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Abstract

Thanks to better actuator technologies and control algorithms, humanoid robots to date
can perform a wide range of locomotion activities outside lab environments. Recent
dexterous and robust demos with humanoids seemed almost impossible with earlier
robots of the 80s and 90s. However, they are still far from what humans do every day.
Humanoid robots face various control challenges like high dimensionality, contact switches
during locomotion and a floating-base nature which makes them fall all the time. A rich
set of sensory inputs and a high-bandwidth actuation are often needed to ensure fast
and effective reactions to unforeseen conditions, e.g., terrain variations, external pushes,
slippages, unknown payloads, etc. State of the art technologies today seem to provide
such valuable hardware components. However, regarding software, there is plenty of
room for improvement.

Locomotion planning and control problems are often treated separately in conven-
tional humanoid control algorithms. The control challenges mentioned above are probably
the main reason for such separation. Here, planning refers to the process of finding
consistent open-loop trajectories, which may take arbitrarily long computations off-line.
Control, on the other hand, should be done very fast online to ensure stability. However,
there is a fundamental problem. Ankle joints can provide direct control authority to
stabilize the system, but the feet in humanoids are too small to allow for capturing
even moderate perturbations with this stabilization strategy. Therefore, conventional
rigid combinations of off-line planning and online control are too limited. The robot is
not limited, however; it can use other stabilization strategies to recover from significant
perturbations like humans. One of these strategies is to continuously adjust footstep
locations online which requires modification of trajectories. The new trajectories should
remain consistent with system dynamics to ensure maximum stability. However, this
requires expensive computations with traditional mechanical models.

In this thesis, we want to link planning and control problems again and enable for
online trajectory modification in a meaningful way. First, we propose a new way of
describing robot geometries like molecules which breaks the complexity of conventional
models. We use this technique and derive a planning algorithm that is fast enough to
be used online for multi-contact motion planning. Similarly, we derive 3LP, a simplified
linear three-mass model for bipedal walking, which offers orders of magnitude faster
computations than full mechanical models. Molecule-based simplified geometries and the
3LP model both produce more consistent trajectories, i.e., including essential dynamics of
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Abstract

the system in fast locomotions. Next, we focus more on walking and use the 3LP model to
formulate online control algorithms based on the foot-stepping strategy. Because of faster
computations, our method can combine planning and control to achieve more robustness
by modifying trajectories online. The method is based on model predictive control,
however, we also propose a faster controller with time-projection that demonstrates a close
performance without numerical optimizations. We also deploy an efficient implementation
of inverse dynamics together with advanced sensor fusion and actuator control algorithms
to ensure a precise and compliant tracking of the simplified 3LP trajectories. Extensive
simulations and hardware experiments on COMAN robot demonstrate effectiveness and
strengths of our method.

This thesis goes beyond humanoid walking applications. We further use the developed
modeling tools to analyze and understand principles of human locomotion. Our 3LP
model can describe the exchange of energy between human limbs in walking to some
extent. We use this property to propose a metabolic-cost model of human walking which
successfully describes trends in various conditions, including unusual frequencies, wide
steps, added mass, reduced gravity, and flat walking. In another study, we use the
3LP model to explain geometric asymmetries of human gait in inclined walking and
torso-bending conditions. Such asymmetries can be only explained by a mechanical
model that encodes internal interactions between the body segments in human. Intrinsic
power of the 3LP model to generate walking gaits in all these conditions makes it a
handy solution for walking control and gait analysis, despite being yet a simplified model.
To fill the reality gap, finally, we propose a kinematic conversion method that takes 3LP
trajectories as input and generates more human-like postures. Using this method, the
3LP model, and the time-projecting controller, we introduce a graphical user interface
in the end to simulate periodic and transient human-like walking conditions. We hope
to use this combination in future to produce faster and more human-like walking gaits,
possibly with more capable humanoid robots.

Keywords: Mechanics, Control, Optimization, Bipedal Walking, Planning, Com-
pliance
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Zusammenfassung

Dank neuer Antriebstechnologien und Kontrollalgorithmen ist es aktuellen humanoiden
Robotern möglich, eine breite Palette von Bewegungsabläufen ausserhalb der Laborum-
gebung zu demonstrieren. Diese geschickten und robusten Demonstrationen schienen mit
früheren Robotern der 80er und 90er Jahren weitestgehend unmöglich. Dennoch sind
auch heutige Roboter immer noch weit von den Fähigkeiten eines Menschen entfernt.
Humanoide Roboter begegnen diversen Herausforderungen in ihrer Kontrolle. Einige
Beispiele sind die hohe Dimension der Kontrollparameter, sich ändernde Kontakteigen-
schaften während der Bewegung und ihre Eigenart auf einer schwebenden Referenz zu
basieren, alles Faktoren, welche oft zum Versagen durch Umfallen führen. Oft werden
sowohl ein vielfältiges Set von Sensoren als auch Antriebe mit hoher Bandweite benötigt,
um schnelle und effektive Reaktionen zu unvorhergesehenen Ereignissen, wie z. B. sich
verändernder Untergrund, externe Stösse, Schlupf, und unbekannte Kontakte bei der
Ladung, sicherzustellen. Heutige Technologien können solche mechanische Komponenten
zur Verfügung stellen. Im Gegensatz hierzu ist in Bezug auf die Kontrollimplementierung
noch viel Raum für Verbesserungen.

Bewegungsplanung und Kontrollprobleme werden in konventionellen Kontrollalgo-
rithmen oft separat behandelt. Die zuvor erwähnten Kontrollherausforderungen sind
möglicherweise der Hauptgrund für diese Aufteilung. In dieser Dissertation bezieht sich
Planung auf den Prozess zur Erzeugung konsistenter Bewegungstrajektorien im offenem
Regelkreis, wobei beliebig lange Berechnungszeiten, offline, d.h. nicht während der ei-
gentlichen Bewegung, in Kauf genommen werden können. Um die Bewegungserzeugung
zu garantieren, sollte der Kontrollablauf allerdings online (während der Bewegung) zur
Verfügung stehen und sehr schnell agieren, um die notwendige Stabilität zu garantieren.
Genau hier aber liegt das Hauptproblem. Die vorhandenen Aktuatoren der Fussgelenke
könnten die Stabilisierung übernehmen aber die Füsse in humanoiden Roboter sind
für diese Stabilisierungsstrategie sind zu klein. Dies gilt bereits moderate Störungen.
Folglich ist die konventionelle Kombination von offline Planung und online Kontrolle
zu limitierend. Der Roboter selber ist aber nicht limitiert; er kann wie Menschen auch
andere Stabilisierungsstrategien verwenden. Eine dieser Strategien ist, die Platzierung
der Füsse anzupassen, wozu eine Änderung der Bewegungstrajektorien nötig ist. In dieser
Dissertation möchten wir die Planungs- und Kontrollprobleme miteinander verknüpfen,
sodass eine sinnvolle online Änderung der Bewegungstrajektorien realistisch wird.

Die daraus entstehenden, modifizierten Trajektorien sollten mit der Systemdynamik
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Zusammenfassung

konsistent bleiben, um maximale Stabilität sicherzustellen. In traditionellen mechanischen
Modellen benötigt dies aber lange Berechnungszeit. Zur Lösung dieses Problems schlagen
wir eine neue Art vor, Geometrien in Robotern zu beschreiben. Die Geometrieerfassung
als Moleküle verringert die Komplexität in der Anwendung konventioneller Modelle. Wir
zeigen die Verwendung dieser Technik und leiten einen Planungsalgorithmus her, welcher
schnell genug ist, um Bewegungsabläufe mit vielen Kontaktpunkten online zu berechnen.
Mit einer ähnlichen Vorgehensweise leiten wir ein vereinfachtes, lineares Modell mit drei
Massen für das zweibeinige Gehen „3LP“ her, welches die Berechnungszeit um einige
Grössenordnungen reduziert. Beide Herleitungen produzieren konsistentere Trajektorien,
da sie die auftretende Dynamik des Systems bei schneller Fortbewegung miteinschliessen.
Der folgende Focus liegt auf dem Gehen an sich. Wir verwenden das besagte lineare
Modell um online Kontrollalgorithmen zur Bewegungserzeugung, basierend auf der Stra-
tegie der Fussplatzierungen, herzuleiten. Aufgrund der schnelleren Berechnungszeit kann
unsere Methode die Planung und den Regler kombinieren und erzielt durch eine online
Änderung der Trajektorien eine höhere Robustheit. Die Methode basiert auf dem Modell-
Voraussagungs-Regler, wobei wir jedoch einen schnelleren Regler mit Zeit-Projektion
vorschlagen, welcher eine ähnliche Verhaltensweise ohne nummerische Optimierungen
zeigt. Des Weiteren setzen wir eine effiziente Implementierung von inverser Dynamisch
zusammen mit fortgeschrittener Sensor-Verschmelzung und Antriebs-Kontrollalgorithmen
ein, um präzise und anpassungsfähige Bewegungsaufzeichnungen von vereinfachten Tra-
jektorien sicherzustellen. Ausgiebige Simulationen und Experimente mit dem COMAN
Roboter demonstrieren die Effektivität und Stärken unserer Methode.

Diese Dissertation geht zudem über die Anwendungsmöglichkeiten von humanoiden
Robotern hinaus. Weiterführend benutzen wir die erarbeiteten Modellierungstechniken,
um Prinzipien von humanoider Fortbewegung zu analysieren und verstehen. Unser 3LP
Model kann den Energieaustausch zwischen Extremitäten zu einem gewissen Grade
erklären. Wir verwenden diesen Aspekt um ein Modell für das Gehen, basierend auf
den metabolischen Kosten vorzuschlagen. Das besagte Modell beschreibt erfolgreich
Trends in diversen Bedingungen, wie zum Beispiel in abnormalen Frequenzen, weiten
Schritten, hinzugefügter Masse, reduzierter Gravitation und ebenem Gehen. Obwohl
das 3LP ein vereinfachtes Modell ist, zeigt es in der Generierung von Gangarten in all
diesen Bedingungen seine Stärke als praktische Lösung für Regler und Gang-Analyse.
Um den Realitäts-Unterschied zu überwinden schlagen wir abschließend eine Methode
für kinematische Konvertierung vor, welche aus 3LP Trajektorien menschenähnlichere
Körperhaltungen generiert. Unter der Verwendung dieser Methode, dem 3LP Modell und
dem zeit-projizierenden Regler präsentieren wir eine GUI (graphical user interface), in
welcher periodische und transiente menschenähnliche Gangarten simuliert werden können.
Wir hoffen, diese Kombination in Zukunft weiterhin nutzen zu können, um schnellere
und menschenähnlichere Gangarten generieren zu können und diese auf möglicherweise
mit leistungsfähigeren humanoiden Robotern zur Anwendung zu bringen.

Schlüsselwörter: Mechanik, Kontrolle, Optimierung, Zweibeinige Gehen, Planung,
Konformität
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Résumé

Grâce aux avancées technologiques d’actionneurs et à de meilleurs algorithmes de contrôle,
les robots humanoïdes peuvent à ce jour effectuer une large gamme d’activités de
locomotion en dehors des environnements de laboratoire. Les récentes démonstrations
d’habilités et de robustesses des humanoïdes semblaient presque impossibles avec les robots
précédents des années 80 et 90. Cependant, ils sont encore loin de pouvoir reproduire
ce que les humains font tous les jours. Les robots humanoïdes font face à divers défis
de contrôle tels que la haute dimensionnalité, les changement de contact pendant la
locomotion et une nature à base flottante qui les font tomber tout le temps. Un ensemble
riche d’entrées sensorielles et un actionnement à bande passante élevée sont souvent
nécessaires pour assurer des réactions rapides et efficaces à des conditions imprévues,
telles que des variations de terrain, des poussées externes, des glissements, des charges
utiles inconnues, etc. Les technologies de l’état de l’art semblent aujourd’hui fournir des
composants matériels aussi précieux. Cependant, en ce qui concerne les logiciels, il y a
beaucoup de place pour de l’amélioration.

Les problèmes de planification et de contrôle de la locomotion sont souvent traités
séparément dans les algorithmes de contrôle pour des humanoïdes conventionnels. Les
défis de contrôle mentionnés ci-dessus sont probablement la raison principale d’une
telle séparation. Ici, la planification se réfère au processus de recherche de trajectoires
cohérentes en boucle ouverte et peut prendre des calculs arbitrairement longs hors ligne.
D’un autre côté, le contrôle devrait être fait très rapidement et en ligne pour assurer la
stabilité. Cependant, il y a un problème fondamental. Les articulations de la cheville
peuvent fournir une autorité de contrôle directe pour stabiliser le système, mais les pieds
dans les humanoïdes sont trop petits pour permettre de capturer même des perturbations
modérées avec cette stratégie de stabilisation. Par conséquent, les combinaisons rigides
classiques de planification hors ligne et de contrôle en ligne sont trop limitées. Le robot
n’est pas limité, cependant ; il peut utiliser d’autres stratégies de stabilisation pour se
remettre de perturbations significatives comme les humains. Une de ces stratégies consiste
à ajuster les emplacements des pieds, ce qui nécessite une modification des trajectoires.
Dans cette thèse, nous voulons relier les problèmes de planification et de contrôle et
permettre une modification significative de la trajectoire en ligne.

Les trajectoires modifiées doivent rester cohérentes avec la dynamique du système
pour assurer une stabilité maximale. Cependant, cela nécessite des calculs coûteux avec
des modèles mécaniques traditionnels. Tout d’abord, nous proposons une nouvelle façon
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Résumé

de décrire les géométries de robots comme des molécules qui brisent la complexité des
modèles conventionnels. Nous utilisons cette technique et en déduisons un algorithme
de planification suffisamment rapide pour être utilisé en ligne pour la planification de
mouvements multi-contacts. De même, nous dérivons 3LP, un modèle linéaire à trois
masses simplifié pour la marche bipède qui offre des ordres de grandeur calculs plus
rapides que les modèles mécaniques complets. Ces dérivations produisent toutes deux des
trajectoires plus cohérentes, c’est-à-dire comprenant la dynamique essentielle du système
dans les locomotions rapides. Ensuite, nous nous concentrons davantage sur la marche et
utilisons le modèle linéaire pour dériver des algorithmes de contrôle en ligne basés sur la
stratégie du pas à pas. Grâce à des calculs plus rapides, notre méthode peut combiner
planification et contrôle pour obtenir plus de robustesse en modifiant les trajectoires
en ligne. La méthode est basée sur la commande prédictive, bien que nous proposons
aussi un contrôleur plus rapide avec projection temporelle qui démontre une performance
proche sans optimisations numériques. Nous déployons également une implémentation
efficace de la dynamique inverse ainsi que des algorithmes avancés de fusion de capteurs
et de contrôle d’actionneurs pour assurer un suivi précis et conforme des trajectoires
simplifiées commandées. Des simulations approfondies et des expériences matérielles sur
robot COMAN démontrent l’efficacité et les points forts de notre méthode.

Cette thèse va au-delà des applications de marche humanoïde. Nous utilisons égale-
ment les outils de modélisation développés pour analyser et comprendre les principes
de la locomotion humaine. Notre modèle 3LP peut décrire l’échange d’énergie entre les
membres du corps humain dans la marche dans une certaine mesure. Nous utilisons cette
propriété pour proposer un modèle métabolique de la marche humaine qui décrit avec
succès les tendances dans diverses conditions, y compris avec des fréquences inhabituelles,
des longs pas, de la masse ajoutée, une gravité réduite et la marche à plat. Dans une
autre étude, nous utilisons le modèle 3LP pour expliquer les asymétries géométriques
de la marche dans des conditions de marche inclinée et de flexion du torse. De telles
asymétries ne peuvent s’expliquer que par un modèle mécanique qui prend en compte les
interactions internes entre les segments corporels chez l’humain. La puissance intrinsèque
du modèle 3LP pour générer des allures de marche dans toutes ces conditions en fait une
solution pratique pour le contrôle de la marche et l’analyse de la marche, bien qu’elle
soit encore un modèle simplifié. Pour combler l’écart de réalité, nous proposons enfin une
méthode de conversion cinématique qui prend en entrée les trajectoires 3LP et génère
plus de postures humaines. En utilisant cette méthode, le modèle 3LP et le contrôleur
de projection temporelle, nous introduisons finalement une interface graphique pour
simuler des conditions périodiques et transitoires de marche semblables à celles de être
humain. Nous espérons utiliser cette combinaison à l’avenir pour produire des allures de
marche plus rapides et plus humaines, éventuellement avec des robots humanoïdes plus
performants.

Mots-clés : Mécanique, Contrôle, Optimisation, Bipède, Planification, Conformité
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1 Introduction

Different locomotion types have advantages and drawbacks in robotic applications.
Wheeled robots can possibly carry heavier payloads while flying robots are limited in this
sense, but they can go to very unstructured environments. Legged robots are different,
however; they can carry more payloads than flying robots, and perform locomotion in
more complex terrains compared to wheeled robots. Legged robots are probably less
efficient, but the stepping capability enriches their locomotion skills and makes them very
interesting for search and rescue applications. However, legged robots effectively possess
many control complexities, e.g. the large number of degrees of freedom, sensory inputs,
actuation mechanisms, under-actuation dimensions, noises, nonlinearities, geometrical and
dynamical limits, mechanical softness, and more importantly, continuity or discontinuity
of the motion. The floating nature of these robots imposes a great balance control
challenge, though enables them to move around. Bipedal walking and stability issues
make the control problem even more challenging in humanoids. Because of such control
complexities, humanoids do not probably demonstrate their full locomotion capabilities
yet compared to humans. Besides, the existing limited hardware technologies further
reduce their efficiency and ability to carry heavy payloads.

1.1 Motivation

This project was funded by the European Walk-Man project 1 which aimed at developing
loco-manipulation algorithms for search and rescue tasks. Following these objectives, the
present doctoral thesis proposes better ways of controlling humanoid locomotion. We
look for efficient and robust algorithms that enable the robot to balance and walk
given many hardware limitations and task complexities. We want our algorithms to
be generic across different platforms, fast, energy efficient and compliant. These
objectives are sometimes conflicting in existing humanoid control literature, though the
human locomotor system may demonstrate all these features at the same time. Healthy

1http://walk-man.eu/, last accessed in April 2018.
In addition to Biorobotics laboratory at EPFL, the consortium was composed of:
- Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Italy
- Research Centre “Enrico Piaggio”, Università di Pisa (UNIPI), Italy
- High-Performance Humanoid Technologies Lab, Karlsruhe Institute of Technology (KIT), Germany
- Center for Research in Mechatronics, Université Catholique de Louvain, Belgium
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humans can easily stabilize in different walking conditions, e.g., when an extra mass is
added (Browning and Kram, 2007), or when some assistive device helps (Zhang et al.,
2017). They can also walk very fast and yet comply with perturbations (Vlutters et al.,
2016). In this regard, the ideal control algorithm we are looking for should be human-like,
though we acknowledge that in terms of mechanics, perception, and actuation, our
humanoid platforms are way more limited than humans.

Many existing control algorithms in the literature are only optimized for a single
robot or character (Heess et al., 2017; Mordatch et al., 2012; Lengagne et al., 2013;
Faloutsos et al., 2001; Geijtenbeek et al., 2013; Geyer and Herr, 2010). When transferring
the algorithm to a different platform, the entire optimization routine often needs to be
repeated. Learning and optimization algorithms are very good at finding local behaviors
(Geijtenbeek et al., 2013; Van der Noot et al., 2015), though hard to generalize. Besides,
outside the optimized region, such controllers or pattern generators might produce highly
infeasible actions due to a potential over-fitting. Instead, a vast part of the literature uses
human-data for pattern generation (Tsai et al., 2010; Choi et al., 2003; Yin et al., 2007;
Lee et al., 2002; Okada and Miyazaki, 2013). However, a library of different motions
together with a proper trajectory adjustment algorithm might be needed.

For complex systems like bipeds, due to high dimensionality and contact switches
which make the system discontinuous, it is often popular to use simplified models in
control (Herdt et al., 2010b; Feng et al., 2016). These models, which are called template
models, approximate overall system dynamics in certain conditions, but enable us to do
much faster computations. Template models can simplify the task of motion generation,
and more importantly, they enable for online computations which can stabilize the
robot in case of significant perturbations. The ability to re-plan dynamically consistent
trajectories online plays a key role to stabilize unstable floating-based systems like
humanoids.

1.2 Approach
Among policy learning, motion-capture imitation and model-based control approaches
discussed, the contribution of this work mainly falls in the third category. We might
take inspiration from human trajectories to better design our controllers in some parts,
but we do not use motion-capture data directly. Also, the entire thesis is based on
controlling the robot online. We may collect data to identify models for different
parts of the robot, specifically the actuators, but we avoid learning behaviors with offline
optimizations. While full models provide a precise interface with the real hardware in
our framework, template models enable us to predict the behavior and correct it in the
form of online model predictive control. An extensive review of the existing literature
has helped us better understand the advantages and limitations of such hierarchical
decompositions. Among various advantages, such decomposition helps us isolate different
hardware challenges and tackle them separately from the main control algorithm. Based
on this philosophy, we propose a hierarchical architecture (shown in Figure 1.1) which
allows us to define different tasks and tackle them in separate blocks:
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Inverse Kinematics/Dynamics

Planning
 

Trajectory Generation

Control
 

Model Predictive

Actuation
 

Torque/Position Control

Template Model

Full Model

Real Hardware

Figure 1.1 – The proposed control architecture in different model abstraction levels. We
have specific blocks to deal with real hardware details, forward and inverse kinemat-
ics/dynamics algorithms to convert between the template and full-space models and
eventually, template motion planning and control algorithms which can run very fast.

• State estimation: using a full forward model to fuse sensory data while handling
noises, delays, and backlashes. This model allows us to extract important state
variables, e.g., CoM and feet positions as well as torso orientation.

• Motion planning: we can simply think about a few important state variables and
plan trajectories with template models. We do not need to consider all details, e.g.,
actuator dynamics, individual joints, etc.

• Stabilization: we simply optimize the future evolution of important states and find
reasonable adjustments of inputs.

• Tracking: hardware details such as yaw joint angles, series-elastic elements, actuator
properties, etc. are packed together and handled using full-body inverse kinematics
or dynamics as well as a precise actuator control.

In other learning-based control approaches, hardware details should be included in the
simulation environment to fill the reality gap and to find robust controllers (Van der
Noot et al., 2015). Although many rigid-body modeling tools are commercially available
(Docquier et al., 2013; Hollars et al., 1991), one probably needs to identify and include
actuator dynamics, sensory noises, and communication delays as well to account for
uncertainties. These effects are often hard to quantify and model. Other issues like
mechanical backlashes, springs, and soft contacts are also very hard to simulate precisely.
Besides, system states are easily accessible in simulations whereas obtaining such clean
signals from the robot may require extensive and complicated filtering which often comes
with a significant delay penalty.

Using a hierarchical approach, we can define certain control blocks and develop each
separately without mixing everything in a single offline optimization. By knowing details
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of each block, we can build a consistent control hierarchy with minimal dependencies
by concentrating on the important states of the system. We encode dynamics by full or
template mechanical models, whereas other control approaches encode this information
in human trajectories (Yin et al., 2007), non-linear learning kernels (Heess et al., 2017)
or neural circuits (Geyer and Herr, 2010). In our approach, control principles and
trajectories are easily scalable with the size of robot and the walking gait parameters.
We do not need to redo offline optimizations or recollect human data for new conditions.
Also, we avoid the potential over-fitting of task-specific offline optimizations by using
mechanical models and classical control rules in our method. We can always make
sure that our full models produce valid motions, and the operating regions of our template
models remain easy to characterize. These models facilitate calculations and decrease
sensitivity to hardware details, both in control and state estimation.

