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This paper investigates the problem of robust 𝐻∞ fault detection for networked Markov jump systems with random time-delay
which is introduced by the network. The random time-delay is modeled as a Markov process, and the networked Markov jump
systems are modeled as control systems containing two Markov chains. The delay-dependent fault detection filter is constructed.
Furthermore, the sufficient and necessary conditions which make the closed-loop system stochastically stable and achieve
prescribed𝐻∞ performance are derived.Themethod of calculating controller, fault detection filter gain matrices, and the minimal𝐻∞ attenuation level is also obtained. Finally, one numerical example is used to illustrate the effectiveness of the proposed method.

1. Introduction

Feedback control systems wherein the control loop is closed
through a real-time network are called networked control
systems (NCSs) [1, 2]. The information is exchanged among
control system components (sensor, controller, actuator, etc.).
Due to the advantages such as simple installation, reduced
wiring, increased system agility, and high reliability, NCSs
have beenwidely used in broad areas, for example, unmanned
aerial vehicles, mobile sensor networks, environment moni-
toring, and automated highway systems [3–5]. However, the
introduction of communication networks also brings com-
munication constraints to the control systems, for example,
network-induced time-delays and packet dropouts [6–8].
Fault detection (FD) is very important for practical control
systems, especially in safe-critical systems [9–11]. The theory
of FD forNCSs is different from that of the traditional control
systems due to the limitations induced by the network, such
as time-delays and data packet dropouts which should be
taken into consideration.

In recent years, many results of FD for NCSs have been
reported. In [12], the problem of FD for a kind of nonlinear
NCS with time-delays and data packet dropouts was investi-
gated, and the sufficient conditions for the existence of FD
filter were presented in terms of linear matrix inequalities

(LMIs) using Lyapunov function in the continuous domain.
In [13], by considering random time-delays, the NCSs were
modeled as discrete-time, finite-dimensional Markov jump
linear systems (MJLSs). The FD problem was formulated as
a robust 𝐻∞ FD filter design problem, and the sufficient
condition to solve this problem was given in terms of LMIs.
In [14], with the presence of stochastic packet dropouts in
the network, the problem of FD filter design for NCSs was
investigated. A design method for FD filter which made the
residual generation system stable in the mean-square sense
was proposed by the MJLSs theory. In [15], the problem of
robust FD filter design and optimization was investigated
for NCSs with random delays. The NCSs were modeled
as Markov jump systems by assuming that the random
delays obeyed the Markov characteristics. Based on the
model, an observer-based residual generator was constructed
and the corresponding FD problem was formulated as a
filtering problem. A sufficient condition for the existence
of the desired FD filter was derived in terms of LMIs.
In [16], by employing the multirate sampling method and
the augmented state matrix method, the NCSs with long
random delays were modeled as MJLSs. Then based on the
model, a filter was designed for detecting faults. In [17], two
independent Markov chains were introduced to describe the
transmission characterization of the data packet dropouts in
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both channels from sensors to controller and from controller
to actuator, and a nonlinear Markov jump system model was
established. By employing a mode-dependent FD filter as
residual generator, the FD filter design problem of nonlinear
NCSs was formulated as a nonlinear𝐻∞ filtering problem. In
[18], by use of the augmented matrix approach, the FD error
dynamic systems were transformed to the MJLSs. With the
established model and using the bounded real lemma (BRL)
for MJLSs, a 𝐻∞ observer-based FD filter was established
in terms of LMIs to guarantee that the error between the
residual and the weighted faults was made as small as
possible. In [19], the problem of FD was investigated for
NCSs with signal quantization and random packet dropouts.
A residual generator was constructed, and the corresponding
FD problem was converted into a 𝐻∞ filtering problem.
In [20], the time-delays from sensor to controller and the
time-delays from sensor to actuator are both considered
which were described by two independent Markov chains.𝐻∞ FD problem for NCSs with time-delays on condition
that the transition probabilities were partly unknown was
investigated.

Markov jump systems are appropriate to model the
systems whose structures are subject to the random changes
which are widely used in the field of communications sys-
tems, power systems, and so on; thus, they have attracted
much attention [21–24]. It is significant and necessary to
investigate the FD problems for NCSs with the Markov
jump controlled plants. However, the controlled plants in
most of the existing literature were assumed to be the time-
invariant systems (see [12–20]). To the best of the authors’
knowledge, up to now, very limited efforts have been devoted
to investigating the FD problem for NCSs with the Markov
jump controlled plant, which motivates our investigation.

Compared to the previous relevant works, the main
contribution of this paper is that, for theMarkov jumpNCSs,
the sufficient and necessary conditions for the stochastically
stability of the closed-loop system are derived, and the
method of calculating the minimal 𝐻∞ attenuation 𝛾min is
obtained by constructing proper Lyapunov function candi-
date.

