37 research outputs found

    An Approach to Data Utilization of The Lokomat Rehabilitation Robot

    Get PDF
    The use of exoskeleton robot wornon human body has been widely researchedand some have been commercialized. Lowerlimb exoskeleton robot worn in parallel onhuman lower body has found many applicationsespecially in the rehabilitation of human walkinggait. It is used as a robotic therapy in assistingpatient with walking difficulties to recover backhis walking ability. Using Lokomat rehabilitationrobot for therapy is not meant to guide the patientto walk only; but this robotic therapy systemhas the ability to record information signalsduring each therapy session. It is found out thatless research and attention has been given onthe methods that can utilize the recorded datawhich could be very useful and very informativefor physiotherapy study. Thus, the objective ofthis paper is to highlight the method to utilizethe recorded data from Lokomat physiotherapysession

    Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients

    Get PDF
    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity- dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed

    Imprecise dynamic walking with time-projection control

    Get PDF
    We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP model, our proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the projection, a proper control policy is generated by this LQR controller and used at the intermediate time. This control paradigm reacts to disturbances immediately and includes rules to account for swing dynamics and leg-retraction. We apply it to a simulated Atlas robot in position-control, always commanded to perform in-place walking. The stance hip joint in our robot keeps the torso upright to let the robot naturally fall, and the swing hip joint tracks the desired footstep location. Combined with simple Center of Pressure (CoP) damping rules in the low-level controller, our foot-placement enables the robot to recover from strong pushes and produce periodic walking gaits when subject to persistent sources of disturbance, externally or internally. These gaits are imprecise, i.e., emergent from asymmetry sources rather than precisely imposing a desired velocity to the robot. Also in extreme conditions, restricting linearity assumptions of the 3LP model are often violated, but the system remains robust in our simulations. An extensive analysis of closed-loop eigenvalues, viable regions and sensitivity to push timings further demonstrate the strengths of our simple controller

    Towards Robust Bipedal Locomotion:From Simple Models To Full-Body Compliance

    Get PDF
    Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches during locomotion and a floating-base nature which makes them fall all the time. A rich set of sensory inputs and a high-bandwidth actuation are often needed to ensure fast and effective reactions to unforeseen conditions, e.g., terrain variations, external pushes, slippages, unknown payloads, etc. State of the art technologies today seem to provide such valuable hardware components. However, regarding software, there is plenty of room for improvement. Locomotion planning and control problems are often treated separately in conventional humanoid control algorithms. The control challenges mentioned above are probably the main reason for such separation. Here, planning refers to the process of finding consistent open-loop trajectories, which may take arbitrarily long computations off-line. Control, on the other hand, should be done very fast online to ensure stability. In this thesis, we want to link planning and control problems again and enable for online trajectory modification in a meaningful way. First, we propose a new way of describing robot geometries like molecules which breaks the complexity of conventional models. We use this technique and derive a planning algorithm that is fast enough to be used online for multi-contact motion planning. Similarly, we derive 3LP, a simplified linear three-mass model for bipedal walking, which offers orders of magnitude faster computations than full mechanical models. Next, we focus more on walking and use the 3LP model to formulate online control algorithms based on the foot-stepping strategy. The method is based on model predictive control, however, we also propose a faster controller with time-projection that demonstrates a close performance without numerical optimizations. We also deploy an efficient implementation of inverse dynamics together with advanced sensor fusion and actuator control algorithms to ensure a precise and compliant tracking of the simplified 3LP trajectories. Extensive simulations and hardware experiments on COMAN robot demonstrate effectiveness and strengths of our method. This thesis goes beyond humanoid walking applications. We further use the developed modeling tools to analyze and understand principles of human locomotion. Our 3LP model can describe the exchange of energy between human limbs in walking to some extent. We use this property to propose a metabolic-cost model of human walking which successfully describes trends in various conditions. The intrinsic power of the 3LP model to generate walking gaits in all these conditions makes it a handy solution for walking control and gait analysis, despite being yet a simplified model. To fill the reality gap, finally, we propose a kinematic conversion method that takes 3LP trajectories as input and generates more human-like postures. Using this method, the 3LP model, and the time-projecting controller, we introduce a graphical user interface in the end to simulate periodic and transient human-like walking conditions. We hope to use this combination in future to produce faster and more human-like walking gaits, possibly with more capable humanoid robots

    On improving control and efficiency of a portable pneumatically powered ankle-foot orthosis