Locomotion planning and control problems are often treated separately in conven-
tional humanoid control algorithms. Here, planning refers to the process of finding
consistent open-loop trajectories, which may take arbitrarily long computations off-line.
Control, on the other hand, should be done very fast online to ensure stability. There
are probably three main approaches that can stabilize a walking gait; 1) Center of
Pressure (CoP) modulation by ankle torques (Asano et al., 2004), 2) adjustment of next
footstep locations (Koolen et al., 2012), 3) rotation of the upper-body in reaction to
perturbations (Kuo, 1999). These three strategies simply stabilize the Center of Mass
(CoM) by the ankle, swing hip or stance hip torques respectively. In this regard, the CoM
state is probably the "principal" state to be controlled while footstep locations and torso
angles follow afterward. Ankle joints can provide direct control authority to stabilize the
system, but the feet in humanoids are too small to allow for capturing even moderate
perturbations with this stabilization strategy. Therefore, conventional rigid combinations
of off-line planning and online control are too limited. The robot is not limited, however;
it can use other stabilization strategies to recover from significant perturbations like
humans. One of these strategies is to continuously adjust footstep locations online which
requires modification of trajectories. The new trajectories should remain consistent
with system dynamics to ensure maximum stability. However, this requires expensive
computations with traditional mechanical models. Focusing on this problem in this thesis,
we want to link planning and control problems again and enable for online trajectory

modification in a meaningful way. We exclusively use the foot-stepping strategy for
stabilization and set up our control problem on this basis.

1.3 Contributions
Driven by properties of our robot COMAN, especially considerable swing dynamics, we
develop better modeling formulations which achieve considerably faster computation
speeds. These models are later used for posture optimization, multi-contact motion
planning and walking gait generation. Our new models provide a better dynamical
match with the actual system which makes them very useful for robot control, study
of human walking energetics, gait asymmetries and human-like animations.
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Our proposed walking model is in a sweet spot between the very simple linear inverted
pendulum model and the very complex and nonlinear full-body dynamical model. With
our model, we can encode much more physical effects of walking while keeping the same
computational properties of simple models. In brief, the original contributions of this
work are listed as:

• Combination of state of the art model predictive control, inverse dynamics, state
estimation and torque tracking algorithms to achieve walking and push recovery in
simulations (Faraji et al., 2014b,a) and compliant balancing on the real COMAN
robot (Faraji et al., 2015).

• Development of an original way of modeling robots like molecules, used for very
fast multi-contact posture (Faraji and Ijspeert, 2018a) and motion (Arreguit et al.,
2018) planning. Derivation of the 3LP walking model with the same philosophy
which takes into account leg swing and torso dynamics (Faraji and Ijspeert, 2017a).

• Application of the 3LP model to robot control: development of time-projection
control theories to recover inter-sample disturbances (Faraji et al., 2018a), and
application to the 3LP model for walking and push recovery on COMAN hardware
(Faraji et al., 2018b).

• Application of the 3LP model to human walking: to estimate the metabolic cost
landscape (Faraji et al., 2018c), to study gait asymmetries in inclined walking and
torso bending conditions (Wu et al., 2018), and to develop a fast (micro-second)
method for synthesis of human-like gaits with knee and ankle joints, suitable for
walking animations (Faraji and Ijspeert, 2018b).

The next section provides detailed information about these contributions.

1.4 Thesis Outline
This document presents our contributions in four main parts: implementation of state of
the art control algorithms, contributions in modeling, walking control on COMAN robot,
and analysis of human walking. In the first part, we discuss state of the art control
ingredients of the proposed hierarchy to achieve balancing and walking tasks. In the
second part, we discuss new modeling techniques developed to overcome limitations of the
state of the art algorithms with our specific robot hardware. In the third part, based on
our new models, we develop new control theories and apply them to walking control on
the real hardware. Finally in the last part, we present other applications of our modeling
and control tools in biomechanics and animation communities. The complete structure
of this thesis is depicted in Figure 1.2. In each part, we present two or three articles
which describe our fundamental contributions. Extra publications which less related to
walking are moved to appendix. The following list summarizes our contributions with
their specific applications.
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Figure 1.2 – Structure of this document. We have four different parts to present
contributions in modeling, control, hardware experiments and extended application
domains. In each part, we have three main publications which present methodologies
of different components in our control architecture. The red arrows in the middle show
dependencies of these contributions while dashed blocks are moved to appendix as less
related to walking directly.

Publication Note: The material presented in the summary list is adopted from
abstracts of the publications mentioned in each item.
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Part I: Starting Point

• Chapter 2: Model Predictive Control for walking and push recovery (Faraji
et al., 2014a)
In this chapter, we formulate a novel hierarchical controller for walking applications
on torque-controlled humanoid robots. Our method is based on task-space inverse
dynamics which generates joint torques, given Cartesian accelerations of end-
effectors (feet and CoM). Our implementation is in the form of a very efficient
quadratic optimization that can be solved in less than a millisecond. Using the
Linear Inverted Pendulum (LIP) model (Kajita and Tani, 1991), we derive a
formulation where footstep locations serve as discrete inputs. We then use an
online Model Predictive Control (MPC) to plan optimal footsteps, given desired
sagittal and steering velocities determined by the user. Over various simulations
in this chapter, this method shows robustness against external pushes, sensory
noises, model errors and delayed communications in the control loop. Besides, it
can perform blind walking over slopes and uneven terrains, and turn rapidly at the
same time.

• Chapter 3: Inverse Dynamics for performing task-space motions (Faraji et al.,
2015)
Although task-space inverse dynamics can improve tracking and compliance in
dynamic tasks, it requires the internal and global states of the system, a precise
torque control, and a proper model. In this chapter, we discuss practical issues to
implement inverse dynamics on a torque-controlled robot. By identifying models
for the electrical actuators, inverting such models and estimating the friction online,
a high bandwidth torque controller is achieved. Also, a cascade of optimization
problems fuses all the sensory data coming from IMU, joint encoders and contact
force sensors, and estimates the global states robustly. Our state estimation builds
the kinematic chain of each leg from the center of pressure which is more robust in
case of rotational slippages in the foot. Thanks to a precise and fast torque control,
robust state estimation and optimization-based whole-body inverse dynamics, the
real robot can keep balance with a very small stiffness and damping in the Cartesian
space. It can also recover from strong pushes and perform dexterous tasks. Such
compliant and stable performance is based on a pure torque control, without any
joint damping or position/velocity tracking.

• Appendix A: Force Estimation (Faraji and Ijspeert, 2016)
We propose a novel method to estimate external forces applied to a compliantly
balancing robot in simulations. Using a cascade of different optimizations, we
estimate global states of the robot by fusing the sensory data. This includes
estimation of accelerations in addition to positions and velocities. We then use
similar motion equations used in the inverse dynamics controller to find mismatches
in the available sensory data and associate them with an unknown source of external
force. Then, by decomposing Jacobians, we search over all body segments to find
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the force application point. By approximating segment volumes with ellipsoids,
we can derive analytic solutions to solve the search problem very fast in real time.
The proposed approach is tested on a complex humanoid robot in simulations
and outperforms static estimators over fast dynamic motions. We foresee many
applications for this method especially in human-robot interactions where it can
serve as a whole body virtual suit of tactile sensors. It can also be very useful in
identifying inertial properties of the objects being manipulated or mounted on the
robot like a backpack.

Part II: Contributions in Modeling

• Chapter 4: Point-Wise Model for posture planning applications (Faraji and
Ijspeert, 2018a)
Traditional joint-space models used to describe equations of motion for humanoid
robots offer nice properties linked directly to the way these robots are built. However,
from a computational point of view and convergence properties, these models are
not the fastest when used in planning optimizations. In this chapter, inspired
by Cartesian coordinates used to model molecular structures, we propose a new
modeling technique for humanoid robots. We represent robot segments by vectors
and derive equations of motion for the full body. Using this methodology in a
complex task of multi-contact posture planning with minimal joint torques, we
set up optimization problems and analyze the performance. We demonstrate that
compared to joint-space models that get trapped in local minima, the proposed point-
wise model offers a much faster computational speed and a possibly suboptimal but
unique final solution. The underlying principle lies in reducing the nonlinearity and
exploiting the sparsity. Apart from the specific case study of posture optimization
presented in this chapter, these principles can make the proposed technique a
promising candidate for many other optimization-based complex tasks in robotics.

• Chapter 5: Motion Planning in multi-contact scenarios (Arreguit et al., 2018)
We present a new method for multi-contact motion planning which efficiently
encodes internal dynamics of the robot without needing to use full models. Our
approach is based on a five-mass model which is formulated by Cartesian points
instead of joint angles. We solve direct optimization problems which include distance
constraints between these points, Newtonian equations and integration constraints.
We consider a given rhythm of contact switches but leave the phase-timings and
contact positions free inside the optimization to provide more flexibility. Due
to simpler equations and sparser problem structures, we can achieve very short
optimization times in the order of few hundred milliseconds, which make the method
suitable for application of online model predictive control. Aside from contact
position and time adjustment properties, we can include precise foothold regions
and synthesize dynamic motions by taking internal dynamics and momentums into
account.

8
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• Chapter 6: 3LP Model to study and model walking dynamics (Faraji and
Ijspeert, 2017a)
In this chapter, we present a new mechanical model for biped locomotion, composed
of three linear pendulums (one per leg and one for the whole upper body) to describe
stance, swing, and torso balancing dynamics. The methodology used to derive
3LP equations is similar to the previous point-wise model, but with linearizing
assumptions. In addition to a double support phase, this model has different
actuation possibilities in the swing hip and stance ankle which produce a broad
range of walking gaits. Without numerical time-integration, closed-form solutions
of the 3LP model help to find periodic gaits which could simply scale in certain
dimensions to modulate the motion. Thanks to the linear properties, this model can
provide a computationally fast platform for model predictive controllers to predict
the future and consider meaningful inequality constraints to ensure feasibility of the
motion. Such property comes from a description of limb dynamics with joint torques
directly and therefore, reflecting hardware limitations more precisely, even in the
very abstract template space. The proposed model produces human-like torque
and ground reaction force profiles, and thus, compared to point-mass models, it is
more promising for generation of dynamic walking trajectories. Despite being linear
and lacking many features of human walking like CoM vertical excursions, knee
flexions, and ground clearance, we show that the proposed model can explain one
of the main optimality trends in human walking, i.e., the nonlinear speed-frequency
relationship. In this chapter, we mainly focus on describing the model and its
capabilities, comparing it with human data and calculating optimal human gait
variables.

Part III: Contributions in Control

• Chapter 7: Time-Projection Control for walking and push recovery (Faraji
et al., 2018a)
We present a new control paradigm in which inter-sample errors are projected to
sampling events where a discrete LQR (DLQR) controller suggests corrections.
These input corrections are then projected back to the inter-sample time and
applied to the system. The projecting controller reacts to disturbances immedi-
ately and compared to the DLQR controller, it provides superior performance in
recovering intermittent perturbations. Further analysis of closed-loop eigenvalues
and disturbance rejection strength show strong stabilization properties for this
architecture. An analysis of viable regions also shows that the proposed controller
covers most of the maximal viable set of states. Although it does not consider
inequality constraints, it can perform similarly to MPC most of the time. It is
computationally much faster than MPC and yet optimal over an infinite horizon.

• Chapter 8: Walking and Push Recovery which demonstrates a compliant
behavior (Faraji et al., 2018b)
In this chapter, we present a simple control framework for on-line push recovery
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with dynamic foot-stepping strategy. Due to relatively heavy legs in our robot,
we need to take swing dynamics into account and thus use the 3LP model. We
formulate discrete LQR controllers and use the time-projection method to adjust
the next footstep location on-line during the motion. This adjustment, which is
found based on both pelvis and swing foot tracking errors, naturally takes the
swing dynamics into account. Suggested adjustments are added to the Cartesian
3LP gaits and converted to joint-space via inverse kinematics. Fixed and adaptive
foot lift strategies are also used to ensure enough ground clearance in perturbed
walking conditions. The proposed architecture is robust, yet uses very simple state
estimation and basic position tracking. We rely on physical springs in the robot to
absorb impacts while introducing simple laws to compensate their tracking bias.
Extensive hardware experiments demonstrate the functionality of different control
blocks in this chapter and prove the effectiveness of time-projection in extreme push
recovery scenarios. We also show self-produced and emergent walking gaits when
the robot is subject to continuous dragging forces. These gaits feature dynamic
walking robustness due to relatively soft springs in the ankles, and we avoid any
active Zero Moment Point (ZMP) control in our proposed architecture.

• Appendix B: Inverse Kinematics algorithm to handle joint limits and singu-
larities (Faraji and Ijspeert, 2017b)
We propose a nonlinear inverse kinematics formulation which solves for joint posi-
tions directly. Compared to various other popular methods that integrate velocities,
this formulation can better handle asymmetric and singular-postured balancing
tasks for humanoid robots. We introduce joint position and velocity boundaries as
inequality constraints in the optimization to ensure feasibility. Such boundaries
provide safety when approaching or getting away from joint limits or singularities.
Besides, mixing positions and velocities in our proposed algorithm facilitates the
recovery from singularities, which is delayed in conventional inverse kinematics
methods. Extensive demonstrations on the real hardware prove effectiveness and
energy efficiency of the proposed algorithm. Our formulation automatically handles
different numerical and behavioral difficulties rising from singularities, which makes
it a reliable conversion block for different Cartesian planners.

Part IV: Application to Human Walking

• Chapter 9: Energetic Model which provides biomechanical predictions (Faraji
et al., 2018c)
Since the advent of energy measurement devices, gait experiments have shown that
energetic economy has a significant influence on human walking behavior. However,
few cost models have attempted to capture the major energy components under
different walking conditions. Here we present a simple but unified model that uses
walking mechanics to estimate the metabolic cost at different speeds and step lengths,
and for six other biomechanically relevant gait experiments in literature. This
includes at various gait postures (e.g., extra foot lift), anthropometric dimensions
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(e.g., added mass), and reduced gravity conditions, without the need for parameter
tuning to design new gait trajectories. Our results suggest that the metabolic cost
of walking can be explained by a linear combination of four costs: swing and torso
dynamics, CoM velocity redirection, ground clearance, and body weight support.
The overall energetic cost is a trade-off among these separable components, shaped
by how they manifest under different walking conditions.

• Chapter 10: Walking Asymmetries and study of posture consequences (Wu
et al., 2018)
The trunk can serve many purposes in walking, from carrying objects to avoiding
overhead obstacles. As the heaviest body segment, changes in trunk kinematics can
have an important mechanical impact on whole-body control and configuration.
To understand the role of trunk flexion, we investigated the changes in inter-leg
asymmetry by asking five subjects to walk at three different speeds, three inclination
angles, and four trunk angles (three imposed, one self-selected). Asymmetry was
defined as the difference between the angle of the trailing leg and the angle of the
leading leg relative to a vector orthogonal to the walking surface during double
support. We determined the relative contribution of speed, inclination angle, and
trunk angle on asymmetry from empirical data and compared these results with 3LP,
a linear model composed of three pendulums which represent trunk and the two legs.
We found that trunk lean has the opposite effect on asymmetry, compared with the
other two factors. Thus trunk lean may be used to compensate for asymmetries
that may be unpleasant for humans or induce mechanically negative effects.

• Chapter 11: Human-Like Animation of different gaits (Faraji and Ijspeert,
2018b)
We present a new framework to generate human-like lower-limb trajectories in
periodic and non-periodic walking conditions. In our method, dynamics is encoded
in the 3LP model, and we use the time-projecting controller to stabilize the motion.
On top of gait generation and stabilization in the template space, we introduce
a kinematic conversion method that synthesizes more human-like trajectories by
combining geometric variables of the 3LP model adaptively. Without any tuning,
numerical optimization or offline data, our human-like walking gaits are scalable
with respect to body properties and gait parameters. We can change various
parameters such as body mass and height, walking direction, speed, frequency,
double support time, torso style, ground clearance and terrain inclination. We
can also simulate the effect of constant external dragging forces or momentary
perturbations. The proposed framework offers closed-form solutions in all the three
stages which enable simulation speeds orders of magnitude faster than real time.
This can be used for video games and animations on portable electronic devices
with limited power. It also gives insights for generation of more human-like walking
gaits with humanoid robots.
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1.5 Brief Overview
In different parts of the thesis, although we might switch between different controllers, e.g.,
between MPC and time-projection or between inverse kinematics and inverse dynamics,
we keep the same control hierarchy demonstrated in Figure 1.1. The order of chapters
is roughly chronological although publication dates might sometimes be delayed. The
following list describes chronological relations of different chapters together.

• We started with inverse dynamics and MPC control, and both were developed
earlier in previous works (Faraji et al., 2013, 2014b), but adapted to the robot
available in our laboratory and presented in chapter 2.

• Later, we developed hardware interfaces (state estimation and torque control) which
enabled us to do compliant balance, described in chapter 3.

• In parallel, we developed the point-wise model targeting multi-contact posture
optimization and motion planning tasks described in chapters 4 and 5.

• Since our inverse dynamics was not precise enough to compensate swing dynamics
on the real hardware, we took the point-wise modeling technique and developed the
3LP model, hoping to produce better-matching Cartesian trajectories for the end-
effectors (CoM and feet). The 3LP model encodes falling, swing and torso balancing
dynamics as well as lateral bounces described in chapter 6. The well-known LIP
model does not produce all these features together by default.

• In the range of motions supported by the robot, the inequality constraints initially
encoded in our MPC footstep planner were not activated most of the time. Therefore,
we developed the time-projection control (described in chapter 7) which somehow
serves as closed-form solutions for MPC without constraints, but with similar online
reaction properties.

• The 3LP model and time projection control were used to perform walking with the
real hardware, described in chapter 8.

• In parallel, the 3LP model was used in biomechanics studies of walking energetics
and geometric asymmetries, described in chapters 9 and 10. This part of the thesis
was done in collaboration with a biomechanist colleague in the lab, Dr. Amy Wu.
She had an in-depth knowledge of human locomotion and helped us better identify
different aspects of our modeling and control tools.

• Finally, we used the 3LP model and time-projection control to produce human-like
motions with a novel inverse kinematics method, described in chapter 11. This
part is inspired by previous biomechanics studies, and hopefully forms the basis for
faster and more human-like walking gaits on the humanoid robot.

Our research has various novel aspects in terms of modeling, control, integration
and inter-disciplinary research. We give an equal weighting to different parts, though the
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1.5. Brief Overview

most important chapters are probably the 3LP model (chapter 6), compliant balance
control (chapter 3), time-projection control (chapter 7), the energetic model (chapter 9),
and human-like motion generation (chapter 11). These chapters probably represent the
most novel contributions of this thesis.
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2 Model Predictive Control

We start this thesis by introducing our first walking controller. The material presented in
this chapter is composed of two parts: inverse dynamics controller and Model Predictive
Control (MPC) for footstep adjustment. This method is, in fact, an extension of author’s
master thesis published in (Faraji et al., 2014b) by adding steering features and adapting
the method to COMAN robot. Referring back to Figure 1.1, we use the linear inverted
pendulum model in template space and formulate a MPC controller which can produce
footstep locations according to reference sagittal and steering velocities given. This
controller is also able to recover from pushes by adjusting the step locations online,
i.e., producing a dynamic walking behavior. Appropriate turning trajectories are also
generated in the Cartesian space and given to the inverse dynamics controller. This
chapter also characterizes stability in various perturbed walking conditions, especially on
uneven terrain and slopes. Our former publication (Faraji et al., 2014b) further extends
the analysis to the case of modeling errors, sensory noises and control delays in all which
the method shows convincing robustness to some extent. This suggests that a hierarchical
controller would be a good solution for walking as long as a robust low-level controller
like inverse dynamics can fill the reality gap between the template model and the complex
robot. The primary technical challenge we overcome in this chapter is to implement
numerical optimizations of MPC and inverse dynamics efficiently to be solved in 1-2ms 1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji, Soha Pouya, and Auke Jan Ijspeert. "Robust and agile 3D

biped walking with steering capability using a footstep predictive approach." In
Proceedings of Robotics: Science and Systems (RSS), Berkeley, USA, 2014.

The role of first author was to develop the method and to write the manuscript. The
second author supervised this work and the previous version (Faraji et al., 2014b)
which was done on Atlas robot during a master project.

1All the videos of this chapter could be found at https://youtu.be/zbSqH1csvsQ
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Chapter 2. Model Predictive Control

2.1 Background
Legged robots and especially bipeds are difficult to control as one needs to maintain
stability while performing desired tasks. Although quadruped robots have some intrinsic
stability, the case is more restricted for bipeds or humanoids since the support region for
Center of Mass (CoM) is smaller. A traditional way to control the robot is to keep the
CoM inside the support region all the time while taking steps (statically-stable walking).
However, this produces un-natural lateral bounces and non-smooth sagittal motions
compared to humans. One can control the Zero Moment Point (ZMP) (Vukobratović and
Borovac, 2004) instead to allow the CoM move more freely while maintaining a dynamic
stability. Keeping ZMP inside the support region will prevent the feet from tilting or
rolling when the COM is outside.

Various methods are introduced in literature to perform locomotion by modulating
ZMP. Based on Inverted Pendulum Model (IPM) (Kajita and Tani, 1991), one can
produce desired CoM motions to be tracked by the ankle torques ((Choi et al., 2004;
Englsberger et al., 2011)). More complicated forms of the IPM which assume inertia for
the base are also used in literature to improve walking stability. In (Pratt et al., 2012),
the inertia is used to rest after taking a step while in (Whitman, 2013), it compensates
swing dynamics. Inverted pendulum models simplify dynamics, aiming at predicting the
motion with a lower computational cost compared to using the full model of the system.
An example of exploiting such simplification is (Koolen et al., 2012) where the concept of
capture point is introduced. This point indicates an immediate footstep location which
brings the robot to rest condition.

Planning locomotion and performing low-level joint control of the robot are two
related topics. Using Jacobians, one can translate Cartesian variables into joint variables
and vice-versa. Virtual Model Control method ((Pratt et al., 2001)) is an example of
translating forces while various methods translate velocities as well (Choi et al., 2004) or
integrate them to obtain joint positions. However, when we target agile and versatile
locomotion, incorporating the knowledge of dynamics in control helps a lot. While
Jacobians merely provide information about the geometry of the robot, dynamic models
can predict required joint torques to realize desired motions. Without this knowledge,
one should rely on the performance of individual joint controllers and their tracking
to determine the overall behavior. Using high gains for better tracking typically leads
to a stiff behavior which could be harmful to the environment and to the robot itself,
especially in case of impacts at each step. Besides, stability, compliance, and accuracy
depend on the tuning of various parameters, the posture of the robot and the desired
speed. Thus, one prefers to use softer feedback gains to reject perturbations compliantly
and rely more on feed-forward dynamics to avoid high stiffness.