The rest of this paper is organized as follows. The FD
filter is constructed and the closed-loop system model is
obtained in Section 2.The sufficient and necessary conditions
which make the closed-loop system stochastically stable
and achieve prescribed 𝐻∞ performance are derived in
Section 3. Section 4 presents the simulation results to show
the effectiveness of the proposedmethod.The conclusions are
provided in Section 5.

2. Problem Formulation

Without loss of generality, we assume that the time-delay 𝜏𝑘
only exists between sensor and controller, and 𝜏𝑘 is modeled
as a homogeneous Markov chin which takes value in the set𝑀 ≜ {0, . . . , 𝜏}, and the transition probability matrix is Λ =[𝜆𝑖𝑗]. That is, 𝜏𝑘 jumps from mode 𝑖 to 𝑗 with probability 𝜆𝑖𝑗,
which is defined by 𝜆𝑖𝑗 = Pr(𝜏𝑘+1 = 𝑗 | 𝜏𝑘 = 𝑖), where 𝜆𝑖𝑗 ≥ 0
and ∑𝜏𝑗=0 𝜆𝑖𝑗 = 1, for all 𝑖, 𝑗 ∈ 𝑀.

In this paper, the followingMarkov jump controlled plant
is considered:

𝑥𝑘+1 = 𝐴𝜃𝑘𝑥𝑘 + 𝐵𝑢𝜃𝑘𝑢𝑘 + 𝐵𝑑𝜃𝑘𝑑𝑘 + 𝐵𝑓𝜃𝑘𝑓𝑘,
𝑦𝑘 = 𝐶𝜃𝑘𝑥𝑘, (1)

where 𝑥𝑘 ∈ 𝑅𝑛 is the state vector, 𝑢𝑘 ∈ 𝑅𝑚 is the input
vector, 𝑦𝑘 ∈ 𝑅𝑟 is the measured output vector, 𝑑𝑘 ∈ 𝑅𝑑
is the external disturbance noise belonging to 𝑙2 ∈ [0, ∞),
and 𝑓𝑘 ∈ 𝑅𝑓 is the fault to be detected. 𝐴𝜃𝑘 , 𝐵𝑢𝜃𝑘 , 𝐵𝑑𝜃𝑘 , 𝐵𝑓𝜃𝑘 ,
and 𝐶𝜃𝑘are all known real constant matrices with appropriate
dimensions. {𝜃𝑘, 𝑘 ≥ 0} is a discrete-time homogeneous
Markov chain,which takes values in a finite set𝐺 ≜ {1, . . . , 𝑁}
with a transition probability matrix Π = [𝜋𝑝𝑞]; namely, for𝜃𝑘 = 𝑝, 𝜃𝑘+1 = 𝑞, one has 𝜋𝑖𝑗 = Pr(𝜃𝑘+1 = 𝑞 | 𝜃𝑘 = 𝑝), where𝜋𝑝𝑞 ≥ 0 and ∑𝑁𝑞=1 𝜋𝑝𝑞 = 1, for all 𝑝, 𝑞 ∈ 𝐺.

It is noticed that the information of 𝜃𝑘 is not available
for the controller at the time instant 𝑘 duo to the time-delay𝜏𝑘; however, the information of 𝜏𝑘 is known to the controller.
Consequently, the controller gain can be designed depending
on 𝜏𝑘; that is,

𝑢𝑘 = 𝐾𝜏𝑘𝑥𝑘−𝜏𝑘 . (2)

Construct a full-order FD filter at the side of controller as
follows:

𝑥𝑘+1 = 𝐴𝜃𝑘𝑥𝑘 + 𝐵𝑢𝜃𝑘𝐾𝜏𝑘𝑥𝑘−𝜏𝑘 + 𝐿𝜏𝑘 (𝑦𝑘−𝜏𝑘 − 𝑦𝑘−𝜏𝑘) ,
𝑦𝑘 = 𝐶𝜃𝑘𝑥𝑘,
𝑟𝑘 = 𝑉 (𝑦𝑘−𝜏𝑘 − 𝑦𝑘−𝜏𝑘) ,

(3)

where 𝑥𝑘 ∈ 𝑅𝑛 is the filter state vector, 𝑟𝑘 ∈ 𝑅𝑔 is the residual
vector which is sensitive to the fault, 𝐿𝜏𝑘 is the filter gain
matrix to be determined, and 𝑉 is the gain matrix of the
residual 𝑟𝑘.

