s]
M

ea
su

re
m

en
t (

pl
an

t)
 [m

]

 

 

0 200 400 600 800 1000
0

2

4

6

Time [s]

R
es

id
ua

l e
va

lu
at

io
n

 

 
||r||

e

J
th

h
1

h
3

h
2

Figure 6.16: Remote FD of the scaling fault in pump 1, i.e. f4 = 70%, decentralized trans-
mission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is the
evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.17: Remote FD of the scaling fault in pump 2, i.e. f5 = 100%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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6 Simulation Results - Networked Three-tank System Benchmark
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Figure 6.18: Remote FD of the scaling leakage fault in tank 1, i.e. f6 = 50%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.19: Remote FD of the scaling leakage fault in tank 2, i.e. f7 = 70%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.20: Remote FD of the scaling leakage fault in tank 3, i.e. f8 = 100%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.21: Remote FD of the scaling plugging fault in Q13, i.e. f9 = 50%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.22: Remote FD of the scaling plugging fault in Q32, i.e. f10 = 70%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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Figure 6.23: Remote FD of the scaling plugging fault in Q20, i.e. f11 = 100%, decentralized
transmission. Upper figure: the measured liquid levels in tanks. Lower figure: the solid line is
the evaluated residual signal and the dash line is the threshold Jth.
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6.4 Implementation of the FD of NCSs
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Figure 6.24: FD of NCSs: the scaling sensor fault in tank 1, i.e. f1 = 30%. The solid line is
the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.

same with the remote FD system. From the simulation, it is known that the transmission
delay is not larger than 0.001s, which is smaller than the sampling time Ts = 0.1s.

According to Theorem 5.3, the optimal L1, L2,W1,W2 for (6.4) are

L1 =

⎡
⎢⎢⎢⎢⎣

0.0164 −0.0022 0.0060
−0.0011 0.0125 0.0031
0.0047 0.0026 0.0032
−0.0831 −0.0272 −0.0702
−0.0415 −0.0292 −0.0462

⎤
⎥⎥⎥⎥⎦ , L2 =

⎡
⎢⎢⎢⎢⎣

0.0154 −0.0018 0.0037
−0.0006 0.0113 0.0022
0.0045 0.0025 0.0029
−0.0259 −0.0081 −0.0181
−0.0128 −0.0055 −0.0098

⎤
⎥⎥⎥⎥⎦ ,

W1 =

⎡
⎣ −4.0690 −0.0718 −2.6475

−0.3527 −3.6963 −1.8636
2.2891 0.9007 3.1678

⎤
⎦ ,W2 =

⎡
⎣ −4.28560.3466 − 1.7324

0.1320 − 4.8241 − 1.4417
1.53910.21524.5486

⎤
⎦ ,

and L3 = L4 = W3 = W4 = 0. Then γ1,1 = 0.0976, γ1,2 = 0.080, γ1,3 = 0.0473, γ1,4 = 0.01,
γ2,1 = 0.0788, γ2,2 = 0.079, γ2,3 = 0.0401, γ2,4 = 0.01, and γ3,1 = 0.0736, γ3,2 = 0.081, γ3,3 =
0.0312, γ3,4 = 0.01.

Fig. 6.24 - Fig. 6.34 shows the simulation results, where all three evaluated residual
signals are displayed for each fault case. The thresholds Je are computed based on the
mean values of residual signals, while Jth are computed according to Theorem 5.6 with
β = 4 and T = 10. The false alarms are significantly reduced with Jth and FAR is
guaranteed to be smaller than 6.25%. It can be seen that, the FD system is insensitive to
actuator faults and leakage faults in tank 1 and tank 2. Other types of faults of small-size
or middle-size can be detected in time.
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6 Simulation Results - Networked Three-tank System Benchmark
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Figure 6.25: FD of NCSs: the scaling sensor fault in tank 2, i.e. f2 = 50%. The solid line is
the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.26: FD of NCSs: the scaling sensor fault in tank 3, i.e. f3 = 100%. The solid line
is the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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6.4 Implementation of the FD of NCSs
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Figure 6.27: FD of NCSs: the scaling fault in pump 1, i.e. f4 = 100%. The solid line is the
evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.28: FD of NCSs: the scaling fault in pump 2, i.e. f5 = 100%. The solid line is the
evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.29: FD of NCSs: the scaling leakage fault in tank 1, i.e. f6 = 100%. The solid line
is the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.30: FD of NCSs: the scaling leakage fault in tank 2, i.e. f7 = 100%. The solid line
is the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.31: FD of NCSs: the scaling leakage fault in tank 3, i.e. f8 = 50%. The solid line
is the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.32: FD of NCSs: the scaling plugging fault in Q13, i.e. f9 = 50%. The solid line is
the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.33: FD of NCSs: the scaling plugging fault in Q32, i.e. f10 = 50%. The solid line is
the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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Figure 6.34: FD of NCSs: the scaling plugging fault in Q20, i.e. f11 = 50%. The solid line is
the evaluated residual signal, the dash line is Jth and the dash-dot line is Je.
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7 Conclusions and Future Work

The main concern of the presented work has been the investigation of fault detection
problem, where networks have been introduced into systems. Therefore two observer-
based FD schemes have been developed: the remote FD system and the FD system of
NCSs. The remote FD system is suitable for detecting faults in a running technical system
with known control laws, where the FD system is located at a remote site. The FD system
of NCSs is for the case when the technical system itself is networked and the FD system
is located together with the controller.

