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Abstract 

Dynamic state estimation of power systems is essential for wide area control purposes. 

In this thesis, we present the results of dynamic state estimation for a grid-connected 

microgrid including two synchronous generators and three loads. The Unscented 

Kalman filter and the Extended Kalman filter are implemented using a classical 

generator model connected to a Thevenin equivalent of the remainder of the microgrid. 

The model is used to estimate the six states variables of the generator; namely, rotor 

angle, speed variant, d- and q- axis transient voltages, d-axis damper flux, and q-axis 

second damper flux. Both real power and reactive power are used as measurements in 

our state estimation algorithm. The estimation results are compared with the true values 

to demonstrate the accuracy of the state estimator. In addition to data loss or delay, 

sensor measurements may include outliers that distort state estimation. We utilized the 

Generalized Maximum Likelihood-extended Kalman filter (GM-EKF), as a robust 

estimator, which exhibits good tracking capabilities suppressing the effects of bad data. 

We also used two methods of state estimation on UKF to deal with bad data. 

Simulation results obtained from the UKFs are compared with those of GM-EKF. We 

present simulation results at a high frequency of 1 kHz of state estimation for different 

scenarios that include normal operation, fault at Point of Common Coupling, loss of 

generator, and loss of load. We also developed a scheme to use delayed data in Kalman 

filter estimation and used it to simulate the effect of data loss and/or delay in the 

communication system of the microgrid. For the same scenarios, we also present 

simulation results at 50 Hz, which is compatible with Phasor Measurement Units, 

including bad data as well as data loss or delay.  
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CHAPTER 1 INTRODUCTION 

 

1.1 BACKGROUND 
 

Conventional power systems are facing the problems of gradual depletion of fossil fuel 

resources, poor energy efficiency and environmental pollution. The current trend is 

moving to distributed power generation using non-conventional energy sources such 

as natural gas, bio gas, wind power, solar photovoltaic cells, fuel cells, combined heat 

and power systems, microturbines, and Stirling engines and their integration into the 

utility distribution network. The resources used in this distributed generation (DG) are 

called distributed energy resources.  

A microgrid is a single, controllable, independent power system comprising DG, load, 

energy storage, and control devices, in which DG and ES are directly connected to the 

user side. A microgrid can be considered as a controlled cell that provides many 

advantages, such as reduced feeder loss and higher local reliability. Being capable of 

autonomous control, protection, and management, a microgrid can operate either in 

parallel with the main grid or in an intentional islanded mode.A microgrid is a small 

electric power system that incorporates generation, transmission, and distribution, and 

can achieve power balance and optimal energy allocation over a given area, or as a 

virtual power source or load in the distribution network. Compared with traditional 

transmission and distribution networks, a microgrid has a much more flexible 

structure.  
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It can consist of one or more virtual power plants to meet the demand of a load center, 

which can be offices, factories, or remote residences where the traditional electricity 

supply is expensive.  

1.2.1 LITERATURE REVIEW ON STATE ESTIMATION 

State estimation has been a fundamental function in power system operation. It is a 

driving force in some key operations such as contingency analysis, optimal power flow, 

and economic dispatch. Static state estimation using measurements from supervisory 

control and data acquisition(SCADA) is important for power system monitoring and 

provides input data for applications such as automatic generation control. However, state 

estimation may not be sufficient for good system monitoring as power systems becomes 

more dynamic. Therefore, dynamic state estimates obtained through real-time dynamic 

state estimation have become essential. The use of these models together with Kalman 

filters has been widely studied in the literature. In addition, the introduction of high speed 

phasor measurement units (PMUs) has made the use of dynamic models with a Kalman 

filter more effective in dynamic state estimation. 

Peng et al. investigated the feasibility of applying the Extended Kalman Filter (EKF) 

to a 9 bus-3-generator system using a second order model of a synchronous generator [1]. 

They obtained estimates of the dynamic states of a power system e.g. generator rotor 

angle and generator speed, instead of the static states of voltage magnitudes and phase 

angles. For problem formulation, they presented a simple system with one machine 

feeding an infinite bus through two parallel lines. Measurements of bus voltage and 

phase angle were taken at the generator terminal. A classical model composed of a 

voltage source in series with an impedance was used for the generator. They showed that 
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the Kalman filter converges quickly and accurately estimates the dynamic states during 

the system transients. They also presented dynamic state estimation using the EKF in the 

presence of a small disturbance and a large disturbance for a multi-machine test system. 

They showed that the performance of the EKF is affected by measurement characteristics 

such as sampling rate and measurement noise level. They also investigated the EKF 

performance against sampling rate and found a lower rate limit below which DSE 

performance deteriorates. In addition, the EKF was successful in dealing with 

measurement noise having SNR level even up to 40%. All the results confirmed 

successful implementation of communication and control are tightly coupled in NCS and 

cannot be considered independently. EKF in dynamic state estimation is feasible.   

Qi et al. studied an unscented Kalman filter(UKF) with enhanced numerical stability 

[2]. In order to enhance numerical stability of the UKF for dynamic state estimation, a 

new UKF with guaranteed positive semi-definite estimation error covariance (UKF-GPS) 

was proposed. The proposed method was compared with five published methods 

including UKF-schol, UKF-ĸ, UKF-modified, UKF-∆𝑄 and the square root unscented 

Kalman filter. Both the EKF and the UKF can suffer from the curse of dimensionality 

which can adversely affect performance. Although the classic UKF has good 

performance for small systems, its performance deteriorates for large systems, such as 

large power systems. Reference [2] observed that numerical stability is the main 

limitation of the UKF. The UKF algorithm requires the calculation of the square root of 

the error covariance matrix. When the error covariance matrix was propagated, it might 

lose its positive definiteness and its square root matrix cannot be calculated. A Western 

System Coordinating Council (WSCC) 3-machine 9-bus system and a Northeast Power 
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Coordinating Council (NPCC) 48-machine 140-bus system were used as the test bed for 

performance analysis of the proposed UKF-GPS method along with the extended 

Kalman filter. For the WSCC system, no numerical stability problem was encountered 

and all methods performed well. However, for the NPCC system the EKF failed to 

converge and encountered numerical stability problems. In addition, UKF-schol, UKF-ĸ, 

UKF-∆𝑄 had large estimation errors. UKF with a guaranteed positive definite error 

covariance matrix was found to perform well in almost all estimation cases.  

E. Ghahremani and I. Kamwa utilized a single machine infinite bus (SMIB) test bed to 

evaluate an EKF based estimator with missing input information [3]. Two different 

approaches were presented for dynamic state estimation of a power system including a 

synchronous generator. The first approach was a traditional EKF using PMU data. 

Simulation results showed appropriate estimation accuracy for a saturated fourth-order 

generator connected to infinite bus, with process and measurement noise. Traditional 

EKF requires that all input data be available. However, this may not always be the case 

in practice. For example with brushless exciters, the field voltage cannot be easily 

measured from the power plant control room. To address this problem, the extended 

Kalman filter with unknown input was proposed for identifying and estimating the states 

and the unknown inputs of the synchronous machine simultaneously. The robustness and 

effectiveness of the proposed method ware checked using various kinds of field voltages 

and torque inputs ranging from step to ramp signals. In addition, the proposed method 

was found to perform successfully under network fault condition with additive process 

and measurement noise.  
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E. Ghahremani and I. Kamwa used UKF for online state estimation of synchronous 

generator in SMIB configuration using PMU measurements [4]. In classic state 

estimation, such as in the extended Kalman filter, linear approximation of the system 

may introduce errors in estimation results. To overcome the drawbacks of the EKF, the 

UKF was used to estimate and predict states of a synchronous machine using PMU 

quantities. The UKF algorithm propagates the probability density function of a random 

variable which is accurate up to the second order statistics. The UKF based scheme 

provided high quality results in comparison with EKF in terms of robustness, speed of 

convergence with different noise levels. Furthermore, good estimation results were 

obtained under grid fault conditions.  

Linawati et al. proposed a hybrid observer scheme for power system [5]. To estimate 

the state variables, linear observers based on linearized power system model were 

designed. However, this introduces steady-state estimation error when applied to 

nonlinear power system models that can make the estimation results useless.  

Although the design of a nonlinear observer can be a possible solution of this problem, 

the derivation of nonlinear observer is tedious and the observer can be ineffective for 

very high-order system. For power system synchronous machine can be of 6
th

 order or 

more. Reference [5] presented a hybrid estimation scheme for a 6
th

 order synchronous 

generator. The 6
th

 order model was first decoupled into a 3
rd

 order non-linear subsystem 

and a 3
rd

 order linear subsystem. A low-order nonlinear observer and a low order linear 

observer were designed. The resulting hybrid observer was found to perform well both 

under steady-state condition and transient conditions. Their approach provided nonlinear 

state estimation for very high order systems.  
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1.2.2  LITERATURE REVIEW ON NETWORKED CONTROL SYSTEM 

Networked control systems (NCSs) have been a major research focus in academia as 

well as in industry for many decades. In NCS, both wired and wireless networks can be 

used. Wireless networks play an important role in distributed control applications. 

They allow fully mobile operation, fast deployment and flexible installation. However, 

there are some problems associated with NCS that require careful consideration. 

Communication and control are tightly coupled in NCS and cannot be considered 

independently. Data must arrive at their destination in time to be used for control. 

Packet losses and delays of the sensor data are very common because of collision and 

transmission errors. This loss of data can complicate state estimation using a Kalman 

filter.  

Kalman filtering in the presence of packet losses and time delay has been studied in 

several papers. Sinopoli et al. investigated the statistical convergence properties of the 

error covariance matrix with intermittent observations [6]. They modeled the arrival of 

an observation as a random Bernoulli process whose parameters are related to the 

characteristics of the communication channel. The main contribution of [6] was to 

show that the mean error covariance is always finite if the probability of arrival of an 

observation exceeds a critical Bernoulli parameter value that depends on the 

eigenvalues of the state matrix and on the output matrix. The authors derived an upper 

and a lower bound on the critical value and showed that they are tight in some special 

cases.  

M. Micheli and M. I. Jordan proposed a Kalman filter based state estimation 

algorithm [7]. Noisy measurements occurred at discrete times with Poisson arrivals. 
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Such a system can be an ideal example for a network with a large number of sensors 

that are not synchronized and the waiting time between two consecutive measurements 

is an exponential random variable.  

The sequence of estimation error covariance matrices is not deterministic, but 

stochastic process itself. The stochastic process is homogeneous Markov process. The 

authors described the computation of the statistical properties, which depend on the 

Poisson sampling rate and system dynamics. They determined a lower bound on the 

sampling rate which keeps the estimation error covariance below a threshold value.  

Liu and Goldsmith studied Kalman filtering with random partial observation losses 

[8]. They proposed Kalman filter update equations with partial observation 

measurements. The error covariance matrix of the Kalman filter is stochastic in nature 

with partial measurements; the filter depended on the random packet arrivals of the 

sensor measurements, which can be lost or delayed over communication channel. The 

communication channel must guarantee a sufficient amount of sensor measurements in 

order to ensure the stability of the Kalman filter. Reference [8] investigated the 

statistical convergence properties of the error covariance matrix iteration as a function 

of sensor measurements. A throughput region of measurements was found for which 

error covariance matrix converges. In addition, a region of sensor measurements was 

obtained where state estimation error becomes unbounded. The expected error 

covariance matrix must be bounded both from above and from below for the Kalman 

filter to work.   

L. Shi and L. Qiu investigated discrete time state estimation over a network [9]. 

Two cases were analyzed. In the first case, the sensor sends its measurement packets 
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over a packet dropping network. Later they derived the minimum packet arrival rate for 

which certain performance is guaranteed at the remote estimator. In the second case, 

the network does not drop any packets but the sensor has the freedom in sending or not 

sending the data packet so as to reduce cost. Sending less measurement data at the 

estimator requires less bandwidth of channel and less power is consumed. Therefore, 

there is a tradeoff between cost and estimator performance. The authors obtained a 

unique packet sending rate that provides the optimal tradeoff between the cost of the 

sensor and the estimation error of the estimator.  

1.2.3 LITERATURE REVIEW ON ROBUST STATE ESTIMATION 

In power systems, sudden load changes may lead to sudden changes of states. Sudden 

load changes along with network topology errors may result in outliers in 

measurements or bad data. The outliers can degrade the performance of state 

estimators, resulting in estimation errors. Observation redundancy is necessary for an 

estimator to suppress the effects of outliers in a system. In practice, more sensors are 

required to achieve this observation redundancy. Therefore, it is required to detect the 

outliers or bad data for reliable state estimation.  

Numerous papers have addressed bad data detection in last few decades. Mili et al. 

provided a comparative assessment of the ''post-estimation'' identification methods, 

concentrating on evaluating the techniques able to identify bad data [10]. The 

techniques were divided into three classes: (a) identification by elimination, (b) non-

quadratic criteria, and (c) hypothesis testing identification. The three classes were 

explored and compared both theoretically and practically. Experimental results were 

acquired through simulations performed on four different power systems. Three types 
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of bad data were considered: non-interacting, interacting and unidentifiable. The main 

weakness of all of these approaches resulted from the fact that they used detection tests 

which was based on least squares residuals prone to the masking effects of multiple 

bad data. 

We summarize their review next: 

a) Identification by elimination is a continuation of the traditional bad data 

detection technique based on the residual vector. A list of candidate bad data is 

selected first on the basis of a normalized residual vector, then successive 

cycles of elimination-estimation-detection are performed until the bad data is 

eliminated. The main drawback of this approach is its high computational load 

which is not suitable for online implementation.  

b) Non-quadratic criteria for bad data detection are part of the state estimation 

algorithm. Suspected measurements are rejected based on the magnitude of 

their residuals; the larger the magnitude, the larger was the degree of rejection. 

The method is simple but exhibits slow convergence or even divergence.  

c) Hypothesis Testing Identification (HTI) comprises three steps. First a standard 

detection test is utilized to detect bad data, then the detected bad data are 

arranged in decreasing values of normalized residuals. A list of suspected 

measurements is drawn up and an estimate of the measurements error vector is 

computed. A threshold is computed on the basis of the variance of the 

estimated measurements error vector and on a fixed risk factor. The estimated 

measurements error vector is compared with the threshold value for bad data 

detection. HTI can detect all bad data in a single step and can even detect 
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strongly interacting bad data. However, HTI has a higher computation al load 

that both non-quadratic criteria and identification by elimination.    

E. Handschin et al. addressed the problem of detection and identification of bad data 

and structure error [11]. The solutions of bad data and structure error problems were 

provided on the basis of residual analysis and a non-quadratic estimation criterion. The 

tradeoffs between these methods were compared and presented. The comparison helps 

a designer to decide which combination will fit their particular needs. New bad data 

analysis techniques were also provided which enables (1) evaluation of bad data 

spreading effect leading to the concepts of ''interacting- non-interacting'' bad data and 

''local redundancy'' and (2) calculation of the probability of detecting bad data and false 

alarm. ''Ordered residual search'' was presented as an approach for dealing with non-

interacting bad data. The weighted residuals were arranged in descending order of 

magnitude and the measurement with largest residual was removed first. The results of 

Weighted Least Squares (WLS) estimation with updated measurement vector were 

passed through the detection schemes. If bad data was still detected, the measurement 

with the second largest residual was removed, and this process goes on. For dealing 

with multiple interacting bad data, the method of non-quadratic error criteria was 

suggested. However, the large number of interacting bad data limited the use of non-

quadratic error criteria.  

Because of the drawbacks of standard bad data detection techniques and the 

masking effects of multiple bad data, several researchers have proposed methods for 

using the existing bad data after rectifying them. Netto et al. developed a robust 

extended Kalman filter in order to estimate rotor angle and rotor speed of synchronous 
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generators of a power system [12]. The EKF is able to process the predicted state 

vector and PMU measurements to track system dynamics faster when batch mode 

regression form is used. A new Generalized Maximum Likelihood extended Kalman 

filter (GM-EKF) was developed and was found exhibiting good statistical efficiency 

under Gaussian process and measurement noises. The use of Huber cost function 

facilitated in achieving good statistical efficiency of GM-EKF. GM-EKF estimator is 

capable of bounding the influence of vertical outliers and bad leverage point, which are 

identified by projection statistics [13]. The state estimation error covariance matrix was 

derived from covariance matrix of total influence function of GM estimator [14].As a 

case study, the IEEE 39 bus was used and robust GM-EKF estimator and was found to 

exhibit good tracking capabilities under Gaussian process and observation noise while 

suppressing observation outliers.  

Gandhi and Mili proposed a new robust Kalman filter, generalized maximum 

likelihood Kalman filter (GM-KF), that bounds the influence of outliers [16]. A new 

structural outlier was also considered along with outliers in process and observation 

noises. As a first step of GM-KF, the classical approach of Kalman filter was converted 

into a batch mode regression form. In this formulation, both observation and 

innovation outliers are seen as vertical outliers and structural outliers as bad leverage 

points [15]. Since an M estimator is not robust to bad leverage points, a GM- estimator, 

which is robust, was used [15-18]. Later, a prewhitening procedure utilizing a robust 

estimator of location and covariance, such as projection statistics, was considered. 

Projection statistics uncorrelate the noise when outliers are there in predictions and 

observations. An iteratively re-weighted least squares algorithm, in which residuals are 



12 
 

 
 

standardized utilizing robust weights and scale estimates, was implemented to solve 

unconstrained optimization in the GM-estimator which yields robust estimates of states 

suppressing all types of outliers. Finally, the error covariance matrix for GM-KF was 

derived from an influence function.  

Zhao et al. proposed a robust dynamic state estimator that combines historical 

measurements obtained from SCADA system with PMU and improves the estimation 

accuracy [19]. A fusion method called fusion measurements based time-variant state 

transition matrix updating was proposed to incorporate present and historical 

measurements from SCADA and PMU into the estimation. Results from the method 

with a new state accuracy based weighting function were incorporated in a new scheme 

which increases the robustness when the system encounters a sudden and unexpected 

load change. Three IEEE test systems under normal and dynamic operating conditions 

were considered to demonstrate the effectiveness of the method.  

Shih and Huang proposed a computation algorithm that incorporates an exponential 

function to increase robustness of dynamic state estimator [20]. An exponential weight 

function consisting of the absolute residual vector was formulated such that anomaly 

condition can be taken into account. When any measurement with significant deviation 

is encountered, the absolute residual vector is increased. The inversion of this vector 

leads to a small value that helps to suppress the influence of outlier in measurement. 