Define the state estimation error and residual error as
follows:

𝑒𝑘 = 𝑥𝑘 − 𝑥𝑘,
𝑟𝑒𝑘 = 𝑟𝑘 − 𝑓𝑘. (4)

The closed-loop systems can be obtained as

𝜉𝑘+1 = 𝐴𝜃𝑘𝜉𝑘 + (𝐵𝑢𝜃𝑘𝐾𝜏𝑘𝐼1 − 𝐼2𝐿𝜏𝑘𝐶𝜃𝑘) 𝜉𝑘−𝜏𝑘 + 𝐵𝜔𝜃𝑘𝜔𝑘,
𝑟𝑒𝑘 = 𝑉𝐶𝜃𝑘𝜉𝑘−𝜏𝑘 − 𝐼3𝜔𝑘,
𝜉𝑘 = 𝜂𝑘, 𝑘 ∈ {−𝜏, . . . , 0} ,

(5)

where

𝐴𝜃𝑘 = [𝐴𝜃𝑘 0
0 𝐴𝜃𝑘] ,

𝐵𝑢𝜃𝑘 = [𝐵𝑢𝜃𝑘0 ] ,
𝐶𝜃𝑘 = [0 𝐶𝜃𝑘] ,
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𝐵𝜔𝜃𝑘 = [𝐵𝑑𝜃𝑘 𝐵𝑓𝜃𝑘𝐵𝑑𝜃𝑘 𝐵𝑓𝜃𝑘] ,
𝐼1 = [𝐼 0] ,
𝐼2 = [0𝐼] ,
𝐼3 = [0 𝐼] ,
𝜉𝑇𝑘 = [𝑥𝑇𝑘 𝑒𝑇𝑘 ] ,
𝜔𝑇𝑘 = [𝑑𝑇𝑘 𝑓𝑇𝑘 ] .

(6)

Definition 1 (see [25]). System (5) is stochastically stable if for𝜔𝑘 = 0 and every initial mode 𝜏0 ∈ 𝑀, 𝜃0 ∈ 𝐺, there exists a
finite matrix𝑊 > 0 such that

𝐸{∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝜉𝑘󵄩󵄩󵄩󵄩2 | 𝜉0, 𝜏0, 𝜃0} < 𝜉𝑇0𝑊𝜉0. (7)

In this paper, our objective is to design controller (2) and the
FD filter (3), such that one has the following:

(a) The closed-loop system (5) is stochastically stable for𝜔𝑘 = 0.
(b) Under the zero-initial conditions, the residual error𝑟𝑒𝑘 satisfies the following𝐻∞ noise attenuation performance:

𝐸{∞∑
𝑘=0

𝑟𝑇𝑒𝑘𝑟𝑒𝑘} < 𝛾2𝐸{∞∑
𝑘=0

𝜔𝑇𝑘𝜔𝑘} , (8)

where 𝛾 > 0 is the attenuation level.
For the purpose of FD, an evaluation function and a

threshold should be provided, and in this paper the evalua-
tion function 𝐽𝑘 and a threshold 𝐽th are selected as

𝐽𝑘 = 𝐸{{{
𝑙0+𝑘∑
𝜌=𝑙0

√𝑟𝑇𝜌 𝑟𝜌}}} ,

𝐽th = sup
𝜔𝑘∈𝐿2,𝑓𝑘=0

𝐸{{{
𝑙0+𝐿0∑
𝜌=𝑙0

√𝑟𝑇𝜌 𝑟𝜌}}} ,
(9)

where 𝑙0 is the initial evaluation time instant and 𝐿0 is
the evaluation step length. The occurrence of fault can be
detected by comparing 𝐽𝑘 and 𝐽th with the following rule:

𝐽𝑘 ≤ 𝐽th 󳨐⇒ normal,
𝐽𝑘 > 𝐽th 󳨐⇒ fault. (10)

Remark 2. It should be pointed out that if time-delay also
exists between controller and actuator which is written as
]𝑘, the control input of the controlled plant (1) should be𝐾𝜏𝑘𝑥𝑘−𝜏𝑘−]𝑘which is different from the control input of the FD
filter which is𝐾𝜏𝑘𝑥𝑘−𝜏𝑘 .
Remark 3. If there is no time-delay in system (5), the FD filter
(3) can still detect the fault effectively.

Remark 4. In almost all the existing literatures related to
the FD for NCSs, the standard infinite impulse response
(IIR) filter (3) is commonly used. However, the researches
about FD for NCSs using finite impulse response (FIR) filter
including deadbeat dissipative FIR filtering, hybrid particle
FIR filtering, and composite particle FIR filtering have not
been reported, which is a completely new research area.

3. Main Results

In this section, the sufficient and necessary conditions which
make system (5) stochastically stable will be derived. Further,
we will present the calculation method of the controller gain
matrix𝐾𝜏𝑘 , the FDfilter gainmatrix𝐿𝜏𝑘 , and theminimal𝐻∞
attenuation 𝛾min in terms of matrix inequalities. To proceed,
we will need the following lemma.