In order to design FD systems, the network-induced effects have been analyzed and
modeled systematically from the view point of control engineering and integrated into a
state-space model of technical systems. The time-varying transmission delays have been
transformed into polytopic uncertainties and the quantization errors have been transformed
into norm-bounded uncertainties or disturbances according to the type of the applied
quantizers. The packet dropouts have been modeled as a Markov chain and then the system
encountering packet dropouts has been described through an MJLS. The bit errors have
been characterized as stochastic unknown inputs with constant or time-varying distribution
matrices, which is achieved by analyzing the statistical properties of coding mechanisms
of communication channels.

The presented optimization index and the definition of FAR are the baseline for the
design of both FD schemes. The designed residual generators are going to achieve an
optimal trade-off between the sensitivity to system faults and the robustness against system
disturbances and network-induced effects. A model matching strategy has been applied
for this purpose, where the reference model is an optimal residual generator capturing
the proper fault dynamics and disturbance dynamics of the considered system. A new
way to build up the reference model for MJLSs has been proposed by considering their
statistical properties. The proposed residual evaluation methods for both schemes are able
to guarantee the desired FAR by considering the means and variances of residual signals
for the threshold computation, which are novel and different from the existing methods in
literature. The variance of the technical system with stochastic parameter changing, e.g.
MJLS, has been analyzed, which is ignored in the control problem but plays an essential
role in the FD problem. Due to lack of knowledge of disturbances in technical systems,
only the upper bounds of the means and variances have been derived in both schemes.
Hence the FAR is obtained for the worst case. The design of residual generators and
the computation of means and variances have been formulated as convex optimization
problems and can be efficiently solved with the LMI Toolbox in MATLAB.

The designed remote FD scheme is applicable for the long distance monitoring of techni-
cal systems with centralized or decentralized data transmission via networks encountering
bit errors, where a proper error control strategy is applied. Since the closed-loop dynam-
ics of the technical system have been considered, only the measurements are required to
be transmitted. This is an additional advantage towards reducing data transfer amount
via networks. The influence of bit errors on control and FD system design was not yet
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7 Conclusions and Future Work

intensively studied in literature. In the proposed scheme, the reliability information of the
communication network represented by BER has been converted into structure information
of the state-space form of technical systems by investigating the energy level of transmis-
sion errors caused by bit errors and quantization errors. The reliability classes have been
defined to classify BERs. Based on them, the whole system has been modeled as a switch-
ing system in case of centralized transmission and a system with polytopic time-varying
parameters in case of decentralized transmission, respectively. The obtained residual gen-
erator and threshold are adaptive to the reliability information of networks. The proposed
scheme shall also be applicable for large systems with spatially located sensors where the
decentralized data transmission is necessary.

The FD system of NCSs is suitable for monitoring of networked technical systems, where
the connections between actuators, sensors and controller/FD are established with com-
munication channels. In this scenario the design has taken transmission delays, packet
dropouts and quantization errors into account. According to the packet received, four sit-
uations have been defined and the transitions between them are described by a Bernoulli
process. Hence the design of FD system has been formulated in the framework of MJLSs
with uncertainties. The residual generator has been designed to have network-dependent
parameters. The residual signals have been evaluated separately and the obtained thresh-
olds are adaptive variables which depend on the control inputs and packet dropouts. It is
also possible to take bit errors into account in the design procedure with cost of complicated
formulation and high computation efforts.

A networked three-tank system benchmark was established to test and illustrate the ef-
fectiveness of the proposed schemes. The networks were simulated with Truetime Toolbox
and Communication Blockset in MATLAB/SIMULINK environment. For the demon-
stration of the remote FD system, a BSC wireless communication channel was employed
with additional source (uniform quantizer) and channel coding mechanism. Four reliabil-
ity classes were defined to characterize the quality of communication channels. With the
(8, 8)-code, the eleven different faults, including actuator faults, sensor faults and compo-
nent faults, were detected with FAR ≤ 4%. In the FD system of NCSs, the Ethernet
provided by Truetime Toolbox was applied to connect the controller/FD, actuators and
sensors, and a logarithmic quantizer was used. The faults were detected, except the one in
Pump 2. The FAR was guaranteed to be below 6.25%. For different types of faults, three
evaluated residual signals have different patterns, which may be useful for the purpose of
fault isolation. It can be observed from the simulation results that, without considering
the variances of residual signals there could be lots of false alarms, and with the proposed
residual evaluation methods the amount of false alarms was significantly reduced and the
FAR was upper bounded.

As possible future work, some of the obtained results can be extended. Firstly, the
assumption of the initial mode distribution of Markov chain can be relaxed by developing
new bounded real lemma of MJLSs, such that the variance of residual signals can be
computed with any given initial distribution. Secondly, an alternative design approach
of optimal residual generators can also be derived which is directly related to the unified
solution proposed in [19] and does not concern the model matching problem. Thirdly, the
system disturbance is assumed to be deterministic, but it can also be stochastic. Then
the design of FD system becomes a pure stochastic problem and new residual generation
and evaluation methods should be designed. The Kalman filter and general likelihood
theory [18] could be possible methodologies. Besides, there are some works on the topic
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of fault tolerant or reliable control [120] over networks published very recently. In [63] the
active fault tolerant scheme for system with transmission delays has been proposed. In
[98] a fault tolerant control approach has been formulated in the framework of MJLSs. In
[78] the adaptive fault diagnosis observer has been designed to estimate the fault shape
for the purpose of fault identification and faut tolerant control of NCSs. It could be an
interesting topic for future work. Another challenging research direction is to investigate
the FD problem of nonlinear systems with and without networks [89], which is the one of
the hottest topics in the control society.
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