On the other hand, if the residual vector is small, the value of the weight function 

approaches unity and the weight function does not diverge. This method is simple, and 

easy to implement but enhances the sensitivity and reliability of the state estimation. 
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1.3 THESIS CONTRIBUTION AND ORGANIZATION 

In this thesis, we examine dynamic state estimation for a grid-connected microgrid 

including two synchronous generators and three loads. We considered state estimation 

using the EKF, the UKF, the GM-EKF and two robust UKF implementations. The 

Kalman filters were designed using a sixth order model of the synchronous generator 

together with a Thevenin equivalent of the remainder of the microgrid. The microgid 

was simulated using the MATLAB SimPower Toolbox. 

For the EKF and UKF, we first present state estimation results for the following 

scenarios with a sampling frequency of 1 kHz: (1) normal microgrid operation, (2) a 

three-phase-to-ground fault at the point of common coupling (PCC) (3) loss of 

generator, (4) loss of load, (5) packet loss or delay, and (6) bad data in the 

measurements. We then present results for a robust UKF and the GM-EKF for the first 

four scenarios, with bad data and packet loss or delay, at the phasor measurement unit 

(PMU) frequency of 50 Hz. 

To deal with packet drop and time delay, we propose an approach that utilizes the 

delayed measurements in state estimation. To deal with bad data, we use the GM-EKF 

and two robust UKFs. The first robust UKF replaces the bad data with the last 

uncorrupted measurement while the second replaces the bad data with the predicted 

measurement. To allow simulation using the lower sampling frequency of 50 Hz, we 

use a second order Runge-Kutta approximation, whereas the simpler Euler 

approximation was sufficient at the higher 1 kHz frequency. It was also necessary to 

use several iterations of the KF predictor between sampling points in scenarios other 

than normal operation. 
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We compare the performance of the EKF and the UKF to the performance of robust 

state estimators. We also compare the GM-EKF to the robust UKFs. As expected, 

robust filters perform better than the standard EKF and UKF in the presence of bad 

data. More significantly, both robust UKF estimators perform better that the GM-EKF.  

The thesis is organized as follows. Chapter 2 describes the microgrid model under 

study. Chapter 3 reviews the synchronous generator model. Chapter 4 contains a 

description of the unscented KalmanFilter (UKF) and the extended Kalman filter 

(EKF). A brief overview of networked control systems (NCS) is provided in Chapter 5. 

Chapter 6 discusses robust state estimation using the GM-EKF and the robust UKFs. 

Simulation results for the microgrid under normal operating conditions and for a 

variety of abnormal conditions are shown in Chapter 7. Conclusions and future work 

are presented in Chapter 8.  
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CHAPTER 2 MICROGRID 

 

2.1  BACKGROUND 

In recent years, environmental pollution, air quality and other issues have become 

increasingly prominent, which have a great relationship with the extensive use of fossil 

fuels. Coal, oil are non-renewable resources and will be used up by mankind one day. 

Therefore, to develop and use renewable new clean energy, and convert these clean 

energy into electrical energy, which can not only increase the diversity of energy use, 

but is also an inevitable choice to solve the problems of increasing depletion of fossil 

energy, serious environmental pollution and other issues. The important feature of 

traditional conventional power grid is that the grids are connected together which is 

called interconnected grid system. The main advantage of this centralized grid system 

is enhanced efficiency of energy use. There are some significant drawbacks of a 

conventional microgrid. These are high costs, operational difficulties, difficulty in 

meeting user's increasing requirements for safety and reliability [22]. 

Microgrids are small-scale, LV CHP supply networks designed to supply electrical 

and heat loads for a small community. Microgrid is essentially an active distribution 

network because it is the conglomerate of DG systems and different loads at 

distribution voltage level. The generators or microsources employed in a Microgrid are 

usually renewable/non-conventional DERs integrated together to generate power at 

distribution voltage. The microsources must be equipped with power electronic 

interfaces (PEIs) and controls to maintain the specified power quality and energy 

output. The control facility allows Microgrid to present itself to the main utility power 
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system as a single controlled unit that meets local energy needs for reliability and 

security [23]. 

The most important differences between a microgrid and a traditional power grid are 

as follows: 

(a) The traditional power grids have much more capacity than that of microgrids. 

(b) Power generated at distribution voltage can be directly fed to utility distribution 

network. 

(c) Microgrids are usually installed closed to the customer premises. Therefore, it can 

reduce line losses significantly. 

2.2  HISTORY 

The concept of microgrid can be traced back to 2001. In 2001, Professor R.H. Lasseter 

of the University of Wisconsin-Madison proposed the concept of the “microgrid.” 

Later, the Consortium for Electric Reliability Technology Solutions (CERTS) and the 

European Commission Project Micro-Grid gave definition of microgrid. 

In 2002, the National Technical University of Athens (NTUA) built a microgrid for 

tests on the control of distributed resources and load with multiagent technology. In 

2003, the University of Wisconsin established a small laboratory microgrid (NREL 

Laboratory Microgrid) with a capacity of 80 kVA, for tests on the control of various 

types of distributed resources. Multiple demonstration projects were built across the 

world, including the 7.2 kV microgrid in Mad River Park, Vermont, USA; the 400 V 

microgrid in Kythnos Islands, Greece; as well as the Aichi, Kyotango, and Hachinohe 

projects in Japan.In 2004, the CESI RICERCA test facility was built in Milan, Italy for 

steady-state and transient operation tests and power quality analysis. The Imperial 
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College London control and power research center was set up in London, UK for 

distribution network prototype tests in 2005.  

In 2006, Tsinghua University began studies on the microgrid and established a 

laboratory microgrid encompassing DG, ES, and loads utilizing the facilities in the 

National Key Laboratory on Power System and Generating Equipment Safety Control 

and Simulation under the Department of Electrical Engineering. In 2008, Tianjin 

University and Hefei University of Technology conducted tests and studies on the 

microgrid. Tianjin University studied on the scientific dispatch of energy resources for 

improving energy efficiency and reliability. Hefei University of Technology focused 

on operation, control and energy management. In 2010, the State Grid Corporation of 

China (SGCC) built a demonstration project in Zhengzhou for study on operation 

control of a microgrid combining distributed PV (photovoltaic) generation and energy 

storage and engineering application [24]. Several other projects are going on for 

microgrid around the world. 

2.3  BASIC STRUCTURE OF MICROGRID 

A basic structure of microgrid is shown in Figure 2.1 [25]. It shows several distributed 

energy sources such as bio-energy, wind power, photovoltaic (PV), fuel cell, energy 

storage devices and microturbine are connected together in a microgrid. The microgrid 

is connected to the power grid. The point of connection is called point of common 

coupling (PCC). Also, several loads are connected to the microgrid. The microgrid is 

operated in two modes: (1) grid connected and (2) stand alone. In grid-connected 

mode, the microgrid remains connected to the main grid either totally or partially, and 

imports and exports power from or to the main grid. In case of any disturbance in the 
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main grid, the microgrid switches over to stand alone mode while still feeding power to 

priority loads.  

Bioenergy Wind Power PV
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Figure 2.1 Basic structure of microgrid. 

2.4  OPERATION AND MANAGEMENT OF MICROGRID 

Different modes of operation of microgrid are controlled and coordinated through local 

microsource controllers (MCs) and central controllers (CCs). Functions of these 

controllers are described as follows: 
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(1) Microsource Controller (MC): Microsource controller controls the power flow and 

voltage profile of microsources independently. It can perform independently from the 

central controller in case of any disturbance or load changes. It also performs load 

tracking, economic generation scheduling, demand side management. The prominent 

function of MC is to respond rapidly to locally monitored voltages and currents without 

having data from neighboring MCs. This feature leads to the ability of microgrid to 

perform as play and plug device. This facilitates the addition of other microsources 

without any disturbance of existing microsource [23]. 

(2) Central Controller (CC): Central controller performs the task of overall control and 

protection of microgrid through coordination of MCs. Two important tasks are (i) to 

maintain specified voltage and frequency at the load end and (ii) to ensure optimization 

of power for microgrid. It sets the optimal power dispatch and voltage profile for MCs. 

Energy Management Module (EMM) and Protection Coordination Module (PCM) are 

among the crucial functional modules of CC. EMM works for the optimization of 

power in microgrid. PCM responds to microgrid and main grid faults and loss of grids 

in such a way so that it can ensure protection coordination of microgrid. It can adapt to 

changing fault currents from grid connected to stand alone mode of operation.  Proper 

communication between PCM and MCs are required for performing this task. In case 

of any major faults, the PCM switches the microgrid to stand-alone mode of operation. 

However for minor faults, PCM may allow the microgrid to stay connected to the main 

grid for a short time. PCM will disconnect microgrid if it feels that the fault in main 

grid will endanger microgrid. In one word we can say that central controller ensures 
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synchronized operation with the main grid maintaining the power exchange at priory 

contract points [23].  

2.5  TECHNICAL AND ECONOMICAL ADVANTAGES AND 

DISADVANTAGES OF MICROGRID 

(1) Environmental Issues: Microgrids would have much less environmental impact 

than the large conventional power stations. Close control of combustion process results 

in reduced gaseous and particulate emissions.  

(2) Investment Issues: The reduction of physical and electrical distance between 

microsource and loads contributes enhanced voltage profile. The feeder congestion and 

line losses are also reduced.   

(3) Power Quality: Power quality and reliability are improved due to decentralization 

of supply, matched supply and demand, and reduced transmission and distribution 

outages.  

(4) Cost Saving: A prominent amount of cost saving comes from utilization of heat 

coming from the CHP mode of operation in microgrid. Savings of costs come from 

reduced transmission and distribution of the power system.  

(5) Vast use of plug and play microsources may contribute to reduced price of energy 

in power market.  

2.6  CHALLENGES FACED BY MICROGRID 

In spite of several prominent advantages of microgrid, there are a number of challenges 

a microgrid faces. These challenges can be seen from the technical and economical 

point of view. Some of the salient challenges are described as follows. 

(1) The installation cost of a microgrid is very high. 



21 
 

 
 

(2) Implementing microgrid in reality requires a lot of technical expertise. Lots of 

research are going on for proper management and control of microsources.  

(3) As a power system, microgrid is comparatively very new idea. Therefore, it suffers 

from absence of standardizations.   

(4) There is a lack of synchronization for price of energy between microgrid and main 

power grid.  

Several challenges will be always there with a new technology. However, lots of 

research are going on for solving the problems faced by microgrid.  

2.7  PROFILE OF MICROGRID UNDER STUDY 

We simulate a microgrid model which includes two generators, loads, lines and 

feeders, and connection to the power grid. We model the microgrid using the 

MATLAB SimPower toolbox. The model is composed of a 13.8 kV distribution 

subsystem which is connected to the power grid through a 69 kV radial line. The power 

grid is represented as a 69 kV, 1000 MVA capacity bus. DG1 is a synchronous 

generator having rating of 5 MVA 13.8 kV. DG2 is also a synchronous generator 

having rating of 1.5 MVA 13.8 kV [62].  
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1.4 + j2.6 %

0.42 + j0.15 %

13.8 / 0.48
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1000 MVA

69 kV

S.G. 1 S.G. 2

Load 1

Load 2

Load 3

1.5 

MVar

Feeder 3 Feeder 2 Feeder 113.8 kVPCC

 

Figure 2.2 Single-line diagram of microgrid under study. 

Profile of microgrid shown in Figure 2.2: 

S.G.1: 5 MVA/ 13.8 kV 

S.G.2: 1.5 MVA/ 13.8 kV 

Load 1: 1.8 MW/1.82 MVAR 

Load 2: 2.31 MW/1.49 MVAR 

Load 3: 0.6 MW/0.3 MVAR 
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CHAPTER 3 SYNCHRONOUS MACHINE 

 

3.1  SYNCHRONOUS GENERATOR BASICS 

 

A synchronous generator is an electrical machine used to convert mechanical energy to 

electrical energy. The key principle in the operation of the synchronous generator is 

magnetic induction which is described by Faraday’s Law. Faraday’s Law states that a 

changing (or rotating) magnetic field will induce current to flow in a nearby conductor 

[26]. 

The main components of a generator are the stator (stationary) and the rotor 

(rotating) as shown in Figure 3.1. The rotor contains an electromagnet or field winding 

which produces the main magnetic field of the machine. The rotor rotates within the 

stator and induces current in the stator windings. The stator is a stationary part that 

contains the stator or armature windings and encases the rotor. Stator windings consists 

of three output phases of the machine and are embedded in the inner stator wall in 

slots. For a three-phase machine, the stator consists of three identical windings. The 

windings are separated by 120
o
apart and are assumed to be sinusoidally distributed 

around the stator perimeter.  This arrangement ensures that the induced voltages on the 

phase outputs produce a balanced, three-phase voltage set [26]. 
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Figure 3.1 4 pole 3 phase synchronous generator. 

The rotor consists of electromagnetic coils which are energized by a voltage to 

generate the main magnetic field of the machine. The synchronous machine 

studied herein is a four pole salient-rotor design. This means that there are four 

windings corresponding to the opposing poles of two electromagnets and are evenly 

spaced around the rotor perimeter. Such a design consists of a rotor shape which 

resembles a cross where each pole is wrapped on a core extending from the center. The 

ends of the poles have curved “shoes” which are for allowing a suitable air gap at the 

poles. Damper windings are shorted windings in the rotor. They serve to improve the 

response and stability of the machine by creating induced currents providing machine 

synchronization. While machine operates at steady state, the damper windings have no 

induced current [27].   

For many synchronous machines, excitation voltage comes from another, usually 

small, generator. When the main generator rotates, an AC voltage is induced which is 
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converted by a rotating rectifier into a DC voltage. This DC voltage is used for field 

excitation, which is known as brushless exciter [27].  

 

 

Figure 3.2 Two pole synchronous generator winding and construction. 

3.2.1  SYNCHRONOUS GENERATOR MODELLING 

The synchronous machine considered in this thesis is shown in Figure 3.3. The 

structure contains three stator windings and four rotor windings including a field 

winding𝑓. Three damper coils are shown in Figure 3.3. Damper coil h is along the d 

axis, while g and k are along the q axis. The number of damper coils may vary from 

zero to five or seven but usually three damper coils are used [28].  
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Figure 3.3 Synchronous machine. 

3.2.2  FLUX LINKAGE EQUATIONS 

The derivation of the synchronous generator model is described as follows [28]. The 

stator and rotor flux linkages are given by 

𝜓𝑠 = 𝐿𝑠𝑠𝑖𝑠 + 𝐿𝑠𝑟𝑖𝑟 (3.1) 

𝜓𝑟 = 𝐿𝑟𝑠𝑖𝑠 + 𝐿𝑟𝑟𝑖𝑟 (3.2) 

where 

𝑖𝑠 = [𝑖𝑎𝑖𝑏𝑖𝑐]
𝑇 

𝜓𝑠 = [𝜓𝑎𝜓𝑏𝜓𝑐]
𝑇 

𝑖𝑟 = [𝑖𝑓𝑖ℎ𝑖𝑔𝑖𝑘]
𝑇
 

𝜓𝑟 = [𝜓𝑓𝜓ℎ𝜓𝑔𝜓𝑘]
𝑇
 

Matrices 𝐿𝑠𝑠 and 𝐿𝑟𝑟 are symmetric and 𝐿𝑠𝑟 = 𝐿𝑟𝑠
𝑇 .  
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From two reaction theory, the inductance coefficients are 

𝐿𝑠𝑠 = [
𝐿𝑎𝑎𝑜 𝐿𝑎𝑏𝑜 𝐿𝑎𝑏𝑜

𝐿𝑎𝑏𝑜 𝐿𝑎𝑎𝑜 𝐿𝑎𝑏𝑜

𝐿𝑎𝑏𝑜 𝐿𝑎𝑏𝑜 𝐿𝑎𝑎𝑜

] + 𝐿𝑎𝑎2

[
 
 
 
 cos 2𝜃 cos (2𝜃 −

2𝜋

3
) cos (2𝜃 +

2𝜋

3
)

cos (2𝜃 −
2𝜋

3
) cos (2𝜃 +

2𝜋

3
) cos 2𝜃

cos (2𝜃 +
2𝜋

3
) cos 2𝜃 cos (2𝜃 −

2𝜋

3
)]
 
 
 
 

  

 (3.3) 

𝐿𝑟𝑟 =

[
 
 
 
 
𝐿𝑓 𝐿𝑓ℎ 0 0

𝐿𝑓ℎ 𝐿ℎ 0 0

0
0

0
0

𝐿𝑔

𝐿𝑔𝑘

𝐿𝑔𝑘

𝐿𝑘 ]
 
 
 
 

  (3.4) 

𝐿𝑠𝑟 =

[
 
 
 
 

𝑀𝑎𝑓𝑐𝑜𝑠𝜃 𝑀𝑎ℎ𝑐𝑜𝑠𝜃 𝑀𝑎𝑔𝑠𝑖𝑛𝜃 𝑀𝑎𝑘𝑠𝑖𝑛𝜃

𝑀𝑎𝑓 cos (𝜃 −
2𝜋

3
) 𝑀𝑎ℎ cos (𝜃 −

2𝜋

3
) 𝑀𝑎𝑔 sin (𝜃 −

2𝜋

3
) 𝑀𝑎𝑘 sin (𝜃 −

2𝜋

3
)

𝑀𝑎𝑓 cos (𝜃 +
2𝜋

3
) 𝑀𝑎ℎ cos (𝜃 +

2𝜋

3
) 𝑀𝑎𝑔 sin (𝜃 +

2𝜋

3
) 𝑀𝑎𝑘 sin (𝜃 +

2𝜋

3
)]
 
 
 
 

  

 (3.5) 

3.2.3  VOLTAGE EQUATIONS 

The stator and rotor voltages and currents equations can be written in terms of the flux 

as [28]. 