Inspired from operational space formulations of Khatib (Khatib, 1987) and unified
formulations of Aghili (Aghili, 2005), inverse-dynamics methods have been widely used
on humanoid robots recently either using joint-space trajectories like (Righetti et al.,
2013) or Cartesian trajectories like (Whitman and Atkeson, 2010; Stephens and Atkeson,
2010a). In such formulations, we can optimize joint torques and constraint forces, given
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desired joint-space or Cartesian accelerations. Although equality constraints ensure
tracking of contact accelerations, in the closed-form inverse-dynamics method (Righetti
et al., 2013), we cannot include inequality constraints for the Center of Pressure (CoP),
friction cones or joint torque limits easily. This motivates solving a quadratic constrained
problem using fast QP solvers where we can consider all constraints at the same time
((Herzog et al., 2013), (Whitman and Atkeson, 2010), (Whitman, 2013) and (Kuindersma
et al., 2014)). With such formulations, we track the desired trajectories of end-effectors
with simple PD controllers while being compliant, maintaining balance and satisfying all
constraints.

In this chapter, we propose a hierarchical control architecture for locomotion of
torque-controlled humanoids similar to our previous work (Faraji et al., 2014b), but with
steering capabilities. The method is composed of three layers:

1. Whole body optimization: generates joint torques given Cartesian accelerations of
the feet and the CoM.

2. Trajectory pattern generator: produces and tracks task-space trajectories for feet
and CoM, given footstep positions and orientations. The outputs of this layer are
Cartesian accelerations, to be given to the previous layer.

3. Footstep planner: produces footstep patterns, given desired sagittal, lateral and
turning speeds. The first footstep position is then given to the previous layer.

The first layer is described in section 2.2 where we formulate a quadratic problem to
generate joint torques. The features of our formulation and comparison with other
implementations will be presented, however, the main contribution of this work is not at
this level. In section 2.3, we describe our smooth Cartesian trajectory generation and
tracking policies of the second layer. These trajectories are defined between the initial
and final footstep positions in the current step phase. The latter is determined by the
third layer introduced in section 2.4. This layer optimizes future footsteps according to
the LIP model and a reference footstep plan, formed based on Cartesian velocities that
the user determines with a joystick. The optimization in this layer is written as a Model
Predictive Control (MPC) problem (Kothare et al., 1996) over future footsteps. Figure
2.1 visualizes our control layers and the flow of information between them.

The novelty of this work is mainly in the third layer where we plan future footsteps in
a discrete space. In (Kuindersma et al., 2014), optimal trajectories are found offline based
on (Posa et al., 2014). Using these trajectories, the method proposed in (Kuindersma
et al., 2014) finds optimal CoP trajectories that satisfy frictional and torque limitations.
A linear Time Variant LQR then finds CoM accelerations over an arbitrary horizon,
which are then given to a QP solver to generate joint torques. The major difference
of (Kuindersma et al., 2014) with our method is the fact that we do not have any
offline optimization. We rather optimize next footstep positions online, considering the
constraints mentioned and a reference footstep pattern defined in closed-form. Moreover,
although the time-variant LQR in (Kuindersma et al., 2014) allows a change in CoM
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Figure 2.1 – In this figure, the proposed hierarchical control architecture is shown together
with a picture of the real robot. We have three different layers which receive simple
commands from the user and generate joint torques for the robot.

height, keeping the CoM height constant has a minimal influence on balance performance
in their robot. Comparatively, we fix the height and obtain a simple closed-form discrete
linear system describing future step phases. In (Kuindersma et al., 2014), authors
incorporate a simple terrain estimation algorithm to determine the desired CoM height
profile. However, we will show that our blind method with constant CoM height is
notably robust against moderate terrain variations. We try to reject such disturbances
by taking proper footsteps, rather than modulating the CoP and relying on ankle torques
(Kuindersma et al., 2014; Englsberger et al., 2011; Stephens and Atkeson, 2010b).

While push recovery is done in the literature over a single step (Stephens and
Atkeson, 2010b) or multiple steps (Koolen et al., 2012), we aim at a more generic scenario,
i.e., bringing the system to a desired non-zero velocity (given by joystick). The idea
of capture points in (Koolen et al., 2012) is similar regarding the formulation future
footsteps in closed-form by simplifying the system with LIP. However, we consider the
CoM position and speed separately rather than combining them in a single quantity. Our
approach can also be applied on Spring Loaded Inverted Pendulum (SLIP) as a simplified
model of running. Mordatch et al. in (Mordatch et al., 2010) predict up to four future
half cycles combining single support, double support and ballistic motion phases with
nonlinear formulations of the SLIP model. Although it can perform walking and running
on various terrains, the planning itself takes considerable time, making the robot not
responsive to strong perturbations such as pushes. Our reactive footstep planner takes
less than 0.2ms instead to solve the problem.

After introducing the three control layers, we will shortly discuss the simulation
platform and the COMAN robot (Spyrakos-Papastavridis et al., 2013) used to validate
our controller. Simulation results over a wide range of forward and steering speeds is then
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presented in the same section. We will also test our method against various perturbations,
either internally like noise or model errors or externally like pushes or terrain variations.

2.2 Whole body optimization

In this section, we present our QP problem formulation used in low-level joint control.
Similar to several previous works (Whitman and Atkeson, 2010; Stephens and Atkeson,
2010b,a; Herzog et al., 2013), the objective function has a quadratic form while constraints
include the Equation of Motion (describing dynamics of the robot), end-effector tasks,
CoP regions and friction polyhedra. The difference of our implementation, however, is
that we solve the problem by including the joint torque limits in the constraints. This is
in contrast to Dynamic Balance Force Control (DBFC) methods (Stephens and Atkeson,
2010a,b) which divide the problem into two levels: (i) finding optimal contact force
distributions and then (II) finding joint torques via pseudo-inversion and treating the
torque limits by saturation.

To formulate our problem, we first define the state vector as q =
�

pb, ob, qj

�T
, where

pb ∈ R
3 and ob ∈ R

4 represent position and quaternion orientation of the pelvis frame
and qj ∈ R

n represents n = 23 joint angles. Throughout this chapter, we use a convention
to show positions by p, quaternions by o and both of them together with x. We update
the global variables pb and ob by an internal odometry method based on IMU and joint
sensors. We write the Equation of Motion (EoM) for this rigid body as:

M(q)q̈ + h(q, q̇) = τ + JT
C (q)F

J �
C(q)q̈ + J̇ �

C(q)q̇ = ẍC (2.1)

Where M(q) ∈ R
(n+6)×(n+6) is the inertia matrix, h(q, q̇) ∈ R

n+6 represents the floating

base centripetal, Coriolis and gravity forces, τ =
�

0 ∈ R
6, τj ∈ R

n
�T

is the vector of

actuated joint torques, JC(q) ∈ R
k×(n+6) is the Jacobian of k linearly independent

constraints and F ∈ R
k is the vector of k constraint forces. Note that there is no need to

consider the 4th element of the quaternion vector ob in derivations. The variable ẍC ∈ R
k�

denotes the Cartesian translational and rotational accelerations of the controlled points
on the robot’s body (namely end-effectors and the COM). Here k� is the total number of
constraint equations introduced by these points. Note that J �

C(q) ∈ R
k�×(n+6) corresponds

to all controlled Cartesian points being in contact or moving freely and thus, JC(q) is
a sub-matrix of J �

C(q). For the points being in contact and fixed, the corresponding
ẍC is zero while for the floating points, this reference acceleration is determined by the
second layer of our controller. Thus for walking, k� is always 12 (as we have two feet,
each introducing 6 constraint equations). The parameter k (number of contacting points)
is either 6 in single support or 12 in double support phase.

Given the Cartesian accelerations (p̈CoM, öb and ẍC), we use a quadratic program
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as formulated in (2.2) to minimize q̈, τ and F under various physical constraints.

min
q̈,τj ,F,σ

VQq (q̈ − q̈d) + VQτ
(τ) + VQF

(F ) + VQσ
(σ)

Mq̈ + h = τ + JT
C F

ẍC = J �
cq̈ + J̇ �

cq̇
�

Fi = mp̈CoM + σ

A
�

τT
j , F T

�T
≤ B (2.2)

Where VQ(v) = vT Qv, the variable m is robot’s mass, the matrices Qi are diagonal
quadratic costs and σ induces a soft constraint on CoM dynamics. We encapsulate
coefficients introduced by physical inequality constraints into A and B for conciseness.
The joint torques are bounded to certain values according to actuator specifications.
CoP regions limit the moment available at each contact (refer to (Whitman and Atkeson,
2010) and (Whitman, 2013)). We also include friction polyhedra at each contact similar
to (Kuindersma et al., 2014). In (2.2), q̈d is set to zero except for the base rotational
acceleration which is öb. In fact, we control the base orientation directly, while the
method in (Herzog et al., 2013) controls it by regulation of the total angular momentum
rate. Note that the equality constraint for p̈CoM in (2.2) is a simpler alternative of using
CoM Jacobian for relating p̈CoM to joint accelerations which makes the optimization
slower.

With such problem definition, robot’s dynamics, feet accelerations and inequality
constraints are defined as hard constraints. However, Cartesian accelerations determined
by the second layer of our controller are followed by soft constraints with large quadratic
costs. If the second layer gives infeasible reference accelerations regarding available
frictions or torque limits, our QP finds the closest solution without violating the hard
constraints. A similar approach is taken in (Kuindersma et al., 2014) where the second
equality constraint (contact accelerations) is soft. In their formulation, this soft constraint
has the same effects on infeasible ẍC . However in our formulation, the softness on CoM
and base orientation accelerations deal with infeasible task accelerations ẍC as well. We
consider larger quadratic costs for the CoM compared to the base orientation. As a
result, the Cartesian tracking of the CoM and feet is more precise with the cost of small
variations mainly on base orientation, which happen in case of large perturbations and
swing dynamics. Note that this tracking is more important for us compared to the
robot’s posture since we want our full robot to match with the LIP used for planning.

It is worth mentioning that for walking, we keep the upper body joints fixed, i.e.,
assuming zero joint accelerations. Stiff PD position controllers realize this assumption.
The quadratic costs in (2.2) determine our weightings for torques vs. contact forces
and accelerations. Our robot is fully actuated in the single support phase, considering
6 degrees of freedom in each leg and the number of constraints. There exists a unique
solution in the QP problem according to the analysis provided in (Aghili, 2005) and
(Mistry and Righetti, 2012). Note however that the robot is under-actuated in the double
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support phase and our force distribution weighting between the two feet in this phase
follows a similar policy described in (Whitman and Atkeson, 2010). We give larger
weights to the foot closer to the CoM. The double support phase only happens shortly
before starting the rhythmic stepping, described in the next section.

Using the well known QP solver CVXGEN (Mattingley and Boyd, 2012), we can
solve the whole problem including all joints in less than 1.2ms (6 iterations on average) on
a Core i5 1.7GHz machine, coded in C++. With fixed upper body assumption, however,
there is no point in considering the corresponding elements in the mass matrix and
Jacobians, since accelerations are zero. Therefore, we avoid defining such sparse matrices
and instead break them into several blocks in CVXGEN which reduce the problem size
drastically. These fixed joints are around 50% of all joints in most of the humanoid robots
including COMAN. So, we can decrease the optimization time down to around 0.7ms in
total, still being able to calculate gravity compensation torques for the fixed joints. For
closed-form solutions, however, one needs to reformulate the alternative pseudo-inversion
formula in (Mistry and Righetti, 2012) to make it efficient. Note that the active-set
based QP solver in (Kuindersma et al., 2014) uses the solution found previously to speed
up convergence and has a superior average performance, compared to the QP solver of
the present work.

In this section, we presented how we calculate the joint torques, given Cartesian
accelerations of the controlled points, i.e., CoM, base orientation and feet. We also
described strengths of the proposed problem formulation, tailored to our objectives in
the upper layers of the controller. In next section, we explain how these Cartesian
accelerations are generated in the second layer.

2.3 Trajectory pattern generator
In this section, we explain the policy we use to generate gait trajectories as well as the
stepping rhythm. In this layer, a state machine with fixed timing switches between left
and right support phases. There is only a short double support phase in the beginning
when the robot starts from the normal posture and shifts left or right to start a rhythmic
stepping properly. The input to this layer of our architecture is the next footstep position
at the end of each swing phase. This layer is responsible for generating Cartesian
accelerations for the CoM, base orientation and the feet.

As will be described later in the third layer, we assume that the robot follows a simple
foot-less LIP model in the left or right support phases which induces no ankle torques.
In our method, ankles mainly control the posture and compensate swing dynamics rather
than inducing motions on the CoM. This assumption is the key factor in making our
blind robot robust against terrain variations. However, to enhance accuracy, we take
into account the actual non-flat orientations of the feet in calculating friction polyhedra
or CoP constraints of (2.2). In the LIP model, the x and y components of the variable
p̈CoM are determined by:

p̈CoM =
g
z0

(pCoM − pbase) (2.3)
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Where z0 is the reference constant CoM height and pbase is the center location of the
stance foot. Note that the z component of p̈CoM is determined by a PD feedback, tracking
the constant CoM height reference z0.

In order to investigate the coupling of x, y and yaw motions, from (Koolen et al.,
2012) one can write equations of motion for a full inverted pendulum with ankles and
inertia by:

mp̈CoM = f + mg

Iω̇ = τhip − ω × (Iω) (2.4)

Where I is the moment of inertia and ω is the angular velocity of the body. Moment-
balance equations for this model are:

−(pCoM − pbase) × f − τhip + τankle = 0 (2.5)

Substituting τhip and f from (2.4) to (2.5), we obtain:

(pCoM − pbase) × (mg − mp̈CoM) + τankle = Iω̇ + ω × (Iω) (2.6)

Note that x and y components of p̈CoM are in proportion to those components in
(pCoM − pbase), described in (2.3). So the cross product on the left has no z component.
One can easily prove that if ω and ω̇ are zero, τankle will also be zero which is equivalent
to the basic ankle-less and inertia-less LIP used in (2.3).

For the complex model of (2.6), however, we should make sure that τankle will
compensate all the right-hand-side moments so that our prediction which is based on
a simple LIP stays valid. It is difficult to find bounds for ω̇ since I is time variant and
depends on the posture of the robot. Assuming a diagonal I however, one can write the
approximate validity condition as:

|







Ixxω̇x + (Izz − Iyy)ωzωy

Iyyω̇y + (Ixx − Izz)ωxωz

Izzω̇z + (Iyy − Ixx)ωyωx






| ≤







wfoot,y/2
wfoot,x/2

µrot






|mg| (2.7)

Where wfoot,x and wfoot,y are foot sizes in x and y directions and µrot is the rotational
friction coefficient. If x and y components of ω are negligible as well as the non-diagonal
elements of I, then large yaw acceleration values will only appear in the z component
of τankle which has larger bounds. Since µrot is much larger than the foot width of our
robot, (in SI units, 0.5 vs. 0.08 respectively) and Izz is smaller than Ixx and Iyy, the
method can tolerate relatively swift yaw motions. By increasing the steering speed up
to a certain point, the whole body optimization in the first layer generates torques that
completely track the reference orientation. Above that, tracking will not be precise and
the induced motion will be on the margins of constraints.

So far we discussed how we generate CoM accelerations. At the end of each swing
phase, we assume that the base and swing foot are rotated by ωjoyT around z axis where
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T is the duration of swing phase and ωjoy is the reference steering velocity determined
by the joystick. The third layer also determines the final location of the swing foot
(i.e., the next footstep location). Thus, the second layer generates trajectories between
initial and final orientations of the base and also positions and orientations of the swing
foot. We use Spherical linear interpolation (Slerp) transition functions (Leeney, 2009)
to generate smooth Cartesian trajectories and use quaternions to avoid singularities of
Euler rotations. To lift the swing foot and having enough clearance, we use sinusoids of
the form:

pC,z(t) =
zcl

1
2ω

− 1
6ω

(
sin(ωt)

2ω
− sin(3ωt)

6ω
), ω =

π

T
(2.8)

Where pC,z(t) is the reference height for the swing foot, t is the time counted from the
beginning of each phase and zcl is the clearance height when the foot is in the. Such
function ensures zero positions, velocities, and accelerations at boundary times. The
generated reference trajectories are all tracked by PD controllers in this layer which
produce öb and ẍC , given to the first layer together with p̈CoM described earlier. The
alteration of stance and swing roles is also based on the pattern of phases produced in
this layer. In section 2.5, we evaluate the performance of such pattern generation policy
over uneven terrains where the assumption of flat ground is violated. This assumption is
in fact used when keeping the CoM height constant and generating arc trajectories of
(2.8).

So far, we have defined the Cartesian trajectories and tracking principles. In the
next section, we will describe how the next footstep location is determined by the third
layer.

2.4 Foot-step planner

In this section, we will formulate a Model Predictive Control (MPC) problem (Kothare
et al., 1996) to find a stabilizing plan of future footsteps. We use the word future because
this plan is updated at every control time-step. The inputs to this layer of our controller
are sagittal (vjoy,x), lateral (vjoy,y) and steering velocities (ωjoy) determined by a joystick
(assumed to be in robot’s coordinate frame).

At this level of control, the robot is simplified with a foot-less LIP. The prismatic
actuator in the leg keeps the CoM height always constant. This model allows us to predict
the future motion assuming no ankle torques. Our formulation forms a discrete-time
model of the robot where CoM positions and velocities are the states and footstep
locations are inputs. Recall from (2.3) where the CoM acceleration depends on its
distance from the stance foot. One can solve this differential equation and obtain the

25



Chapter 2. Model Predictive Control

solution in time for the x and y components of pCoM, expressed in (2.9).

p̈CoM =
g

z0
(pCoM − pbase) (2.9)

pCoM(t) = ae−t/τ + bet/τ + pbase

τ =
�

z0/g

a = 0.5(−τ ṗCoM(0) + pCoM(0) − pbase)

b = 0.5(τ ṗCoM(0) + pCoM(0) − pbase)

We can then predict the x and y components of CoM position at time T using their
current values:

pCoM(T ) = pbase(
−1
2h

+
−h

2
+ 1) + pCoM(0)(

1
2h

+
h

2
) + ṗCoM(0)(

−1
2h

+
τh

2
) (2.10)

Where h = e
T
τ . One can follow the same procedure and obtain the x and y components

of ṗCoM(T ). We define the simplified robot’s state q̂ as:

q̂ =
�

pT
CoM,x pT

CoM,y ṗT
CoM,x ṗT

CoM,y

�T
(2.11)

Using current state of the CoM q̂(t) and the remaining time of the current step phase
T − t, we can express the state of CoM at the end of the current step phase by:

q̂(T − t) = A(T − t)q̂(t) + B(T − t)pbase (2.12)

Where pbase ∈ R
2 and A ∈ R

4×4 and B ∈ R
4×2 are matrices containing all the coefficients

of (2.10). Since pbase and q̂(t) are already available at each moment, q̂(T − t) could be
calculated easily, called q̂[1] hereafter. Following the same procedure, we can predict the
future motion by:

q̂[i + 1] = Aq̂[i] + Bpbase[i], i ≥ 1 (2.13)

Assuming fixed phase durations, A and B are functions of T and future footsteps are
expressed by pbase[i]. It is straightforward to show that matrices A and B form a
controllable system by checking the rank of

�

B AB
�

(Ogata, 1995). Equation (2.13)
serves as the basis model used in our MPC to plan future footsteps. The next footstep
position given to the second layer of our controller is therefore pbase[1] determined in this
layer.

We aim at guiding the future footsteps such that they induce the desired velocity
vector given by the joystick. To this end, we first define a reference footstep plan. One
may expect that lateral CoM motions are minimal in natural walking conditions. Define
the variable s = 1 for right support and s = −1 for left support phases. Assume also that
the footsteps normally have a distance of 2d in the lateral plane. We define delta-motion
for each step by Δx = 2vjoy,xT , Δy = 2vjoy,yT and Δθ = ωjoyT . If we define the rotation
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2.4. Foot-step planner

vector R(η) =
�

cos(η), sin(η)
�T

, we can plan a reference discretized path by initializing:

θ[0] = ob,z

pdes[0] = pbase

m[0] = pdes[0] + d R(θ[0] + sπ/2) (2.14)

And defining the steps for 1 ≤ i ≤ N as:

θ[i] = θ[i − 1] + Δθ

m[i] = m[i − 1] + Δx R(θ[i − 1]) + Δy R(θ[i − 1] + π/2)

pdes[i] = m[i] + d R(θ[0] − s(−1)iπ/2)

v[i] = vjoy,x R(θ[i]) + vjoy,y R(θ[i] + π/2) (2.15)

In these notations, θ represents the steering angle, m denotes the midpoint of the two
feet, pdes represents the ideal footstep plan and v represents the ideal CoM speed. The
goal of MPC controller in the third layer is to track such sequence of ideal footsteps
and desired CoM velocities determined by the joystick. Therefore, we define a quadratic
optimization problem of the form:

min
q̂[i],pbase[i]

�

VQq (q̂p[i + 1] + q̂p[i] − 2 m[i]) + VQdq
(Δq̂p[i + 1, i] − T v[i]) +

VQp(pbase[i] − pdes[i]) + VQdp
(Δpbase[i + 1, i] − Δpdes[i + 1, i])

s.t.

q̂[i + 1] = Aq̂[i] + Bpbase[i], i ≥ 1 (2.16)

Where VQ(v) = vT Qv, the matrices Qi are quadratic costs, q̂p[i] denotes position compo-
nents (x and y) of the state vector q̂[i] and the operator Δ denotes the difference between
consecutive i + 1 and i indexes. Such objective function implicitly minimizes both states
and input control variables, together with their derivatives in discrete space. The first
two quadratic costs are written over two consecutive CoM positions so that they preserve
symmetry of the limit-cycle. In normal conditions when the robot is moving solely in
the forward direction, the value of objective function becomes zero. This formulation
translates the desired lateral and sagittal local speeds to the global coordinate frame. In
practice, however, we always give a zero reference lateral speed to the planner. Sample
planned and reference paths are shown in Figure 2.2.

In practice, we use higher weights for the matrices Qdp and Qdq so that the robot does
not react aggressively or take very large steps when it is perturbed with strong pushes.
Such weighting policy is more robust for maintaining average speeds, determined by the
joystick. One can easily introduce additional constraints on the individual footsteps too.
For example, CoM position should not go further than |µz0| of the stance foot position
where µ is the friction coefficient. In this case, the ground reaction force vector will
fall out of the friction polyhedron. We have added this constraint to our optimization,
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CoM
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m[i]

q̂p [i]

q̂p [i +1]

pbase

pbase[1]

pdes[1]

pbase[i]

v [i]

Figure 2.2 – Sequence of steps planned by MPC during a left support phase. The ideal
sequence of (2.15) is shown in background while the optimal plan extracted from (2.16)
is plotted on top with solid bounds.

though it is rarely triggered in the range of speeds that our method can produce. Note
also that the inter-foot distance (2d) is chosen to be large enough to avoid self-collisions.

Our MPC controller of this layer is implemented via CVXGEN (Mattingley and
Boyd, 2012) up to a horizon of N = 5 footsteps and takes around 0.2ms on average to
solve. Once the next footstep pbase[1] is optimized, it is transferred to the second layer
of the controller and treated as a target point for the swing leg. Note that if the CoM
is perturbed, the corresponding pbase[1] will adapt in a single time-step while in many
methods such as (Mordatch et al., 2010), the corrective response is delayed. In the next
section, we briefly introduce our simulation platform and analyze the control performance
in perturbed and periodic walking conditions.