Lemma 5 (see [26]). For any positive-definite matrix 𝑅,
scalars 𝛿, 𝛿0 satisfying 𝛿 ≥ 𝛿0 ≥ 1, and vector function 𝜐𝑙,
one always has (∑𝛿𝑙=𝛿0 𝜐𝑙)𝑇𝑅∑𝛿𝑙=𝛿0 𝜐𝑙 ≤ (𝛿−𝛿0+1)∑𝛿𝑙=𝛿0 𝜐𝑇𝑙 𝑅𝜐𝑙.
Theorem 6. When 𝜔𝑘 = 0, the closed-loop system (5) is
stochastically stable if and only if there exist positive-definite
matrices 𝑃𝑖,𝑝 > 0, 𝑃𝑗,𝑞 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑍1 > 0 and
matrices 𝐾𝑖, 𝐿 𝑖 such that the inequality

Ω ≜ [[
[
Ω11 ∗ ∗
Ω21 Ω22 ∗
0 𝑍1 −𝑄1 − 𝑍1

]]
]
< 0, (11)

where

Ω11
= 𝐴𝑇𝑝𝑃𝑗,𝑞𝐴𝑝 + 𝜏2𝐴𝑇𝑝𝑍1𝐴𝑝 + 𝑄1 + (𝜏 + 1)𝑄2 − 𝑍1

− 𝑃𝑖,𝑝,
Ω21
= (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)𝑇 𝑃𝑗,𝑞𝐴𝑝

+ 𝜏2 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)𝑇𝑍1𝐴𝑝 + 𝑍1,
Ω22
= (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)𝑇 𝑃𝑗,𝑞 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)

+ 𝜏2 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)𝑇𝑍1 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)
− 𝑄2 − 2𝑍1,

𝑃𝑗,𝑞 = 𝜏∑
𝑗=0

𝑁∑
𝑞=1

𝜆𝑖𝑗𝜋𝑝𝑞𝑃𝑗,𝑞,

(12)

holds for all 𝑖, 𝑗 ∈ 𝑀 and 𝑝, 𝑞 ∈ 𝐺.
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Proof.

Sufficiency. Choose the Lyapunov function candidate as

𝑉 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) ≜ 𝜉𝑇𝑘Ψ𝜏𝑘,𝜃𝑘𝜉𝑘 = 4∑
𝜇=1

𝑉𝜇 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) , (13)

where

𝑉1 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) = 𝜉𝑇𝑘𝑃𝜏𝑘,𝜃𝑘𝜉𝑘,
𝑉2 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) = 𝑘−1∑

𝑚=𝑘−𝜏

𝜉𝑇𝑚𝑄1𝜉𝑚,
𝑉3 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) = 𝑘−1∑

𝑚=𝑘−𝜏𝑘

𝜉𝑇𝑚𝑄2𝜉𝑚 + 0∑
𝑛=−𝜏+1

𝑘−1∑
𝑚=𝑘+𝑛

𝜉𝑇𝑚𝑄2𝜉𝑚,

𝑉4 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) = 0∑
𝑛=−𝜏+1

𝑘−1∑
𝑚=𝑘+𝑛

𝜏𝜑𝑇𝑚𝑍1𝜑𝑚,
𝜑𝑚 = 𝜉𝑚+1 − 𝜉𝑚.

(14)

Apparently, we have Ψ𝜏𝑘,𝜃𝑘 > 0.
Along the solution of system (5), we have

𝐸 {Δ𝑉1} = 𝐸 {𝜉𝑇𝑘+1𝑃𝜏𝑘+1,𝜃𝑘+1𝜉𝑘+1 | 𝜏𝑘 = 𝑖, 𝜃𝑘 = 𝑝}
− 𝜉𝑇𝑘𝑃𝜏𝑘,𝜃𝑘𝜉𝑘
= (𝐴𝑝𝜉𝑘 + (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝) 𝜉𝑘−𝜏𝑘)𝑇
⋅ 𝜏∑
𝑗=0

𝑁∑
𝑞=1

𝜆𝑖𝑗𝜋𝑝𝑞𝑃𝑗,𝑞
⋅ (𝐴𝑝𝜉𝑘 + (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝) 𝜉𝑘−𝜏𝑘) − 𝜉𝑇𝑘𝑃𝑖,𝑝𝜉𝑘,

𝐸 {Δ𝑉2} = 𝜉𝑇𝑘𝑄1𝜉𝑘 − 𝜉𝑇𝑘−𝜏𝑄1𝜉𝑘−𝜏,
𝐸 {Δ𝑉3} = 𝜉𝑇𝑘𝑄2𝜉𝑘 − 𝜉𝑇𝑘−𝑖𝑄2𝜉𝑘−𝑖 + 𝑘−1∑

𝑙=𝑘+1−𝜏𝑘+1

𝜉𝑇𝑙 𝑄2𝜉𝑙
− 𝑘−1∑
𝑙=𝑘+1−𝜏𝑘

𝜉𝑇𝑙 𝑄2𝜉𝑙 + 𝜏𝜉𝑇𝑘𝑄2𝜉𝑘 − 𝑘∑
𝑙=𝑘+1−𝜏

𝜉𝑇𝑙 𝑄2𝜉𝑙.