−
𝑑𝜓𝑠

𝑑𝑡
− 𝑅𝑠𝑖𝑠 = 𝑣𝑠 (3.6) 

−
𝑑𝜓𝑟

𝑑𝑡
− 𝑅𝑟𝑖𝑟 = 𝑣𝑟  (3.7) 

where 

𝑣𝑠 = [𝑣𝑎𝑣𝑏𝑣𝑐]
𝑇 

𝑣𝑟 = [−𝑣𝑓 0 0 0]
𝑇
 

𝑅𝑠 = [

𝑅𝑎 0 0
0 𝑅𝑎 0
0 0 𝑅𝑎

] 
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𝑅𝑟 =

[
 
 
 
𝑅𝑓 0 0 0

0 𝑅ℎ 0 0

0
0

0
0

𝑅𝑔 0

0 𝑅𝑘]
 
 
 
 

Combining the voltage equations gives 

𝑑𝜓

𝑑𝑡
= −𝑅𝐿−1𝜓 − 𝑣                                           (3.8) 

𝑖 = 𝐿−1𝜓                                                             (3.9) 

where 

𝐿 = [
𝐿𝑠𝑠 𝐿𝑠𝑟

𝐿𝑟𝑠 𝐿𝑟𝑟
] 

𝑅 = [
𝑅𝑠 0
0 𝑅𝑟

] 

𝜓𝑇 = [𝜓𝑠
𝑇𝜓𝑟

𝑇]𝑖𝑇 = [𝑖𝑠
𝑇𝑖𝑟

𝑇] 

𝑣𝑇 = [𝑣𝑠
𝑇𝑣𝑟

𝑇] 

Similarly, the current equations can be expressed as  

𝑑𝑖

𝑑𝑡
= 𝐿−1 [−𝑅𝑖 −

𝑑𝜃

𝑑𝑡
[
𝜕𝐿

𝜕𝜃
] 𝑖 − 𝑣] (3.10) 

𝜓 = 𝐿𝑖                                                                  (3.11) 

3.2.4  PARK TRANSFORMATION 

The equations that describe the variables and inductances of a synchronous machine 

are quite complex and include time-varying quantities. Several formulations have been 

developed in order to simplify these equations. The rotor reference frame 

transformation is one of them. It is a transformation that changes the variables from the 

stator components of a synchronous machine to components of virtual windings 

rotating within the rotor. This transformation eliminates all time-varying inductances 

from the voltage equations of the machine. Both stator and rotor windings rotate; 
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therefore, there is no dependence on the rotor angular displacement in the machine 

inductances.  

The rotor reference frame theory was developed in the 1920’s by R.H. Park [29]. 

The theory provided a very strong tool that revolutionized electric machine analysis. 

Later, other researchers developed new variations on reference frame theory. Park’s 

transformation is in fact a specific case of a general transformation. It refers machine 

variables to a reference frame rotating at an arbitrary angular velocity [27]. The general 

transformation is described by 

𝑓𝑑𝑞0𝑠 = 𝐶𝑝
−1𝑓𝑎𝑏𝑐𝑠 (3.12) 

𝐶𝑝
−1 =

2

3

[
 
 
 
 cos(𝜃) cos (𝜃 −

2𝜋

3
) cos (𝜃 +

2𝜋

3
)

sin(𝜃) sin (𝜃 −
2𝜋

3
) sin (𝜃 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 

 (3.13)             

𝑓𝑑𝑞0𝑠 = [𝑓𝑑𝑠𝑓𝑞𝑠𝑓0𝑠]
𝑇
 (3.14) 

𝑓𝑎𝑏𝑐𝑠 = [𝑓𝑎𝑠𝑓𝑏𝑠𝑓𝑐𝑠]
𝑇 (3.15) 

𝜔 =
𝑑𝜃

𝑑𝑡
 (3.16) 

For this transformation, 𝑓 stands for either voltage, current, flux linkage, or electric 

charge. The angular position 𝜃is continuously differentiable. It can take any value 

including zero. 

Although the transformed variables with q, d, and 0 subscripts are not physical 

variables, the variables and their interrelation can be visualized as in Figure 3.4.  

The variables 𝑓𝑎𝑠, 𝑓𝑏𝑠and 𝑓𝑐𝑠 are displaced by 120
o 

apart and therefore form a 

balanced set. In addition, the variables𝑓𝑞𝑠 and 𝑓𝑑𝑠 are orthogonal and rotates at an 
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angular velocity of 𝜔. The variables, a, b, and c can be interpreted as the direction of 

the magnetic axes of the stator windings while the transformed q and d components can 

be interpreted as the transformed or rotor-referred magnetic axes.  

fas

fbs

fcs

fds

fqs

Ɵ

ω

 

Figure 3.4 General reference frame representation. 

3.2.5  TRANSFORMATION OF FLUX LINKAGES 

Consider the transformation of flux linkage in the form [28]. 

[
𝜓𝑠

𝜓𝑟
] = [

𝐶𝑝 𝟎

𝟎 𝑈4
] [

𝜓𝑑𝑞0

𝜓𝑟
] (3.17) 

where  

𝑈4is a unit matrix of order 4, and  𝜓𝑑𝑞0 = [𝜓𝑑𝜓𝑞𝜓0]
𝑇
 

Again, we have  

[
𝜓𝑠

𝜓𝑟
] = [

𝐿𝑠𝑠 𝐿𝑠𝑟

𝐿𝑟𝑠 𝐿𝑟𝑟
] [

𝐶𝑝 𝟎

𝟎 𝑈4
] [

𝑖𝑑𝑞0

𝑖𝑟
] (3.18) 

where 
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𝑖𝑑𝑞0 = [𝑖𝑑𝑖𝑞𝑖0]
𝑇
 

Substituting Equation (3.18) into Equation (3.17) we obtain 

[
𝜓𝑑𝑞0

𝜓𝑟
] = [

𝐶𝑝
−1 𝟎

𝟎 𝑈4
] [

𝐿𝑠𝑠 𝐿𝑠𝑟

𝐿𝑟𝑠 𝐿𝑟𝑟
] [

𝐶𝑝 𝟎

𝟎 𝑈4
] [

𝑖𝑑𝑞0

𝑖𝑟
] 

= [
𝐶𝑝

−1𝐿𝑠𝑠𝐶𝑝 𝐶𝑝
−1𝐿𝑠𝑟

𝐿𝑟𝑠𝐶𝑝 𝐿𝑟𝑟
] [

𝑖𝑑𝑞0

𝑖𝑟
] 

= [
𝐿𝑠𝑠
′ 𝐿𝑠𝑟

′

𝐿𝑟𝑠
′ 𝐿𝑟𝑟

′ ] [
𝑖𝑑𝑞0

𝑖𝑟
] 

where 

𝐿𝑠𝑠
′ = [

𝐿𝑑 0 0
0 𝐿𝑞 0

0 0 𝐿0

] 

𝐿𝑑 = 𝐿𝑎𝑎0 − 𝐿𝑎𝑏0 +
3

2
𝐿𝑎𝑎2 

𝐿𝑑 = 𝐿𝑎𝑎0 − 𝐿𝑎𝑏0 −
3

2
𝐿𝑎𝑎2 

𝐿0 = 𝐿𝑎𝑎0 + 2𝐿𝑎𝑏0 

𝐿𝑟𝑠
′ =

[
 
 
 
 
 
 
 
3

2
𝑀𝑎𝑓𝐾𝑑 0 0

3

2
𝑀𝑎𝑓𝐾𝑑 0 0

0
0

3

2
𝑀𝑎𝑓𝐾𝑞

3

2
𝑀𝑎𝑘𝐾𝑞

0
0
]
 
 
 
 
 
 
 

 

3.2.6  TRANSFORMATION OF VOLTAGES 

Applying Park's transformation Equation (3.6) can be written as [28].  

−
𝑑

𝑑𝑡
[𝐶𝑝𝜓𝑑𝑞0] − 𝑅𝑠𝐶𝑝𝑖𝑑𝑞0 = 𝐶𝑝𝑣𝑑𝑞0 (3.19) 

Again we have 
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−
𝑑

𝑑𝑡
[𝐶𝑝𝜓𝑑𝑞0] =  −

�̇�𝑑𝐶𝑝

𝑑𝜃
𝜓𝑑𝑞0 − 𝐶𝑝

𝑑

𝑑𝑡
𝜓𝑑𝑞0 (3.20) 

where 

𝑑𝐶𝑝

𝑑𝜃
= 𝐶𝑝𝑃1 

 and 𝑃1 =

[
 
 
 0

𝑘𝑞

𝑘𝑑
0

−
𝑘𝑑

𝑘𝑞
0 0

0 0 0]
 
 
 

 

Substituting Equation (3.20) into Equation (3.19) we obtain 

−𝐶𝑝
𝑑𝜓𝑑𝑞0

𝑑𝑡
− �̇�𝐶𝑝𝑃1𝜓𝑑𝑞0 − 𝑅𝑠𝐶𝑝𝑖𝑑𝑞0 = 𝐶𝑝𝑣𝑑𝑞0 (3.21)  

−
𝑑𝜓𝑑𝑞0

𝑑𝑡
− �̇�𝑃1𝜓𝑑𝑞0 − 𝐶𝑝

−1𝑅𝑠𝐶𝑝𝑖𝑑𝑞0 = 𝑣𝑑𝑞0 

−
𝑑𝜓𝑑𝑞0

𝑑𝑡
− �̇�𝑃1𝜓𝑑𝑞0 − 𝑅𝑎𝑖𝑑𝑞0 = 𝑣𝑑𝑞0 (3.22) 

Eq. (3.22) can be rewritten in the form  

−
𝑑𝜓𝑑

𝑑𝑡
− �̇�

𝑘𝑞

𝑘𝑑
𝜓𝑞 − 𝑅𝑎𝑖𝑑 = 𝑣𝑑 (3.23) 

−
𝑑𝜓𝑞

𝑑𝑡
− �̇�

𝑘𝑑

𝑘𝑞
𝜓𝑑 − 𝑅𝑎𝑖𝑞 = 𝑣𝑞 (3.24) 

−
𝑑𝜓0

𝑑𝑡
− 𝑅𝑎𝑖0 = 𝑣0 (3.25) 

Similarly rotor voltage equations can be rewritten as  

𝑑𝜓𝑓

𝑑𝑡
+ 𝑅𝑓𝑖𝑓 = 𝑣𝑓 (3.26) 

𝑑𝜓ℎ

𝑑𝑡
+ 𝑅ℎ𝑖ℎ = 0 (3.27) 

𝑑𝜓𝑔

𝑑𝑡
+ 𝑅𝑔𝑖𝑔 = 0 (3.28) 

𝑑𝜓𝑘

𝑑𝑡
+ 𝑅𝑘𝑖𝑘 = 0 (3.29) 
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The synchronous generator model is represented by Equations (3.23-3.29).  

3.3  MATLAB SIMULINK SYNCHRONOUS GENERATOR 

The fundamental components of a synchronous machine is shown in Figure 3.5 

[30].The synchronous machine operates either in generator or motor mode. The 

operating mode is determined by the sign of the mechanical power, which is positive 

for generator mode and negative for motor mode. The electrical part of the machine is 

represented by a sixth-order state-space model. The model considers the dynamics of 

the stator, field, and damper windings. The equivalent circuit of the model is 

represented in the rotor reference frame (d-q frame). All rotor parameters and electrical 

quantities are viewed from the stator and are identified by primed variables as in Figure 

3.6. The subscripts are defined as follows: 

𝑑, 𝑞: 𝑑 and 𝑞 axis variable 

   R,s: rotor and stator variable 

   l,m: leakage and magnetizing inductance 

   f,k: field and damper winding quantity 

The electrical model is presented in Figure 3.6 [30]. The associated mathematical 

model is in the form  

𝑉𝑑 = 𝑅𝑠𝑖𝑑 +
𝑑

𝑑𝑡
𝜑𝑑 − 𝜔𝑅𝜑𝑞 (3.30) 

𝑉𝑞 = 𝑅𝑠𝑖𝑞 +
𝑑

𝑑𝑡
𝜑𝑞 + 𝜔𝑅𝜑𝑑 (3.31) 

𝑉𝑓𝑑
′ = 𝑅𝑓𝑑

′ 𝑖𝑓𝑑
′ +

𝑑

𝑑𝑡
𝜑𝑓𝑑

′  (3.32) 

𝑉𝑘𝑑
′ = 𝑅𝑘𝑑

′ 𝑖𝑘𝑑
′ +

𝑑

𝑑𝑡
𝜑𝑘𝑑

′  (3.33) 

𝑉𝑘𝑞1
′ = 𝑅𝑘𝑞1

′ 𝑖𝑘𝑞1
′ +

𝑑

𝑑𝑡
𝜑𝑘𝑞1

′  (3.34) 
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𝑉𝑘𝑞2
′ = 𝑅𝑘𝑞2

′ 𝑖𝑘𝑞2
′ +

𝑑

𝑑𝑡
𝜑𝑘𝑞2

′  (3.35) 

 

Figure3.5. Fundamental block of synchronous machine. 

 

Figure 3.6 Electrical model of synchronous generator. 

The sixth order state space model is presented by Equations (3.30-3.35). The 

popular mathematical model of synchronous generator is derived from the flux model, 

and is described in Section 3.2 and Section 3.3 in [31]. We have the model as follows: 

�̇�1 = 𝜔𝑜𝑥2 

�̇�2 =
1

𝐽
[𝑢1 − 𝑇𝑒 − 𝐷𝑥2] 

�̇�3 =
1

𝑇𝑑𝑜
′ [𝑢2  −  𝑥3 − (𝑥𝑑 − 𝑥𝑑

′ ) {𝑖𝑑 −
𝑥𝑑

′ − 𝑥𝑑
′′

(𝑥𝑑
′ − 𝑥𝑙𝑠)2

(𝑥5 + (𝑥𝑑
′ − 𝑥𝑙𝑠)𝑖𝑑 − 𝑥3)}] 

�̇�4 =
1

𝑇𝑞𝑜
′

[− 𝑥4  +  (𝑥𝑞 − 𝑥𝑞
′ ) {𝑖𝑞 −

𝑥𝑞
′ − 𝑥𝑞

′′

(𝑥𝑞
′ − 𝑥𝑙𝑠)

2 (𝑥6 + (𝑥𝑞
′ − 𝑥𝑙𝑠)𝑖𝑞 + 𝑥4)}] 

�̇�5 =
1

𝑇𝑑𝑜
′′ [−𝑥5 +  𝑥3 − (𝑥𝑑

′ − 𝑥𝑙𝑠)𝑖𝑑] 
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�̇�6 =
1

𝑇𝑞𝑜
′′

[−𝑥6 − 𝑥4 − (𝑥𝑞
′ − 𝑥𝑙𝑠)𝑖𝑞] 

where the  state variables are defined as: 

𝑥1 = Rotor angle, 𝑥2 = Rotor speed deviant, 𝑥3 = q-axis transient voltage, 𝑥4 = d-axis 

transient voltage, 𝑥5 = d-axis damper flux, 𝑥6 = q-axis second damper flux. The inputs 

are defined as [𝑢1𝑢2]
𝑇 = [𝑇𝑚𝐸𝑓𝑑]

𝑇
, where, 𝑇𝑚 =  mechanical torque, and 𝐸𝑓𝑑 = field 

voltage.  

For the case of generator connected to infinite bus through an electrical network, as 

discussed in Section 6.3, in [28], in Section II in [32], we obtain that d-axis and q-axis 

currents of synchronous generator can be written as  

𝑖𝑑 =
𝑒𝑞

′ − 𝑣𝑏 𝑐𝑜𝑠 𝛿

𝑥𝑡𝑑
, 𝑖𝑞 =

𝑣𝑏𝑠𝑖𝑛 𝛿

𝑥𝑡𝑞
 

 where, 𝑒𝑞
′ = 𝑥3, 𝛿 = 𝑥1, 𝑥𝑡𝑑 = 𝑥𝑑

′ + 𝑥𝑒 , 𝑥𝑡𝑞 = 𝑥𝑞
′ + 𝑥𝑒 

𝑥𝑒 = Thevenin’s equivalent reactance of the network from generator to infinite bus.  

Substituting the values of 𝑖𝑑 , 𝑖𝑞 in sixth order state space model, we have  

�̇�1 = 𝜔𝑜𝑥2 

�̇�2 =
1

𝐽
[𝑢1 − (

𝑣𝑏

𝑥𝑡𝑑
𝑥3 𝑠𝑖𝑛 𝑥1  +

𝑣𝑏
2

2
(

1

𝑥𝑡𝑞
−

1

𝑥𝑡𝑑
) 𝑠𝑖𝑛 2𝑥1  ) − 𝐷𝑥2] 

�̇�3 =
1

𝑇𝑑𝑜
′ [𝑢2  −  𝑥3 − (𝑥𝑑

− 𝑥𝑑
′ ) {

𝑥3 − 𝑣𝑏 𝑐𝑜𝑠 𝑥1

𝑥𝑡𝑑
 

−
𝑥𝑑

′ − 𝑥𝑑
′′

(𝑥𝑑
′ − 𝑥𝑙𝑠)2

(𝑥5 + (𝑥𝑑
′ − 𝑥𝑙𝑠)

𝑥3 − 𝑣𝑏 𝑐𝑜𝑠 𝑥1

𝑥𝑡𝑑
− 𝑥3)}] 
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�̇�4 =
1

𝑇𝑞𝑜
′

[− 𝑥4  +  (𝑥𝑞

− 𝑥𝑞
′ ) {

𝑣𝑏

𝑥𝑡𝑞
𝑠𝑖𝑛 𝑥1 −

𝑥𝑞
′ − 𝑥𝑞

′′

(𝑥𝑞
′ − 𝑥𝑙𝑠)

2 (𝑥6 + (𝑥𝑞
′ − 𝑥𝑙𝑠)

𝑣𝑏

𝑥𝑡𝑞
𝑠𝑖𝑛 𝑥1 + 𝑥4)}] 

�̇�5 =
1

𝑇𝑑𝑜
′′ [−𝑥5 +  𝑥3 − (𝑥𝑑

′ − 𝑥𝑙𝑠)
𝑥3−𝑣𝑏 𝑐𝑜𝑠 𝑥1

𝑥𝑡𝑑
] 

�̇�6 =
1

𝑇𝑞𝑜
′′

[−𝑥6 − 𝑥4 − (𝑥𝑞
′ − 𝑥𝑙𝑠)

𝑣𝑏

𝑥𝑡𝑞
𝑠𝑖𝑛 𝑥1] 

3.4 STATE SPACE MODEL OF THE SYSTEM 

The sixth order state space model of the system is given below. 

𝒙 = [𝛿 ∆𝜔 𝑒𝑞
′ 𝑒𝑑

′ 𝜓1𝑑𝜓2𝑞]
𝑇

= [𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6]
𝑇 

𝒖 = [𝑇𝑚𝐸𝑓𝑑]
𝑇
 

where, 𝜔𝑜 = 2𝜋𝑓𝑜is the nominal synchronous speed (elec. rad/s), 𝜔is the rotor speed 

(pu), 𝑇𝑚the mechanical input torque (pu), 𝑇𝑒 the air-gap torque or electrical output 

torque (pu), 𝐸𝑓𝑑is the exciter output voltage or the field voltage as seen from the 

armature (pu) and 𝛿is the rotor angle in (electrical radian), ∆𝜔, rotor speed deviation, 

𝑒𝑞
′ , the q-axis component of the transient voltage, 𝑒𝑑

′ , the d-axis component of the 

transient voltage, 𝜓1𝑑, d axis damper winding flux, 𝜓2𝑞, q axis second damper winding 

flux. 