2.5 Results

In this section, we evaluate the performance of our control approach on COMAN robot
(Spyrakos-Papastavridis et al., 2013) in simulations. COMAN is a child-sized torque-
controlled robot with electric motors and series-elastic elements. It weights around 30
kg and has a total of 23 degrees of freedom, 6 per leg, 4 per arm and 3 between the
pelvis and the torso. For this work, we keep the upper body fixed with the policies
described earlier. The robot carries usual joint position and velocity sensors as well as
an IMU unit on the pelvis and contact force sensors in the ankles. In the proposed
controller, however, we do not use the contact sensors, accelerometers or any perception.
Our method is robust against the series-elastic elements in simulations, where the torque
tracking performance is ideal. Although the control loop of the real robot is relatively
fast (around 500Hz), the torque controllers are not responsive and fast enough yet to
be suitable for this controller. They are typically slow, introducing about 20ms of delay
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Figure 2.3 – Resulting limit-cycles of CoM speeds plotted for a wide range of desired
forward velocities. The controller tracks the desired velocity, however, the repeatability
of limit-cycles is affected by foot trajectory tracking performance and contact simulation
in high speeds.

with respect to the given torque profiles. As improving the real robot is still ongoing, we
show simulation results in this section using the ODE-based simulator Webots (Michel,
2004).

2.5.1 Range of speeds

With the same set of parameters, we can cover a wide range of backward and forward
speeds between -0.2m/s to 0.4m/s, shown in Figure 2.3. However, the tracking depends
on various parameters. It is acceptable in forward-walking motions, but slightly biased
when walking backward due to ankle asymmetries.

We additionally test the performance of our controller when combining steering and
forward motions. To this end, we perform four tests shown in Figure 2.4 to find the
maximum reference velocity combinations possible. Achieving fast forward and steering
velocities at the same time is highly challenging. One can see in Figure 2.2 that the outer
foot must take larger steps compared to the inner foot and thus, the steering motion
limits the maximum forward speed.

The walking performance of our controller on COMAN is comparable in relative
terms to real-sized humanoids which are taller. For example, the method presented in
(Feng et al., 2013) uses on-line trajectory optimization and achieves 1.14m/s on flat
ground with Atlas robot, twice as tall as COMAN. A restricting assumption for our
method is keeping the feet flat while Feng in (Feng et al., 2013) uses toes at lift-off

moments. Including a push-off phase is a possible improvement for our method. So far
we characterized stable periodic walking conditions without any perturbation. In the
following parts, we will examine its performance against perturbations, starting from
external pushes next.
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Figure 2.4 – Evolutions of the forward CoM (ṗCoM,x) and base yaw velocities (ȯbase,z). In
each test, the reference joystick velocity linearly increases up to the indicated value and
remains constant after about 3s. The robot starts from rest condition and goes to the
final limit-cycle. These four tests show maximum reference speeds that could be given to
the robot for stepping stably. We can see that steering limits the forward velocity as the
outer foot must take larger steps.

2.5.2 External pushes

One important and challenging task for bipeds is to stabilizes after being pushed from
different directions while performing walking. Here, we consider a scenario where the
robot is going forward with a moderate speed of 0.2m/s. During locomotion, we apply
impulsive pushes to the torso each having 3Ns of strength. The robot takes corrective
steps to capture the accumulated energy rather than relying on ankle torques and
modulating the CoP. Note that external pushes perturb the CoM state, and the method
simultaneously changes the future footstep plan, starting from (2.12). Since our planning
is online, the robot can react to perturbations as fast as possible. The resulting behavior
is shown in Figure 2.5A.

2.5.3 Model errors

In model-based methods, one needs to make sure that the internal model of the robot
matches the real robot as much as possible. The aim is to reduce feedback gains which
correct these errors and thus, making the robot more compliant. We test our method
in some scenarios where the robot carries additional weight in simulations, and the
controller is blind to it. The aim is to know how robust the method is against unknown
errors. The resulting limit-cycles at the nominal speed of 0.2m/s and maximum tolerable
errors are shown in Figure 2.5B as well as walking on a slope of 15 deg degrees. The
latter test evaluates the performance where the assumption of flat-ground is violated.
This slope is the maximum that the method can tolerate while being blind. We observe
that the walking is still stable, even though the limit cycles become skewed, asymmetric
or enlarged.
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Figure 2.5 – A) Push recovery: The robot is subject to 10N external pushes applied to
the torso from various directions while walking at 0.2m/s. Each push lasts 0.3s and then,
the robot recovers by taking proper steps. B) Model Errors: Extra weight is added to
various parts of the robot. In the "torso backpack" scenario, we add 1kg to the torso
and shift its CoM -1cm back. In the slope scenario, the robot gradually takes larger
steps on steeper slopes until it falls at 15 deg. C) Perturbations: In the noise scenario, a
white Gaussian noise of std=3 deg is added to the IMU orientation angles and a noise of
std=1 deg is added to the joint position sensors. The robot also tolerates 10ms of delay
in the communication link, while still being stable. D) Uneven terrain: Here, terrain
variations are ±10% of the leg length and the robot still walks robustly. Larger variations
could also be tolerated, but our simulator has problems simulating contacts on complex
meshes.

2.5.4 Perturbations

Apart from systematic model errors, we test the robustness against delayed communication
and sensory noises as well. These scenarios are shown in Figure 2.5C together with the
nominal limit-cycles. We add Gaussian noises to the IMU orientation and joint position
sensors. The standard deviation (std) of IMU noises could reach 3 deg at maximum while
the std of joint sensors could reach 1 deg. Note that the joint errors accumulate in the
kinematic chain of the leg and affect the end-effector tracking performance severely. Also,
since IMU angles determine the whole orientation of the robot, a small wrong rotation
can induce a large motion on the feet. Stronger perturbations lead to self-collision of the
feet or result in taking very large steps which are physically impossible. In practice, a
Kalman filter could be used to filter out these noises which we avoid in these tests. The
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robot also tolerates delayed communications up to 10ms. Although it takes unpredicted
steps in different directions, it is still able to maintain the dynamic stability.

2.5.5 Uneven terrain

Our final test validates the performance over uneven terrain, i.e., random external
geometric errors. We assume flat-ground when planning footsteps and forming arc
trajectories for the swing foot. However, they are not often valid since the swing foot
might touch the ground earlier or later than expected. The intrinsic compliance of
the first layer improves stability in the sense that minimal bouncing happens at these
moments. However, we are interested to know the effect of such perturbations in the
footstep planning and the cyclic behavior of the robot. The result of our test is shown in
Figure 2.5D where terrain variations are around ±10% leg length. Although the robot
slips at some point due to weaknesses of contact modeling in our simulator, it can recover
by taking proper steps again. Our responsive footstep planner enables the robot to
recover from fast perturbations like slippages and external pushes which can happen in
the real world as well.

2.6 Discussion
In this chapter, we presented a hierarchical controller able to perform walking over a
wide range of forward and steering speeds. Our controller is based on a dynamics model
without needing any offline optimization. Different levels translate the problem first from
the joint torques to Cartesian accelerations, then to footstep positions and then only to
forward and steering desired speeds, given by the user. The specific formulation of the
first layer makes the robot compliant and considers most of the physical constraints on the
robot including torque limits, frictions, and CoP regions. Such flexible low-level controller
plays a crucial role in behaving compliant and robust when the robot is exposed to various
kinds of perturbations that make its interaction with the environment unpredictable.
The second layer produces smooth Cartesian trajectories for the feet and CoM and tracks
them with Cartesian PD controllers. In the third layer, we simplify the robot by a LIP
model which allows us to predict the motion in closed-form over multiple steps. We can
then find a desired footstep position which captures the extra energy while realizing a
desired locomotion speed.

A distinguishing feature in our method is the focus on footstep adjustment instead
of CoP modulation. The ankle torques can in fact help only up to the limited size of the
feet. However, one can take larger steps and use the available friction to guide the CoM.
This requires planning over hybrid states, i.e., switching the supporting leg frequently.
Possible improvement for our method could be combining the footstep planning with CoP
modulation strategies in our second layer where we feed the open-loop LIP accelerations
to the CoM. Another future work is adding constraints to the footstep planner to avoid
self-collisions which make the problem non-convex. Furthermore, we can consider exact
footholds (determined by perception) which may need a mixed-integer programming.
Our formulation provides basis for efficiently adding various constraints that might not be
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realizable with other non-linear planning methods. Evident by various kinds of robustness
tests and minimal parameter tunings, we can suggest the method for walking on a wide
range of torque-controlled bipedal robots. The accompanying movie shows more scenarios
where the robot performs walking and steering as well as recovering from perturbations.
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3 Inverse Dynamics

This chapter presents our implementation of inverse dynamics on the real hardware.
Remember that this control block was first presented in chapter 2 and combined with
our MPC controller for walking applications. However, due to hardware imperfections,
we needed to develop additional control layers that facilitate interfacing inverse dynamics
with the real hardware. This chapter presents these layers, namely state estimation and
torque control. The goal of state estimation is to fuse encoder and IMU signals and
provide a clean estimation of floating-based states. Our torque controller, on the other
hand, inverts the model of actuators identified offline to improve the torque-tracking
speed. It also uses torque sensors to estimate frictions and compensate them without
vibrations. These two layers enable for smooth and very compliant whole-body behaviors
without using any joint position and velocity reference, or joint-level damping. With the
proposed state estimation and torque tracking, our robot can keep balance compliantly
and perform a wide range of motions, including multi-contact scenarios. Despite hardware
imperfections which would be discussed in chapter 8 as well, our hierarchical controller can
thoroughly demonstrate all the advantages of task-space inverse dynamics for humanoids.
Specifically, it can demonstrate a whole-body compliance and stability1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji, Luca Colasanto, and Auke Jan Ijspeert. "Practical considera-

tions in using inverse dynamics on a humanoid robot: Torque tracking, sensor

fusion and Cartesian control laws." In Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, pages 1619–1626, 2015.

The first author developed the method, performed experiments and wrote the
manuscript. The second and third authors gave helpful comments and corrections.

1All the videos of this chapter could be found at https://youtu.be/BBFWHUW-S6c
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3.1 Background

In legged robotics, kinematics-only algorithms and position controllers were traditionally
popular. Even though dynamic models were available in different formats, for long it
was computationally expensive to use them in the control of humanoid robots. Recently,
thanks to powerful computational tools, performing such calculations is becoming af-
fordable on-line. Furthermore, humanoids gradually start to interact with humans and
getting out of laboratories which require a great compliance and robustness. Therefore,
torque-controlled robots are becoming popular while control algorithms try to provide
robustness, compliance, and preciseness together. The wish to perform more complex
and dynamical tasks has motivated researchers to think of task-space motion planning to
reduce the complexity of high-dimensional problems. However, a precise controller that
converts Cartesian tasks to actuator inputs is crucial in the loop to ensure precision and
feasibility regarding physical constraints.

Although in many position-controlled robots, contact force sensors provide a partial
observation of the dynamics, in torque-controlled robots we additionally have sensing and
control over the torque in all individual joints. Regarding the control aspects, respecting
inequality constraints such as torque and friction limits as well as Center of Pressure
(CoP) regions could not be easily addressed in classical formulations like (Mistry and
Righetti, 2012). Stephens and Atkeson (Stephens and Atkeson, 2010a) formulated the
problem into a two-staged optimization. At first, they optimized contact forces and
moments, given desired momentum change rates. Friction and CoP limitations were
also considered at this stage. Then they found joint torques using more conventional
pseudo-inverse methods like (Mistry and Righetti, 2012). Herzog (Herzog et al., 2014)
followed a similar approach with a hierarchical formulation that executed the desired
tasks with different priorities. In chapter 2 we combined all these stages in a single
optimization process. Given desired Cartesian accelerations for feet, hands, CoM and
the torso (tasks), we find joint torques directly by optimizing all the unknown variables
in a single quadratic programming problem subject to various equality and inequality
constraints. We have successfully tested this layer combined with a footstep planner
to generate walking on Atlas (Faraji et al., 2014b) and COMAN (chapter 2) robots in
simulation. Inverse dynamics helps to make the robot compliant, precise and robust
against various sources of noise and errors.

In this chapter, we discuss how inverse dynamics is interfaced with our real COMAN
robot (Tsagarakis et al., 2013) to perform balancing and other Cartesian tasks. While
this article solves practical problems of a specific robot, COMAN, we think that the
methods presented here could help improving whole-body torque control on other robots
such as Sarcos (Herzog et al., 2014) and Atlas (Xinjilefu et al., 2014a) as well. Our control
chain consists of robot’s state estimation, Cartesian task planner, inverse dynamics and
actuator torque control. In our previous simulations of chapter 2, position encoding, and
torque tracking performance were ideal. The robot’s global state was computed with
simple kinematics, and the output torques were directly realized in the joints. However,
on the real robot, joint encoders have low resolution, the control delay is considerable,
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and torque tracking is slow, implemented by a PI loop only. The IMU is broadcasting
data with slower rates, and due to magnetic interferences, the yaw angle we get from
IMU is unreliable. Our goal in the present work is to propose estimation and actuation
methods that improve the interface of inverse dynamics with the real hardware.

The contribution of the present work is twofold. In torque tracking, we propose
a friction observer that acts as a feedback term together with the inverse of motor’s
model as a feed-forward term. Such architecture improves bandwidth, latency and also
transparency of the joint when commanding zero torque references. In other relevant
works, fast PID loops over the current (Hutter et al., 2011) or torque (Boaventura et al.,
2012; Hutter et al., 2011; Le Tien et al., 2008; Mosadeghzad et al., 2013) compensate
disturbances, sometimes only considering internal actuator dynamics (Boaventura et al.,
2012) or only the friction observation (Le Tien et al., 2008). The proposed architecture,
however, combines the two on a voltage-controlled motor with a novel observer design.
By modeling the motor resistance and back electromagnetic effects (Pillay and Krishnan,
1989), we find a feed-forward term that essentially replaces the additional current loop
(Hutter et al., 2011).

In state estimation, a two-stage quadratic programming method is proposed. We
fuse IMU data, leg kinematics, and contact forces together to estimate the world-frame
position and velocity of the robot along with the yaw angle. In case of slight rolling/tilting
of the feet which frequently happens in very dynamic tasks, the CoP moves to the borders.
We assume that the foot’s surface at the CoP has no relative translational motion with
respect to the ground. Therefore, at each instance of time, the inverse chain of the leg can
start from the CoP point in the world-frame instead of the ankle position. This strategy
improves the precision and stability while we do not make any restricting assumption
on foot/terrain orientations like (Rotella et al., 2014). Our second contribution in this
chapter is to estimate the global states with this strategy. Our formulation is similar to
Kalman filtering with fixed covariances. However, other methods proposed in (Rotella
et al., 2014; Bloesch et al., 2013; Xinjilefu et al., 2014b,a) linearize the model to update
the covariance matrices for statistical optimality. Our method is computationally faster
but requires a minimal offline tuning. Moreover, we assume that leg kinematics (positions
and velocities) are perfect like (Rotella et al., 2014; Bloesch et al., 2013) while Xinjilefu
in (Xinjilefu et al., 2014a,b) puts such assumption on positions only and uses the full
model of the robot to filter velocities. We consider such improvement for future work as
the case is different due to existence of series springs in COMAN.

The chapter starts with describing our torque controllers. We continue in the third
section by formulating a hierarchy of optimization problems that fuse the sensory data
to estimate the global state of the robot. In the fourth section, we introduce our inverse
dynamics formulation and Cartesian controllers suited for dexterous demonstrations
discussed in the results section.
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3.2 Torque tracking

The baseline PI torque controller in COMAN does not have the bandwidth required for
our tasks. Therefore we identify motor parameters offline and invert the resulting model
to find a feed-forward voltage. We also need to estimate the friction which is considerable
in COMAN due to high gear ratios. In literature, friction identification and compensation
is studied broadly in position/velocity/torque-controlled robots (Johnson and Lorenz,
1992; Kelly et al., 2000; Traversaro et al., 2014). There are various statical or dynamical
friction models used in different robots or experimental setups. In a position/velocity
control paradigm, since the desired direction of motion and its velocity are known, it
is easy to compensate the Coulomb friction. Such compensation improves the position
tracking and reduces the effort made by feedbacks (Johnson and Lorenz, 1992). More
complex models such as LuGre (Olsson et al., 1998) are also identified and studied in (Tan
and Kanellakopoulos, 1999) by exploiting a set of observers to estimate the parameters
on-line.

In torque-controlled motors, however, less complicated models are considered such
as hyperbolic tangent (Hur et al., 2012) or Coulomb-viscous (Traversaro et al., 2014). In
general, since the desired direction of motion is unknown in a torque controller, it is not
easy to compensate the Coulomb friction. Therefore other works in torque-controlled
joints either observe the friction with some dynamics and latency (Le Tien et al., 2008)
or make a fast PID loop to compensate the torque error (Hutter et al., 2011; Boaventura
et al., 2012).

In COMAN, there are two encoders before and after the spring and a torque sensor
before the spring. Due to the low resolution of post-spring encoders and therefore
modeling difficulty, we assume negligible transient drive in springs. In this section we
describe our procedure to identify the motor’s electromagnetic properties like (Kelly
et al., 2000; Johnson and Lorenz, 1992; Traversaro et al., 2014), and then we formulate
an inverse control law which generates proper actuator input (voltage) to realize the
desired torque in the output (Figure 3.1).

3.2.1 Model identification

To identify motor properties, we track two sets of reference trajectories (sinusoids and
trapezoids to explore motor dynamics and friction properties respectively) with a simple
PD controller of low gains that produces the motor voltage. After recording velocities (by
finite differentiation) and output torques, we set up a least square optimization problem
which fits the following model to the signals:

v − KeN θ̇

Rm
ktN = τfric + JmN2θ̈ + τ = τmot (3.1)

τfric = τco sign(θ̇) + τv θ̇

where v is the voltage of the motor, θ is the joint angle before the spring, τ is the
load torque and τfric corresponds to all friction torques. The constant ke is back EMF
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Figure 3.1 – A typical joint in COMAN consists of an electrical motor, a Harmonic
Drive (HD) and an in-series spring (SE). After identification, we model the relation
between motor voltage v and the torque τ after the harmonic drive. Such model is used
to estimate the friction and produce feed-forward voltage added to a simple proportional
feedback (P).

coefficient, kt is torque constant, N is harmonic drive ratio, Rm is motor resistance and
Jm is total inertia of the motor and the harmonic drive. We use a simple combination
of Coulomb (τco) and viscous (τv) frictions inspired from the type of data we observe.
Adding stiction or Stribeck effects or using more advanced dynamic models like Dahl or
LuGre (Olsson et al., 1998) turned out having no considerable improvement in our setup.

The goal of our identification is to adjust motor parameters kt, ke, Rm, Jm we already
have from the data-sheet and identify friction coefficients τco and τv. Since COMAN
has joint torque sensors, we can perform identification for each joint individually unlike
(Traversaro et al., 2014). We assume equal torque and back EMF constants and also N

is known from the data-sheet. Figure 3.2 shows a typical trained model, plotted as a
friction-velocity profile. The red curve shows our friction model while the black curve
corresponds to the characteristic of friction estimated from the measured torque and the
motor model. In practice, to explore the whole range of output torques and high currents,
we apply different external loads to the joint during the experiment. According to the
data-sheet, the motors in COMAN have very low magnetic reluctance and therefore, we
observed negligible improvement by adding reluctance term during the identification
process.

3.2.2 Control law

After optimizing the model (3.1) for each joint individually, we invert it to find the
feed-forward voltage terms v+ to be applied at the next time-step:

v+ = keN θ̇ +
Rm

ktN
(τ̂fric + Jmθ̈des + τdes) (3.2)

where τ̂fric stands for the estimated friction. Although the optimized set of parameters
better describe the data, the difference is still considerable in Figure 3.2. Unlike using
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Figure 3.2 – The friction in shoulder roll joint and the approximate coulomb-viscous
curve. Note that the actual curve is obtained via estimating motor parameters.

the trained parameters (Hur et al., 2012), we try to estimate the friction based on the
torque measurements. knowing the voltage applied in the previous time-step v− and
the resulting motor velocity θ̇, motor acceleration θ̈ and the output torque τout, we can
estimate the friction by:

v− = keN θ̇ +
Rm

ktN
(τ̂fric + Jmθ̈ + τ) (3.3)

τ̂fric = τ̂co + τv θ̇

where the viscous friction is assumed to follow the model. Subtracting (3.3) from (3.2)
yields:

v+ − v− =
Rm

ktN
(Jm(θ̈des − θ̈) + (τdes − τ)) (3.4)

which basically means the voltage of the motor is integrating the torque and acceleration
errors, ensuring convergence to zero. Finally we add a simple proportional gain to correct
the frequency response of the system (Figure 3.1). In practice we multiply the estimated
Coulomb friction τ̂co by a factor close to one to make the system more stable against
un-modeled effects. The controller can show remarkable zero-torque transparency and
track very fast torque profiles precisely. It can also be easily applied on other robots
which have torque sensing capabilities, unless a model is fitted to the actuators. The
performance will be further demonstrated in section 3.5 and compared to the momentum
based estimation proposed in (Le Tien et al., 2008). In next section, we describe another
crucial component required for agile motions which is the global state estimation.

3.3 Robot state estimation

Using inverse dynamics requires precise and robust estimation of the robot’s state in
the global coordinates frame (i.e., 6 DoF of the pelvis and their derivatives). These
values should be indeed consistent with contact constraints. One can easily assume that
the geometric center of the foot is fixed and use this constraint to determine the global
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Figure 3.3 – An arbitrary posture of the foot over an inclined surface. It is very usual on
the real robot that the inverse dynamics algorithm uses boundaries of the support region
to provide balance. This perturbs the state estimation in case of tilting or rolling of the
foot. In this figure, the frame c refers to the geometric center of the bottom surface, s
refers to the frame attached to the 6D force sensor and w refers to the world-frame. Note
that Msh corresponds to the total mass under the sensor.

base (pelvis) position. The IMU mounted on the pelvis can also be used to determine
orientations. However, this simple method on the real robot results in slippage when
the CoP goes to the borders like Figure 3.3. Small motions of the foot quickly result in
considerable perturbations on the whole inverse dynamics. A standard method to cancel
such vibrations out is to add a term on the reference torques to damp joint velocities.
However, these unwanted forces sometimes cause more slippage and imprecise tracking.
Therefore we are interested in estimating the robot’s global state robustly and precisely
to avoid joint damping and consequently reach faster motions.

We assume that the feet have no relative translational motion at the CoP point, but
they might have relative rotational motion. Such assumption makes velocity estimation
more precise. However other methods either consider fixed foot position (Xinjilefu
et al., 2014b,a; Rotella et al., 2014; Bloesch et al., 2013) or at most, add fixed foot
orientation constraint (Rotella et al., 2014). Possible slippages, tilting or rolling, are
considered as a disturbance in these methods. However, the fact that the reference foot
position/orientation can slowly change and adapt through Kalman filtering of (Bloesch
et al., 2013; Rotella et al., 2014) is not yet implemented in the present work.