    Get PDF
    Ankle foot orthoses (AFOs) are widely used as assistive and/or rehabilitation devices to correct gait of people with lower leg neuromuscular dysfunction and muscle weakness. An AFO is an external device worn on the lower leg and foot that provides mechanical assistance at the ankle joint. Active AFOs are powered devices that provide assistive torque at the ankle joint. We have previously developed the Portable Powered Ankle-Foot Orthosis (PPAFO), which uses pneumatic power via compressed CO2 to provide untethered ankle torque assistance. My dissertation work focused on the development of control strategies for the PPAFO that are robust, applicable to different gait patterns, functional in different gait modes, and energy efficient. Three studies addressing these topics are presented in this dissertation: (1) estimation of the system state during the gait cycle for actuation control; (2) gait mode recognition and control (e.g., stair and ramp descent/ascent); and (3) system analysis and improvement of pneumatic energy efficiency. Study 1 presents the work on estimating the gait state for powered AFO control. The proposed scheme is a state estimator that reliably detects gait events while using only a limited array of sensor data (ankle angle and contact forces at the toe and heel). Our approach uses cross-correlation between a window of past measurements and a learned model to estimate the configuration of the human walker, and detects gait events based on this estimate. The proposed state estimator was experimentally validated on five healthy subjects and with one subject that had neuromuscular impairment. The results highlight that this new approach reduced the root-mean-square error by up to 40% for the impaired subject and up to 49% for the healthy subjects compared to a simplistic direct event controller. Moreover, this approach was robust to perturbations due to changes in walking speed and control actuation. Study 2 proposed a gait mode recognition and control solution to identify a change in walking environment such as stair and ramp ascent/descent. Since portability is a key to the success of the PPAFO as a gait assist device, it is critical to recognize and control for multiple gait modes (i.e., level walking, stair ascent/descent and ramp ascent/descent). While manual mode switching is implemented on most devices, we propose an automatic gait mode recognition scheme by tracking the 3D position of the PPAFO from an inertial measurement unit (IMU). Experimental results indicate that the controller was able to identify the position, orientation and gait mode in real time, and properly control the actuation. The overall recognition success rate was over 97%. Study 3 addressed improving operational runtime by analyzing the system efficiency and proposing an energy harvesting and recycling scheme to save fuel. Through a systematic analysis, the overall system efficiency was determined by deriving both the system operational efficiency and the system component efficiency. An improved pneumatic operation utilized an accumulator to harvest and then recycle the exhaust energy from a previous actuation to power the subsequent actuation. The overall system efficiency was improved from 20.5% to 29.7%, a fuel savings of 31%. Work losses across pneumatic components and solutions to improve them were quantified and discussed. Future work including reducing delay in recognition, exploring faulty recognition, additional options for harvesting human energy, and learning control were proposed

    Toward Controllable Hydraulic Coupling of Joints in a Wearable Robot

    Get PDF
    In this paper, we develop theoretical foundations for a new class of rehabilitation robot: body powered devices that route power between a user’s joints. By harvesting power from a healthy joint to assist an impaired joint, novel bimanual and self-assist therapies are enabled. This approach complements existing robotic therapies aimed at promoting recovery of motor function after neurological injury. We employ hydraulic transmissions for routing power, or equivalently for coupling the motions of a user’s joints. Fluid power routed through flexible tubing imposes constraints within a limb or between homologous joints across the body. Variable transmissions allow constraints to be steered on the fly, and simple valve switching realizes free space and locked motion. We examine two methods for realizing variable hydraulic transmissions: using valves to switch among redundant cylinders (digital hydraulics) or using an intervening electromechanical link. For both methods, we present a rigorous mathematical framework for describing and controlling the resulting constraints. Theoretical developments are supported by experiments using a prototype fluid-power exoskeleton

    Imprecise dynamic walking with time-projection control

    Get PDF
    We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP model, our proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the projection, a proper control policy is generated by this LQR controller and used at the intermediate time. This control paradigm reacts to disturbances immediately and includes rules to account for swing dynamics and leg-retraction. We apply it to a simulated Atlas robot in position-control, always commanded to perform in-place walking. The stance hip joint in our robot keeps the torso upright to let the robot naturally fall, and the swing hip joint tracks the desired footstep location. Combined with simple Center of Pressure (CoP) damping rules in the low-level controller, our foot-placement enables the robot to recover from strong pushes and produce periodic walking gaits when subject to persistent sources of disturbance, externally or internally. These gaits are imprecise, i.e., emergent from asymmetry sources rather than precisely imposing a desired velocity to the robot. Also in extreme conditions, restricting linearity assumptions of the 3LP model are often violated, but the system remains robust in our simulations. An extensive analysis of closed-loop eigenvalues, viable regions and sensitivity to push timings further demonstrate the strengths of our simple controller