The sixth-order nonlinear synchronous machine state space model is rewritten 

below in a form suitable for state estimation: 

�̇�1 = 𝜔𝑜𝑥2 

�̇�2 =
1

𝐽
[𝑢1 − (

𝑣𝑏

𝑥𝑡𝑑
𝑥3 𝑠𝑖𝑛 𝑥1  +

𝑣𝑏
2

2
(

1

𝑥𝑡𝑞
−

1

𝑥𝑡𝑑
) 𝑠𝑖𝑛 2𝑥1  ) − 𝐷𝑥2] 
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�̇�3 =
1

𝑇𝑑𝑜
′ [𝑢2  −  𝑥3 − (𝑥𝑑

− 𝑥𝑑
′ ) {

𝑥3 − 𝑣𝑏 𝑐𝑜𝑠 𝑥1

𝑥𝑡𝑑
 

−
𝑥𝑑

′ − 𝑥𝑑
′′

(𝑥𝑑
′ − 𝑥𝑙𝑠)2

(𝑥5 + (𝑥𝑑
′ − 𝑥𝑙𝑠)

𝑥3 − 𝑣𝑏 𝑐𝑜𝑠 𝑥1

𝑥𝑡𝑑
− 𝑥3)}] 

�̇�4 =
1

𝑇𝑞𝑜
′

[− 𝑥4  +  (𝑥𝑞

− 𝑥𝑞
′ ) {

𝑣𝑏

𝑥𝑡𝑞
𝑠𝑖𝑛 𝑥1 −

𝑥𝑞
′ − 𝑥𝑞

′′

(𝑥𝑞
′ − 𝑥𝑙𝑠)

2 (𝑥6 + (𝑥𝑞
′ − 𝑥𝑙𝑠)

𝑣𝑏

𝑥𝑡𝑞
𝑠𝑖𝑛 𝑥1 + 𝑥4)}] 

�̇�5 =
1

𝑇𝑑𝑜
′′ [−𝑥5 +  𝑥3 − (𝑥𝑑

′ − 𝑥𝑙𝑠)
1

𝑥𝑡𝑑
(𝑥3 − 𝑣𝑏𝑐𝑜𝑠𝑥1)] 

�̇�6 =
1

𝑇𝑞𝑜
′′

[−𝑥6 − 𝑥4 − (𝑥𝑞
′ − 𝑥𝑙𝑠)

1

𝑥𝑡𝑞
𝑣𝑏𝑠𝑖𝑛 𝑥1] 

𝑦1 =
𝑣𝑏

𝑥𝑡𝑑
𝑥3 𝑠𝑖𝑛 𝑥1 +

𝑣𝑏
2

2
(

1

𝑥𝑡𝑞
−

1

𝑥𝑡𝑑
) 𝑠𝑖𝑛 2𝑥1 

𝑦2 =
𝑣𝑏

𝑥𝑡𝑑
𝑥3 cos 𝑥1 − 𝑣𝑏

2 (
sin2 𝑥1

𝑥𝑡𝑞
+

cos2 𝑥1

𝑥𝑡𝑑
) − 2𝑥𝑒𝐼𝑡

2 

The active and reactive power 𝑦1 = 𝑃𝑡and 𝑦2 = 𝑄𝑡as the two measurable system 

outputs are provided in References [3-4]. 

We obtained the active and reactive powers of synchronous generator 1 (DG1) from 

the MATLAB SimPower model. The parameters shown in the state space model are 

divided into two parts: generator parameters and power system network’s parameters 

including line impedances. We calculated these parameters from our original microgrid 

model and obtained the synchronous generator's parameters from the Simulink block. 

The variables and constants of generator 1 are shown in Table IX in Appendix. 
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CHAPTER 4 EXTENDED KALMAN FILTER AND UNSCENTED KALMAN 

FILTER 

4.1  EXTENDED KALMAN FILTER 

The Kalman filter (KF) is an optimal recursive state estimator. It estimates the state of 

a discrete-time controlled process that is governed by a linear stochastic difference 

equations. The Extended Kalman filter (EKF) can be used to handle nonlinear systems 

by linearizing about the current mean state estimate.  

A general nonlinear stochastic differential equation and measurement equation is in 

the following form [33]. 

�̇� = 𝒇(𝒙, 𝑡) +  𝒖(𝑡) 

𝒛 = 𝒉(𝒙, 𝑡) + 𝒗(𝑡) (4.1) 

𝒖(𝑡) and 𝒗(𝑡)are both zero-mean white noise sequences and are mutually independent. 

The nonlinear equations lead to the discrete-time approximation: 

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝑘) + 𝒘𝑘 

𝒛𝒌 = 𝒉(𝒙𝒌, 𝒌) + 𝒗𝒌 (4.2) 

where 𝒙𝑘+1represents state vector, 𝒇 is the nonlinear function of the states and inputs, 

𝒛𝑘is the measurement vector, 𝒘𝑘 and 𝒗𝒌 are the process and measurement noise 

vectors, 𝑄𝑘 and 𝑅𝑘 are the process and measurement noise covariance matrices, and 𝑘 

is the time step of the discrete model.  The EKF can be applied to a nonlinear system 

through the following steps [33, 34]: 

Step 1: Initialize the state vector and error covariance matrix. 

Step 2: Compute the Kalman gain matrix from the error covariance and estimated 

measurement noise covariance. 
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𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (4.3) 

Step 3: Multiply the prediction error vector by the Kalman gain matrix to get state 

correction vector and update state vector. 

�̂�k = 𝒙𝐤
− + 𝐾𝑘[𝒛𝑘 − 𝒉(𝑥𝑘

−, 𝑘)] (4.4) 

Step 4: Update the error covarinace. 

𝑃𝑘 = 𝑃𝑘
−(𝐼 − 𝐾𝑘𝐻𝑘) (4.5) 

Step 5: Predict the new state vector and state covariance matrix. 

�̂�𝑘+1
− = 𝒇(𝒙𝑘

+, 𝑘) (4.6) 

𝑃k+1
− = 𝐹𝑘𝑃𝑘𝐹𝑘

𝑇 + 𝑄𝑘 (4.7) 

Linear approximation equations of system and measurement matrices are obtained 

through the Jacobians 

𝐹𝒌 =
𝜕𝒇𝑘

𝜕𝒙
, 𝐻𝑘 =

𝜕𝒉𝑘

𝜕𝒙
 (4.8) 

Because the EKF linearizes the system equations around each state estimate, it cannot 

capture the system nonlinearity and is a suboptimal filter [35]. 

4.2  GRADIENT CALCULATION 

This section presents the Jacobians 𝐹𝑘and 𝐻𝑘 for the synchronous generator and the 

linear approximation they provide. A simple discrete-time approximation of the model 

(4.1) is given by 

𝒙(𝑘) =  ∆𝑡 × 𝒇(𝒙(𝑘 − 1), 𝑘 − 1) + 𝒙(𝑘 − 1) + 𝒘(𝑘 − 1) (4.9) 

The Jacobian 𝐹𝑘 = [𝑓𝑖𝑗(𝑘)] is 
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𝐹𝑘 = [𝑓𝑖𝑗(𝑘)] =

[
 
 
 
 
 
1 𝜔0Δ𝑡 0 0 0 0
𝑓21 𝑓22 𝑓23 0 0 0
𝑓31 0 𝑓33 0 𝑓35 0
𝑓41 0 0 𝑓44 0 𝑓46

𝑓51 0 𝑓53 0 𝑓55 0
𝑓61 0 0 𝑓64 0 𝑓66]

 
 
 
 
 

 

𝑓21 = −
∆𝑡

𝐽
[
𝑣𝑏 × 𝑥3

𝑥𝑡𝑑
cos(𝑥1) + 𝑣𝑏

2 (
1

𝑥𝑡𝑞
−

1

𝑥𝑡𝑑
) cos (2𝑥1)] 

𝑓22 = −
∆𝑡

𝐽
× 𝐷 + 1 

𝑓23 = −
∆𝑡

𝐽
×

𝑣𝑏

𝑥𝑡𝑑
sin (𝑥1) 

𝑓31 =
𝛥𝑡

𝑇𝑑𝑜
′

[−(𝑥𝑑 − 𝑥𝑑
′ ) (

𝑉𝑏

𝑥𝑡𝑑
sin(x1) −

xd
′ − xd

′′

(xd
′ − xls)

𝑉𝑏

𝑥𝑡𝑑
sin(x1))] 

𝑓33 = 1 +
𝛥𝑡

𝑇𝑑𝑜
′

[−1 − (xd − xd
′ ) {

1

𝑥𝑡𝑑
−

xd
′ − xd

′′

(xd
′ − xls)

1

𝑥𝑡𝑑
− 1}] 

𝑓35 =
𝛥𝑡

𝑇𝑑𝑜
′

[−(𝑥𝑑 − 𝑥𝑑
′ ) (

xd
′ − xd

′′

(xd
′ − xls)

2)] 

𝑓41 =
𝛥𝑡

𝑇𝑞𝑜
′

[(𝑥𝑞 − 𝑥𝑞
′ ) (

𝑉𝑏

𝑥𝑡𝑞
cos(x1) −

xq
′ − xq

′′

(xq
′ − xls)

𝑉𝑏

𝑥𝑡𝑞
cos(x1))] 

𝑓44 =  1 +
𝛥𝑡

𝑇𝑞𝑜
′

[−1 − (𝑥𝑞 − 𝑥𝑞
′ ) (

xq
′ − xq

′′

(xq
′ − xls)

2)] 

𝑓46 =
𝛥𝑡

𝑇𝑞𝑜
′

[−(𝑥𝑞 − 𝑥𝑞
′ ) (

xq
′ − xq

′′

(xq
′ − xls)

2)] 

𝑓51 =
𝛥𝑡

𝑇𝑑𝑜
′′

[−( 𝑥𝑑
′ − xls) (

𝑉𝑏

𝑥𝑡𝑑
sin(x1))] 
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𝑓53  =
𝛥𝑡

𝑇𝑑𝑜
′′

 [1 − (𝑥𝑑
′ − 𝑥𝑙𝑠) (

1

𝑥𝑡𝑑
)] 

𝑓55 = 1 −
𝛥𝑡

𝑇𝑑𝑜
′′

 

𝑓61 =
𝛥𝑡

𝑇𝑑𝑜
′′

[−( 𝑥𝑞
′ − xls) (

𝑉𝑏

𝑥𝑡𝑞
cos(x1))] 

𝑓64 = −
𝛥𝑡

𝑇𝑞𝑜
′′

 

𝑓66 = 1 −
𝛥𝑡

𝑇𝑞𝑜
′′

 

The linearized measurement equation of the system is 

𝒛𝑘 = 𝐻𝑘𝒙𝑘 + 𝒗𝑘 

where 𝐻𝑘 is the Jacobian matrix 

𝐻𝑘 = [ℎ𝑖𝑗] = [
ℎ11 0 ℎ13 0 0 0
ℎ21 0 ℎ23 0 0 0

] 

ℎ11 =
𝑣𝑏

𝑥𝑡𝑑
𝑥3 cos(𝑥1) +

𝑣𝑏
2

2
(

1

𝑥𝑡𝑞
−

1

𝑥𝑡𝑑
)2cos (2𝑥1) 

ℎ13 =
𝑣𝑏

𝑥𝑡𝑑
sin (𝑥1) 

ℎ21 = −
𝑣𝑏

𝑥𝑡𝑑
𝑥3 sin(𝑥1) − 2𝑣𝑏

2 (
1

𝑥𝑡𝑞
−

1

𝑥𝑡𝑑
) sin(𝑥1) cos (𝑥1) 

ℎ23 =
𝑣𝑏

𝑥𝑡𝑑
cos (𝑥1) 
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4.3  UNSCENTED KALMAN FILTER 

Nonlinear state estimation is complicated by the difficulty of nonlineary transforming a 

probability density function (pdf). The extended Kalman filter works on the principle 

that a linearized transformation of means and covariances is approximately equal to the 

true nonlinear transformation. If the nonlinearity is severe, then the approximation can 

be unsatisfactory. Better results can be obtained using the unscented Kalman filter 

(UKF) provided that the noise is additive and Guassian.   

The UKF is based on the unscented transformation. The unscented transformation is 

based on two fundamental principles. First, it is easy to perform a nonlinear 

transformation on a single point. Second, it is possible to find a set of individual points 

in state space whose sample pdf approximates the true pdf of a state vector [21]. 

Suppose that we know the mean and covariance of a vector x. We then find a set of 

deterministic vectors called sigma points. Then, we apply our known nonlinear 

function to each deterministic vector to obtain transformed vectors. The ensemble 

mean and covariance of the transformed vectors give a good estimate of the true mean 

and covariance of the nonlinear function. This is the key to unscented transformation. 

The unscented transformation can be generalized to give the unscented Kalman filter. 

The Kalman filter propagates the mean and covariance of a system using a time-update 

and a measurement update [36]. 

We assume that we are given an 𝑛 state discrete time nonlinear system  

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝑡𝑘) + 𝒘𝑘 

𝒚𝑘 = 𝒉(𝒙𝑘, 𝑡𝑘) + 𝒗𝑘 

with noise processes 
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𝒘𝑘 ~ (0, 𝑄𝑘) 

𝒗𝑘 ~ (0, 𝑅𝑘) (4.7) 

The UKF algorithm can be summarized as follows [36]: 

Step 1: Initialize the UKF with 

�̂�𝑜
+ = 𝐸(𝒙𝒐) 

𝑃𝑜
+ = 𝐸[(𝒙𝑜 − 𝒙𝑜

+)(𝒙𝑜 − �̂�𝑜
+)𝑇] (4.8) 

Step 2: Propagate the state estimate and covariance from one measurement time to the 

next. 

(a) To propagate from time step k−1 to k, first choose sigma points �̂�𝑘−1
(𝑖)

, with 

appropriate changes since the current best guess for the mean and covariance of 𝒙𝑘 are 

�̂�𝑘−1
+  and 𝑃𝑘−1

+  : 

�̂�𝑘−1
(𝑖)

= �̂�𝑘−1
+ + �̃�(𝑖)       𝑖 = 1, ………… . . , 2𝑛 

�̃�(𝑖) = (√𝑛𝑃𝑘−1
+ )

𝑖

𝑇

        𝑖 = 1,………… . . , 𝑛 

�̃�(𝑛+𝑖) = −(√𝑛𝑃𝑘−1
+ )

𝑖

𝑇
  𝑖 = 1,………… . . , 𝑛 (4.9) 

(b) Use the known nonlinear system equation 𝒇(. )to transform the sigma points into 

�̂�𝑘
(𝑖)

 vectors, with appropriate changes since our non linear transformation is 𝒇(. )rather 

than 𝒉(. ): 

�̂�𝑘
(𝑖)

= 𝒇(�̂�𝑘−1
(𝑖) , 𝑡𝑘) (4.10) 

(c) Combine the �̂�𝑘
(𝑖)

 vectors to obtain the a priori state estimate at time k.  

�̂�𝑘
− =

1

2𝑛
∑ 𝒙𝑘

(𝑖)2𝑛
𝑖=1  (4.11) 
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(d) Estimate the a priori error covariance including the matrix 𝑄𝑘−1 to take the process 

noise into account: 

𝑃𝑘
− =

1

2𝑛
∑ (𝒙𝑘

(𝑖) − 𝒙𝑘
−)(�̂�𝑘

(𝑖) − �̂�𝑘
−)

𝑇

+ 𝑄𝑘−1
2𝑛
𝑖=1  (4.12) 

Step 3: Update the measurement equations.  

(a) Choose sigma points �̂�𝑘
(𝑖)

, with appropriate changes since the current best guess for 

the mean and covariance of 𝒙𝑘 are �̂�𝑘
− and 𝑃𝑘

− :  

�̂�𝑘
(𝑖)

= 𝒙𝑘
− + �̃�(𝑖)            𝑖 = 1,………… . . , 2𝑛 

�̃�(𝑖) = (√𝑛𝑃𝑘
−)

𝑖

𝑇 
           𝑖 = 1,………… . . , 𝑛 

�̃�(𝑛+𝑖) = −(√𝑛𝑃𝑘
−)

𝑖

𝑇
   𝑖 = 𝑛 + 1,………… . . , 2𝑛 (4.13) 

(b) Use the known nonlinear measurement equation 𝒉(. )to transform the sigma points 

into �̂�𝑘
(𝑖)

 vectors: 

�̂�𝑘
(𝑖)

= 𝒉(�̂�𝑘
(𝑖)

, 𝑡𝑘) (4.14) 

(c) Combine the �̂�𝑘
(𝑖)

 vectors to obtain the predicted measurement at time k.  

�̂�𝑘 =
1

2𝑛
∑ �̂�𝑘

(𝑖)2𝑛
𝑖=1  (4.15) 

(d) Estimate the covariance of the predicted measurement. However, we should add 𝑅𝑘 

to the end of the equation to take the measurement noise into account: 

𝑃𝑦 =
1

2𝑛
∑ (�̂�𝑘

(𝑖) − �̂�𝑘)(�̂�𝑘
(𝑖) − �̂�𝑘)

𝑇

+ 𝑅𝑘
2𝑛
𝑖=1  (4.16) 

(e) Estimate the cross covariance between �̂�𝑘
− and �̂�𝑘.  

𝑃𝑥𝑦 =
1

2𝑛
∑ (�̂�𝑘

(𝑖)
− �̂�𝑘

− )(�̂�𝑘
(𝑖)

− �̂�𝑘 )
𝑇2𝑛

𝑖=1  (4.17) 
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(f) The measurement update of the state estimate can be performed using the normal 

Kalman filter equations as. 

𝐾𝑘 = 𝑃𝑥𝑦𝑃𝑦
−1 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝒚𝑘 − �̂�𝑘) 

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝑃𝑦𝐾𝑘
𝑇 (4.18) 
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CHAPTER 5 NETWORKED CONTROL SYSTEM 

 

5.1 INTRODUCTION 

 

The past two decades have witnessed rapid development of smart sensors and 

actuators, such as bio-sensors in biomedicine [37], mobile sensor network for 

monitoring the health of civil infrastructures [38], and wireless sensor networks in 

smart home scenarios [39]. Since smart sensors and actuators, which are important 

components of control systems, provide more powerful computing and communicating 

abilities, control systems are experiencing a transition period from classical single-

location systems into the so-called networked control systems(NCS). A communication 

network is used to close the control loop in NCS. Source distribution, reduced system 

wiring and increased system agility are among the prominent advantages of NCS [40]. 

At present NCS is getting extensive attentions from researchers and engineers from 

different research areas. Among the important applications of NCS is wide area control 

and monitoring of large-scale power system [41].  