COMAN is equipped with a precise Microstrain IMU on the pelvis which computes
orientations, angular velocities, and linear accelerations. COMAN also carries 6-axis
force-torque sensors on each foot. We do not have a considerable backlash in the joints
and rely on pre-spring encoders to obtain joint velocities, assuming stiff springs. In fact,
post-spring encoders are used to build kinematics, but the signal does not have enough
resolution for differentiation. Similar methods in the literature perform steady state
Kalman filtering considering full-body dynamics to estimate joint velocities (Xinjilefu
et al., 2014b; Fallon et al., 2014). In this work, however, we only consider estimation of
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the global states and leave the joint states and springs for future work.

We set up a staged problem to estimate base position xw
b , velocity ẋw

b and yaw
angle φz. The superscript w indicates that the variable is expressed in the world-frame.
Inputs are joint positions qj , joint velocities θ̇j , base frame angular rate ωb, base linear
acceleration ẍIMU, base pitch φy and roll φx angles, contact forces fs and moments ms

which are expressed in the sensor frames {s}. We rely on the internal filtering of the
IMU to cancel biases and temperature effects. The first stage of our method estimates
the floating-base velocity and CoP in each contact while the second stage estimates the
base position and yaw angle.

3.3.1 Stage 1: base velocity estimation

In this stage we use the base linear acceleration and contact forces to determine the CoP
in the feet as well as the base velocity in the local frame. For hand tips we actually
assume point contact with fixed CoP, though the robot has small spheres that can slightly
roll. Assuming small rotational motions, we get the static contact moment equilibrium
from (Sentis et al., 2010) for the feet and transfer it from the world-frame w to the
contact’s frame {c} (Figure 3.3):

mCoP = S(fs + fsh)xCoP + S(fs)xs + ms + S(fsh)xsh

fsh = Msh(Rw
c )−1g (3.5)

where Msh refers to the weight of the parts under the force sensor, xsh refers to their
center of mass, g is gravity, xs denotes sensor frame location, S is skew symmetric matrix
and f and m correspond to forces and moments respectively. The variable xCoP is the
CoP relative position inside the contact polygon. Note that all x, m and f variables
are expressed in c frame. In our formulations, Rb

a is generally the rotation matrix of the
frame a expressed in b. We use superscripts in our notations to show the reference frame.
In (3.5), we want to be free of the global rotation whereas it appears in fsh. However
since the gravity g is along the z axis, any yaw rotation does not change g. Therefore we
only need IMU roll and pitch angles in each time-step.

Now assuming that the two surfaces have no relative translational motion at the
CoP point, we can relate the translational velocity of the contact point (which is zero)
to the base velocity using kinematic relations:

−ẏ = (Rb
cS(ωc) + S(ωb)Rb

c)xCoP + ẋb
c + S(ωb)xb

c (3.6)

where we have defined ẏ = (Rw
b )−1ẋb, the superscript b refers to the base (pelvis) frame,

ωb and ωc are local angular velocities of frames b and c, xb
c refers to foot’s center-point

position (Figure 3.3) and xCoP is the same variable in (3.5), expressed in c frame. One
can also estimate the new velocity of the base by:

ẏdes = ẏ(t − �t) + ÿIMU�t (3.7)
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where �t is the duration of a time-step. We can now combine (3.5), (3.6) and (3.7) and
form a constrained quadratic optimization as:

min
ẏ,xCoP

�

VQδ
(δ) +

�

VQmCoP
(mCoP) + VQy (ẏ − ẏdes)

mCoP = AxCoP + B

−ẏ + δ = CxCoP + D

xCoP ∈ support polygon surface (3.8)

Here we define VQ(ψ) = ψT Qψ and each active contact (either foot or hand) appears
in the optimization with its own constraints. We have compacted (3.5) and (3.6) and
avoided to index different contacts for simplicity.

If we consider Q matrices to be the inverse of error’s covariance matrix for each
equation, the optimization in (3.8) becomes equivalent to Kalman filtering, but with
inequality constraints. Here we assume fixed covariances, and in fact, we tune them to get
the desired performance. We possibly lose optimality regarding statistical properties, but
avoid large calculations of optimal Kalman gains and still get the desired performance.
Regarding CoP calculations, the costs for tangential elements of mc

CoP and mcl

CoP are set
to large values while the cost for z components is set to zero. Adding slack variables δ to
(3.6) means filtering kinematic data which is crucially needed due to encoder limitations
in COMAN. The optimization (3.8) in fact filters all the sensory data together with a
minimal setup where the internal process model is assumed to be a floating IMU. In
future work, we would consider whole body dynamics and integrate the full model like
(Xinjilefu et al., 2014a) to estimate the joint velocities as well.

3.3.2 Stage 2: base position and yaw angle estimation

So far we have determined the base linear velocity and we already know the angular rate
from the IMU, both expressed in the base frame. In this stage we are going to solve
another optimization problem to find the yaw angle φz and the position xw

b of the base,
considering the CoP found in the previous stage and available roll and pitch angles from
IMU. We express the orientation of the base by:

Rw
b = R(�φz)R(φz(t − �t))Rφxφy

= R(�φz)R� (3.9)

where Rφxφy
denotes the rotation matrix of the pitch and roll angles we get from the

IMU and R(�φz) is the delta rotation matrix around z axis. Now we can write the CoP
in the world-frame as:

xw
CoP, des = xw

c (0) + Rw
c (0)xc

CoP = xw
b + R(�φz)R�xb

CoP (3.10)

where xw
c (0) and Rw

c (0) represent the initial foot center frame. The variable xw
CoP, des is

therefore the reference center position plus the relative displacement of the CoP at the
current time-step. We can also use the velocities and accelerations to approximate the
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xw
b as:

xw
b (t) = xw

b (t − �t) + R(�φz)R�(ẏ�t + ÿIMU
�t2

2
) (3.11)

Defining �φz, des = ωb
z�t where ωb

z is the IMU angular rate, we can combine (3.11) and
(3.10) in an optimization problem:

min
xw

b
,�φz

�

Qδδ2 + Qφ(1 − cos(�φz, des − �φz))

xw
b + δ = R(�φz)A + B (3.12)

Equation (3.11) is always present in the optimization (in compact form) while different
active contacts can participate with their own constraints and costs, again in a similar
constraint form. We avoid indexing for the sake of simplicity. The optimization in this
stage is in fact nonlinear and we solve it via Matlab’s symbolic engine by setting the
derivatives of the objective function to zero. It turns out that if we choose equal costs
in each diagonal cost matrix, we can find xw

b linearly depending on sine and cosine of
�φz. Therefore one can easily replace it in the equations and find multiple solutions for
�φz where we choose the closest one to zero and thus calculate xw

b as well. Therefore
the full state of the pelvis can be calculated with these two stages which take 0.2ms on a
modern computer.

This method can easily disable different contacts by setting their costs to zero. Using
inequality constraints, we limit the CoP and ensure stability in case of slight tilting or
rolling of the foot. Introduction of slack variables enables us to filter kinematics and
contact forces together in a minimal setup and improve the robustness against noise. In
future work we will find a policy to re-estimate the reference CoP position in (3.10) like
(Bloesch et al., 2013) and update it during locomotion/slippage. Note that the proposed
method can be easily applied on most of the humanoid robots with IMU, joint encoders
and contact force sensors. In addition to torque tracking and state estimation, there are
few remarks on task controllers and parameter tuning of inverse dynamics layer that we
explain in next section.

3.4 Controllers

In this section we briefly introduce the control algorithm we use to perform the tasks
described in section 3.5. This controller has three sub-layers itself: inverse dynamics,
Cartesian controllers and trajectory generation.

3.4.1 Inverse dynamics layer

We use the general inverse dynamics framework of chapter 2. In brief, given the Cartesian
accelerations ẍe (translational and rotational), we use a quadratic program as formulated
in (3.13) to minimize joint accelerations q̈, joint torques τ and contact forces λ under
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various physical constraints.

min
q̈,λ,τ,σ

VQq (q̈) + VQλ
(λ) + VQτ

(τ) + VQσ
(σ)

Mq̈ + h = τ + JT
c λ

σ + ẍe = Jeq̈ + J̇eq̇

A
�

τT λT
�T

≤ B (3.13)

where the matrices Qi are diagonal quadratic costs and the variables σ induce a soft
constraint on Cartesian tasks. M is the mass matrix, h represents all gravitational,
centripetal and Coriolis forces, Jc is the Jacobian of contact points and Je is the Jacobian of
end-effectors (contacts, CoM and torso orientation). The matrices A, B represent physical
inequality constraints such as torque limits, friction polyhedra and CoP limitations. In
practice, we perform stiff position control on the joints that are not included in the motion.
The implementation of (3.13) in CVXGEN (Mattingley and Boyd, 2012) enables us to
remove sparsities from the mass matrix and Jacobians which enhance the performance
up to 4 times. We reach 0.7ms to 1.1ms on a modern computer depending on the number
of contacts involved (2 and 4 respectively).

Our choice of cost gains are uniform diagonal matrices Qq = 10−2, Qλ = 10−2,
Qτ = 10, Qσ = 104 for floating and Qσ = 107 for contacting points. These costs provide
stable performance on the real robot and ensure preciseness of the desired tasks. Fixed
contacts have more importance than floating tasks. We penalize joint torques more
than contact forces and accelerations to provide smoother torque profiles, but indeed
floating tasks have higher priority than torques. Adding soft constraints on the Cartesian
tasks is beneficial especially when CoM falls outside the support polygon. If for any
reason, the upper layer provides infeasible accelerations, the soft constraints ensure
satisfaction of physical inequality constraints. For instance, in case of keeping balance
and being pushed extremely so that the CoM falls outside the support polygon, the
robot still keeps full contact at the feet without tilting or rolling. Therefore we reject
invalid Cartesian accelerations by sacrificing the precision in normal conditions unlike
the prioritized hierarchy of (Herzog et al., 2014). Note that the proposed method can be
easily applied on torque-controlled robots unless other control layers are present as well
as a full model of the robot.

3.4.2 Cartesian control layer

Our task space formulation requires world-frame accelerations for the hands, feet, CoM
and torso orientation. For Cartesian translational tasks ẍw

des, we use a simple PD law as:

ẍw
e = ẍw

des + K(xw
des − xw

e ) + D(ẋw
des − ẋw

e ) (3.14)

For angular tasks, the formulation we use is inspired from the work in (Bacon, 2012),
but including accelerations. Imagine the frame {e} is attached to an end-effector with
orientation Rw

e , angular velocity ωw
e and angular acceleration αw

e expressed in the world-
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frame. The desired target orientation, angular velocity and accelerations are Rw
des, ωw

des

and αw
des. Viewed from the desired reference frame, we want to minimize the error

observed in this frame. Therefore we define the PD law as:

αdes
e = −Kθdes

e − Dωdes
e (3.15)

where θdes
e is the angles coming from Rdes

e . Using standard kinematics, the angular
acceleration of the frame {e} in the world-frame is then calculated by:

αw
e = Rw

des[S(ωdes + 2ωdes
e )ωdes

e + αdes
e ] + αw

des (3.16)

Here in fact the Coriolis motion is considered when converting accelerations between
different frames. Replacing Cartesian PD controllers by more advanced policies like MPC
in future works can improve the tracking performance.

3.4.3 Cartesian trajectory generation layer

In experiments discussed in next section, we produce various agile motions that require
proper trajectory generation from an initial to a final configuration. We use smooth
exponential functions to generate 3-times differentiable trajectories as well as Quaternion
SLERP functions used in (Bacon, 2012), derived once more to obtain the desired
accelerations. We skip the details for conciseness.

3.5 Results
In previous sections, we discussed the three-layer controller. A robust and fast method
in each of them is crucial for performing agile tasks discussed in this section.

3.5.1 Torque tracking

First of all, we characterize the performance of torque tracking block shown in Figure 3.4A,
B, C. A high-level PID controller together with inverse dynamics layer that produces
feed-forward torques is used to track sinusoidal trajectories on single joints. We do
not choose large-amplitude signals to avoid reaching current limits since a considerable
portion of the generated torque is used to accelerate the rotor. The double derivative of
the desired trajectory θ̈des is also given to the torque tracker to compensate the torque
required for the rotor.

Figure 3.4A shows the Bode diagram of force tracking transfer functions. One
can see the poor performance of the basic initial PI controller while using feed-forward
and feedback terms improve the transfer function. The remaining phase lag (which is
about 15ms) is due to the implementation of torque tracking on an external PC with
a delayed communication. In future, we will transfer it to individual motor controller
boards to reduce the delay considerably. Figure 3.4B corresponds to the momentum
based friction observer proposed in (Le Tien et al., 2008). Even though its tracking is
satisfactory for small torque magnitudes, when the user holds the joint, the controller
shows a considerable delay in tracking larger torque magnitudes which comes from the
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filtering nature of this observer. However in Figure 3.4C, our proposed estimator shows
a smaller tracking latency.

The advantage of our method over PID controllers (Hutter et al., 2011) or disturbance
observers (Le Tien et al., 2008) is that our controller compensates internal dynamics of
the actuator while those methods try to resolve these issues with faster loop frequencies.
Also with such estimation of the friction from the previous time-step, there is no need to
close the torque loop with high PID gains.

3.5.2 State estimation and control

Next, we will demonstrate the performance of our state estimation and inverse dynamics
formulation over some multi-joint tasks. The performance is quantified for two tasks of
rotation around vertical (z) and lateral (y) axes while other challenging scenarios are
demonstrated in the accompanying video. We frequently use the simple kinematics based
filter in chapter 2 which starts the chain from the center of the feet and does not use the
IMU data.

In scenario 1, the robot genuflects quickly around the hip. Figure 3.4D shows the
desired and actual trajectories of the torso pitch angle, showing a fast and stable motion.
In fact, this demonstration is challenging due to limited support polygons. The remaining
steady state error is due to small PD gains in the Cartesian space, and our CAD model
does not match the real robot perfectly. However, the robot is compliant which can be
observed in the accompanying video. One can easily integrate the pitch error to converge
in steady state. However, we want to ensure that most of the control input is generated
by feed-forward terms which indicate more precise modeling of the system.

In scenario 2, we have depicted the performance of our estimator in Figure 3.4E
where the robot rotates around the vertical axis at 1Hz. The base yaw angle is plotted
using the previous simple kinematics approach versus our new staged optimizer. In
simulations, the basic kinematic approach is stable enough to perform all the tasks.
However, on the real robot, we have considerable noise that is rejected successfully by
the proposed staged filtering.

In scenario 3, we have repeated the same motion at 0.5Hz (Figure 3.4F), but this
time replacing the new state estimator in the loop by the simple one to observe the
resulting performance. In scenario 4, using back the new state estimator, we have added
damping to all the joints in torque tracking level to see if the vibration could be canceled.
Such unwanted damping improves stability, but similar to scenario 3, it affects the
tracking performance. Comparing Figure 3.4E and Figure 3.4F, one can conclude that
tracking is worse in fast motions, but we have fewer vibrations because the joints change
direction more rapidly and there is less time to build up static frictions (refer to (Olsson
et al., 1998)). Note that all the 12 degrees of freedom in the lower body are active with
small start/stop motions. Overcoming the Coulomb friction is still not perfect in torque
tracking layer which results in such vibrations. Further improvement could be possibly
reducing the previously mentioned delay in the torque tracking loop.

To characterize the effectiveness of starting the chain from the CoP, we have plotted
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Figure 3.4 – A) The Bode diagram of force tracking transfer function for basic PI,
feed-forward only and looped controllers. Note that the feed-forward term already closes
an integrating loop in its friction observer. We close a second loop by a simple P gain to
flatten the bode diagram. B) Tracking performance of the estimator proposed in (Le Tien
et al., 2008) at 1Hz in the presence of an external holding force. The controller shows a
considerable delay in higher torques and overshoots when the external force is removed.
C) Tracking performance of our estimator at 1Hz in the presence of an external holding
force. The controller successfully follows the desired torque (before the spring). Note that
the PID gains of the high-level loop (over position) are small so that the user holding the
joint can almost stop it. In (B) and (C) graphs, reference position trajectories are the
same, though desired torque profiles are different due to the high-level PID controller.
D) Scenario 1: rapid genuflection of Figure 3.6F. The full demonstration is shown in
the accompanying video where the robot complies with external pushes. E) Scenario
2: rotation around the vertical axis at 1Hz. The main source of noise is, in fact, the
precision of post-spring encoders. Our new filtering method successfully rejects noise and
spikes and provides a smooth estimation compared to the previous kinematic method
used in chapter 2. F) Scenario 3,4: repeating the same vertical rotation scenario at
0.5Hz, but in control, we use once the new state estimation and once the basic kinematics
method. We also repeat the same task with the novel state estimator but adding some
joint damping in torque tracking level.

few more signals in Figure 3.5 corresponding to scenario 2. As shown in the accompanying
video, the feet slightly tilt and slip on the ground. This indicates that the fast motion
of this scenario is on the margin of physical constraints. Such whole body rotation at
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Figure 3.5 – Left: When the CoP goes to the borders, there is a slight tilting or rolling
where the geometric center point of the foot is not fixed in the world-frame anymore.
Right: demonstrates the difference between estimated CoM vertical position by our
staged filtering and the basic kinematics based filter.

Figure 3.6 – Different scenarios using improved torque control and whole body inverse
dynamics. White arrows show robot’s motion while red arrows show external push. A)
balance on single foot, B, C) withstanding extreme pushes downward and rotational, D)
squatting motion while the user slightly perturbs the foot location, E) rotation around
vertical axis, F) genuflection around y-axis, G) circular motion with hands, H) full body
balance on three contacts while withstanding an external push. Please refer to the
accompanying video to see each demonstration.

1Hz is challenging for a human as well. Since there is a thin flexible silicon layer at
the bottom of each foot in COMAN, one can expect slight tilt or roll if the CoP goes
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to the borders as shown in Figure 3.5 left. Now the assumption of fixed center-foot
position which is used by the basic kinematics estimator of chapter 2 is not true anymore.
Therefore, the two new and old estimation algorithms can systematically differ during
such dynamical tasks (Figure 3.5 right). Our new filtering, however, starts the chain
from the CoP and efficiently uses the kinematic constraint while in similar works (Rotella
et al., 2014; Xinjilefu et al., 2014a), this information might be ignored by considering
large covariances.

Finally, we have demonstrated the full body compliance of the robot over different
tasks. In fact, the primary goal of modeling the motor, performing torque control and
using inverse dynamics is to find proper feed-forward terms and reduce the effect of feed-
backs. This approach decreases the stiffness of the robot and makes it compliant. Figure
3.6 shows few snapshots of extreme compliance capabilities without violating physical
constraints like contact frictions. Full demonstrations are shown in the accompanying
video.

3.6 Discussion
In the present chapter, we have shown the gap between our previous work in simulations
and challenges we faced on the real robot. We have decomposed the controller into three
levels: state estimation, control, and actuation layers and discussed our strategies to
improve the performance. The first novelty of this work lies in the combination of a new
friction observer and motor inverse dynamics to improve the bandwidth and precision
of the torque-tracking. The second novelty of this work lies in the staged optimization
problems that act like a Kalman filter to find base position and orientation from IMU,
kinematics and contact force sensor data. We build the kinematic chain starting from the
CoP and efficiently handle very dynamic motions where the feet might slightly tilt or roll.
The third novelty finally refers to the fast demonstrations and extreme compliance of
the robot which is superior compared to similar approaches (Rotella et al., 2014; Herzog
et al., 2014; Stephens and Atkeson, 2010a). Future work would be including the modeling
of springs to improve torque tracking and state estimation, improving communication
delay and adapting reference foot location on-line during state estimation.
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4 Point-Wise Model

We started developing our locomotion and balancing algorithms in the previous part with
the linear inverted pendulum model and full-body inverse dynamics (refer to chapters
2 and 3 respectively). These two models were, however, probably at the two opposite
extremes regarding computational cost and mechanical complexity. Our robot COMAN
has relatively heavy legs and cannot be easily approximated with a single mass. Therefore,
the walking controller proposed in the previous part had a limited performance. Given this
limitation and also higher-level objectives of the project, particularly multi-contact motion
planning and better future predictions, we needed template models with more details
but similar fast computations. Therefore, inspired by methods popular in computational
chemistry, we developed our point-wise modeling technique. The aim is to represent
the robot posture directly with Cartesian positions instead of joint angles to reduce
the complexity of full-body dynamics models. This idea is different from task-space
inverse dynamics in the sense that we want to do extreme motions, e.g., going to joint
limits or maximally-stretched singular postures. Therefore, our Cartesian points include
end-effectors, elbow, knee, hip, and shoulder positions (not joint-angles) altogether. This
representation reduces the complexity by making the equations sparser. However, we need
to bind these points via length constraints in numerical optimizations. Apart from model
representation, the simplification part of this methodology also comes from assuming
ball joints in the chain and approximating limb dynamics with rods of no inertia around
the rod axis. This relieves the need to reconstruct local frames on the body segments of
the robot. This chapter presents an application of posture planning with this method,
the next chapter 5 presents an application of motion planning, and chapter 6 introduces
a linearized version used for walking1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji and Auke Jan Ijspeert. "Modeling Robot Geometries Like

Molecules, Application to Fast Multi-contact Posture Planning for Humanoids."

IEEE Robotics and Automation Letters, 3(1):289–296, 2018.

1All the videos of this chapter could be found at https://youtu.be/kzCcAoSkBfc
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4.1 Background
Humanoid robots normally have many degrees of freedom, enabling them to perform
various complex tasks ranging from locomotion to manipulation. For cyclic motions
like walking, model-based approaches dominantly rely on simplifications and periodicity
analysis techniques to stabilize the motion (Feng et al., 2015). In a larger scale, however,
especially for locomotion in complex environments, one would require a plan ahead of
time. Dynamics of the robot, contact surface configurations, inherent geometric and
actuation limitations and finally, the presence of gravity make motion synthesis and
control complicated. In the model predictive control paradigm of chapter 2, handling
large perturbations in an online fashion depends directly on a high planning speed, i.e.
the ability to synthesize feasible motions in short time spans. A simple model that
captures main effects is favorable since it offers fast computational capabilities. On the
other hand, optimality and feasibility analysis require dynamic information and indeed
more geometric details. Therefore, a computationally fast yet inclusive kino-dynamic
model is paramount in multi-contact motion planning problems.

Apart from motion planning, finding feasible and optimal postures for manipulation
and balancing tasks requires a fast geometric solver. One popular approach is to find
a time evolution of internal coordinates that converges to the optimal posture. This
can be done via inverse kinematics (IK) (Escande et al., 2014) or inverse-dynamics
(ID) formulations (Faraji et al., 2015; Feng et al., 2015) which offer compliance as well.
In these time-integration controllers, an optimal posture is found naturally, but with
certain dynamics. This is because only first or second order equations are solved to
find velocities or accelerations, favoring their linear properties. Although optimization
problems are solved as fast as 1-2ms in each control tick, it takes time for the robot to
follow trajectories, i.e. to integrate velocities and accelerations. It typically takes 1-2s to
reach the final goal, depending on robot capabilities (Escande et al., 2014).