(15)

Note that

𝑘−1∑
𝑙=𝑘+1−𝜏𝑘+1

𝜉𝑇𝑙 𝑄2𝜉𝑙 = 𝑘−1∑
𝑙=𝑘+1−𝜏𝑘

𝜉𝑇𝑙 𝑄2𝜉𝑙 + 𝑘−𝜏𝑘∑
𝑙=𝑘+1−𝜏𝑘+1

𝜉𝑇𝑙 𝑄2𝜉𝑙
≤ 𝑘−1∑
𝑙=𝑘+1−𝜏𝑘

𝜉𝑇𝑙 𝑄2𝜉𝑙 + 𝑘∑
𝑙=𝑘+1−𝜏

𝜉𝑇𝑙 𝑄2𝜉𝑙.
(16)

Hence, we can obtain

𝐸 {Δ𝑉3} ≤ 𝜉𝑇𝑘𝑄2𝜉𝑘 − 𝜉𝑇𝑘−𝑖𝑄2𝜉𝑘−𝑖 + 𝜏𝜉𝑇𝑘𝑄2𝜉𝑘,
𝐸 {Δ𝑉4} = 𝜏2𝜑𝑇𝑘𝑍1𝜑𝑘 − 𝑘−1∑

𝑙=𝑘−𝜏

𝜏𝜑𝑇𝑙 𝑍1𝜑𝑙
= 𝜏2𝜑𝑇𝑘𝑍1𝜑𝑘 − 𝑘−1∑

𝑙=𝑘−𝑖

𝜏𝜑𝑇𝑙 𝑍1𝜑𝑙 − 𝑘−𝑖−1∑
𝑙=𝑘−𝜏

𝜏𝜑𝑇𝑙 𝑍1𝜑𝑙
≤ 𝜏2𝜑𝑇𝑘𝑍1𝜑𝑘 − 𝑘−1∑

𝑙=𝑘−𝑖

𝑖𝜑𝑇𝑙 𝑍1𝜑𝑙
− 𝑘−𝑖−1∑
𝑙=𝑘−𝜏

(𝜏 − 𝑖) 𝜑𝑇𝑙 𝑍1𝜑𝑙.

(17)

By Lemma 5, one can obtain

− 𝑘−1∑
𝑙=𝑘−𝑖

𝑖𝜑𝑇𝑙 𝑍1𝜑𝑙 − 𝑘−𝑖−1∑
𝑙=𝑘−𝜏

(𝜏 − 𝑖) 𝜑𝑇𝑙 𝑍1𝜑𝑙
≤ − [𝜉𝑘 − 𝜉𝑘−𝑖]𝑇𝑍1 [𝜉𝑘 − 𝜉𝑘−𝑖]

− [𝜉𝑘−𝑖 − 𝜉𝑘−𝜏]𝑇𝑍1 [𝜉𝑘−𝑖 − 𝜉𝑘−𝜏] .
(18)

From (15)–(18), we have

𝐸 {Δ𝑉 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) | 𝜏𝑘 = 𝑖, 𝜃𝑘 = 𝑝} ≤ 𝜁𝑇𝑘Ω𝜁𝑘
≤ −𝜆min (−Ω) 𝜁𝑇𝑘 𝜁𝑘
= −𝜆min (−Ω) (𝜉𝑇𝑘 𝜉𝑘 + 𝜉𝑇𝑘−𝑖𝜉𝑘−𝑖 + 𝜉𝑇𝑘−𝜏𝜉𝑘−𝜏)
≤ −𝛼 󵄩󵄩󵄩󵄩𝜉𝑘󵄩󵄩󵄩󵄩2 ,

(19)

where

𝜁𝑇𝑘 = [𝜉𝑇𝑘 𝜉𝑇𝑘−𝑖 𝜉𝑇𝑘−𝜏] ,
𝛼 = inf {−𝜆min (−Ω)} > 0. (20)

From (19), we can see that for any 𝑇 ≥ 1
𝐸{∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝜉𝑘󵄩󵄩󵄩󵄩2} ≤ 1𝛼𝐸 {𝑉 (𝜉0, 𝜏0, 𝜃0)}
− 1𝛼𝐸 {𝑉 (𝜉𝑇+1, 𝜏𝑇+1, 𝜃𝑇+1)}

≤ 1𝛼𝐸 {𝑉 (𝜉0, 𝜏0, 𝜃0)} = 𝜉𝑇0Ψ𝜏0,𝜃0𝜉0.
(21)

That is, the closed-loop system (5) is stochastically stable
according to Definition 1.