The earliest control systems were analog. Later, digital computers became powerful 

tools in control system design. In addition, microprocessor added a new dimension to 

the control system. Later distributed control system emerged in the 1970s. To satisfy 

the expanding needs of industrial applications, it became obvious that NCS is the only 

solution. Research in tele-operation with space projects and nuclear reactor power 

plants was made feasible only after the development of NCS. Later easy and cheap 

access to the Internet and the deployment of wireless networks aided the development 

of NCS. Today, distributed NCSs have emerged [36]. They are multi-disciplinary 

efforts whose aim is to produce a network structure and components that are capableof 
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integrating distributed sensors, distributed actuators, and distributed control algorithms 

over a communication network in a manner that is suitable for real-time applications 

[43]. 

When using communication networks, especially wireless networks, time delays 

and packet losses are unavoidable. These network associated problems can degrade the 

performance of NCS and can even make an NCS unstable. Although some NCS 

problems, such as time delays, have been extensively investigated, others are not well 

addressed [43-45].  For instance, protocols like TCP cannot ensure accurate real-time 

performance due to retransmission mechanism. However, protocols like UDP are 

popular for real-time performance, but have a much higher packet loss rate than TCP. 

Packet loss is a very important factor when investigating NCS stability and a high 

packet loss rate may destabilize the NCS [46].  

   5.2 NCS BASICS 

The basic structure of a NCS is shown in Figure 5.1. The state of the plant is sensed by 

sensors and is sent to the controller over the network. Controller compares the state 

with reference model and computes control signals accordingly. Later the control 

signal is sent to the actuator through the network to be implemented at the plant [47].  
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Controller

Communication Channel

×
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Model  

 

Figure 5.1: General structure of NCS. 

 

The important capabilities of NCS are information acquisition from sensors, 

command from controllers, communication and network and control. NCS research 

comprises two main parts: control of network, and control over network [43]. Control 

of network involves study and research on communications and networks to make 

them suitable for real-time NCS. Control over network includes control strategies and 

control system design over the network to minimize the effect of adverse network 

parameters on NCS performance.  

There are two major types of control systems under control over network.  These are 

shared networked control system and remote control system. Detailed explanations, 

advantages and other related things to these connections are provided in [43]. The main 

challenges for NCS structure are the quality of service and quality of control. Quality 

of service is related to transmission rates, error rates and other characteristics can be 

measured, improved.  
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Quality of service can be degraded due to congestion and interference. Providing good 

quality of service and good quality of control for NCS are active research topics [47].  

5.3  ADVANTAGES AND DISADVANTAGES OF NCS 

NCS has several advantages and disadvantages. These advantages include: 

(a) Flexibility: A network introduces lots of flexibility to control system and its 

resources. It extends and shares the network and its resources.  

(b) Reduced Complexity: Introduction of control in networked system reduces systems' 

complexity.  

(c) Data Sharing: NCS enables efficient data sharing when needed.  

(d) Reduced Wiring: NCS eliminates unnecessary wiring usually needed for large 

control system.  

(e) Extendibility: Addition of more sub control systems is easier in NCS. Also the 

network can be extended to central control system without large changes to its 

physical layout.  

(f) Remote Controlled: The control part of the NCS can be on the remote side with the 

NCS connected to the physical system through a network.  

Because it includes a communication network, NCS inherits some of the problems 

associated with the network including: 

(a) Lack of Security: Since data is often transmitted through a shared network, it may be 

accessible to other network users. Therefore, special care must be taken in order to 

ensure security. To secure data, different cypher algorithms may be implemented. 
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(b) Bandwidth Allocation: NCS can create problems when the shared network bandwidth 

is limited. Bandwidth limitations can cause congestion and data loss due to packet 

dropping.  

(c) Network Delays: Due to network congestion, data transmission may be delayed and 

the data may not be available when needed. This can destabilize the NCS if not 

identified and addressed. Many techniques are available to address this problem 

[48].   

(d) Scheduling: Satisfactory NCS performance requires proper scheduling and data 

traffic management so as to optimally utilize the available bandwidth [49].  

5.4 TIME DELAY AND PACKET DROP IN NCS 

In NCS, spatially decentralized control nodes are connected by the communication 

network, of which the introduction leads to characteristics different from the traditional 

control. The basic problems in NCS design are network communication, control 

strategy and collaborative design [50]. The control strategy aims to design a controller 

that can tolerate communication delay, packet loss and sequential disorder. The 

communication delay can degrade system performance or even lead to instability. The 

delay can be fixed, random, bounded or unbounded depending on communication 

protocol, transmission rate and packet size [51]. A time-delay is called short if it is less 

than one sampling period and is called long if it exceeds one sampling period [52]. 

Researchers face difficulty with uncertainty of random delay and the serious lag caused 

by long time delay. To solve this problem various control strategies including 

deterministic control, random control, intelligent control, robust control, networked 
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predictive control, etc. have been proposed. For example, predictive control achieves 

stability, reliability and improves system performance significantly [51].   

Another significant aspect in NCS is the possibility of data loss in transit through 

the network. Packet drop usually result from transmission errors in the physical 

network links or from buffer overflows due to congestion. Packet drop is far more 

common in wireless than in wired networks. Sometimes long transmission delays result 

in packet reordering, which can amount to packet drop out if the receiver discard 

outdated arrivals.  

Delivery of packets is guaranteed in some reliable transmission protocols such as TCP. 

However, these protocols may not be good enough for NCS since transmission of old 

data is not generally useful [53].  

5.5  PROPOSED ALGORITHM FOR TIME DELAY AND PACKET DROP 

If the delivery of measurements to the estimator is delayed, the Kalman filter algorithm 

must be modified to make use of the delayed data. Several configurations of time delay 

are possible. One possibility is packets can arrive at the estimator in the order of their 

time stamps. Another possibility is the some packets reach the estimator ahead of data 

with earlier time stamps. The last possibility is that several packets with different time 

stamps reach the estimator at the same time. The Kalman filter update with multiple 

packets received at the same time can be performed by sorting the packets in 

accordance with the time order, then going back to the time corresponding to each 

packet to correct the state estimate. Our approach is to sort the data then correct the 

estimates with the Kalman filter as in the example shown in Table I.  
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As shown in the table, if data is lost, the Kalman filter is only able to predict the state. If 

data is delayed, then the predicted state at the time of the measurement is corrected using the 

delayed measurement.  At 𝑘 = 1, there is no drop or delay and the usual predictor/corrector 

Kalman filter is used. Data is lost at time 𝑘 = 2 and 𝑘 = 3 and the state can only be predicted 

without correction.  At time 𝑘 = 4, no measurement is received and again only prediction is 

possible, but the measurement 𝒛4 is not lost.  The measurement 𝒛4 is received at 𝑘 =  5 and is 

used to correct the predicted estimate at 𝑘 =  4, then the estimate at 𝑘 =  5 and 𝑘 =  6 are 

predicted. 

Table I Timeline for data and Kalman filter 

No Drop/ 

Delay 

Packet 

Drop 

Delay 

Receive 

Delayed Data 

Receive 

Delayed Data 

𝑘 =  1 𝑘 =  2, 3 𝑘 =  4 𝑘 =  5 𝑘 =  6 

Receive 𝒛1 

Correct 

�̂�1
+, 𝑃1

+ 

Predict 

�̂�2
−, 𝑃2

− 

Predict

�̂�𝟑
−, 𝑃3

− 

 

Predict 

�̂�𝟒
−, 𝑃4

− 

Receive 𝒛4 

Correct �̂�4
+, 𝑃4

+ 

using �̂�𝟒
−, 𝑃𝟒

− 

Predict �̂�𝟓
−, 𝑃5

−, 

Receive 𝒛3 

Correct �̂�3
+, 𝑃3

+ 

using �̂�𝟑
−, 𝑃3

− 

Predict �̂�𝟒
−, 𝑃4

− 

�̂�𝟓
−, 𝑃5

−, 

�̂�𝟔
−, 𝑃6

− 
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CHAPTER 6 ROBUST STATE ESTIMATE 

 

6.1  INTRODUCTION 

Detection, identification and elimination of errors which may appear in measurements, 

network models or parameters are among the main reasons behind using state 

estimators. An estimator is statistically robust when it remains insensitive to major 

deviations in a limited number of measurements [54]. Unfortunately, robustness is 

achieved at the cost of high computational complexity. A state estimator can track 

power system dynamics with the use of wide area synchrophasor measurements. Real-

time control schemes can then be implemented using the estimated states. The 

extended Kalman filter can be modified to cope with large disturbances in 

measurements [55]. Netto et al. developed a new generalized maximum likelihood 

extended Kalman filter (GM-EKF) that exhibits good statistical efficiency under 

Gaussian process and measurement noises [12]. The GM-EKF is capable of bounding 

the influence of vertical outliers and bad leverage points, identified by projection 

statistics. A batch mode regression form is derived that is implemented in GM-EKF. 

This thesis uses the GM-EKF methodology to obtain a robust state estimator.  

6.2  BATCH MODE REGRESSION FORM 

Consider the state equation of Equation (4.2) with the initial estimated state 

vector�̂�(0|0), and with estimation error covariance matrix, 𝑃(0|0). The estimates are 

updated through  

�̂�(𝑘|𝑘−1) = 𝒇(�̂�(𝑘−1|𝑘−1)) (6.1) 

𝑃(𝑘|𝑘−1) = 𝐹𝑘−1𝑃(𝑘−1|𝑘−1)𝐹𝑘−1
𝑇 + 𝑊𝑘−1 (6.2) 

where the Jacobian matrices 𝐹 and 𝐻 are defined as  
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𝐹 =
𝜕𝒇

𝜕𝒙
   , 𝐻 =  

𝜕𝒈

𝜕𝒙
 

𝒇 is a vector of state dynamics whereas 𝒈 is a vector of measurement equations. 

𝒈(𝒙𝑘, 𝒗𝑘) is linearized around the predicted state vector�̂�(𝑘|𝑘−1) to obtain  

𝒛𝑘 = 𝒈(�̂�(𝑘|𝑘−1)) + 𝐻𝑘(�̂�𝑘 − �̂�(𝑘|𝑘−1)) + 𝒗𝑘 (6.3) 

In addition, we define 

�̂�(𝑘|𝑘−1) = 𝒙𝑘 − 𝜹(𝑘|𝑘−1) (6.4) 

𝜹(𝑘|𝑘−1) is the prediction error. 

Combining Equations (6.3-6.4) gives a new measurement equation 

[
𝒛𝑘 − 𝒈(𝒙(𝑘|𝑘−1)) + 𝐻𝑘(𝒙(𝑘|𝑘−1))

�̂�(𝑘|𝑘−1)
] = [

𝐻𝑘

𝐼
] 𝒙𝑘 + [

𝒗𝑘

−𝜹(𝑘|𝑘−1)
] (6.5) 

Equation (6.5) can be written as  

�̃�𝑘 = �̃�𝑘𝒙𝑘 + �̃�𝑘 (6.6) 

and used in the Kalman filter algorithm with the error covariance matrix 

�̃�𝑘 = [
𝑅𝑘 𝟎
𝟎 𝑃(𝑘|𝑘−1)

] = 𝑆𝑘𝑆𝑘
𝑇 (6.7) 

6.3  OUTLIER IDENTIFICATION 

It is necessary to detect the outliers and suppress them for getting a robust state 

estimator. This is performed by using projection statistics algorithm. Projection 

statistics are calculated by using the matrix  

𝑍 = [
𝒛𝑘−1 − 𝒈(�̂�(𝑘−1|𝑘−2)) 𝒛𝑘 − 𝒈(�̂�(𝑘|𝑘−1))

𝒙(𝑘−1|𝑘−2) �̂�(𝑘|𝑘−1)
] (6.8) 

𝑍 ∈ 𝑅𝑚′×2,where 𝑚′ = 𝑚 + 𝑛.  

𝑚 = number of measurements and 𝑛 = number of state variables. 
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Each 𝑖𝑡ℎ computed projection statistic (𝑃𝑆𝑖) is compared with a given threshold value. 

The flagged outliers are weighted using the weight function 

�̅�𝑖 = min (1,
𝑑2

𝑃𝑆𝑖
2) (6.9) 

𝑑 = 1.5is chosen for good statistical efficiency [12]. 

Robust prewhitening is achieved by multiplying Equation (6.6) by 𝑆𝑘
−1to obtain 

𝑆𝑘
−1�̃�𝑘 = 𝑆𝑘

−1�̃�𝑘𝒙𝑘 + 𝑆𝑘
−1�̃�𝑘 (6.10) 

Equation (6.10) is rewritten in a compact form as  

𝒚𝑘 = 𝐴𝑘𝒙𝑘 + 𝜻𝑘 (6.11) 

6.4 ROBUST FILTERING 

The GM estimator bounds the influence of outliers by minimizing the effect of 

objective function given by  

𝐽(𝒙) =  ∑ �̅�𝑖
2𝑚

𝑖=1 𝜌(𝑟𝑠𝑖) (6.12) 

The Huber 𝜌 function is defined by. 

𝜌(𝑟𝑠𝑖) =  {
0.5 𝑟𝑠𝑖

2                     |𝑟𝑠𝑖| ≤ 𝑐

𝑐|𝑟𝑠𝑖| − 0.5 𝑐2,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Setting the value of 𝑐 equal to 1.5 gives high statistical efficiency [10]. 

The standardized residual 𝑟𝑠𝑖is defined as 

𝑟𝑠𝑖 = 𝑟𝑖/(𝑠 𝑤𝑖̅̅ ̅) (6.13) 

𝑠𝑖 is a robust estimator of scale and defined as follows 

𝑠𝑖 = 1.4826 𝑏𝑚
′  𝑚𝑒𝑑𝑖𝑎𝑛𝑖|𝑟𝑖| 

Croux and Rousseeuw suggested setting the value of parameter 𝑏𝑚
′  as shown in Table 

II if 𝑚′ ≤ 9 and to 𝑏𝑚
′ = [

𝑚′

𝑚′−0.8
] otherwise [56]. 
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Table II Parameter 𝑏𝑚
′  for 𝑚′ ≤ 9 

𝒎′ 2 3 4 5 6 7 8 9 

𝒃𝒎
′  1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.107 

 

The residual vector 𝒓𝑖 is defined as 𝒓𝑖 = 𝒚𝑖 − 𝒂𝑖
𝑇�̂� 

where 𝒂𝑖 is the 𝑖𝑡ℎ column vector of the matrix 𝐴𝑘
𝑇.  

Iteratively updating the state with the reweighted least squares (IRLS) algorithm gives 

�̂�(𝑘|𝑘)
𝑗+1

= (𝐴𝑘
𝑇𝑄𝑗𝐴𝑘)

−1
𝐴𝑘

𝑇𝑄𝑗𝑦𝑘 (6.14) 

where, 

𝑄 = 𝑑𝑖𝑎𝑔(𝒒(𝑟𝑠𝑖)) 

𝒒(𝑟𝑠𝑖) =
𝜓(𝑟𝑠𝑖)

𝑟𝑠𝑖
 

𝜓(𝑟𝑠𝑖) =
𝜕𝜌(𝑟𝑠𝑖)

𝜕𝑟𝑠𝑖
 

With every update of the state estimate, the error covariance matrix must be updated. 

GM-EKF uses the expression for error covariance obtained from the total influence 

function [14] 

𝑃(𝑘|𝑘) =
Eϕ[𝜓2(𝑟𝑠𝑖)]

{Eϕ[𝜓′(𝑟𝑠𝑖)]}
2 (𝐴𝑘

𝑇𝐴𝑘)
−1(𝐴𝑘

𝑇𝑄𝑤𝐴𝑘)(𝐴𝑘
𝑇𝐴𝑘)

−1 (6.15) 

where𝑄𝑤 = 𝑑𝑖𝑎𝑔(�̅�𝑖
2). In Equation (6.15), 

Eϕ[𝜓2(𝑟𝑠𝑖)]

{Eϕ[𝜓′(𝑟𝑠𝑖)]}
2, is equal to 1.0369 for 𝑐 = 1.5 

6.5 UKF STATE ESTIMATOR WITH BAD DATA DETECTION 

Bad data results from meter biases, topology errors, communication failure, false data 

injection etc.[57]. State estimation including bad data may result in unsatisfactory state 
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estimates. It is not uncommon to obtain estimation results that diverge from the actual 

values. Therefore, it is necessary to detect the bad data and modify the estimator such 

that it provides satisfactory results. Bad data detection is usually based on the fact that 

the ratio between the deviation of the actual measurement from the estimate of the 

measurement and the expected standard deviation of the estimate remains below a 

threshold value in the absence of bad data. If the ratio exceeds the threshold value, the 

actual measurement is detected as bad data. This ratio is called the normalized 

innovation ratio [58]. Assume a measurement vector, 𝒚 = [𝑃, 𝑄]𝑇. 𝑃 and 𝑄 are active 

and reactive powers, respectively. Consider predicted measurement as �̂� and error 

covariance matrix as 𝑃𝑒𝑟𝑟. 𝑃𝑒𝑟𝑟 is defined as follows 

𝑃𝑒𝑟𝑟 = [
𝑃11 𝑃12

𝑃21 𝑃22
] 

The innovation or residual vector is calculated as 𝒓 = 𝒚 − �̂� = [
𝑟1
𝑟2

]. 

The normalized residuals are obtain as in the form 

𝑟𝑛1 =
𝑟1

√𝑃11

, 𝑟𝑛2 =
𝑟2

√𝑃22

 

For bad data, |𝑟𝑛1| > 𝑟𝑜 and |𝑟𝑛2| > 𝑟𝑜.Here,𝑟𝑜 is the threshold value for detecting 

bad data. The threshold, 𝑟𝑜 depends on the type of system and type of measurements 

and can be calculated offline [59,60].For the system in our case study, offline 

simulations gave𝑟𝑜 equal to 30. Therefore, a measurement is detected as bad 

measurement if the corresponding normalized innovation value exceeds 𝑟𝑜 in a given 

sample. This method of detecting bad data is not flawless. The main weakness of this 

approach results from the fact that they use detection tests which is based on least 
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squares residuals prone to the masking effects of multiple bad data [19].In our case, we 

used outliers in one measurement to avoid the masking effects of multiple bad data in 

bad data detection.  

We propose two methods for state estimation using the unscented Kalman filter with 

bad data. Upon detecting a bad measurement we replace the bad measurement with(i) 

the predicted measurement, or (ii) the last uncorrupted measurement. Simulation 

results based on these two methods are provide in Chapter 7 and compared with the 

GM-EKF.   
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CHAPTER 7: SIMULATION RESULTS 
 

This chapter presents simulations of the microgrid of Section 2.3. In the simulations, 

active and reactive powers are the two output measurements while the inputs are field 

voltage 𝐸𝑓𝑑 and mechanical torque 𝑇𝑚.All simulations use zero initial state 𝒙0 and an 

initial error covariance matrix 𝑃0 = 100𝐼6.The values of the noise statistics are as 

follows: for the state noise we set 𝑤𝑘~(𝟎,𝑄𝑘) =  (𝟎, 0.01𝐼6) and for measurement 

noise we set𝑣𝑘~(0, 𝑅𝑘) =  (0, 0.01𝐼2).  