An alternative to time-integration approaches is to solve for positions directly in a
single control tick. This is more suitable for planning postures ahead of time, e.g. to
check feasibility or optimality of a multi-contact posture in new environmental conditions.
This is, in fact, the same as solving a nonlinear inverse-kinematics optimization problem
(refer to appendix B). The nature of this single-shot optimization is obviously different
from time-integration approaches. However, the role of Hessians and Jacobians in finding
descending search directions seems equivalent to finding accelerations and velocities in
time-integration approaches.

Planning "optimal" postures with minimal joint torques is, however, far more complex
than simple IK problems due to inclusion of contact forces and joint torques (which are
complex functions of the geometric configuration and contact forces) as optimization
variables. In these tasks, the inherent redundancy in the system is solved by optimizing
the overall joint torques while in normal IK methods, a desired position and orientation
is considered for the pelvis, torso or the Center of Mass (CoM). The task of optimizing
postures is well addressed in the literature, for example in matching a model with recorded
human data in OpenSim (Delp et al., 2007) or analyzing multi-contact human postures
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in car assembly lines (Howard et al., 2014). In static optimal postures, the equations of
motion ensure stability of the humanoid while in normal IK methods, the Zero Moment
Point (ZMP) or CoM is forced to lie within the support polygon (appendix B).

Reaching real-time performance is important, but yet a secondary objective. More
fundamental problems are convergence properties and nonlinearity of the equations which
often affect planning problems. Handling the inherent redundancy, joint limits and of
course minimization of joint torques are major critical factors for optimal posture planning.
Apart from increased computation time, these issues often lead to local minima which
make the final solution very sensitive to the starting point in optimizations. These issues
limit the application of optimal posture planning in online control. Besides, sensitivity
analysis and convergence properties are rarely discussed or addressed in motion planning
and modeling papers.

Our goal is to approach geometric optimization problems differently. Traditional
joint space models encapsulate all geometric complexity inside the robot model and lead
to very nonlinear equations. In this work, we propose writing mechanical equations in a
different way, inspired by molecules. We unroll the compacted inherent complexity of the
body and distribute it over the external tasks as well. We demonstrate that formulating
kinematic optimization problems becomes much easier in this way while better speed
and convergence properties are achieved. We limit our focus on a case study of optimal
posture optimization and provide an insightful comparison with joint-space models. A
wider range of applications, however, including forwards and inverse dynamics as well as
motion planning can be foreseen with this modeling technique.

4.2 Molecule-inspired modeling
The proposed modeling technique is based on methodologies used in molecular me-
chanics where atoms are represented by points linked together with certain bonds. A
very fundamental task in computational chemistry is to determine geometric shapes or
conformations of the molecules. Well-known techniques like Nuclear Magnetic Resonance
(NMR) spectroscopy or X-ray crystallography reveal information about the mean position
and size of atoms as well as length and type of bonds in different materials. Then,
various optimization techniques are used to find exact positions of atoms in 3D space,
given certain energy functions that determine the optimal length for the bonds and the
angles between them. These optimization problems can have multiple local or global
solutions depending on the level of energy in the molecule. Figure 4.1.A shows an example
conformation, a member of NanoPutian series called NanoBalletDancer (Chanteau and
Tour, 2003) which is an artificially synthesized anthropomorphic molecule that resembles
human. This particular shape is indeed engineered by experts knowing principles of bond
geometries. However, a popular molecular mechanics software (Spartan (Hehre, 2003)
for example) can also find this conformation by minimizing energy levels.

In molecular mechanics, there are two dominant coordinates used to model configu-
rations: natural internal vs. Cartesian coordinates (Baker, 1993). In the former, keeping
atomic distances fixed, one would use bond angles to express 3D coordinates of atoms.
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A) B)

Figure 4.1 – A) NanoBalletDancer, a member of NanoPutian artificial molecules
(Chanteau and Tour, 2003) designed with an anthropomorphic shape. B) a typical
humanoid robot in multi-contact interaction with the environment, assigned to pick up
something with the right hand. Geometric similarities between chain structures (shown
in red) make 3D formulations interchangeable. Dynamic interactions are, however, very
different (shown in blue, attractive and repulsive forces in molecules versus gravitational
and contact forces in robots), indicating that equations of motion might have different
properties.

This is very similar to traditional joint-space modeling in robotics. In the latter approach,
however, each atom is assigned a 3D position constrained to have certain distances from
neighboring atoms. These holonomic constraints can also describe certain angular limita-
tions between the bonds, expressed by vector operations (Baker, 1993). A constrained
optimization would then treat these constraints via undetermined Lagrangian multipliers
in Verlet time integration (Allen et al., 2004). More formally, imagine a set of atoms
represented by 3D coordinates ri, a potential function U(rN ) where rn = (r1, r2, ..., rN )
and a set of constraints:

χ(ri, rj) = |ri − rj |2 − b2
ij = 0 (4.1)

where bij represents the distance between atoms i and j. Cartesian equations of motion
take the form:

mir̈i = −∂U(rN )
∂ri

−
�

k∈Ki

λk
∂χk

∂ri
(4.2)

where mi is the mass of atom i and the set Ki represents its neighboring atoms. The
Verlet time integration updates positions iteratively by:

r
(t+∆t)
i = r̂

(t+∆t)
i +

�

k∈Ki

λk
∂χk

∂ri
Δt2m−1

i (4.3)
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where Δt is the integration time-step and r̂i
(t+∆t) is the unconstrained position of atom

i. Putting these update rules into (4.1) yields:

χt+∆t(ri, rj) = |r
(t+∆t)
i − r

(t+∆t)
j |2 − b2

ij = 0 (4.4)

which should be satisfied in the next time step. By solving this nonlinear system of
equations, one would obtain λk, necessary to correct the unconstrained positions during
integration. Verlet integration is very similar to nonlinear optimization in the sense that
Lagrange multipliers are helping to satisfy constraints. However, in molecular dynamics,
one would assume weak coupling between constraints and use linear approximations
(Gauss-Seidel method) of the non-linear system to solve for λk iteratively (SHAKE
algorithm (Allen et al., 2004)). Interior point methods are also popular (Schlegel, 2011)
and provide faster convergence rates if all couplings are considered (Doyle, 2003). However,
solving full-dimensional system of equations might still be time-consuming, despite their
sparse structure.

Even though the weak coupling assumption makes the convergence slow, the intrinsic
properties of Cartesian coordinates together with the power of Lagrange multipliers let
the atoms move freely to find better solutions, especially in the case of having constraints
in the system. In unconstrained conditions, however, natural internal coordinates are
more suitable for finding molecular conformations (Baker, 1993). We adapt this idea
and use Cartesian coordinates to solve multi-contact posture optimization problems
for humanoid robots where a large number of constraints are involved. We only take
inspiration from geometric similarities of molecules and humanoids. Interaction forces
and "tasks" have entirely different natures, depicted in Figure 4.1. Indeed, the nature of
atomic and molecular forces is very different from gravity. Therefore, we limit our focus
on static conditions in this chapter. Exploring dynamic similarities and motions are left
for future work.

4.2.1 Vector-based equation of motion

Dynamic equations and the notion of potential fields for robots are not similar to molecules
due to the different nature of dominant forces. Besides, we are not going to use Verlet
integration to solve the posture optimization problem, although it might be possible
in an inverse-dynamics paradigm. Our goal is to 1: find an alternative for joint-space
coordinates 2: formulate optimization problems and 3: solve them via interior-point
methods, aiming at improving the computation time and convergence properties.

Similar to Cartesian coordinate systems used for molecules, we model each segment
of the robot body by an approximative vector expressed in the world-frame (Figure 4.2),
linking the parent and child joints together. This vector freely rotates in 3D space while
its length is constrained. The world-frame Center of Mass (CoM) position for this body
segment is:

r = b + (uL) x (4.5)
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Figure 4.2 – Notations used to model a segment of the robot by vectors in the world-frame.
The unitary vector x represents the segment alignment expressed in the world-frame as
well as the interaction forces and torques (shown in blue). Model-specific parameters are
also shown in red.

where the vector b denotes parent joint position, L represents the segment length, u

quantifies the relative CoM position across the segment and the unitary vector x is
the free variable shown in Figure 4.2. Writing equations of motion for this system in
Cartesian coordinates is straightforward:

fp − fc = m (b̈ + uL ẍ − g)

tp − tc = uL (x × fp) + (1 − u)L (x × fc) + I (x × ẍ) (4.6)

where × stands for cross product, fp and tp are incoming Cartesian forces and torques
applied by the parent link, fc and tc are outgoing forces and torques applied to the child
link and I is the inertia around any axis orthogonal to x (refer to Figure 4.2). We call
(4.6) constrained equation of motion, because of holonomic constraints on x:

xT x = 1, xT ẋ = 0, xT ẍ + ẋT ẋ = 0 (4.7)

There are two underlying assumptions: the CoM of the segment is aligned with joint
positions, and the rotational inertia around x is negligible. These assumptions are realistic
for most humanoid robots. Otherwise, an auxiliary vector y subject to yT y = 1 and
xT y = 0 should be added, to reconstruct the local frame to account for the asymmetry
incurred. The advantage of modeling a robot with vectors lies in the ability to express the
tasks (end-effector positions) with a linear combination of segment vectors. Besides, joint
angles and torques are all expressed with a quadratic combination of variables. Equations
(4.6) and (4.7) indeed provide a geometric transformation of the traditional joint-space
equations. Therefore, all translational and rotational dynamics are still included. Next,
we are going to use these properties and establish a full model for our humanoid robot,
consisting of limbs and a torso.
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Figure 4.3 – A humanoid robot can be represented by a set of vectors in Cartesian space;
all expressed in the world-frame. Fixed model parameters are shown in red, given task
parameters including desired contact positions, and orientations are shown in green and
free dynamic variables (forces and torques) drawn in blue. Black arrows are free position
variables (Refer to the text for further information). Green areas denote surfaces that
can provide a supporting force and green circles denote Cartesian points to be reached,
without establishing a contact.

4.2.2 Case study: humanoid model

The spirit of vector-based equations is based on breaking the geometry of the robot into
individual vectors with certain quadratic relations. Here, we consider a generic humanoid
robot with a torso and four limbs (indexed by j), described by the following variables:

• b: world-frame position of the base (root).

• e1, e2, e3: orthonormal basis for orientation of the torso.

• xj
1, xj

2: unitary vectors for limb segments.

• tj
1, tj

2: Cartesian torques in the knee, elbow, hip and shoulder joints.

• F j : contact forces constrained in a friction polyhedron with coefficient µj .

• T j : contact torques. The Center of Pressure (CoP) is limited to a square of size
wj .

All these quantities are shown in Figure 4.3. A dynamic model indeed includes derivatives
of position vectors as well. Note that parameters sj

1, sj
2 and sj

3 are used to express the
hip and shoulder positions, M and I =

�

Ix, Iy, Iz

�

represent mass and inertial properties
of the torso and finally, each link segment has its own geometric and inertial properties
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Figure 4.4 – Reconstructing local frames on each body segment to encode joint-space
boundaries of articulated joints. These auxiliary orthonormal frames can be either added
as decision variables during the optimization to impose joint limits, or calculated offline
to convert from vector-space to joint-space.

shown in Figure 4.2. The task parameters are also given by desired contact positions P j

and contact surface coordinates N j . We skip writing full equations, but principles of (4.6)
are simply applied here to describe the relation between variables. The inter-segment
interaction forces (formerly fp and fc) are indeed resolved by combining equations
together. An important property of such modeling technique is adding vectors together
to reach the desired end-effector point P j . This linear constraint potentially simplifies
geometry optimization tasks, discussed in the next section.

Note that since most of the humanoid robots are constructed with articulated joints,
we need to encode joint limits into the framework as well. To this end, we can introduce
auxiliary vectors yj and zj for each segment and reconstruct the orthonormal local
frame together with xj . Joint-limits can then be directly added by constraining the dot
product of these vectors together or with the given contact frame vectors N j . A simple
demonstration of these local frames is found in Figure 4.4. We do not necessarily need
to add derivatives of these vectors unless explicit bounds on joint velocities are desired.
Note that Cartesian joint torques tj can also be projected onto these vectors to find real
actuator torques if needed.

4.3 Static posture optimization
In this section, we use models developed earlier to formulate a task of posture optimization.
We consider point contacts and drop contact torques T j to simplify the system, although
adding them is straightforward due to linearity. In this case, CoP and rotational friction
constraints are linear functions of contact torques and vertical forces (refer to chapter
3). Besides, to give the robot more freedom, we let it rotate the feet (and the wrists)
around the normal axis of the contact surface (N j

z vector in Figure 4.3). This relaxation
makes the system redundant but helps rotate the body and avoid restricting joint limits,
aiming at finding more optimal postures. The redundancy can be removed by introducing
orientation constraints or other simple policies explained later. We also limit our focus
on static postures in this chapter but consider six tasks that require very different
interactions with the environment. The purpose is to assess the baseline convergence
behavior of a minimal setup in symmetric and asymmetric postures as well as in starting
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from random initial conditions. Joint torque limits can also be added as described earlier,
but practically, we found these constraints never activated. We use the model of our
robot COMAN with an approximate mass of 30kg, a height of 90cm and joint torque
limits of 40Nm.

4.3.1 Optimization setup

Optimization variables

The algorithm has to find position vectors b, e1, e2, e3, xj
1 and xj

2, contact forces F j and
joint torques tj

1 and tj
2 for each joint j together with auxiliary vectors yj

1, yj
2, zj

1 and zj
2

to reconstruct local frames when joint angle bounds are considered. For the joint-space
model in a similar optimization setup, we consider the generalized state vector q ∈ R

22,
joint torques τ ∈ R

16 and contact forces F j .

Objective function

Consists of two dominant terms: the magnitude of contact forces and joint torques.
However, we observed that both modeling approaches (joint-space and vector-based)
could hardly converge to a unique solution, starting from random initial conditions. This
is mainly due to the nonlinearity of the cross products and redundancy in the system.
Therefore, we added an auxiliary linear term to lift the base (root) up as much as possible
and to orient the limbs along the sagittal vector of the contact surface (N j

x, shown in
Figure 4.3). These terms implicitly reduce joint torques and remove the redundancy
mentioned earlier. The objective function for vector-based model is therefore described
as:

f = Qτ (
�

j

|tj
1|2 + |tj

2|2) + QF (
�

j

|F j |2) + Qlin(−αT b + β
�

j

(xj
1 − xj

2)T N j
x) (4.8)

where the vector α =
�

0, 0, 1
�T

denotes upward direction, β = 0.01 and Qτ , QF and Qlin

are 0 or 1, simply enabling or disabling the terms. The parameter β is used to remove
the redundancy, but it can indeed affect the overall posture as well, pushing the knees
or elbows away from straight postures. Therefore, we choose a small value to minimize
this effect yet removing the redundancy. Later, we provide a further analysis and show
that the choice of this parameter is not critical. Besides, adding contact orientations to
the tasks relieve the need to have any β in the objective function. Note that the same
objective function is also used for the joint-space model:

f = Qτ |τ |2 + QF (
�

j

|F j |2) + Qlin(−αT b(q) + β
�

j

(xj
1(q) − xj

2(q))T N j
x) (4.9)

where the base positions and limb vectors are functions of the generalized state vector q.
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Constraints

A set of equality constraints describe the equations of motion, linking all variables
together. In the vector-based model additionally, linear task constraints are added for
each limb j:

b + sj
1e1 + sj

2e2 + sj
3e3 + Lj

1xj
1 + Lj

2xj
2 − P j = 0 (4.10)

while end-effector positions are complex functions of the generalized state vector (EF j(q))
in the joint-space model:

EF j(q) − P j = 0 (4.11)

Motion equations in the vector-based model take the form:

�

j

F j = Mtotg

�

j

P j × F j = Mtot(xCoM × g) (4.12)

where Mtot is the overall body mass and xCoM represents the center of mass position
as a linear function of decision variables. Note that for static cases, given that desired
task positions P j are fixed, equations in (4.12) become linear in terms of optimization
variables. These equations in the joint-space model appear as:

h(q) = τ +
�

j J j(q)T F j (4.13)

where h(q) denotes gravitational forces and J j(q) represents the Jacobian of each end-
effector position. We also have holonomic constraints of the form (4.7) in the vector-based
model while these constraints are inherent in the joint-space model. Regarding inequality
constraints, we mainly have joint position bounds and friction polyhedra in both models.
The former constraint takes the form of simple bounds on optimization variables in the
joint-space model while it requires reconstruction of local frames in the vector-based
model. In both models, we define friction polyhedra as:

(F j)T N j
z ≥ 0

µj(F j)T N j
z ≥ |(F j)T N j

x|

µj(F j)T N j
z ≥ |(F j)T N j

y | (4.14)

where parameters µj are friction coefficients of contact surfaces. We also introduce
constraints of the form:

xj
2

T N j
z ≤ 0 (4.15)
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Setup Joint-Space Vector-Based
variant I N = 50, M = 58 N = 93, M = 117
variant II N = 50, M = 58 N = 69, M = 77

variant I w.o. torques N = 34, M = 42 N = 69, M = 93
variant II w.o. torques N = 34, M = 42 N = 45, M = 53

Table 4.1 – Size of optimization problems in different configurations. Here N stands for
the number of variables and M stands for the total number of equality and inequality
constraints. The variant III optimizer runs variant II and then variant I optimizers in
the first and second stages respectively. Note also that joint limits are implemented as
simple bounds on variables in the joint-space model, not counted here. Disabling linear
terms or contact forces in the objective does not influence the problem size.

in both models to make sure that the limbs stay in front of contact surfaces. We also
disable contact forces of floating links simply by multiplying them with constant binary
mask parameters, determined by task requirements.

Multi-stage optimization

Despite some linear constraints and quadratic terms in the objective, our optimization
setup remains non-convex due to the holonomic quadratic equality constraints and joint
angle boundaries in the vector-based model. To further simplify the analysis, we consider
three variants of optimization: (I) full formulation as described, (II) a version without
joint boundaries and (III) a version in which we solve the problem in two stages: once
without joint boundaries and then using the solution as a warm starter in a second stage
where boundaries are added. We further consider enabling and disabling the torques
and will demonstrate that even the simple linear objective can do the job most of the
time. These strategies will be applied on both joint-space (equations (4.9), (4.11), (4.13),
(4.14) and (4.15)) and vector-based (equations (4.8), (4.10), (4.12), (4.14) and (4.15))
optimizations respectively.

Implementation

All optimizations for both models are implemented using SNOPT (Gill et al., 2005), with
a maximum of 250 iterations, feasibility tolerance of 10−6 and accuracy level of 10−6.
Singularities are handled by a constant damping of the Hessian matrix implemented in
this package. We use a dedicated Matlab code to generate vector-based model equations,
implemented in c++. Forces and torques are all normalized by the body weight (Mtotg)
and lengths by the body length in the objective and constraints. We avoided including
these terms in the equations for the sake of simplicity. Problem sizes are reported in
Table 4.1

4.4 Results
Using the tools and methods explained, we aim at comparing the two modeling techniques
over the complex task of posture optimization where computational aspects play an

63



Chapter 4. Point-Wise Model

A) Random starting points

(avg. 209 ± 76ms) B) Variant I: full problem (avg. 107 ± 44ms)

(avg. 342 ± 110ms) C) Variant II: removing joint limits (avg. 21 ± 11ms)

(avg. 536 ± 161ms) D) Variant III: resolving joint limits in two stages (avg. 46 ± 13ms)

Figure 4.5 – Global convergence analysis for the joint-space (left) and vector-based (right)
models with Qτ = 1, Qlin = 1, QF = 0 and β = 0.01 in the objective function. Each row
consists of two batches of six typical tasks for humanoid robots: (from left) symmetric
and asymmetric quadruped postures, normal standing, single support, picking an object
on the ground and stair climbing with supports from the walls. A) a typical random
starting point. B) Variant I: considering joint limits in the first run leads to local minima.
C) Variant II: removing joint limits still does not solve the problem. D) Variant III:
adding joint limits back in the second stage of optimization can not lead to a global
optimum too. In these figures, we plot two trials of each optimization to distinguish
cases which are globally convergent. This is separately verified over 1000 trials, and the
average time spent in the optimizer over all tasks is mentioned on top of batches. The
vector-based model performs much faster and is more convergent.

important role. Our analysis covers convergence behavior, i.e. finding local or global
solutions, perturbation analysis, and computation time performance.

4.4.1 Global convergence

Starting from random initial points, we applied the three optimization variants to various
interesting tasks: symmetric and asymmetric quadruped postures, normal standing, single
support, picking an object on the ground and stair climbing with supports from the walls.
The results are shown in Figure 4.5 for both modeling techniques. Although the starting
points are far from desired, both models can lead to meaningful postures. Considering

64



4.4. Results

A) Perturbed starting point

B) Variant III: two-stage optimizer (421 ± 129ms)

Figure 4.6 – Sensitivity of the joint-space model to initial conditions. (A) The starting
points are only slightly different, (B) but the optimization seems very sensitive, converging
to different local minima (two trials per task). Here we used variant III optimization
with same parameters as Figure 4.5. The vector-based model converges to the same
solution every time, not interesting to show.

joint boundaries (variant I) leads to local minima in both models. Removing these
constraints in variant II, however, results in a different behavior. The vector-based model
converges to the same solution every time while the joint-space model still gets trapped
in local minima. We took advantage of this property in variant III and reintroduced
joint-boundaries in a second optimization stage which starts from the solution of the
boundary-free optimization. As a result, the vector-based model can now find a unique
solution while the joint-space model fails. The optimization problems are not convex,
and a formal uniqueness proof for the solution is missing. But over a large number
of random starting points (103 trials), we found the vector-based model convincingly
convergent for the popular humanoid tasks considered. We defined uniqueness by a
threshold (10−3) on the maximum standard deviation of the final solutions obtained (over
different dimensions). More accuracy levels can be achieved by tightening the stopping
criteria in the optimization.

4.4.2 Sensitivity to initial condition

This test could be performed in different ways. Here, we considered a single normal
starting point and perturbed it randomly by 10%. Thanks to global convergence,
the vector-based formulation behaves in the same way as before while the joint-space
formulation again converges to different local minima. Figure 4.6 demonstrates few
examples. Perturbation test can quantify how continuous the model is if used as a basis
in a higher level optimization frameworks. Jumping between different local minima
would be confusing for higher level planners, and it makes the joint-space formulation
less suitable for planning.
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4.4.3 Sensitivity to optimization parameters

So far, all optimizations were using both the linear and joint torque terms in the objective
function. It becomes interesting to test them separately, since many similar posture
optimization methods in literature rely on minimizing joint torques (Howard et al., 2014;
Marler et al., 2011). Enabling contact force terms produce less optimal solutions (Figure
4.7), since they are in conflict with joint torques. When disabling joint torques however,
these terms are necessary to produce optimal contact forces. In this case, the results are
less optimal, but still meaningful. Without linear terms however, the vector-based model
is not globally convergent anymore (Figure 4.7). A variant II optimizer without joint
torques and bounds is the fastest and produces convincing postures, useful for robots
with large range of joint motions (Figure 4.7). Remember we chose a small β value to
reduce the effect of preferred limb orientation on other tasks which stretch the knees and
elbows. In Figure 4.7, we show how increasing β can flex the knees and elbows. Our
choice of β = 0.01 seems less conservative and thus reasonable. Disabling β however leads
to ambiguities (Figure 4.7) that could be resolved by introducing feet/wrist orientation
constraints alternatively.