Necessity. Assume that the closed-loop system (5) is stochas-
tically stable. Thus, we have

𝐸{∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝜉𝑘󵄩󵄩󵄩󵄩2 | 𝜉0, 𝜏0} < 𝜉𝑇0𝑊𝜉0. (22)
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Let

𝜉𝑇𝑘 Ψ̂𝜏𝑘,𝜃𝑘𝜉𝑘 = 𝐸{ 𝑇∑
𝑡=𝑘

𝜉𝑇𝑡 𝐻𝜏𝑡,𝜃𝑡𝜉𝑡} , (23)

where𝐻𝜏𝑡,𝜃𝑡 > 0.
Assume 𝜉𝑘 ̸= 0, from (23), it can be easily inferred thatΨ̂𝜏𝑘,𝜃𝑘 is bounded, and the following limit exists:

𝜉𝑇𝑘Ψ𝜏𝑘,𝜃𝑘𝜉𝑘 ≜ lim
𝑇→∞

𝜉𝑇𝑘 Ψ̂𝜏𝑘,𝜃𝑘𝜉𝑘
= lim
𝑇→∞

𝐸{ 𝑇∑
𝑡=𝑘

𝜉𝑇𝑡 𝐻𝜏𝑡,𝜃𝑡𝜉𝑡} . (24)

Since (24) holds for any 𝜉𝑘, we have Ψ𝜏𝑘,𝜃𝑘 = lim𝑇→∞Ψ̂𝜏𝑘,𝜃𝑘 .
Since𝐻𝜏𝑡,𝜃𝑡 > 0, it can be seen that Ψ𝜏𝑘,𝜃𝑘 > 0 from (24).

Let us consider

𝐸 {𝜉𝑇𝑘 Ψ̂𝜏𝑘,𝜃𝑘𝜉𝑘 − 𝜉𝑇𝑘+1Ψ̂𝜏𝑘+1,𝜃𝑘+1𝜉𝑘+1 | 𝜏𝑘 = 𝑖, 𝜃𝑘 = 𝑝}
= 𝜉𝑇𝑘𝐻𝜏𝑘,𝜃𝑘𝜉𝑘 > 0. (25)

Letting 𝑇 → ∞, we have

𝐸 {𝜉𝑇𝑘Ψ𝜏𝑘,𝜃𝑘𝜉𝑘 − 𝜉𝑇𝑘+1Ψ𝜏𝑘+1,𝜃𝑘+1𝜉𝑘+1 | 𝜏𝑘 = 𝑖, 𝜃𝑘 = 𝑝}
= −𝐸 {Δ𝑉 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) | 𝜏𝑘 = 𝑖, 𝜃𝑘 = 𝑝} ≥ −𝜁𝑇𝑘Ω𝜁𝑘
> 0,

(26)

which completes the proof.

Corollary 7. When 𝜔𝑘 ̸= 0, consider the closed-loop system
(5) and let 𝛾 > 0 be a given real scalar. If there exist 𝑃𝑖,𝑝 >0, 𝑃𝑗,𝑞 > 0, 𝐹𝑗,𝑞 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑌1 > 0, 𝑍1 > 0 and
matrices 𝐾𝑖, 𝐿 𝑖 such that

[[
[
Ξ11 ∗ ∗
Ξ21 Ξ22 ∗
Ξ31 0 Ξ33

]]
]
< 0, (27)

𝑃−1𝑗,𝑞𝐹𝑗,𝑞 = 𝐼,
𝑍−11 𝑌1 = 𝐼, (28)

where

Ξ11 = [[[
[
𝑄1 + (𝜏 + 1)𝑄2 − 𝑍1 − 𝑃𝑖,𝑝 ∗ ∗

𝑍1 −𝑄2 − 2𝑍1 ∗
0 0 −𝛾2𝐼

]]]
]
,

Ξ21 = [ 0 𝑍1 0
𝐴𝑝 − 𝐼 𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝 𝐵𝜔𝑝] ,

Ξ22 = [𝑄1 − 𝑍1 ∗
0 −𝑌1] ,

Ξ31

= [[[[[
[

√𝜆𝑖0𝜋𝑝1𝐴𝑝 √𝜆𝑖0𝜋𝑝1 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝) √𝜆𝑖0𝜋𝑝1𝐵𝜔𝑝... ... ...
√𝜆𝑖𝜏𝜋𝑝𝑁𝐴𝑝 √𝜆𝑖𝜏𝜋𝑝𝑁 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝) √𝜆𝑖𝜏𝜋𝑝𝑁𝐵𝜔𝑝

]]]]]
]
,

Ξ33 = diag {−𝐹0,1, . . . , −𝐹𝜏,𝑁} ,
(29)

holds for all 𝑖, 𝑗 ∈ 𝑀, 𝑝, 𝑞 ∈ 𝐺, system (5) is stochastically
stable with𝐻∞ performance index 𝛾.
Proof. From (19), we can obtain