We first consider six scenarios with a sampling frequency of 1 kHz and compare the 

performance of the estimators in each case. For the first scenario, the microgrid is 

operating normally with no faults or disturbances. In the second scenario, we consider 

the effect of a fault at the PCC in the microgrid. In the third scenario, we examine the 

effects of a failure of the second generator of the microgrid. The fourth scenario shows 

the effect of a fault that drops load 2 of the microgrid. The fifth scenario includes data 

loss or delay and uses our proposed scheme to utilize the delay data. The sixth scenario 

includes bad data in the measurements and simulates the GM-EKF and two robust 

UKFs. 

We also present simulations of the first four scenarios for the GM-EKF and the two 

robust UKFs at the PMU frequency of 50 Hz with both bad data and data loss or delay 

due to network congestion. These simulations require the use of second order Runge-

Kutta discretization of the microgrid model, while the simpler Euler approximation 

was adequate for the higher frequency of 1 kHz. In addition, the simulations required 

10 prediction steps for each sampling period to reduce the numerical errors associated 

with the approximation of the derivative. 
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For each simulation scenario that we present, we include a table that summarizes the 

results of 500 Monte Carlo simulations. The table includes the maximum error, the 

minimum error and the average error for our estimates of the state variables excluding 

the rotor angle, which is presented separately because it is in radians while the rest are 

per unit. 

7.1  NORMAL MICROGRID OPERATION 

The state estimation results for synchronous generator-1 are shown in Figure 7.1 – 

Figure 7.6. The simulation results show that the state estimates follow the actual states. 

In most cases, the UKF provides better estimation than the EKF. In a few cases, as in 

the cases with d transient voltage and q axis second damper flux, the estimates are very 

close to each other. This verifies the effectiveness of the UKF in addition to 

eliminating the limitations of the linearization process required by the traditional EKF. 

 

 
 

Figure 7.1 Rotor angle and its estimates. 
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Figure 7.2 Rotor speed deviation from the synchronous speed and its estimates. 

 
 

Figure 7.3 d-axis transient voltage and its estimates. 

 

 
 

Figure 7.4 q-axis transient voltage and its estimates. 
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Figure 7.5 d- axis damper flux and its estimates. 

 
 

Figure 7.6 q- axis second damper flux and its estimates. 

 

The estimated outputs (measurements) are shown in Figure 7.7 - Figure 7.8. From 

these figures, it is observed that the Kalman filter effectively filters out the noise from 

the measurements. The figures also show that the estimator performs with good 

accuracy, both in state estimation and filtering noise from measurements. 
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Figure 7.7 Noisy measurement and estimated active power of synchronous generator-1. 

 
 

Figure 7.8 Noisy measurement and estimated reactive power of synchronous generator-

1. 

To compare the root mean square (RMS) error of the EKF to the RMS of the UKF, we 

ran a Monte Carlo simulation for 500 times. The simulation was performed from 5 

second to 10 second. Figure 7.9 - 7.10 show the box plot of RMS errors for both EKF 

and the UKF. Table III shows the maximum, minimum and standard deviation of the 

RMS errors and rotor angle RMS errors for EKF and UKF. From the figures and table, 

we see that the EKF has a greater state estimation error than the UKF. 
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Figure 7.9 Box plot of RMS error for the EKF at normal microgrid. 

 

Figure 7.10 Box plot of RMS error for the UKF at normal microgrid. 
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Table III Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.0893 0.0868 4.04e-04 0.0866 0.0861 7.82e-05 

EKF 0.0888 0.0874 2.20e-04 0.0867 0.0863 1.87e-05 

 

7.2  FAULT AT PCC 

In order to check the effectiveness of the EKF and UKF under network fault 

disturbance, we simulated a 3-phase to ground fault at the microgrid PCC after 5 s and 

cleared after 5.1 s. The Simulink model settings and estimator initial values are the 

same as in the first simulation. Simulation results show that the fault has significant 

impact on the UKF estimator. After clearing the fault, the estimator converges quickly 

to the steady state. 

We highlight the performance of the state estimator at the time of the fault and after 

clearing the fault by showing simulation results over a shorter time period that bounds 

the two events. The simulation results are shown in Figure 7.11 -Figure 7.16. The 

results show that the estimator generates good estimates under PCC fault, exhibits a 

discontinuity immediately after the fault occurs, then resumes tracking the true values 

after the fault is cleared.  
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(a) From time interval 4.5 to 8s. 

 

 
(b) From time interval 5 to 6s. 

 

Figure 7.11 Rotor angle and its estimates under faulty condition. 

 
(a) From time interval 4.5 to 8s. 
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(b) From time interval 5 to 6s. 

 

Figure 7.12Rotor speed deviation and its estimates under faulty condition. 

 

 
(a) From time interval 4.5 to 8s. 

 

 
 

(b) From time interval 5 to 6s. 

Figure 7.13 d-axis transient voltage and its estimates under faulty condition. 
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(a) From time interval 4.5 to 8s. 

 

 
(b) From time interval 5 to 6s. 

Figure 7.14 q-axis transient voltage and its estimates under faulty condition. 

 

 

(a) From time interval 4.5 to 8s. 
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(b) From time interval 5 to 6s. 

Figure 7.15 d-axis damper flux and its estimates under faulty condition. 

 
(a) From time interval 4.5 to 8s. 

 

 
 

(b) From time interval 5 to 6s. 

Figure 7.16 q-axis second damper flux and its estimates under faulty condition. 
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The estimated outputs (measurement) for this faulty condition are shown in Fig. 

7.17 - Fig. 7.18. From Figure 7.17, the Kalman filter filters the noise from the noisy 

measurement of the active power in normal operation but fails to do so during the fault 

period. In Figure 7.18, the results for the reactive power are similar to those for the 

active power. This is because, during the period of the fault, the network topology and 

parameters are no longer the same as in normal operation. Since the Kalman filter uses 

the nominal parameter values, it cannot follow the true system dynamics. When the 

fault is cleared, the network is restored and Kalman filter performs well as before.  

 
(a) From time interval 4.5 to 8s. 

 

 
 

(b) From time interval 5 to 6s. 

 

Figure 7.17 Active power of synchronous generator-1 under faulty condition. 
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(a) From time interval 4.5 to 8s. 

 

 

(b) From time interval 5 to 6s. 

Figure 7.18 Reactive power of synchronous generator-1 and its estimates under faulty 

condition. 

The box plots of errors obtained from our Monte Carlo simulations are shown in 

Figure 7.19-7.20. We calculated the RMS errors from 5 second to 10 second and the 

results are shown in Table IV. It is clear from the box plots and Table IV that the errors 

corresponding to EKF are larger than that of UKF under the faulty condition. 

Table IV Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

EKF 0.5066 0.4766 0.0042 0.0914 0.0900 6.11e-05 

UKF 0.3470 0.3430 6.34e-04 0.0907 0.0898 1.18e-04 
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Figure 7.19 Box plot of RMS error for UKF with fault at PCC. 

 

Figure 7.20 Box plot of RMS error for EKF with fault at PCC. 
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7.3  LOSS OF GENERATOR 

We simulated a fault in the line that connects generator 2 to the microgrid to show the 

performance of the EKF and the UKF subject to loss of generator, The fault is applied 

at 4.0 s and cleared at 4.1 s and the system becomes stable after the fault is cleared. 

Both state estimators performed satisfactorily and the estimated results track the actual 

values of states even after the generator loss. This is validated by the simulation results 

presented in Figures 7.21-7.26. 

The result of 500 Monte Carlo simulations are shown in the box plots of Figure 

7.27-Figure 7.28 and in Table V. The figures are the box plots of RMS errors for EKF 

and UKF. Table V shows the RMS errors calculated for the simulation period of 3.5 

second to 10 second. From Table V and the box plots we observe that the EKF results 

in larger errors than the UKF. 

 

(a) From time interval 3.5 to 5.5s. 
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(b) From time interval 4 to 4.4s. 

Figure 7.21 Rotor angle and its estimates with loss of generator. 

 

Figure 7.22Rotor speed deviation and its estimates with loss of generator. 

 

(a) From time interval 3.5 to 5.5s. 
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(b)  

 

(b) From time interval 4.1 to 4.4s. 

Figure 7.23 d-axis transient voltage and its estimates with loss of generator. 

 

(a) From time interval 3.5 to 5.5s. 
 

 

(b) From time interval 4.1 to 4.4s. 

Figure 7.24 q-axis transient voltage and its estimates with loss of generator 
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Figure 7.25 d-axis damper flux and its estimates with loss of generator. 

 

Figure 7.26 q-axis second damper flux and its estimates with loss of generator. 
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Figure 7.27 Box plot of UKF RMS error with loss of generator. 

 

Figure 7.28 Box plot of EKF RMS error with loss of generator. 
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Table V Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 1.8822 1.8680 0.0024 0.1021 0.0711 0.0044 

EKF 1.9235 1.8783 0.0129 0.1033 0.0829 0.0060 

 

7.4 LOSS OF LOAD 

We simulated a fault in the line connecting load 2 to the adjacent transformer after 4.5 

s and cleared it at 4.6 s to show the performance of EKF and the UKF subject to loss of 

load. As in other scenarios, the filter estimates have large errors during the fault but 

track the actual state values after the fault is cleared. Simulation results presented in 

Figures 7.29-7.34show the performance of both EKF and UKF under loss of load in the 

microgrid. The simulation results show that both filters can generate estimated states 

with an appropriate accuracy. 

To compare the RMS errors of EKF and UKF under loss of load, we calculated the 

RMS errors from the results 500 Monte Carlo simulations from 4 to 10s and the results 

are summarized in the box plots of Figure 7.35, Figure 7.36 and in Table VI. In this 

case, the RMS errors for the UKF are similar to those for the EKF. 
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(a) From time interval 4 to 6s. 

 

(b) From time interval 4.6 to 5.2s. 

Figure 7.29 Rotor angle and its estimates with loss of load. 

 

Figure 7.30 Rotor speed deviation and its estimates with loss of load. 
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(a) From time interval 4.4 to 6s. 

 

(b) From time interval 4.6 to 5.1s. 

Figure 7.31 d-axis transient voltage and its estimates with loss of load. 

 

(a) From time interval 4.4 to 6s. 
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(b) From time interval 4.6 to 5.1s. 

Figure 7.32 q-axis transient voltage and its estimates with loss of load. 

 

Figure 7.33 d-axis damper flux and its estimates with loss of load. 

 

(a) From time interval 4.4 to 6s. 
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(b) From time interval 4.6 to 5.2s. 

Figure 7.34 q-axis second damper flux and its estimates with loss of load. 

 

Figure 7.35 UKF RMS error with loss of load. 



83 
 

 
 

 

Figure 7.36 EKF RMS error with loss of load. 

Table VI Comparison of RMS errors of EKF and UKF with loss of load. 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.1006 0.0995 1.87e-04 0.0966 0.0725 0.0039 

EKF 0.1241 0.0926 0.009 0.0992 0.0852 0.004 

 

7.5 PACKET LOSS AND TIME DELAY 
 

In this scenario, we assume that the measurement data are transmitted through a 

communication channel to the estimator. At each time step, two measurements are sent 

in a single packet. The packet can reach the estimator in time, reach it after a time 

delay, or can be lost. In this thesis, it is assumed that the packet loss is a Bernoulli 
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random process with parameter 𝑝 = 0.9. The packet time delay is a binomial random 

process with parameters (𝑛, 𝑝) =  (3, 0.4). 

The state estimation results are given in Figure 7.37 - Figure 7.42 with packet loss 

and delay while microgrid is operating normally. With 10% packet loss and with 

random delay, the simulation results are almost the same as in Figure 7.1 - Figure 7.6. 

The results are obtained using the algorithm of Chapter 5. From Figure 7.37, the 

estimated rotor angle tracks the actual values. This is true for other state estimates 

because 10% packet drop can be tolerated by the Kalman filter.  However, packet loss 

probability has a critical value above which the performance of the Kalman filter starts 

to deteriorate. 

The simulation results show that both the EKF and UKF estimation results are 

satisfactory with packet loss and time delay. In some cases (here rotor speed deviation 

and q axis second damper flux), estimation with UKF is significantly better than the 

EKF. Other estimation results are similar for both filters. 

 
Figure 7.37 Rotor angle and its estimates with packet loss and time delay. 
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Figure 7.38 Rotor speed deviation and its estimates with packet loss and time delay. 

 

 
Figure 7.39 d-axis transient voltage and its estimates with packet loss and time delay. 

 

 
 

Figure 7.40 q-axis transient voltage and its estimates with packet loss and time delay. 
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Figure 7.41 d-axis damper flux and its estimates with packet loss and time delay. 

 

 
Figure 7.42 q-axis second damper flux and its estimates with packet loss and time 

delay. 

 

We observe from Figure 7.37 - Figure 7.42 that the state estimates with 10% packet 

loss and randomly delayed packets approach those with no packet loss. Implementing 

the algorithm of Chapter 5 requires extra memory to store predicted values for each 

time step for use in the corrector when measurements become available. This increase 

in the cost associated with this Kalman filter is justifiable given the reduction in the 

estimation errors. 



87 
 

 
 

We ran 500 Monte Carlo simulations and calculated RMS errors for the entire 

simulation duration of 10 s. In this scenario, the RMS errors for the EKF and the UKF 

are similar 

Table VII Comparison of RMS errors of EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 1.1560 1.1050 0.0146 0.0924 0.0913 0.0041 

EKF 1.3738 1.1251 0.0725 0.0921 0.0935 0.0057 

 

 
 

Figure 7.43 Box plot of UKF RMS error with packet loss and time delay. 



88 
 

 
 

 
 

Figure 7.44 Box plot of EKF RMS error with packet loss and time delay. 

 

7.6 ROBUST STATE ESTIMATION 

 

Gross errors in the measurements and sudden changes of states caused by sudden load 

changes and network topology errors are considered as bad data. It is not uncommon 

for bad data or outliers to appear in measurement data and be transmitted through the 

communication network due to sensor errors. Outliers can seriously degrade the 

performance of conventional state estimators using nonlinear filters such as EKF and 

the UKF [61]. Robust state estimators, such as the GM-EKF allow dynamic state 

estimation in the presence of outliers in measurements. For the GM-EKF, the detection 

of outliers is carried out by using projection statistics. The bad data are weighted down 

and used in state estimation but not discarded. 
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We introduced 6 outliers in the active power measurements with values set equal to 

50 for 6 consecutive samples of active power starting at time𝑡 =2.5 s. This represents a 

gross measurement error since the active power injections are below 2.8 per unit at all 

times.  State estimation results from the EKF, the UKF and the GM-EKF subject to 

measurements with bad data are presented in Figure 7.109- Figure 7.114. We present 

the simulations in two plots for each state. Each figure includes two plots, one shows 

the entire plot and the other shows a close-up of the outlier.  

We observe that the larger the magnitude of the outlier, the worse the estimation 

results from the EKF and UKF. However, the GM-EKF exhibits good state estimation 

by weighting down the outliers. A drawback of the GM-EKF is that it loses tracking 

capability when the system nonlinearities are severe. This occurs when power system is 

under too much stress or undergoing a large variation in system states following a large 

disturbance [12].  

Simulation results from the EKF, UKF and GM-EKF are presented along with the 

true values for comparison. If the figure legends, the GM-EKF is referred to as the 

REKF. The state estimates diverge from the true values when the outlier is included in 

the measurements at 2.5 s. This is the case with EKF and UKF as seen in Figures 7.45 - 

Figure 7.49. However, the estimates are not equally affected by bad data. For example, 

Figure 7.50 show that the effects of outliers on the estimates from the EKF and the 

UKF are small.  
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Figure 7.45 Rotor angle and its estimates with outliers.  
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Figure 7.46 Rotor speed deviation and its estimates with outliers. 
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Figure 7.47 d-axis transient voltage and its estimates with outliers. 
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Figure 7.48 q-axis transient voltage and its estimates with outliers. 
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Figure 7.49 d-axis damper flux and its estimates with outliers. 
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Figure 7.50 q-axis second damper flux and its estimates with outliers. 
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Figure 7.51 Active power with outliers. 

 

7.7 UKF and GM-EKF WITH BAD DATA 
 

In this section, we present simulation results subject to bad data for the GM-EKF 

together with the UKF using two different approaches. The first approach replaces the 

bad data with the predicted measurements, and is referred to as the KLM. The second 

approach replaces the bad data with the last good measurement, and is referred to as the 

KPM. We inserted 10 outliers of 100per unit (pu) in 10 consecutive active power 

samples starting from 2 s. Those are well above the actual active power values of 

below 1 pu. The active power measurement with outlier is shown in Figure 7.55. We 

ran 500 Monte Carlo simulations of the three robust estimators. 

We observe that both UKF state estimates are better than the GM-EKF estimates as 

shown in Figures 7.52-7.54. This is particularly the case at time 2 s when we inserted 

outliers where the GM-EKF exhibits a larger spike in its estimates of several states. For 
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example in rotor angle, d-axis transient voltage and d-axis damper flux, the GM-EKF 

takes longer times to track the actual states. In contrast, the robust UKFs do not show 

larger spikes with bad data. Our 500 Monte Carlo simulations show that the UKFs also 

provide better performance in terms of RMS errors than the GM-EKF, as observed 

from Table VIII. This shows that the modified UKF can perform better than the GM-

EKF subject to bad data. 

Table VIII Comparison of RMS error for various estimators 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KLM 0.0889 0.0874 2.34e-04 0.0997 0.0760 0.0043 

KPM 0.0887 0.0875 2.21e-04 0.0989 0.0741 0.0044 

GM-

EKF 

0.1346 0.1336 2.21e-04 0.0883 0.0843 9.64e-04 
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Figure 7.52 Rotor angle, rotor speed deviation and their estimates with bad data. 



99 
 

 
 

 

Figure 7.53 d-axis, q-axis transient voltage and their estimates with bad data. 
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Figure 7.54 d-axis damper flux, q-axis second damper flux and their estimates with bad 

data. 
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Figure 7.55 Active power with outliers. 

 

Figure 7.56 Box plot of RMS error for UKF with uncorrupt measurement. 
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Figure 7.57 Box plot of RMS error for UKF with predicted measurement. 

 

Figure 7.58 Box plot of RMS error for GM-EKF. 
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7.8 NORMAL MICROGRID OPERATION AND PMU MEASUREMENTS 

This section provides state estimation results for a sampling frequency of 50 Hz for the 

EKF and the UKF under normal operation. The simulation results show the true and 

estimated values of the state variable in Figure 7.59- Figure 7.64. From the figures, we 

observe that the state estimates track the true values of the states satisfactorily using the 

PMUs data. Figure 7.65- Figure 7.66 show the RMS errors for the UKF and the EKF 

respectively. As expected the RMS errors for the EKF is larger than those of the UKF. 