4.4.4 Computation time

In both Figure 4.5 and Figure 4.7, we have reported the average timing performance
over 103 random trials. Adding joint bounds slows down the process in the vector-based
model, regardless of joint-torque terms actually. Producing crouched postures seem less
expensive while stretched-limb postures seem more costly (Figure 4.7). It is preferred to
keep torque terms for maximum optimality and linear terms to ensure global convergence,
even from very different initial conditions. Although the first stage in variant III is
globally convergent, we can not still say whether the solution of the second stage is
the global optimum of the full problem (variant I). The uniqueness of results is very
interesting, however, considering the nonlinear and non-convex properties of multi-contact
posture optimization. Our minimal setup (variant II) can reach up to 21ms on average,
starting from totally random initial conditions. This could be further improved to 12ms
by disabling torque terms and still generating meaningful postures for some tasks. To
the best of our knowledge, for such randomly initialized non-linear optimizations, this
computation speed was not achieved before. This is due to unrolling complex equations
and the convergence properties that our formulation offers.

4.5 Discussion
We proposed a fast algorithm that finds unique, feasible and sub-optimal solutions in two
stages. The idea of using stages was inspired from the well-known simulated annealing
technique (Van Laarhoven and Aarts, 1987) where constraints are tightened gradually to
better guide the solution towards a feasible point. The result might not be the global
minimum of the full problem, but in our case yet meaningful. The vector-based model
offers faster speeds than joint-space formulations in our case study, though the core
novelty of this chapter lies in our molecule-inspired modeling technique that distributes
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A) Normal: (48 ± 17ms) B) Including forces: (49 ± 18ms)

Qτ = 1, Qlin = 1, QF = 0, β = 0.01 Qτ = 1, Qlin = 1, QF = 1, β = 0.01

C) w/o torques: (45 ± 18ms) D) w/o linear terms: (146 ± 86ms)

Qτ = 0, Qlin = 1, QF = 1, β = 0.01 Qτ = 1, Qlin = 0, QF = 0, β = 0.01

E) w/o limb orientation: (66 ± 20ms) F) Strong limb orientation: (32 ± 12ms)

Qτ = 1, Qlin = 1, QF = 0, β = 0.00 Qτ = 1, Qlin = 1, QF = 0, β = 0.05

Figure 4.7 – Sensitivity of vector-based optimization to the choices of objective function
parameters. A) Normal choice of parameters similar to Figure 4.5. B) Including contact
forces results in minimal and more uniform contact forces, often increasing joint torques
(e.g. object picking task). C) Excluding torque terms leads to slightly crouched postures.
Note that contact force terms are needed to avoid arbitrary large forces. Formerly,
the torque terms could indirectly optimize contact forces as well. D) Excluding linear
terms can still generate optimal postures, but without global convergence properties.
E) Disabling β will remove desired limb orientation preference and lead to optimal and
singular postures, but it can cause ambiguities in leg/arm orientations (e.g. stair climbing
task). F) Too large β values result in crouched postures, but faster convergence.

the complexity of the robot to improve the convergence behavior. We break the chain of
the robot into multiple segments and link them together with linear constraints. This
makes the Jacobian and Hessian matrices simpler in the optimization and speeds up the
convergence. The vector-based model has only first and second order polynomial terms
while the joint space model has many sine and cosine terms multiplied together. Extensive
analysis and comparison demonstrate superior speed and convergence properties in the
proposed vector-based modeling technique, despite typically larger problem sizes.

The proposed modeling technique is fundamentally different from task-space for-
mulations of Khatib (Khatib, 1987), although both deal with Cartesian variables. We
reconstruct the model via individual vectors that represent body segments while task-
space formulations use Jacobians to convert delta-motions from joint-space to task-space
and vice versa. The goal of this chapter is not to speed up traditional time-integration
IK or ID transformations. Those problems are linear with respect to velocities or accel-
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erations where warm-starting or decomposition techniques (Escande et al., 2014) can
reduce optimization times even below 1ms. Linearizing our vector-based model can
indeed lead to such performance as well for online control. In this chapter, instead, we
directly find final "optimal" postures which involve finding positions, joint torques, and
contact forces altogether. This problem is much larger in size and very nonlinear with
respect to optimization variables. We also do not have pre-calculated solutions to speed
the process by warm-starting. Despite these limitations and starting from totally random
initial conditions, the proposed vector-based approach can find unique final postures
(46ms, Figure 4.5) much faster than time-integration (1-2s) (Escande et al., 2014) or
direct nonlinear optimizations in the joint-space (200-500ms, Figure 4.5). Despite recent
advances in fast motion planning which typically use abstract variables (CoM, momentum,
contacts etc.) (Ponton et al., 2016), we can not provide any performance comparison yet.
In this chapter, we have not set up any motion planning problem. It remains interesting
for future work to use vector-based modeling techniques in motion planning too. Due
to better convergence properties, we expect to be able to add more dynamics details
without compromising optimization times.

To prioritize different tasks and deal with over-constrained cases, we found soft
weighting matrices (Sugihara, 2011) robust against sensory noises in our torque-based
controller using ID formulations (chapter 3). In this work, all end-effector tasks are coded
as equality constraints (assuming feasible tasks). It would be interesting to incorporate
weighting matrices or hierarchical priorities of time-integration approaches (Escande et al.,
2014; Herzog et al., 2014) in our nonlinear optimizations. These policies would better
handle unsolvable or over-constrained situations. In these cases, it becomes interesting
to further analyze optimization times and final errors to make sure the algorithm offers a
constant timing like (Sugihara, 2011) in case of infeasible tasks. Compared to joint-space
models, representing the robot by vectors leads to simpler inequality constraints for
collision avoidance. Due to a non-convex nature (Alrifaee et al., 2014), however, these
constraints further complicate convergence properties in both joint-space and vector-based
optimizations. Since the goal is limited to investigate model properties in this chapter,
we consider including them in future work.

In future, we consider exploiting our particular problem structure (which consists
of few quadratic and many linear terms) to make efficient use of sparsity and further
reduce optimization times. Apart from this, we aim at deriving full-body forward and
inverse dynamic equations, inspiring from popular techniques in computational chemistry.
The proposed vector-based technique can also facilitate modeling of simpler robots like
manipulators, bipeds or monopods.
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5 Motion Planning

This chapter extends the idea of point-wise modeling to motion planning. Remember we
mentioned in chapter 4 that expressing mechanical equations with Cartesian points and
binding them together with length constraints can potentially unravel the complexities of
joint-space models and facilitate optimizations. In this chapter, we explore possibilities
of using our simple modeling technique in multi-contact motion planning scenarios
to generate faster locomotion speeds. We do not notably propose any better contact
sequence search algorithm here. We only use a given motion sequence but formulate an
optimization problem that can adjust footstep locations, phase timings, and all other
trajectories in a physically feasible and meaningful way. We use a five-mass model to
better describe internal dynamics and momentum changes in very dynamic motions. Our
setup allows for deciding the overall motion duration which together with the number of
steps can produce very static or very dynamic motions. Other state of the art methods
use a combination of centroidal dynamics and inverse kinematics. The proposed model
can find similar dynamic motion plans only by including swing dynamics via the five-
mass model. We encode fewer kinematic details and introduce a trade-off in terms of
model complexity, but make optimizations faster. This planning method together with
a perception pipeline and inverse dynamics controller can realize dexterous locomotion
behaviors on the real robot. We consider such integration effort for future work1.

Publication Note: The material presented in this chapter is adopted from:

• Jonathan Arreguit, Salman Faraji and Auke Jan Ijspeert. "Fast multi-contact

whole-body motion planning with limb dynamics." in preparation, 2018.

The optimization setup in this work was implemented by Jonathan Arreguit in a
master project, continuing our previous point-wise modeling technique (refer to
chapter 4). The role of second author in this paper was to perform a literature review
and to write the manuscript.

1All the videos of this chapter could be found at https://youtu.be/0YjVNQkt_kc
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Chapter 5. Motion Planning

5.1 Background

Planning multi-contact locomotion in unstructured environments involves various chal-
lenging tasks, ranging from perception, environment modeling, motion planning and
compliant control. Despite well-established techniques for different blocks in this complex
pipeline (Kaiser et al., 2016; Rebula et al., 2007), the planning part is yet time-consuming
and computationally slow compared to human locomotion. The underlying complexity
has different folds: limited foothold locations, robot’s floating-based dynamics, unilateral
frictions, reachability constraints, collisions and planning the sequence of contacts. These
complexities produce a very complex mathematical problem in case all mechanical details
are considered. Solving such problem for a simple task of sitting down on a chair may,
in fact, take up to a few hours (Lengagne et al., 2013; Al Borno et al., 2013). However,
it is possible to speed-up this problem with different simplifications and achieve faster
planning speeds while compromising for certain features. Taking inspiration from state
of the art algorithms, we propose a simple formulation based on the molecule-inspired
modeling of chapter 4 that can improve dynamics of the motion in an efficient and
meaningful way. Before introducing the proposed method, we review the literature by
identifying essential challenges involved and discussing possible improvements.

5.1.1 The curse of dimensionality

Humanoids or multi-legged robots have floating-based dynamics described by (n + 6)
states where n refers to the number of joints and 6 denotes the dimension of global
states which describe the position and orientation of the robot in world-frame. Finding
time-trajectories for all these degrees of freedom produces a high-dimensional planning
problem. One of the simplifications widely popular in the literature is to use single-mass
models which could approximate the overall behavior in slow motions (Hauser et al., 2005).
In these models, one can optimize all contact forces to produce a physically meaningful
Center of Mass (CoM) trajectory. However, these forces produce a moment on the body
according to Centroidal dynamics (Orin et al., 2013). Enforcing the resulting angular
momentum rate to zero is possible, but it is more natural to associate it with whole-body
inertia like (Winkler et al., 2018) (shown in Figure 5.1A). This simplification is close
to reality if the legs are light-weight compared to the main body, e.g., in quadruped
robots like ANYmal (Winkler et al., 2018). However, in many humanoid robots including
Coman (Colasanto et al., 2012), the legs and arms are comparably heavy.

5.1.2 Simplified dynamics, full kinematics

Simplified models can speed-up calculations by reducing problem dimensions. However,
they possibly over-simplify fast motions and especially dynamic effects induced by heavy
limbs. To mitigate this problem, it is possible to plan end-effector and CoM trajectories
in Cartesian space for a simplified model, and match it kinematically with the full model
(shown in Figure 5.1B). Mordatch et al. (Mordatch et al., 2012) converted such abstract
trajectories to joint angles via inverse kinematics. By feeding the resulting joint angles
into a full dynamics model, they were able to find the whole-body momentum rate which
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A) B) C) E) F)D)

Figure 5.1 – Different template models used in the literature: A) A single mass and
inertia with kinematic length constraints (Winkler et al., 2018), B) Centroidal dynamics
with full kinematics (Dai et al., 2014), C) the proposed five-mass model with stretchable
limbs, D) same as previous, but representing inertias with two masses, E) a nine-mass
model with elbows and knees and F) the full robot COMAN (Colasanto et al., 2012).
The borders in B) indicate that the simplified Centroidal dynamics match with the full
system by using full kinematics.

was then constrained to be equal to the abstract momentum rate. In their approach,
there is no need to explicitly include individual joint angles and contact forces in the
optimization. These variables are directly calculated from the Cartesian trajectories
through inverse kinematics and inverse dynamics respectively. Mordatch et al. used soft
constraints to enforce dynamic equations originally (Mordatch et al., 2012). However, Dai
et al. included the contact forces explicitly and used hard constraints (Dai et al., 2014).
These methods assume no limitation for the joint torques which significantly reduces the
number of inequality constraints needed. They also need very efficient kinematic solvers,
possibly in closed-form, which could be iteratively used inside bigger optimizations.
Herzog et al. also used a similarly decoupled dynamic-kinematic approach and achieved
faster optimizations with more efficient solvers (Herzog et al., 2016).

5.1.3 Trajectory parameterization

Due to nonlinearity, it is very common to use splines to encode trajectories over time.
This can be done for joint positions (Al Borno et al., 2013), Cartesian positions (Mordatch
et al., 2012) and even contact forces (Winkler et al., 2018). However, it requires binding
trajectories together at regular intervals via kinematic and dynamic constraints (Winkler
et al., 2018). An alternative is to define all variables at every time-sample and link them
via integration constraints (Dai et al., 2014; Herzog et al., 2016; Posa et al., 2014). This
gives more flexibility in the design of trajectory shapes but increases the dimensionality
of the problem. A vast part of literature also aims at optimizing transition postures
only, which further simplifies the spline method (Chung and Khatib, 2015; Brossette
et al., 2013; Bouyarmane and Kheddar, 2011; Werner et al., 2016). Although these
methods may potentially be faster from a computational point of view, they are prone to
producing quasi-static motions.
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5.1.4 Fixed contact sequences

Given reachability constraints and environmental complexities, finding a kinematically
and dynamically feasible set of contacts is not always trivial. The Linear Inverted
Pendulum (LIP) model (Hemami and Golliday, 1977) can provide closed-form equations
which enable for online Model Predictive Control (MPC) in flat-ground walking conditions
(Faraji et al., 2014a; Herdt et al., 2010b), but it is too limited for multi-contact locomotion.
Without considering dynamical consistency, it is possible to perform a faster kinematic
search for footstep locations and orientations in a first stage. Rapidly-exploring random
trees can achieve reasonable plans with simple distance constraints (Werner et al., 2016;
Chung and Khatib, 2015) and energy-based cost functions (Huang et al., 2013), but these
approaches are also limited to bipedal walking. A library of recorded human motions can
give a good initial guess (Borràs et al., 2017). However, the generalization to different
environments remain a challenge. Hauser et al. proposed a graph search method in the
first stage to find a path of (kinematically) adjacent nodes spanning between the start
and end points (Hauser et al., 2005). The second stage in their algorithm then fixed
dynamic consistencies. It is possible to link them back after computing them separately
(Bouyarmane and Kheddar, 2011), but at the cost of increasing computations in mixed-
integer optimizations. However, extraction of convex hulls in the environment to represent
supporting surfaces would allow for contact adjustment and result in faster optimization
problems (Brossette et al., 2013). Given a simple environment model represented by
such convex hulls, one can use mixed-integer convex optimization to find bipedal walking
footholds (Deits and Tedrake, 2014) or more complex multi-contact motions (Ponton
et al., 2016). The approach presented in (Deits and Tedrake, 2014) tackles kinematics
and dynamics separately in different optimization stages while (Ponton et al., 2016)
combines both in a single mixed-integer optimization. Depending on the number of
existing support surfaces, the discrete search problem may grow in size exponentially.

5.1.5 Emergent contact sequence

To find more elegant contact sequences with dynamic consistency and flexible timing,
Mordatch et al. introduced the Contact-Invariant Optimization (CIO) approach (Mor-
datch et al., 2012). To explain it briefly, consider a single contact point of the robot.
Without any assumption on the phase sequence or timing for this point, it is possible
to minimize the multiplication between the present contact force and the distance (to
the adjacent environment surface) at each instance of time. When the distance is zero,
the algorithm is allowed to increase the contact force while it is forced to zero when
the distance is non-zero (i.e., a swing motion). Both contact positions and forces are
indeed explicit optimization variables. While this method was initially formulated with
soft constraints in (Mordatch et al., 2012), Posa et al. used complementarity constraints
and formulated the problem with hard constraints which allowed for sliding contacts as
well (Posa et al., 2014). This formulation was later used in (Dai et al., 2014) to produce
arbitrary contact sequences for different tasks on the Atlas robot. A more restrictive
alternative to this flexible approach is to look at each contact individually. The sequence
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of each contact is fixed, swing and then stance and vice versa. Winkler et al. assumed the
same number of switches for each contact and hard-coded the trajectories in each phase
with splines (Winkler et al., 2018). This approach considers variable phase durations per
contact point which sum up to the same total motion duration determined beforehand.
This approach allows for arbitrary contact sequences like the CIO method, but with a
predetermined number of contact switches.

5.1.6 Environment complexity

We mentioned that representing the environment with simple convex-hulls is useful in
discrete search methods (Werner et al., 2016; Deits and Tedrake, 2014). The approach
presented by Winkler et al. (Winkler et al., 2018) combines all these surfaces and
approximates them with a smooth height-map which allows for continuous optimizations.
However, in case of large gaps or restricted footholds, a good initial guess is needed to
avoid converging to local minima. Mordatch et al. calculated a soft distance-to-surface
measure in the CIO method to consider environment complexities, but their simulations
were restricted to flat-ground or stair-climbing cases and not traversing huge gaps. A
similar limitation also appears in the approach of (Dai et al., 2014) and (Posa et al.,
2014) where the contact sequence in restricted foothold cases or monkey-bar scenarios
might be pre-determined. Therefore, the CIO approach and the alternative proposed
in (Winkler et al., 2018) are probably powerful in finding emergent behaviors in simple
environments, but more prone to local minima in complex terrains.

5.1.7 Rooms for improvement

As discussed so far, popular approaches proposed in the literature might share certain
positive aspects, but they might be limited from other perspectives. An ideal planner
should be able to re-plan the motion online within a few milliseconds and ideally
adjust the timing, contact locations and even contact surfaces which involve discrete
decisions. Besides, it is expected to generate dynamic and fast motions by considering
robot dynamics. Most of the methods proposed in the literature cannot reach such
time performance due to many reasons. The mixed-integer nature of the problem is
probably the most restricting factor. Additionally, although simplified models speed
up the problem, they cannot produce dynamic motions for robots with heavy limbs
unless the full dynamics model (Lengagne et al., 2013) or the kinematic model is used
(Mordatch et al., 2012; Dai et al., 2014; Herzog et al., 2016). Consider Figure 5.1 which
summarizes the important modeling methods used in literature. The single mass-inertia
model of Winkler et al. (Winkler et al., 2018) is shown in Figure 5.1A together with the
decoupled dynamic-kinematic approach of (Mordatch et al., 2012; Dai et al., 2014; Herzog
et al., 2016) shown in Figure 5.1B. These approaches speed-up simulations considerably
compared to using the full model (Lengagne et al., 2013) shown in Figure 5.1F. However,
it is possible to elaborate the simplified model slightly to better account for internal body
dynamics in fast motions.
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5.1.8 Contributions, novelties

In this chapter, by splitting the modeling and discrete search challenges apart, we
only focus on the simplified model and propose a method to improve the performance
from this perspective. We restrict the study to finding dynamic trajectories and use a
predetermined contact sequence. We also use simple collision avoidance techniques and
do not consider possible knee/elbow contacts with the environment. We propose a simple
five-mass model with a torso and four limbs to represent different body parts shown in
Figure 5.1C. Using the previously developed optimization technique of chapter 4, we set
up a motion planning problem with contact forces, phase times, end-effector, pelvis and
mid-shoulder positions as main variables. These trajectories are bound together with
dynamic equations, geometric length constraints, reachability constraints and contact
friction cones. We show that our method can plan dynamic multi-contact motions in
the order of few hundred milliseconds with adjustable contact location and phase timing
properties. Although we use a predefined contact sequence which could be the outcome of
human motion libraries (Borràs et al., 2017), random search (Huang et al., 2013; Chung
and Khatib, 2015; Werner et al., 2016) or mixed-integer problems (Deits and Tedrake,
2014), the novelty of our method lies in the new simplified model which could be used
in many other optimization problems as well. It can efficiently describe internal robot
dynamics while allowing for implementation of reachability constraints. Despite using
time-integration to parametrize trajectories instead of splines which are probably more
efficient, we show that we can achieve fast optimization times comparable to single-mass
simplified models. The next section describes the model and optimization formulation
in details. Next, we demonstrate results over different planning scenarios and analyze
the performance from various perspectives. Finally, we conclude with a discussion of
advantages and limiting factors as well as future directions for potential improvements.

5.2 Problem formulation
We start this section by introducing our simplified mechanical model. This model is
directly formulated with Cartesian position variables instead of joint angles. In chapter
4, we discussed that such modeling technique is popular in computational chemistry
to calculate complex molecular conformations. Despite different scales of mechanical
forces in humanoids versus molecules, the overall geometries have important similarities,
especially the tree-like topology and the fixed-length constraints between points. We
formulated a posture optimization problem in which world-frame positions of skeletal
joints were the main variables instead of actual joint angles. We considered a mass and
inertia for each limb which spans between two adjacent Cartesian points, constrained to
have a fixed length inside the optimization. Compared to joint-space models, this new
formulation is sparse and mathematically less complicated. Therefore, optimizations of
arbitrary multi-contact postures could be done with better convergence properties and
up to ten times faster with the new formulation (refer to chapter 4).

In the present work, however, we use a simpler five-mass model (shown in Figure
5.1C) for motion planning. This model is derived from a nine-mass model similar to the
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Figure 5.2 – Demonstration of a single limb in the robot with internal forces f(t) and
τ(t), and external forces F (t). This limb could be one arm for example without hands,
where the vector b(t) is shoulder position and the vector p(t) is contact position both
expressed in the world-frame w. The surface can be approximated by a circle at position
P , normal vector N and radius r. The friction cone of this contact is also described by a
coefficient µ.

humanoid anatomy (Figure 5.1E). Also, the inertias we assume for each body segment
are equivalent to splitting the mass into two half-masses shown in Figure 5.1D. We
consider stretchable limbs in the robot where masses also change location along the
limb proportionally. More formally, we assume there are two ideal prismatic (massless)
actuators on both sides regulating the entire limb length proportionally. We use a fixed
length for the torso segment and restrict limbs to a certain range to approximate the
effective workspace. The upper limit of this range encodes reachability constraint while
the lower limit prevents self-collision.