    Fondements calculatoires de la locomotion anthropomorphe

    Get PDF
    La locomotion anthropomorphe est un processus complexe qui met en jeu un très grand nombre de degrés de liberté, le corps humain disposant de plus de trois cents articulations contre une trentaine chez les robots humanoïdes. Pris dans leur ensemble, ces degrés de liberté montrent une certaine cohérence rendant possible la mise en mouvement du système anthropomorphe et le maintien de son équilibre, dans le but d'éviter la chute. Cette thèse met en lumière les fondements calculatoires à l'origine de cette orchestration. Elle introduit un cadre mathématique unifié permettant à la fois l'étude de la locomotion humaine, et la génération de trajectoires locomotrices pour les robots humanoïdes. Ce cadre consiste en une réduction de la dynamique corps-complet du système pour ne considérer que sa projection autour du centre de gravité, aussi appelée dynamique centroïdale. Bien que réduite, nous montrons que cette dynamique centroïdale joue un rôle central dans la compréhension et la formation des mouvements locomoteurs. Pour ce faire, nous établissons dans un premier temps les conditions d'observabilité de cette dynamique, c'est-à-dire que nous montrons dans quelle mesure cette donnée peut être appréhendée à partir des capteurs couramment employés en biomécanique et en robotique. Forts de ces conditions d'observabilité, nous proposons un estimateur capable de reconstruire la position non-biaisée du centre de gravité. A partir de cet estimateur et de l'acquisition de mouvements de marche sur divers sujets, nous mettons en évidence la présence d'un motif cycloïdal du centre de gravité dans le plan sagittal lorsque l'humain marche de manière nominale, c'est-à-dire sans y penser. La présence de ce motif suggère l'existence d'une synergie motrice jusqu'alors ignorée, soutenant la théorie d'une coordination générale des mouvements pendant la locomotion. La dernière contribution de cette thèse porte sur la locomotion multi-contacts. Les humains ont une agilité remarquable pour effectuer des mouvements locomoteurs qui nécessitent l'utilisation conjointe des bras et des jambes, comme lors de l'ascension d'une paroi rocheuse. Comment doter les robots humanoïdes de telles capacités ? La difficulté n'est certainement pas technologique, puisque les robots actuels sont capables de développer des puissances mécaniques suffisantes. Leurs performances, évaluées tant en termes de qualité des mouvements que de temps de calcul, restent très limitées. Dans cette thèse, nous abordons le problème de génération de trajectoires multi-contacts sous la forme d'un problème de commande optimale. L'intérêt de cette formulation est de partir du modèle réduit de la dynamique centroïdale tout en répondant aux contraintes d'équilibre. L'idée originale consiste à maximiser la vraisemblance de cette dynamique réduite vis-à-vis de la dynamique corps-complet. Elle repose sur l'apprentissage d'une mesure d'occupation qui reflète les capacités cinématiques et dynamiques du robot. Elle est effective : l'algorithmique qui en découle est compatible avec des applications temps réel. L'approche a été évaluée avec succès sur le robot humanoïde HRP-2, sur plusieurs modes de locomotions, démontrant ainsi sa polyvalence.Anthropomorphic locomotion is a complex process that involves a very large number of degrees of freedom, the human body having more than three hundred joints against thirty in humanoid robots. Taken as a whole, these degrees of freedom show a certain coherence making it possible to set the anthropomorphic system in motion and maintain its equilibrium, in order to avoid falling. This thesis highlights the computational foundations behind this orchestration. It introduces a unified mathematical framework allowing both the study of human locomotion and the generation of locomotive trajectories for humanoid robots. This framework consists of a reduction of the body-complete dynamics of the system to consider only its projection around the center of gravity, also called centroid dynamics. Although reduced, we show that this centroidal dynamics plays a central role in the understanding and formation of locomotive movements. To do this, we first establish the observability conditions of this dynamic, that is to say that we show to what extent this data can be apprehended from sensors commonly used in biomechanics and robotics. Based on these observability conditions, we propose an estimator able to reconstruct the unbiased position of the center of gravity. From this estimator and the acquisition of walking motions on various subjects, we highlight the presence of a cycloidal pattern of the center of gravity in the sagittal plane when the human is walking nominally, that is, to say without thinking. The presence of this motif suggests the existence of a motor synergy hitherto unknown, supporting the theory of a general coordination of movements during locomotion. The last contribution of this thesis is on multi-contact locomotion. Humans have remarkable agility to perform locomotive movements that require joint use of the arms and legs, such as when climbing a rock wall. How to equip humanoid robots with such capabilities? The difficulty is certainly not technological, since current robots are able to develop sufficient mechanical powers. Their performances, evaluated both in terms of quality of movement and computing time, remain very limited. In this thesis, we address the problem of generating multi-contact trajectories in the form of an optimal control problem. The interest of this formulation is to start from the reduced model of centroid dynamics while responding to equilibrium constraints. The original idea is to maximize the likelihood of this reduced dynamic with respect to body-complete dynamics. It is based on learning a measurement of occupation that reflects the kinematic and dynamic capabilities of the robot. It is effective: the resulting algorithmic is compatible with real-time applications. The approach has been successfully evaluated on the humanoid robot HRP-2, on several modes of locomotion, thus demonstrating its versatility
    corecore