Table IV shows the maximum, minimum and standard deviation of the RMS errors and 

rotor angle RMS errors for the EKF and the UKF. From the figures and Table IX, we 

see that state estimation errors are greater for the EKF than for the UKF. 

 

 
 

Figure 7.59 Rotor angle and its estimates at 50 Hz 
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Figure 7.60 Rotor speed deviation and its estimates at 50 Hz 

 
Figure 7.61 d-axis transient voltage and its estimates at 50 Hz 

 

 
Figure 7.62 q-axis transient voltage and its estimates at 50 Hz 
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Figure 7.63 d-axis damper flux and its estimates at 50 Hz 

 
Figure 7.64 q-axis second damper flux and its estimates at 50 Hz 

 

Table IX Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.5007 0.4782 0.0036 0.1952 0.0124 0.0400 

EKF 0.4954 0.4674 0.0053 0.1967 0.0042 0.0353 
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Figure 7.65 Box plot of UKF RMS error at 50 Hz 

 
Figure 7.66 Box plot of EKF RMS error at 50 Hz 
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7.9 FAULT AT PCC AND PMU MEASUREMENTS 

As in Section 7.2, we simulated a 3-phase-to-ground fault at the PCC after 5 s and 

cleared it at 5.1 s for both the EKF and the UKF at the PMU frequency of 50 Hz. 

Figure 7.67 – Figure 7.72 show that the filters cannot track the true states during the 

fault but quickly converge to the steady state after the fault is cleared. The RMS errors 

obtained from 500 Monte Carlo simulation are provided in box plots in Figure 7.35- 

Figure 7.36 and in Table X. Although the errors are small for both filters, the UKF 

provides better results. 

 
Figure 7.67 Rotor angle and its estimates with fault at 50 Hz. 

 

 
Figure 7.68 Rotor speed deviation and its estimates with fault at 50 Hz. 
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Figure 7.69 d-axis transient voltage and its estimates with fault at 50 Hz. 

 

 
Figure 7.70 q-axis transient voltage and its estimates with fault at 50 Hz. 

 

 
Figure 7.71 d-axis damper flux and its estimates under with fault at 50 Hz. 

 



109 
 

 
 

 
Figure 7.72 q-axis second damper flux and its estimates with fault at 50 Hz. 

 

Table X Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.5820 0.5534 0.0047 0.2059 0.0152 0.0403 

EKF 0.6146 0.5716 0.0063 0.1796 0.0044 0.0340 

 

  
Figure 7.73 Box plot of UKF RMS error with fault at 50 Hz 
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Figure 7.74 Box plot of EKF RMS error with fault at 50 Hz 

 

7.10 LOSS OF GENERATOR AND PMU MEASUREMENTS 

This scenario considers the effects of generator failure on the estimators with PMU 

measurements at a frequency of 50 Hz. As in Section 7.3, we assume the failure of 

generator 2 after 4 s. We again obtained satisfactory results from the EKF and the UKF 

estimators as demonstrated by the results in Figure 7.75 – Figure 7.80. Monte Carlo 

based RMS errors are presented in the box plots of Figure 7.81- Figure 7.82. The box 

plots along with Table XI demonstrates once again the lower error of the UKF as 

compared to the EKF. 
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Figure 7.75 Rotor angle and its estimates with loss of generator at 50 Hz. 

 

 
Figure 7.76 Rotor speed deviation and its estimates with loss of generator at 50 Hz. 

 

Figure 7.77 d-axis transient voltage and its estimates with loss of generator at 50 Hz. 
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Figure 7.78 q-axis transient voltage and its estimates with loss of generator at 50 Hz. 

 

Figure 7.79 d-axis damper flux and its estimates with loss of generator at 50 Hz. 

 

Figure 7.80 q-axis second damper flux and its estimates with loss of generator at 50 

Hz. 
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Table XI Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.6137 0.5843 0.005 0.1827 0.0013 0.0411 

EKF 0.6414 0.6035 0.0063 0.1720 0.0019 0.0349 

 

 

Figure 7.81 Box plot of EKF RMS error with loss of generator at 50 Hz. 
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Figure 7.82 Box plot of UKF RMS error with loss of generator at 50 Hz. 

7.11 LOSS OF LOAD AND PMU MEASUREMENTS 

We investigate the performance of the EKF and the UKF following the loss of load 2 

after 4.5 s using PMUs measurements. The state estimation results based on this 

scenario are provided in Figures 7.83 – 7.88. We present the RMS errors based on 500 

Monte Carlo simulations in Table XII and Figure 7.89- Figure 7.90. The result show 

that the UKF and EKF results are similar.  
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Figure 7.83 Rotor angle and its estimates with loss of load at 50 Hz. 

 
Figure 7.84 Rotor speed deviation from and its estimates with loss of load at 50 Hz. 

 
Figure 7.85 d-axis transient voltage and its estimates with loss of load at 50 Hz. 
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Figure 7.86 q-axis transient voltage and its estimates with loss of load at 50 Hz. 

 
Figure 7.87 d-axis damper flux and its estimates with loss of load at 50 Hz. 

 

 
Figure 7.88 q-axis second damper flux and its estimates with loss of load at 50 Hz. 
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Figure 7.89 Box plot of UKF RMS error with loss of load at 50 Hz. 

 

 
Figure 7.90 Box plot of EKF RMS error with loss of load at 50 Hz. 
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Table XII Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.5707 0.5427 0.0050 0.2001 0.0023 0.0408 

EKF 0.5773 0.5382 0.0061 0.1673 0.0024 0.0335 

 

7.12 PACKET LOSS AND TIME DELAY WITH PMU MEASUREMENTS 

We analyze the effectiveness of our KF approach for dealing with packet loss or delay 

(Section 5.5) with the distributions mentioned in Section 7.5. We consider a normally 

operating microgrid with PMU measurements at a sampling frequency of 50 Hz. The 

results are provided in Figure 7.91- Figure 7.96. From Figures 7.91- 7.96, we observe that 

the effects of packet delay are reduced but not eliminated. This is particularly true of the 

estimate of the rotor angle where the estimation error is significant. Nevertheless, the 

provided RMS errors demonstrate that the approach of Section 5.5 improves filter 

accuracy. 

 

Figure 7.91 Rotor angle and its estimates with packet loss and time delay at 50 Hz. 
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Figure 7.92Rotor speed deviation and its estimates with packet loss and time delay at 

50 Hz. 

 

Figure 7.93 d-axis trans. voltage and its est. with packet loss and time delay at 50 Hz. 

 

Figure 7.94 q-axis transient voltage and its estimates with packet loss and time delay at 

50 Hz. 
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Figure 7.95 d-axis damper flux and its estimates with packet loss and time delay at 50 

Hz. 

 

Figure 7.96 q-axis second damper flux and its estimates with packet loss and time 

delay at 50 Hz. 
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Figure 7.97 Box plot of UKF RMS error with packet loss and time delay at 50 Hz. 

 

Figure 7.98 Box plot of EKF RMS error with packet loss and time delay at 50 Hz. 
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Table XIII Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.5358 0.5063 0.0043 0.1740 0.0047 0.0370 

EKF 0.7542 0.7242 0.0070 0.2028 0.0084 0.0448 

 

7.13 FAULT AT PCC, PACKET LOSS, AND DELAY WITH PMU 

MEASUREMENTS 

In this section, we consider the effects of a fault at the PCC with packet drop and delay 

using the distributions defined in Section 7.5. A three phase to ground fault occurs at 5 

s and is cleared at 5.1 s. The results of 500 Monte Carlo simulations are given in the 

box plots of Figures 7.105 and 7.106 and in Table XIV. Again, the results presented in 

Figure 7.99 – Figure 7.104 demonstrate the effectiveness of our proposed method. 

 
Figure 7.99 Rotor angle and its estimates with fault, packet loss and delay at 50 Hz. 
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Figure 7.100 Rotor speed deviation from and its estimates with fault, packet loss and 

delay at 50 Hz. 
 

 
 

Figure 7.101 d-axis transient voltage and its estimates with fault, packet loss and delay 

at 50 Hz. 
 

 
Figure 7.102 q-axis transient voltage and its estimates with fault, packet loss and delay 

at 50 Hz. 
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Figure 7.103 d-axis damper flux and its estimates with fault, packet loss and delay at 

50 Hz. 
 

 
Figure 7.104 q-axis second damper flux and its estimates with fault, packet loss and 

delay at 50 Hz. 

 

Table XIV Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.6822 0.6243 0.0132 0.1886 0.0014 0.0402 

EKF 0.9225 0.8903 0.0070 0.3141 0.0652 0.0528 
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Figure 7.105 UKF RMS error with fault, packet loss and delay at 50 Hz. 

 
Figure 7.106 EKF RMS error with fault, packet loss and delay at 50 Hz. 
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7.14 GENERATOR LOSS, PACKET LOSS AND TIME DELAY WITH PMU 

MEASUREMENTS 

In this section, we consider generator loss with packet drop and delay and with the 

PMU sampling frequency of 50 Hz and the packet drop and delay distributions of 

Section 7.5. Simulation results are provided in Figure 7.107- Figure 7.112. The results 

of 500 Monte Carlo simulations given in the box plots of Figures 7.113 and 7.114 and 

in Table XV show that our results are acceptable. 

 
Figure 7.107 Rotor angle and its estimates with gen. loss, packet loss and delay at 50 

Hz. 
 

 
Figure 7.108 Rotor speed deviation and its estimates with gen. loss, packet loss and 

delay at 50 Hz. 
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Figure 7.109 d-axis transient voltage and its estimates gen. loss, packet loss and delay 

at 50 Hz. 

 
Figure 7.110 q-axis transient voltage and its estimates gen. loss, packet loss and delay 

at 50 Hz. 
 

 
Figure 7.111 d-axis damper flux and its estimates gen. loss, packet loss and delay at 50 

Hz. 
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Figure 7.112 q-axis second damper flux and its estimates gen. loss, packet loss and 

delay at 50 Hz. 

 

Table XV Comparison of RMS errors for EKF and UKF with a sampling frequency of 

50 Hz. 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.7201 0.6055 0.0324 0.1741 0.0007 0.0405 

EKF 0.7321 0.6986 0.0074 0.2355 0.0138 0.0450 
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Figure 7.113 UKF RMS error with gen. loss, packet loss and delay at 50 Hz. 

 
 

 
Figure 7.114 EKF RMS error gen. loss, packet loss and delay at 50 Hz. 
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7.15 LOAD LOSS, PACKET LOSS, AND TIME DELAY USING 

PMUMEASUREMENTS 

We consider the effects of the loss of load 2 after 4.5 s with the PMU sampling 

frequency of 50 Hz and the packet drop and delay distributions of Section 7.5.  

Simulation results provided in Figure 7.115- Figure 7.120 demonstrate the 

effectiveness of our proposed method. The RMS errors corresponding to the EKF and 

the UKF are also provided in Figure 7.121-Figure 7.122. The results of 500 Monte 

Carlo simulations given in the box plots of Figures 7.121 and 7.122 and in Table XVI 

show that our results are acceptable for both filters. 

 

 
 

Figure 7.115 Rotor angle and its estimates with load loss, packet loss and delay at 50 

Hz. 
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Figure 7.116 Rotor speed deviation and its estimates with load loss, packet loss and 

delay at 50 Hz. 
 

 
Figure 7.117 d-axis transient voltage and its estimates with load loss, packet loss and 

delay at 50 Hz. 

 
 

 
Figure 7.118 q-axis transient voltage and its estimates with load loss, packet loss and 

delay at 50 Hz. 
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Figure 7.119 d-axis damper flux and its estimates with load loss, packet loss and delay 

at 50 Hz. 
 

 
Figure 7.120 q-axis second damper flux and its estimates with load loss, packet loss 

and delay at 50 Hz. 
 

Table XVI Comparison of RMS errors for EKF and UKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 0.7610 0.5340 0.0595 0.1625 0.0081 0.0374 

EKF 0.7613 0.7258 0.0078 0.1745 0.0173 0.0362 
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Figure 7.121 UKF RMS error with load loss, packet loss and delay at 50 Hz. 

 

 
Figure 7.122 EKF RMS error with load loss, packet loss and delay at 50 Hz. 
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7.16  NORMAL MICROGRIDOPERATION WITH BAD DATA AND PMU 

MEASUREMENT 

We investigate the performance of the robust state estimators, the two UKFs, and the 

GM-EKF using PMU data with outliers under normal operation. We introduced six 

consecutive outliers with values equal to 50 pu in active power starting at 4 seconds. 

Active power with bad data are presented in Figure 7.129. The nominal values of active 

power were below 2 (pu). The three robust state estimators were run using the 

measurements with bad data and the estimation results are provided in Figure 7.123- 

Figure 7.128.  

Based on the results of Figure 7.123- Figure 7.128, we conclude that performance of 

the robust UKFs is better in dealing with the bad data than the GM-EKF. While the 

GM-EKF exhibits a large state estimation error when it faces bad data, the robust 

UKFs does not. The improved performance of the robust UKFs is also demonstrated by 

the RMS errors, based on 500 Monte Carlo simulations, presented in Table XVII and 

the box plots of Figure 7.131- Figure 7.132. Note that the effects of bad data are not 

equal for all state estimates. For example, in Figure 7.126 and Figure 7.128 the three 

estimators are performing with good accuracy.  
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Figure 7.123 Rotor angle and its estimates with bad data at 50 Hz. 

 

 
Figure 7.124 Rotor speed deviation and its estimates with bad data at 50 Hz. 

 

 
Figure 7.125 d-axis transient voltage and its estimates with bad data at 50 Hz. 
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Figure 7.126 q-axis transient voltage and its estimates with bad data at 50 Hz. 

 

 
Figure 7.127 d-axis damper flux and its estimates with bad data at 50 Hz. 

 

 
Figure 7.128 q-axis second damper flux and its estimates with bad data at 50 Hz. 
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Figure 7.129 Active power with bad data 

 

 
Figure 7.130 UKF RMS error with predicted measurement with bad data at 50 Hz. 
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Figure 7.131 UKF RMS error with last uncorrupted measurement with bad data at 50 Hz. 

 
Figure 7.132 Box plot of GM-EKF RMS error with bad data at 50 Hz. 
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Table XVII Comparison of RMS errors for the EKF, the UKF and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KPM 0.5056 0.4781 0.0039 0.1875 0.0016 0.0350 

KLM 0.4991 0.4777 0.0036 0.1809 0.0013 0.0352 

GM-

EKF 

0.8966 0.7523 0.0252 0.1904 0.0002 0.0530 

 

7.17 FAULT AT PCC, BAD DATA AND PMU MEASUREMENT 

In this section, we analyze the performance of the robust estimators under the condition 

of fault at PCC and bad data in measurements at the PMU sampling frequency of 50 

Hz. A three phase to ground fault is applied at 5 s and cleared at 5.1 s. Together with 

the fault, we introduce six consecutive outliers in the active power measurements 

starting at 6 s (Figure 7.139). The results obtained from the GM-EKF, and the robust 

UKFs are presented in Figure 7.133- Figure 7.138.  

 

 
Figure 7.133 Rotor angle and its estimates with fault, bad data at 50 Hz. 
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Figure 7.134 Rotor speed deviation and its estimates with fault, bad data at 50 Hz. 

 

 
Figure 7.135 d-axis transient voltage and its estimates with fault, bad data at 50 Hz. 

 

 
Figure 7.136 q-axis transient voltage and its estimates with fault, bad data at 50 Hz. 
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Figure 7.137 d-axis damper flux and its estimates with fault, bad data at 50 Hz. 

 

 
Figure 7.138 q-axis second damper flux and its estimates with fault, bad data at 50 Hz. 
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Figure 7.139 Active power with bad data 

 
Figure 7.140 UKF RMS error with predicted measurement with fault, bad data at 50 

Hz. 
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Figure 7.141 UKF RMS error with last uncorrupted measurement with fault, bad data 

at 50 Hz. 
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Figure 7.142 GM-EKF RMS error with fault, bad data at 50 Hz. 

 

Table XVIII Comparison of RMS errors for the KPM, KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 

(PM) 

0.5798 0.5543 0.0048 0.2045 0.0098 0.0342 

UKF 

(LM) 

0.5816 0.5492 0.0052 0.1673 0.0205 0.0352 

GM-

EKF 

1.0903 0.8365 0.0382 0.2042 0.0770 0.0061 

 

Once again, we obtain superior performance from the robust UKFs to the GM-EKF. 

The GM-EKF starts deviating from the true values as it faces bad data in 

measurements. It also takes a longer time to recover to the actual states than the robust 

UKFs. The results of 500 Monte Carlo simulation shown in Table XVIII demonstrate 
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the larger RMS errors associated with the GM-EKF. The results of Figure 7.136 and 

Figure 7.138 are not significantly affected by bad data. 

7.18 GENERATOR LOSS, BAD DATA AND PMU MEASUREMENT 

We investigate the performance of robust estimators under loss of generator and bad 

data. We simulated the loss of the second synchronous generator at 4 s with the PMU 

sampling frequency of 50 Hz for measurements of active and reactive power. Six 

outliers were introduced in active power as shown in Figure 7.149. Simulation results 

from the robust state estimators are provided in Figure 7.143- Figure 7.148.  

 

 
Figure 7.143 Rotor angle and its estimates with gen. loss, bad data at 50 Hz. 
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Figure 7.144 Rotor speed deviation and its estimates with gen. loss, bad data at 50 Hz. 

 

 
Figure 7.145 d-axis transient voltage and its estimates with gen. loss, bad data at 50 Hz. 

 

 
Figure 7.146 q-axis transient voltage and its estimates with gen. loss, bad data at 50 Hz. 
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Figure 7.147 d-axis damper flux and its estimates with gen. loss, bad data at 50 Hz. 

 

 
Figure 7.148 q-axis second damper flux and its estimates with gen. loss, bad data at 50 

Hz. 
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Figure 7.149 Active power with bad data 

 

 
Figure 7.150 KPM-UKF RMS error with generator loss and bad data at 50 Hz. 
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Figure 7.151 KLM-UKF RMS error with generator loss, bad data at 50 Hz. 

 

 
 

Figure 7.152 GM-EKF RMS error with gen. loss, bad data at 50 Hz. 
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Table XIX Comparison of RMS errors for the KPM, the KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

UKF 

(PM) 

0.6151 0.5821 0.0050 0.1806 0.0042 0.0323 

UKF 

(LM) 

0.6138 0.5850 0.0063 0.1596 0.0036 0.0342 

GM-

EKF 

0.9537 0.8556 0.0209 6.5055 0.0034 0.9182 

 

Based on the results of Figure 7.143- Figure 7.148 and 500 Monte Carlo simulation 

results (Table XIX and box plots Figure 7.151- Figure 7.152), we conclude the robust 

UKFs perform better than the GM-EKF. Again, not all of state estimates are equally 

affected by bad data in PMU measurements.  