𝐸 {Δ𝑉 (𝜉𝑘, 𝜏𝑘, 𝜃𝑘) | 𝜏𝑘 = 𝑖, 𝜃𝑘 = 𝑝} + 𝐸 {𝑟𝑇𝑒𝑘𝑟𝑒𝑘}
− 𝛾2𝐸 {𝜔𝑇𝑘𝜔𝑘} ≤ 𝜍𝑇𝑘Ω𝜍𝑘, (30)

where

Ω = [[[[[
[

Ω11 ∗ ∗ ∗
Ω21 Ω22 ∗ ∗
Ω31 Ω32 Ω33 ∗
0 𝑍1 0 −𝑄1 − 𝑍1

]]]]]
]
,

Ω22
= (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)𝑇 𝑃𝑗,𝑞 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)

+ 𝜏2 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)𝑇𝑍1 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝)
− 𝑄2 − 2𝑍1 + (𝑉𝐶𝑝)𝑇𝑉𝐶𝑝,

Ω31 = 𝐵𝑇𝑝𝑃𝑗,𝑞𝐴𝑝,
Ω32 = 𝐵𝑇𝑝𝑃𝑗,𝑞 (𝐵𝑢𝑝𝐾𝑖𝐼1 − 𝐼2𝐿 𝑖𝐶𝑝) − 𝐼𝑇3 𝑉𝐶𝑝,
Ω33 = 𝐵𝑇𝑝𝑃𝑗,𝑞𝐵𝑝 + 𝐼𝑇3 𝐼3 − 𝛾2𝐼,
𝜍𝑇𝑘 = [𝜉𝑇𝑘 𝜉𝑇𝑘−𝑖 𝜔𝑇𝑘 𝜉𝑇𝑘−𝜏] .

(31)

IfΩ < 0, from (30) and under zero-initial condition, we have𝐸{∑∞𝑘=0 𝑟𝑇𝑒𝑘𝑟𝑒𝑘} < 𝛾2𝐸{∑∞𝑘=0 𝜔𝑇𝑘𝜔𝑘}.
By Schur compliment,Ω < 0 is equivalent to

[[[
[
Ξ11 ∗ ∗
Ξ21 Ξ22 ∗
Ξ31 0 Ξ33

]]]
]
< 0, (32)

where

Ξ22 = [𝑄1 − 𝑍1 ∗
0 −𝑍−11 ] ,

Ξ33 = diag {−𝑃−10,1 , . . . , −𝑃−1𝜏,𝑁} .
(33)
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Letting 𝑃−1𝑗,𝑞 = 𝐹𝑗,𝑞, 𝑗 ∈ 𝑀, 𝑞 ∈ 𝐺, 𝑍−11 = 𝑌1, (27) and (28)
can be obtained, which completes the proof.

In Corollary 7, the conditions are a set of LMIs with some
inversion constraints. Though they are nonconvex which
cannot be solved by using the existing convex optimization
tool, we can use the cone complementarity linearization
(CCL) algorithm [27] to transform this problem into the
nonlinear minimization problem as follows:

min tr( 𝜏∑
𝑗=0

𝑁∑
𝑞=1

𝑃𝑗,𝑞𝐹𝑗,𝑞 + 𝑍1𝑌1)
s.t. (27) , (35) ,

(34)

[𝑃𝑗,𝑞 𝐼
𝐼 𝐹𝑗,𝑞] > 0, 𝑗 ∈ 𝑀, 𝑞 ∈ 𝐺,
[𝑍1 𝐼
𝐼 𝑌1] > 0.

(35)

Furthermore, the iterative algorithm which can be used to
calculate the controller gain 𝐾𝑖, FD gain matrix 𝐿 𝑖, and the
minimal𝐻∞ attenuation 𝛾min is given bellow.

Algorithm 8.

Step 1. Let 𝛾 = 𝛾0 and set the maximum iterations number as𝑛max.

Step 2. Find a feasible solution satisfying (27), (35) and set it
as (𝑃0𝑗,𝑠, 𝐹0𝑗,𝑠, 𝑍01, 𝑌01 , 𝐾0𝑖 , 𝐿0𝑖 ). Let 𝑘 = 0.
Step 3. Solve the following LMI optimization problem for
variables (𝑃𝑗,𝑞, 𝐹𝑗,𝑞, 𝑍1, 𝑌1, 𝐾𝑖, 𝐿 𝑖):

min tr( 𝜏∑
𝑗=0

𝑁∑
𝑞=1

(𝑃𝑘𝑗,𝑞𝐹𝑗,𝑞 + 𝑃𝑗,𝑞𝐹𝑘𝑗,𝑞) + 𝑍𝑘1𝑌1 + 𝑍1𝑌𝑘1) ,
subject to (27) , (35) ;

(36)

set (𝑃𝑘𝑗,𝑠 = 𝑃𝑗,𝑠, 𝐹𝑘𝑗,𝑠 = 𝐹𝑗,𝑠, 𝑍𝑘1 = 𝑍1, 𝑌𝑘1 = 𝑌1, 𝐾𝑘𝑖 =𝐾𝑖, 𝐿𝑘𝑖 = 𝐿 𝑖).
Step 4. If (27) and (28) are satisfied, let 𝛾 = 𝛾 − 𝛿, 𝛿 > 0 and
return to Step 3. If the number of iterations exceeds 𝑛max, the
iteration is terminated.

