983 research outputs found

    Design and Simulation Analysis for Integrated Vehicle Chassis-Network Control System Based on CAN Network

    Get PDF
    Due to the different functions of the system used in the vehicle chassis control, the hierarchical control strategy also leads to many kinds of the network topology structure. According to the hierarchical control principle, this research puts forward the integrated control strategy of the chassis based on supervision mechanism. The purpose is to consider how the integrated control architecture affects the control performance of the system after the intervention of CAN network. Based on the principle of hierarchical control and fuzzy control, a fuzzy controller is designed, which is used to monitor and coordinate the ESP, AFS, and ARS. And the IVC system is constructed with the upper supervisory controller and three subcontrol systems on the Simulink platform. The network topology structure of IVC is proposed, and the IVC communication matrix based on CAN network communication is designed. With the common sensors and the subcontrollers as the CAN network independent nodes, the network induced delay and packet loss rate on the system control performance are studied by simulation. The results show that the simulation method can be used for designing the communication network of the vehicle

    Is Europe in the Driver's Seat? The Competitiveness of the European Automotive Embedded Systems Industry

    Get PDF
    This report is one of a series resulting from a project entitled ¿Competitiveness by Leveraging Emerging Technologies Economically¿ (COMPLETE), carried out by JRC-IPTS. Each of the COMPLETE studies illustrates in its own right that European companies are active on many fronts of emerging and disruptive ICT technologies and are supplying the market with relevant products and services. Nevertheless, the studies also show that the creation and growth of high tech companies is still very complex and difficult in Europe, and too many economic opportunities seem to escape European initiatives and ownership. COMPLETE helps to illustrate some of the difficulties experienced in different segments of the ICT industry and by growing potential global players. This report reflects the findings of a study conducted by Egil Juliussen and Richard Robinson, two senior experts from iSuppli Corporation on the Competitiveness of the European Automotive Embedded Software industry. The report starts by introducing the market, its trends, the technologies, their characteristics and their potential economic impact, before moving to an analysis of the competitiveness of the corresponding European industry. It concludes by suggesting policy options. The research, initially based on internal expertise and literature reviews, was complemented with further desk research, expert interviews, expert workshops and company visits. The results were ultimately reviewed by experts and also in a dedicated workshop. The report concludes that currently ICT innovation in the automotive industry is a key competence in Europe, with very little ICT innovation from outside the EU finding its way into EU automotive companies. A major benefit of a strong automotive ICT industry is the resulting large and valuable employment base. But future maintenance of automotive ICT jobs within the EU will only be possible if the EU continues to have high levels of product innovation.JRC.DDG.J.4-Information Societ

    Adaptive Robust Vehicle Motion Control for Future Over-Actuated Vehicles

    Get PDF
    International audienceMany challenges still need to be overcome in the context of autonomous vehicles. These vehicles would be over-actuated and are expected to perform coupled maneuvers. In this paper, we first discuss the development of a global coupled vehicle model, and then we outline the control strategy that we believe should be applied in the context of over-actuated vehicles. A gain-scheduled H ∞ controller and an optimization-based Control Allocation algorithms are proposed. High-fidelity co-simulation results show the efficiency of the proposed control logic and the new possibilities that could offer. We expect that both car manufacturers and equipment suppliers would join forces to develop and standardize the proposed control architecture for future passenger cars

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Holonic multi-agent systems

    Get PDF
    A holonic multi-agent paradigm is proposed, where agents give up parts of their autonomy and merge into a super-agent"(a holon), that acts - when seen from the outside - just as a single agent again. We explore the spectrum of this new paradigm, ranging from definitorial issues over classification of possible application domains, an algebraic characterization of the merge operation, to implementational aspects: We propose algorithms for holon formation and on-line re-configuration. Based on some general criteria for the distinction between holonic and non-holonic domains, we examine domains suitable for holonic agents and sketch the implementation of holonic agents in these scenarios. Finally, a case study of a holonic agent system is presented in detail: TELETRUCK system is a fleet management system in the transportation domain

    Integrated control of vehicle chassis systems

    Get PDF
    This thesis develops a method to integrate several automotive intelligent chassis systems, such as Anti-lock Brake System, Traction Control System, Direct Yaw Control and Active Rear Wheel Steering, using evolutionary approaches. The Integrated Vehicle Control System (IVCS) combines and supervises all controllable systems in the vehicle, optimising the over all performance and minimising the energy consumption. The IVCS is able to improve the driving safety avoiding and preventing critical or unstable situations. Furthermore, if a critical or unstable configuration is reached, the integrated system should be able to recover a stable condition. The control structure proposed in this work has as main characteristics the modularity, extensibility and flexibility, fitting the requirements of a 'plug-and-play' philosophy. The investigation is divided into four steps: Vehicle Modelling, Soft-Computing, Behaviour Based Control, and Integrated Vehicle Control System. Several mathematical vehicle models, which are applied to designing and developing the control systems, are presented. MATLAB, SIMULINK and ADAMS are used as tools to implement and simulate those models. A methodology for learning and optimisation is presented. This methodology is based on Evolutionary Algorithms, integrating the Genetic Leaming Automata, CARLA and Fuzzy Logic System. The Behaviour Based Control is introduced as the main approach to designing the controllers and coordinators. The methodology previously described is used to learn the behaviours and optimise their performance, and the same technique is applied to coordinators. Several comparisons with other controllers are also carried out. From this an Integrated Vehicle Control System is designed, developed and implemented under a virtual environment. A range of manoeuvres is carried out in order to investigate its performance under diverse conditions. The leaming and optimisation method proposed in this thesis shows effective performance being able to learn all the controller and coordinator structures. The proposed approach for IVCS also demonstrates good performance, and is well suited to a 'plug-and-play' philosophy. This research provides a foundation for the implementation of the designed controllers and coordinators in a prototype vehicle.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Improving off-road vehicle lateral stability with integrated chassis control

    Get PDF
    Dissertation (MSc (Engineering))--University of Pretoria, 2022.This study investigates the improvement of off-road vehicle lateral stability by integrated control of active rear steering (ARS) and rear differential braking (RDB) and how the performance of such systems compares on smooth and rough roads. The ARS and RDB controllers each comprise a sliding mode controller (SMC) for which the choice of reference model, SMC gain and integration rule are key design choices. Findings include that the kinematic model reference error is a preferred reference model over the phase plane location error on both terrains, the SMC gain is terrain dependant, and rear axle slip angle is a preferred integration rule over the stability index (SI) on both terrains. The study also found that RDB, and to a lesser degree ARS, tends to improve on the baseline vehicle path following ability for a double lane change (DLC) manoeuvre on both terrains, but RDB has a larger loss of speed compared to ARS. Rear axle slip angle was found to be a terrain dependant tuneable integration rule to combine ARS and RDB, and resulted in a control system that has the good path following ability of RDB but low loss of speed associated with ARS after tuning.Mechanical and Aeronautical EngineeringMEngUnrestricte
    corecore