7.19 LOAD LOSS, BAD DATA AND PMU MEASUREMENT 

In this section, we examine the performance of the robust UKFs and the GM-EKF 

under loss of load and bad data with the PMU frequency of 50 Hz. As in Section 7.4, 

we simulate the loss of the second load at 4.5 s. Six outliers are introduced in active 

power as shown in Figure 7.159. Simulation results for the robust state estimators 

subject the bad data and loss of load are presented in Figure 7.153- Figure 7.158. The 

robust UKFs provide better tracking of the true states than the GM-EKF. This is 

particularly true for the plots of the rotor angle, the d-axis transient voltage, and d-axis 

damper flux. 

The results of 500 Monte Carlo simulations are provided in the box plots of Figure 

7.161- Figure 7.162 and Table XX. The errors for the robust UKFs are significantly 

smaller than the errors for the GM-EKF. The results show that with bad data and load 
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loss, at the PMU sampling frequency of 50 Hz, the robust UKFs perform better than 

the GM-EKF. 

 
Figure 7.153 Rotor angle and its estimates with load loss, bad data at 50 Hz. 

 

 
Figure 7.154 Rotor speed deviation and its estimates with load loss, bad data at 50 Hz.  
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Figure 7.155 d-axis transient voltage and its estimates with load loss, bad data at 50 

Hz. 
 

 
Figure 7.156 q-axis transient voltage and its estimates with load loss, bad data at 50 

Hz. 
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Figure 7.157 d-axis damper flux and its estimates with load loss, bad data at 50 Hz. 

 

 
Figure 7.158 q-axis second damper flux and its estimates with load loss, bad data at 50 

Hz. 
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Figure 7.159 Active power with bad data 

 
Figure 7.160 GM-EKF RMS error with load loss, bad data at 50 Hz. 
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Figure 7.161 UKF RMS error with predicted measurement with load loss, bad data at 

50 Hz. 

 
Figure 7.162 UKF RMS error with last uncorrupted measurement with load loss, bad 

data at 50 Hz. 
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Table XX Comparison of RMS errors for the KPM, the KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KPM 0.5716 0.5397 0.0053 0.1703 0.0025 0.0316 

KLM 0.5702 0.5408 0.0050 0.1837 0.0040 0.0329 

GM-

EKF 

0.8825 0.7926 0.0182 0.2056 0.0067 0.0078 

 

7.20 NORMAL MICROGRID, PACKET LOSS AND DELAY, BAD DATA AND 

PMUMEASUREMENT 

 

In this section, we examine the performance of the robust UKFs and the GM-EKF 

under normal microgrid and packet loss and delay with bad data at the PMU frequency 

of 50 Hz. Six outliers are introduced in active power as shown in Figure 7.169. The 

packet loss and delay distribution are as mentioned in Section 7.5. Simulation results 

for the robust state estimators subject to packet loss and delay with bad data are 

presented in Figure 7.163- Figure 7.168. The robust UKFs provide better tracking of 

the true states than the GM-EKF. This is particularly true for the plots of the rotor 

angle, the d-axis transient voltage, and d-axis damper flux. 

The results of 500 Monte Carlo simulations are provided in the box plots of Figure 

7.170- Figure 7.172 and Table XXI. The errors for the robust UKFs are significantly 

smaller than the errors for the GM-EKF. The results show that packet loss and delay 

with bad data and, at the PMU sampling frequency of 50 Hz, the robust UKFs perform 

better than the GM-EKF. The Monte Carlo simulation results are similar for the rotor 

angle. 
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Figure 7.163 Rotor angle and its estimates with packet loss and delay, bad data at 50 

Hz. 

 

Figure 7.164 Rotor speed deviation and its estimates with packet loss and delay, bad 

data at 50 Hz. 

 

Figure 7.165 d-axis transient voltage and its estimates with packet loss and delay, bad 

data at 50 Hz. 
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Figure 7.166 q-axis transient voltage and its estimates with packet loss and delay, bad 

data at 50 Hz. 

 

Figure 7.167 d-axis damper flux and its estimates with packet loss and delay, bad data 

at 50 Hz. 

 

Figure 7.168 q-axis second damper flux and its estimates with packet loss and delay, 

bad data at 50 Hz. 
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Figure 7.169 Active power with bad data 

 

Figure 7.170 Box plot of PM-UKF with packet loss and delay, bad data 
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Figure 7.171 Box plot of LM-UKF with packet loss and delay, bad data 

 

Figure 7.172 Box plot of GM-EKF with packet loss and delay, bad data 
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Table XXI Comparison of RMS errors for the KPM, KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KPM 0.5155 0.4522 0.0057 0.1686 0.0065 0.0343 

KLM 0.4829 0.4660 0.0048 0.1748 0.0038 0.0357 

GM-

EKF 

0.8530 0.8244 0.0074 0.1898 0.0049 0.0364 

 

7.21 FAULT AT PCC, PACKET LOSS AND DELAY, BAD DATA AND PMU 

MEASUREMENT 

In this section, we analyze the performance of the robust estimators with fault at PCC, 

packet loss and delay, and bad data in measurements at the PMU frequency of 50 Hz. 

A three-phase-to-ground fault is applied at 5 s and cleared at 5.1 s. We also introduced 

six consecutive outliers in the active power measurements starting at 6 s (Figure 

7.179). The packet loss and delay distribution are as mentioned in Section 7.5.The 

results obtained from the GM-EKF and the robust UKFs are presented in Figure 7.173- 

Figure 7.178. The results of 500 Monte Carlo simulations are provided in the box plots 

of Figure 7.180- Figure 7.182 and Table XXII. The errors for the robust UKFs are 

significantly smaller than the errors for the GM-EKF. The results show that for packet 

loss and delay with bad data and with fault at PCC, the robust UKFs perform better. 
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Figure 7.173 Rotor angle and its estimates with fault at PCC, packet loss and delay, 

bad data at 50 Hz. 

 

Figure 7.174 Rotor speed deviation and its estimates with fault at PCC, packet loss and 

delay, bad data at 50 Hz. 
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Figure 7.175 d-axis transient voltage and its estimates with fault at PCC, packet loss 

and delay, bad data at 50 Hz. 

 

Figure 7.176 q-axis transient voltage and its estimates with fault at PCC, packet loss 

and delay, bad data at 50 Hz. 

 

Figure 7.177 d-axis damper flux and its estimates with fault at PCC, packet loss and 

delay, bad data at 50 Hz. 
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Figure 7.178 q-axis second damper flux and its estimates with fault at PCC, packet loss 

and delay, bad data at 50 Hz. 

 

 

Figure 7.179 Active power with bad data 
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Figure 7.180 Box plot of PM-UKF with fault at PCC, packet loss and delay, bad data 

 

Figure 7.181 Box plot of LM-UKF with fault at PCC, packet loss and delay, bad data 
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Figure 7.182 Box plot of GM-EKF with fault at PCC, packet loss and delay, bad data 

Table XXII Comparison of RMS errors for the KPM, KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KPM 0.5364 0.4909 0.0053 0.1119 0.0807 0.0314 

KLM 0.5237 0.4740 0.0051 0.1407 0.0043 0.0323 

GM-

EKF 

0.9104 0.8776 0.0087 0.1814 0.0608 0.0407 

 

7.22 GENERATOR LOSS, PACKET LOSS AND DELAY, BAD DATA AND 

PMUMEASUREMENT 

In this section, we examine the performance of the robust UKFs and the GM-EKF 

under loss of generator with packet loss and delay and with bad data at the PMU 

frequency of 50 Hz. We simulate the loss of the second generator at 4 s. Six outliers are 
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introduced in the active power measurements as shown in Figure 7.189. The packet 

loss and delay distribution are as mentioned in Section 7.5.Simulation results for the 

robust state estimators subject to packet loss and delay with bad data and loss of 

generator are presented in Figure 7.183- Figure 7.188. The robust UKFs provide better 

tracking of the true states than the GM-EKF.  

The results of 500 Monte Carlo simulations are provided in the box plots of Figure 

7.190- Figure 7.192 and Table XX. The errors for the robust UKFs are significantly 

smaller than the errors for the GM-EKF. The results show that with bad data and load 

loss, at the PMU sampling frequency of 50 Hz, the robust UKFs perform better than 

the GM-EKF. 

 

Figure 7.183 Rotor angle and its estimates with generator loss, packet loss and delay, 

bad data at 50 Hz. 
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Figure 7.184 Rotor speed deviation and its estimates with generator loss, packet loss 

and delay, bad data at 50 Hz. 

 

Figure 7.185 d-axis transient voltage and its estimates with generator loss, packet loss 

and delay, bad data at 50 Hz. 

 

Figure 7.186 q-axis transient voltage and its estimates with generator loss, packet loss 

and delay, bad data at 50 Hz. 
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Figure 7.187 d-axis damper flux and its estimates with generator loss, packet loss and 

delay, bad data at 50 Hz. 

 

 

Figure 7.188 q-axis second damper flux and its estimates with generator loss, packet 

loss and delay, bad data at 50 Hz. 
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Figure 7.189 Active power with bad data 

 

Figure 7.190 Box plot of PM-UKF with generator loss, packet loss and delay, bad data 
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Figure 7.191 Box plot of LM-UKF with generator loss, packet loss and delay, bad data 

 

Figure 7.192 Box plot of GM-EKF with generator loss, packet loss and delay, bad data 
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Table XXIII Comparison of RMS errors for the KPM, KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KPM 0.5972 0.5514 0.0071 0.1352 0.0102 0.0341 

KLM 0.5802 0.5480 0.0058 0.1684 0.0079 0.0387 

GM-

EKF 

1.0457 0.8810 0.0286 0.2047 0.0143 0.0412 

 

7.23 LOAD LOSS, PACKET LOSS AND DELAY, BAD DATA AND 

PMUMEASUREMENT 

In this section, we investigate the performance of the robust UKFs and the GM-EKF 

under loss of load, packet loss and delay with bad data at the PMU frequency of 50 Hz. 

As in Section 7.4, we simulate the loss of the second load at 4.5 s. Six outliers were 

introduced in the active power measurements as shown in Figure 7.199.The packet loss 

and delay distribution are as mentioned in Section 7.5.Simulation results for the robust 

state estimators subject to packet loss and delay with bad data and loss of load are 

presented in Figure 7.193- Figure 7.198. The robust UKFs provide better tracking of 

the true states than the GM-EKF. This is particularly true for the plots of the rotor 

angle, the d-axis transient voltage, and d-axis damper flux. 

The results of 500 Monte Carlo simulations are provided in the box plots of Figure 

7.200- Figure 7.202 and Table XX. The errors for the robust UKFs are significantly 

smaller than the errors for the GM-EKF. The results show that with bad data and load 

loss, at the PMU sampling frequency of 50 Hz, the robust UKFs perform better than 

the GM-EKF. 
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Figure 7.193 Rotor angle and its estimates with load loss, packet loss and delay, bad 

data at 50 Hz. 

 

Figure 7.194 Rotor speed deviation and its estimates with load loss, packet loss and 

delay, bad data at 50 Hz. 

 

Figure 7.195 d-axis transient voltage and its estimates with load loss, packet loss and 

delay, bad data at 50 Hz. 



174 
 

 
 

 

Figure 7.196 q-axis transient voltage and its estimates with load loss, packet loss and 

delay, bad data at 50 Hz. 

 

Figure 7.197 d-axis damper flux and its estimates with load loss, packet loss and delay, 

bad data at 50 Hz. 

 

Figure 7.198 q-axis second damper flux and its estimates with load loss, packet loss 

and delay, bad data at 50 Hz. 
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Figure 7.199 Active power with bad data 

 

Figure 7.200 Box plot of PM-UKF with load loss, packet loss and delay, bad data 
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Figure 7.201 Box plot of LM-UKF with load loss, packet loss and delay, bad data 

 

Figure 7.202 Box plot of GM-EKF with load loss, packet loss and delay, bad data 
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Table XXIV Comparison of RMS errors for the KPM, KLM and the GM-EKF 

Filter RMSE 

(Max.) 

RMSE(Min) Standard 

Deviation 

RMSE 

of 

Rotor 

Angle 

(Max) 

RMSE 

of 

Rotor 

Angle 

(Min) 

Standard 

Deviation 

KPM 0.5906 0.5683 0.0065 0.1417 0.0085 0.0373 

KLM 0.5891 0.5605 0.0056 0.1396 0.0062 0.0341 

GM-

EKF 

0.9079 0.8338 0.0218 0.1752 0.0090 0.0398 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 
 

8.1  CONCLUSION 
 
The continuous growth in the size of the power grid has resulted in greater complexity 

for the network, its control, and the analysis required to maintain its safe and economic 

operation. This has increased interest in and motivated constant development of state 

estimation techniques in the area of power system operation and control. Static 

estimators provide the real time running status of a power system. However, dynamic 

state estimation (DSE) is required to predict the dynamic states of the system. As DSE 

methods and phasor measurement unit (PMU) measurements develop, the prediction 

accuracy of filtering for power systems has increased accordingly. In this thesis, the 

EKF and UKF were implemented to provide dynamic state estimation for a microgrid.  

The performance of the EKF and the UKF-based DSE was evaluated under the 

following scenarios: normal operation of the microgrid, fault at the PCC, loss of 

generator, and loss of load. In all scenarios, the estimators estimated the dynamic 

response of the synchronous generator with acceptable accuracy. We obtained 

simulation results for a high sampling frequency of 1 kHz as well as the phasor 

measurement unit (PMU) frequency of 50 Hz. Simulation at the high sampling rate 

allowed us to use the simple Euler approximation to discretize the microgrid model and 

still obtain good state estimates. At the lower sampling rate, the Euler model is 

inadequate and a better approximation of the derivative was needed. For simulations 

with the 50 Hz sampling frequency we used the second order Runge-Kutta 

approximation, and this was adequate for normal microgrid operation. For abnormal 

scenarios, the second order Runge-Kutta approximation was inadequate but we were 
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able to obtain good results by using ten predictor iterations for each sampling period, 

with no corrector update. 

Monitoring and control of a microgrid utilizes a communication network for data 

transfer. Problems associated with the communication network include rate limits, 

random delays, quantization errors, data dropping, etc. In this thesis, we assumed the 

estimator received the measurements through a lossy network and were subject to loss 

and delay. Packet loss was assumed to be a Bernoulli random process while time delay 

was assumed to have a binomial distribution. We proposed a method to deal with 

dropped and/ or delayed measurements based on a modification of the standard Kalman 

filter. Simulation results of the proposed method show that the method performs with 

acceptable accuracy. 

In addition to data loss or delay, measurement data can be corrupted by outliers in 

various ways. These outliers can have a great impact on the state estimation results if 

used with the standard EKF or UKF. In order to make an estimator robust in the 

presence of outliers, the Generalized Maximum Likelihood Extended Kalman Filter 

(GM-EKF) can be utilized. We investigated the performance of three robust Kalman 

filters, the GM-EKF and two robust UKFs that use the normalized residual vector. The 

first UKF approach replaces the detected bad data with the last uncorrupted 

measurement and the second replaces the bad data with predicted measurements. 

We introduced outliers in the measurements of active power and ran five state 

estimators, the EKF, the UKF, the GM-EKF, and the two robust UKFs. The results 

obtained from the EKF and UKF show that they are unable to perform well under these 

conditions. Simulation results show that they diverge from the true state values. In 
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contrast, all three robust estimators can deal with the outliers and provide good state 

estimates. The GM-EKF detects the outliers by the use of projection statistics and 

suppresses their effects, and the robust EKFs achieve the same result using the 

normalized residual. The results show that the robust state estimators track the true 

state values even after they receive bad data.  

For comparison of the robust estimators, our simulations show that the robust UKF 

approaches provide better estimates than those of the GM-EKF. Furthermore, the GM-

EKF requires more computation time than robust UKF. However, both robust UKF 

approaches are susceptible to the masking effects of multiple bad data in the bad data 

detection process while the GM-EKF is not. 

8.1  FUTURE WORK 

The results of this thesis can be extended in several research directions. A real-time 

communication network can be added between the sensor and estimator. This will 

enable us to investigate the real-time state estimation with the network. In addition, a 

controller can be implemented to control the frequency of the synchronous generator. 

This leads to a real time networked control system and can be simulated and studied 

using a network simulator such as NS3
1
.  

Several microgrids can be connected to the microgrid considered in this thesis, and 

the effects of state estimation based on contingencies on other microgrids can be 

investigated. We can also add renewable energy sources, such as wind, solar and tidal 

energy, to the microgrid and observe their effects on state estimation. 

                                                           
1https://www.nsnam.org/ 
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We considered the packet drop and time delay of sensor data in the communication 

network between sensor and estimator. The mathematical model can be modified 

taking into account packet drop and time delay and the stability of the entire system 

can be analyzed. This will allow us to determine a range of packet drop and time delay 

beyond which the estimator will diverge from the true states. 
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APPENDIX 

 

Table XXV Values of Parameters 
 
Parameter Definitions Values 

D, J Damping factor and inertia constant per unit 0.05, 3.7 

𝑇𝑑𝑜
′  , 𝑇𝑞𝑜

′  d- and q- transient open circuit time constant 10.0, 1.0 

𝑥𝑑 , 𝑥𝑞 d- and q- axis reactance 1.105, 0.474 

𝑥𝑑
′  , 𝑥𝑞

′  d- and q- axis transient reactance 0.402, 0.45 

𝑥𝑑
′′ , 𝑥𝑞

′′ d- and q- axis sub-transient reactance 0.2022, 0.203 

𝑥𝑙 Leakage reactance 0.10 

𝑥𝑒 Thevenin line reactance 0.94 

𝑃𝑚 Mechanical input per unit 0.85 

𝑥𝑡𝑑 = 𝑥𝑑
′  + 𝑥𝑒 --- 1.336 

𝑥𝑡𝑞 =  𝑥𝑞+ 𝑥𝑒 --- 1.414 

δ 1st state, rotor angle  

Δω 2nd state, rotor speed deviation  

𝑒𝑞
′  , 𝑒𝑑

′  3rd and 4th state  

ωo Synchronous speed 377 

𝐸𝑓𝑑 Field voltage (pu) 1.02 

𝑉𝑏 Bus voltage No. = 0.85 

𝑖𝑑 , 𝑖𝑞 d- and q-axis stator current  

𝐼𝑡 = √(𝑖𝑑
2 + 𝑖𝑞

2) 
Terminal bus current  

 