Step 5. Check 𝛾: if 𝛾 = 𝛾0, the optimization problem has
no solutions within the maximum iterations number 𝑛max.
Otherwise, 𝛾min = 𝛾 + 𝛿.
Remark 9. In this paper, we assume that the transition
probabilities of 𝜏𝑘 and 𝜃𝑘 are completely known. When
transition probabilities of 𝜏𝑘 and 𝜃𝑘 are partly unknown, we
can separate the unknown ones from the known ones; see
[28].

4. Numerical Example

In this section, we present an example to demonstrate the
effectiveness of the proposed method. Consider the con-
trolled plant with the following parameter:

𝐴1 = [ 1 0
0.25 0.15] ,

𝐵𝑢1 = [0.30.5] ,
𝐵𝑑1 = [0.20.1] ,
𝐵𝑓1 = [0.230.81] ,
𝐶1 = [0.1 0.3] ,
𝐴2 = [0.65 0.05

0.1 0.3 ] ,
𝐵𝑢2 = [0.20.6] ,
𝐵𝑑2 = [0.10.3] ,
𝐵𝑓2 = [0.370.32] ,
𝐶2 = [0.2 0.3] ,

(37)

the system mode 𝜃𝑘 ∈ {1, 2}, and the transition probability
matrix of 𝜃𝑘 is Ω = [ 0.2 0.80.9 0.1 ]. The random time-delay 𝜏𝑘 ∈{0, 1} and the transition probability matrix is Λ = [ 0.7 0.30.6 0.4 ].
Given 𝑉 = 0.1, by Corollary 7, we can obtain the delay-
dependent controller gainmatrix𝐾𝑖, filter gainmatrix𝐿 𝑖, and𝛾min as follows:

𝐾0 = [−0.0004 0.003] ,
𝐿0 = [ 0.0481

−0.1333] ,
𝐾1 = [0.0036 −0.0020] ,
𝐿1 = [−0.0342−0.0906] ,

𝛾min = 1.6125.

(38)

The initial value 𝑥−1 = [0 0]𝑇 , 𝑥0 = [−1.1 1]𝑇 , 𝑥−1 =[0 0]𝑇 , 𝑥0 = [1 −1.1]𝑇 , 𝜏−1 = 𝜏0 = 0, 𝜃−1 = 𝜃0 =0. Assume that the external disturbance 𝑑𝑘 is uniformly
distributed random signal on [−0.15 0.15]; when there is no
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Figure 1: The state 𝑥1 and its estimated value 𝑥1.
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Figure 2: The state 𝑥2 and its estimated value 𝑥2.
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Figure 3: The time-delay 𝜏𝑘.
fault, the trajectories of the closed-loop system’s states and the
corresponding estimated value are shown in Figures 1 and 2.

We can see that the filter can track the states of the system
closely. Assume the fault signal is

𝑓𝑘 = {0.5, 𝑘 = 10, . . . , 200, others. (39)

The residual evaluation function is adopted as 𝐽𝑘 =𝐸{∑𝑘𝜌=0√𝑟𝑇𝜌 𝑟𝜌}, and the FD threshold can be obtained as

𝐽𝑘 = sup𝜔𝑘∈𝐿2,𝑓𝑘=0𝐸{∑𝑘𝜌=0√𝑟𝑇𝜌 𝑟𝜌} = 0.0122. Figures 3 and 4
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Figure 4: The system mode 𝜃𝑘.
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Figure 5: The residual signal 𝑟𝑘.
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Figure 6: The residual evaluation function 𝐽𝑘 and the threshold 𝐽th.

show one simulation run of the time-delay and the system
mode under the transition probability matrices Π and Λ,
respectively.

Figures 5 and 6 show the residual signal 𝑟𝑘 and the
residual evaluation function 𝐽𝑘, respectively, from which we
can see that when fault occurs, 𝑟𝑘 and 𝐽𝑘 change obviously.
Moreover, it is noticed that 𝐽11 = 0.0114 < 𝐽th < 𝐽12 = 0.0170.
This means that the fault has been detected at the third time
period after it occurs.
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5. Conclusion

With the presence of random time-delay introduced by
the network, the problem of robust 𝐻∞ FD for networked
Markov jump systems is investigated in this paper. By con-
structing delay-dependent FD filter, the closed-loop systems
are established.The sufficient and necessary conditionswhich
make the closed-loop system stochastically stable and achieve
prescribed𝐻∞ performance are derived. The method of cal-
culating controller, FD filter gain matrices, and the minimal𝐻∞ attenuation level is also obtained.The numerical example
shows that the proposed FD filter is both sensitive to the fault
and also robust to the exogenous disturbance.
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