5.2.1 Model formulas

To derive the equations, consider Figure 5.1D. As mentioned earlier, we consider mass
and inertial for both limb segments (upper arm and forearm as well as thigh and shank
segments). Since in human (de Leva, 1996) and our robot COMAN, transversal moments
of inertia in each limb segment are much smaller than sagittal and longitudinal, and since
the last two components are almost the same, we approximate each limb segment by two
half-masses. This is equivalent to considering only two nonzero diagonal elements in the
inertia matrix. Consider one limb of the robot shown in Figure 5.2 which attaches to the
main body at point b(t) (representing the pelvis or the mid-shoulder point), and creates
contact with the environment at point p(t). To improve readability of the chapter, we
avoid using indices for individual limbs. In our simplified model, we only consider contact
forces F (t) and not wrenches. We leave this actuation possibility (realized by ankle
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and wrist joints) to a lower-level inverse-dynamics algorithm for a better track of the
simplified trajectories. We also assume point-contacts which ideally prevent transversal
moments. However, the proposed optimization framework is ideally able to consider all
these moments and include constraints to ensure their feasibility with respect to the
foot/hand size. Coming back to Figure 5.2, further assume that internal forces f(t) and
torques τ(t) are applied to the limb at point b(t). We denote segment masses by m,
lengths by l, relative mass positions by 0 ≤ u ≤ 1 (refer to Figure 5.2), and sagittal
and longitudinal inertias by i. Splitting the half-masses by δul around the actual mass
location, one can obtain:

δul =

�

i

ml2
(5.1)

Individual limb segments are identified by subscripts 1 and 2. It is obvious that the
overall limb length L and mass M are:

L = l1 + l2, M = m1 + m2 (5.2)

The overall relative limb mass location U is:

U =
m1u1l1 + m2(l1 + u2l2)

(l1 + l2)(m1 + m2)
(5.3)

and the overall inertia around this mass is calculated by:

I =
m1

2
(UL − (u1 − δu1)l1)2 +

m1

2
(UL − (u1 + δu1)l1)2

+
m2

2
(UL − l1 − (u2 − δu2)l2)2 +

m2

2
(UL − l1 − (u2 + δu2)l2)2 (5.4)

which could be described in the simplest form as:

I = i1 + i2 +
m1m2

m1 + m2
((1 − u1)l1 + u2l2)2 (5.5)

Now, having L, M , U and I as a function of individual segment properties, we can define
x(t) = p(t) − b(t) and write Newton equations:

F (t) + f(t) + M(g − Uẍ(t) − b̈(t)) = 0

τ(t) + x(t) × ((1 − U)F (t) − Uf(t) − I

|x(t)|2
ẍ(t)) = 0 (5.6)

These equations describe normal rigid body dynamics. We use |x(t)| = L for the torso,
since such constraint is explicitly included in the optimization. For other stretchable
limbs, although |x(t)| is variable in the range Lmin ≤ |x(t)| ≤ L, we still use |x(t)| ≈ L

which is an approximation, but simplifies the symbolic equations considerably.
The entire robot model is composed of five body segments (torso + four limbs)

whose properties are calculated as described before. For each segment, we have to include
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one equality or inequality in the optimization to control the length. However, endpoint
positions are all decision variables in the optimization to be found. Note that in the
pelvis and mid-shoulder points, the sum of internal forces and torques are zero. Therefore,
we can combine all dynamic equations of the limbs (i.e., the set of equations (5.6) for
each limb) and obtain the six usual Centroidal dynamic equations. In the single mass
models used in (Mordatch et al., 2012; Dai et al., 2014; Herzog et al., 2016), CoM and
end-effector positions, as well as contact forces, are optimization variables. The extra
computational cost of our model is only replacing the single CoM position with two pelvis
and mid-shoulder positions. The rest of six Centroidal dynamic equations remain present.
The advantage of having individual limb dynamics is that end-effector movements can
now directly influence the six equations, whereas the approaches in (Mordatch et al., 2012;
Dai et al., 2014; Herzog et al., 2016) implicitly create this linkage between the inverse
kinematics and the full dynamical model. In these approached, more precision could
be obtained at the cost of more calculations. We avoid including all the model details
in this section for the sake of readability and only provide our optimization problem in
abstract form.

5.2.2 Optimization setup

As mentioned, we use a predefined contact sequence in our planning scenarios. The
sequence naturally starts from a given state and ends in a terminal posture. The
environment is also modeled by contact surfaces given in circular shapes with certain
positions P , radius r and normal vectors N similar to (Chung and Khatib, 2015) (refer
to Figure 5.2). The sequence also involves the rhythm of contact changes while directly
assigning contact points in the robot to those contact surfaces. The optimization can then
find dynamically consistent end-effector position and force trajectories, proper contact
locations inside the surfaces and variable phase durations. We divide the motion into
M phases in which both the upper and lower limbs either perform a swing motion or
establish a contact and receive supporting forces from the environment. Each phase is
divided into K sub-phases which aim at providing a good resolution for dynamic and
kinematic constraints. Sub-phases (indexed by i where 1 ≤ i ≤ MK) have variable
durations hi encoded as optimization decision variables which all sum to MT . Here,
the parameter T represents an average phase duration and determines the frequency
of motion. Exact phase durations hi are not forced to be exactly equal to T however.
End-effector, pelvis and mid-shoulder positions pj

i and velocities ṗj
i (where 1 ≤ j ≤ 6)

are also decision variables at the beginning of each sub-phase. Therefore, trajectories are
formed by time-integration constraints over individual sub-phases which form a direct
optimization setup (Posa et al., 2014). The contact points are free to move inside the
contact circles, and contact forces F j

i should lie inside friction cones. We also define
accelerations by differentiation of velocities hip̈

j
i = ṗj

i − ṗj
i−1. Altogether, the optimization
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setup is as follows:

min
hi,p

j
i
,ṗj

i
,F j

i

�

i,j

hip̈
j
i
2 + hiF

j
i

2 + H(pj
i ) (objective)

s.t.
�

hi = MT (motion duration)

Γ(pi, p̈i, Fi) = 0 (dynamics)

Lmin ≤ L(pi) ≤ Lmax (kinematics)

G(p0, ṗ0) = S0 (initial condition)

Contact phase:

pj
i ∈ S(Pk, Nk, rk) (circular surfaces)

F j
i ∈ F (Pk, Nk, µk) (friction cones)

ṗj
i = 0 (no sliding)

Swing phase:

F j
i = 0 (free swing)

hiṗi = pi − pi−1 (time integration)

C(pi+[ K
2

]) ≥ 0, i mod K = 0 (collision) (5.7)

Here, S0 is the initial state. The vectors pi and Fi contain individual quantities pj
i

and F j
i . The function G(.) maps Cartesian points to a given state and L(.) encodes

length constraints. The vectors Lmin and Lmax simply contain limb length constraints.
For the torso length, the corresponding elements are set to be equal to implement an
equality constraint. The function Γ(.) encodes dynamic equations (5.6) for each sub-phase
i, F (.) denotes friction cones and S(.) denotes contact circles. In practice, we define
accelerations by a direct differentiation of velocities and thus, exclude them from the
list of optimization decision variables. Zero velocities, accelerations and forces are also
defined parametrically to make the optimization faster.

We normalize forces and accelerations by total mass and gravity in the objective
function. The function H(p) = −ẑT p is only applied to the mid-shoulder point to
lift the robot up and make the motion more energy optimal. The vector ẑ denotes
world-frame vertical direction. Since we do not have knee joints in our five-mass model,
we cannot minimize knee torques to naturally lift the robot up. In chapter 4 where we
optimized postures with a more complete model that had knee joints, we showed that
such lifting term could produce similar postures compared to a setup in which only a
torque-minimizing objective was used. Alternative approaches to avoid collapsing are
constraining end-effector positions in certain limited regions with respect to the body
(Winkler et al., 2018), relying on initial trajectories (Herzog et al., 2016) or using nominal
knee angles (Dai et al., 2014).

The collision function C(.) simply makes sure that the mid-trajectory end-effector
positions always lie on one side of both starting and ending contact surfaces. More
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precisely:

C(p) =

�

(p − P −)T N−

(p − P +)T N+

�

− c (5.8)

where superscripts − and + represent starting and ending contact surfaces for the
corresponding swing phase. The scaler c = 5% of leg length also indicates a desired
amount of ground clearance or leg lift for the swing trajectories. Finally, we start
optimizations by an intuitive (possibly infeasible) initial solution where hi = T , swing
trajectories connect the centers of contact surfaces together, velocities are differentiations
of these positions and contact forces are set to the total weight divided by the number
of active contacts in each phase. The optimization therefore adjusts all these variables
optimally. We use the package CasADi (Andersson et al., 2012) to formulate our problem
with automatic symbolic differentiation and solve it via IPOPT (Wächter and Biegler,
2006).

5.3 Results

In this section, we study the optimization results for different motion planning tasks.
We consider changing terrain complexity, planning horizon and trajectory precisions. In
all experiments, we keep the motion sequence fixed, i.e. we use the same order of limb
motions all the time. This sequence is set to move one limb at a time, although it could
be easily generalized to moving arbitrary number of limbs and even going to flight phases.

5.3.1 Swing dynamics

As motivated previously, the aim of using a five-mass model in our method is to study
the exchange of energy between the base (torso) and the limbs. In chapter 6 we showed
that in bipedal walking motions, swing and torso balancing dynamics can influence torso
motions mainly by reducing the speed. Mechanically, a transfer of kinetic energy from
the torso to the limbs enables them to move, but slows down the torso itself. Single-mass
models cannot include this phenomena in optimizations (Winkler et al., 2018) while
Centroidal dynamic approaches require inverse kinematics and full-body momentum
equations to produce dynamically consistent motions (Dai et al., 2014; Herzog et al., 2016;
Mordatch et al., 2012). Our method can easily model this phenomena while reducing the
complexity and considerably speeding up optimizations. Depending on the frequency of
motion and the robot properties, this exchange of energy might become important. In
other words, Cartesian motions that ignore swing dynamics might only be realizable on
robots with lightweight limbs (Winkler et al., 2018). Otherwise, the choice of frequency
should be slow enough to allow for a feasible tracking of Cartesian trajectories with
inverse kinematics or dynamics. Figure 5.3 demonstrates an example of motion where
limb-swing dynamics can influence torso motions to some extent. One can observe in
Figure 5.3B that torso velocities are generally decreased when the limbs start moving.

The scenario in Figure 5.3 is of particular interest, because the torso almost has
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to stop in order to move hands. In such flat terrain conditions, ideally, the robot does
not need to use hands at all. However, since the rhythm of motion is fixed and given,
the planner cannot skip hand-support phases and let the robot naturally walk. It is
also not able to shorten these phases, because by design, the hands cannot just move
constantly with the body and instead, they have to stop at corresponding contact surfaces
for some time. Consequently, because of the lifting terms which bring the legs to their
maximum length, the robot cannot keep both feet in contact and move the torso with a
high velocity forward. One of the limbs may geometrically violate its reachability limits
during double-feet support. As a result, the torso almost stops completely when the arms
move. This is indeed the limitation of our predefined motion sequence which requires
stationary hand positions and could be solved by deciding a different sequence.

5.3.2 Static vs. dynamic motions

In the second test, we change the frequency of motion and investigate the resulting
trajectories. The frequency of normal walking in a child with the same height as our
COMAN robot (approximately 90cm) is about T = 0.45s (Hausdorff et al., 1999). Here,
we consider two gaits of M = 12 steps with different average phase durations of T = 0.3s
and T = 0.7s. As demonstrated in Figures 5.4 and 5.5, the choice of T = 0.7s produces a
slow motion with conservative contact forces and non-smooth trajectories. The choice of
T = 0.3s produces forces that reach friction cone boundaries, but resulting in smoother
trajectories and similar limb acceleration patterns.

5.3.3 Optimization performance

In the final set of experiments, we change different motion parameters and report the
trends in optimization performance. In particular, the horizon length M , trajectory
precisions determined by K and motion dynamics determined by T have considerable
influences on the optimization performance. Table 5.1 lists different optimization setups
to investigate these parameters. It is observed that the number of future steps almost
linearly increases the optimization time which is due to the sparsity of our technique
similar to (Ponton et al., 2016). Increasing the number of sub-phases has a similar effect
according to Table 5.1. Also, generating more static motions is generally faster, since
velocities and accelerations are small in magnitude.

5.4 Discussion
Similar to our posture planning work of chapter 4, we observe that representing geometries
by Cartesian points instead of joint angles can speed up motion planning optimizations
as well. In the most complicated case, we have M = 12 steps and K = 7 sub-phases
which gives a total of 84 sub-phases and optimization time of 1.39s. In comparison,
the combination of Centroidal dynamics and inverse kinematics used in (Herzog et al.,
2016) optimizes 100 sub-phases in 30s. While this combination can account for swing
dynamics in fast motions, a reduced version without inverse kinematics (Ponton et al.,
2016) can run much faster and optimize a static plan (of 4 steps in 8s duration and
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A) Terrain profile

B) Absolute velocities
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Figure 5.3 – Planning M = 12 steps with a fine resolution of K = 7 and a nominal phase
duration of T = 0.7s. In this simple environment shown in A), trajectories are rather
simple, but limb swing dynamics influences the torso velocity considerably. In B), we
have shown absolute velocities for all the five masses in our model. In this scenario,
since hand-support surfaces are placed slightly high, the elbows are normally bent which
means the arms hardly reach the boundaries of their workspace. On the other hand,
because of the lifting term, the legs are normally stretched and limited. Therefore, when
both feet are in contact, the pelvis and torso cannot progress much because of such
reachability constraints and thus slow down. This can be seen in the accompanied video.
The double-support duration is relatively small in human walking as well (Cappellini
et al., 2006). When the two hands are fixed, the pelvis and torso have more freedom to
move, though leg-swing dynamics influences their speed slightly.

with 80 sub-phases) in 0.421s. Our method, however, can find more dynamic motions
in similar optimization setups thanks to inclusion of internal dynamics in the five-mass
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A) Quasi-static motion T = 0.7s

B) Fast motion T = 0.3s

Figure 5.4 – Rough-terrain locomotion with different average phase durations. With a
choice of T = 0.7s, the robot spends more time in each phase while with T = 0.3s, the
motion becomes much faster. In this case, contact forces are also less conservative and
may reach friction cone boundaries.

model. It also leaves the choice of sub-phase durations free in optimizations to find more
optimal solutions compared to (Herzog et al., 2016; Ponton et al., 2016).

We only used an intuitive start point without any prior knowledge. Running these
optimizations with a warm start in receding-horizon optimizations can be much faster
and allow for a reactive online control of up to 50Hz update rate, depending on the
horizon length and the desired resolution. In the smallest setup, we can optimize M = 4
steps in 120ms while spending 4.8ms per iteration. For a typical MPC control application
with receding horizon, we might only need up to 5 iterations which may take 20-25ms.
This convincingly extends our previous MPC controller of chapter 2 for bipedal walking
which used the linear inverted pendulum model and could adjust footsteps in 0.2ms.
Comparatively, with a cost of longer computations which is still much faster than the
normal frequency of motion (T = 0.5s), we can optimize a much more complex multi-
contact gait. We can adjust contact positions, swing trajectories and phase timings
altogether. More importantly, we are not limited to linearity assumptions anymore.

Our method is able to produce motions with different properties despite using a
given fixed rhythm. It can also adjust the timing of different phases in order to smoothen
trajectories. However, we consider using Cost of Transport (CoT) terms in the objective
function and remove the motion duration constraint to naturally find an optimal frequency.
For online push-recovery applications which may require activation or deactivation of
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A) Quasi-static motion T = 0.7s

0 1 2 3 4 5 6 7 8 9

Time (s)

0

1

2

3

4

5

6

7

A
cc

el
er

at
io

n
(m

/s
2 ) Left arm

Right arm

Left leg

Right leg

B) Fast motion T = 0.3s
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Figure 5.5 – Rough-terrain locomotion with different average phase durations similar
to Figure 5.4. With a choice of T = 0.7s, absolute limb accelerations follow a jerky
pattern whereas with T = 0.3s, the motion is fast and smooth. In this case, different
limb accelerations follow similar patterns.

certain contacts on the fly, assuming that only few integer combinations are decided, our
method is potentially fast enough to be used in a mixed-integer optimization solver. A
possible scenario would be receiving external pushes during locomotion while available
foothold regions are not enough to recover. In this case, the robot may decide to use
hands against the wall which is a new discrete decision. We do not have a mixed-integer
optimization setup yet, but we plan to add this feature in future work. Ultimately, we
would like to integrate this planner with a perception pipeline that extracts environment
geometries (Kaiser et al., 2016), and a compliant inverse dynamics controller that provides
precise and fast tracking (refer to chapter 3).
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M T K Terrain Var. Cons. Optim. Iter. Description
4 0.5s 4 Rough 431 606 0.12s 4.8ms Short horizon
8 0.5s 4 Rough 879 1254 0.29s 12.6ms Medium horizon
12 0.5s 4 Rough 1327 1902 0.52s 19.3ms Long horizon
12 0.3s 4 Rough 1327 1902 0.69s 19.7ms High frequency
12 0.5s 4 Rough 1327 1902 0.52s 19.3ms Natural frequency
12 0.7s 4 Rough 1327 1902 0.36s 18.0ms Slow frequency
12 0.5s 4 Rough 1327 1902 0.52s 19.3ms Normal gait
12 0.5s 7 Rough 2317 3258 1.39s 39.7ms High resolution
12 0.7s 7 Flat 2317 3258 1.21s 37.8ms Flat gait

Table 5.1 – Dimensions and performance metrics of different optimization setups. Columns
show the number of steps M , average phase durations T , number of sub-phases K, terrain
type, number of variables, number of constraints, overall optimization time, time per
iteration and scenario description respectively. The first group of three experiments
investigates the effect of horizon length. The second group explores different gait
frequencies. The third group also investigates the effect of motion resolution. Increasing
the horizon almost linearly increases the optimization time. Producing quasi-static gaits
can be done faster. Increasing the resolution also linearly increases optimization time
which is slightly better for simpler environments.
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6 3LP Model

We could achieve a relatively fast walking gait with the linear inverted pendulum model
and MPC controller of chapter 2. However, such tracking performance was due to using
inverse dynamics and perfect torque tracking in ideal simulation environments. On the
real COMAN robot which has relatively heavy legs and delayed torque control, this
tracking was hard to achieve. In other words, the inverse dynamics layer was not able to
compensate the missing swing dynamics in inverted pendulum trajectories effectively.
Improving the torque controllers further was impossible due to control communication
delays. However, to produce more consistent Cartesian trajectories, especially to include
swing and torso-balancing dynamics, we developed the 3LP model. 3LP, which stands
for three linear pendulums, is derived using our point-wise modeling technique of chapter
4. 3LP features limb masses and inertias as well as hip and ankle torques which allow for
modulation of the walking gait. In this chapter, we introduce 3LP equations and our
simple method to find walking gaits. We compare 3LP with human to better demonstrate
the higher precision of 3LP dynamics versus the linear inverted pendulum model. 3LP is,
in fact, the focal point of this thesis in the sense that it is used for both robot control and
biomechanical studies (refer to Figure 1.2). In chapter 7, we will develop a time-projection
controller based on the 3LP model which finally replaces our MPC walking controller of
chapter 2. A combination of the 3LP model and time-projection control is later used in
chapter 8 for walking experiments on the real hardware. For biomechanics studies, we
add missing energy components to the 3LP model in chapter 9 which together predict
human walking energetics in a wide range of walking conditions. We also use the 3LP
model to study human walking asymmetries in case of inclined walking or torso bending
conditions in chapter 101.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji and Auke Jan Ijspeert. "3LP: A linear 3d-walking model including

torso and swing dynamics." The International Journal of Robotics Research
(IJRR), 36(4):436–455, April 2017.

1All the videos of this chapter could be found at https://youtu.be/jrisgGxsL4s
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6.1 Background
Humanoid robots are challenging to control mainly due to their complex structures and
a floating base. During locomotion tasks, these systems introduce another complexity
compared to wheeled or flying robots, which is the hybrid nature of stepping where the
continuous model changes in each phase. It has always been challenging to balance these
robots with only unilateral supporting forces from the environment. Also, creating a
sequence of motion, the associated timing and the required control architecture are other
important topics in controlling humanoid robots. The main objectives are therefore being
human-like, energy efficient, versatile and of course agile like humans. In this chapter,
we are proposing a new template model that describes main aspects of walking while
being computationally very efficient. Such model can be very useful in modern control
architectures from the computational perspective. It can also go beyond conventional
template models such as Linear Inverted Pendulum (LIP) by producing more natural
motions and faster walking speeds, resembling human locomotion.

The design of controllers should address many concerns like fast implementation, sta-
bility, robustness to unknown model parameters and the degree of dependency on sensory
data. Besides, it is desired to handle speed transitions and large disturbance rejection
in the same control framework. Candidate methods are typically coming with proper
identification of the basin of attraction regarding system states, actuator limitations and
violation of model assumptions. This identification is not always straightforward due to
its nonlinear nature, though it has been postulated that two steps are enough to stabilize
in almost all conditions (Zaytsev et al., 2015). In this regard, Model Predictive Control
(MPC) is a powerful framework as it can find optimal policies constrained to certain
actuation and state limitations. It can also predict if there is no feasible solution, to let
the algorithm take a different decision.

6.1.1 Hierarchical controllers

Recently, hierarchical control approaches are becoming popular, where a simple template
model determines the overall dynamics in an abstract way and then, a detailed full-body
inverse dynamics controller converts this behavior to individual actuator inputs (Faraji
et al., 2014a; Feng et al., 2013; Kuindersma et al., 2014). In dynamical systems, prediction
of future evolution is mainly sensitive to the model and sensory data precision (Bhounsule
et al., 2015). In hierarchical approaches similarly, dynamical matching between the
template and the full model is crucial to ensure precise execution of the abstract plan.
In this regard, we briefly review relevant template models proposed for walking, identify
missing properties and motivate the new model proposed in this chapter.

6.1.2 Inverted pendulums

One of the earliest template models that roughly explains bipedal mechanics is Inverted
Pendulum (IP) (McGeer, 1990). In this model, a single mass rolls over a massless stick
with a fixed length. IP is widely used to analyze passive walkers (McGeer, 1990) and
energetics of human walking (Kuo et al., 2005). Inspired by IP, many simple robots
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(Iida
et al.,
2009)

(Hemami
et al.,
1973)

(Asano
et al.,
2004)

(Asano
et al.,
2004)

(Kuo,
1999)

(Kajita and
Tani, 1991)

(Takenaka
et al., 2009)

name SLIP IP - - - LIP -
knee - - - x - - -
steering - - - - - x -
3D - - - - x x -
swing - - x x x - x
linear - - - - - x -

(Maufroy
et al.,
2011)

(Sharbafi

and Sey-
farth,
2015)

(Hasaneini
et al.,
2013)

(Gomes
and

Ruina,
2011)

(Manchester
and

Umen-
berger,
2014)

(Gregg
et al., 2012)

proposed

name BSLIP FMCH - - - - 3LP
knee - - - - x x -
steering - - - - - x (x)
3D - - - - - x x
swing - - x x x x x
linear - - - - - - x

Figure 6.1 – Different key models introduced in the literature for walking. In this table,
the model is standing on the left leg, and the right leg is in the swing motion. Solid
arrows show the direction of motion and degrees of freedom while gray arrows show
actuation torques or push-off forces. For models without swing dynamics, we show the
swing leg in gray color to implicitly indicate that attack angle is a control authority.
Note that some of these models are only in 2D while more advanced models are in 3D.
Some models simulate pelvis width, torso dynamics or ground clearance as well. Most of
these models produce compass gait. However, some have ankle actuation or arc foot. In
the comparison table, we mention important features such as knee flexion (for ground
clearance), steering capabilities, 3D formulations, smooth profiles, the inclusion of torso
and swing dynamics and linearity. By smoothness, we mean no collision and push-off

impulse, but possibly describing the double support phase. Many of these models allow
for torso pitch while we keep it fixed in 3LP for simplicity. Note that 3LP can describe
steering like the LIP model use in chapter 2 only if pelvis width is set to zero. Despite
being linear, 3LP offers many features not existing in other template models.
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are built to walk naturally with minimal energy, injected in push-off, swing hip or both
(Collins et al., 2005). Later, this model was simplified to Linear Inverted Pendulum (LIP)
(Kajita et al., 2003), favoring analytical solutions instead of numerical integrations. With
a proper modulation of Zero Moment Point (ZMP) (Vukobratović and Borovac, 2004),
many position controlled robots like ASIMO (Sakagami et al., 2002) perform walking
via inverse kinematics methods. These algorithms are usually able to produce slow to
moderate walking speeds. However, robots using the LIP method usually walk with
crouched knees to keep the Center of Mass (CoM) at a constant height. In addition
to increasing energy consumption, it is harmful to the robot in the long term and less
human-like, though providing full controllability.

More recent extensions of LIP contain one (Park and Kim, 1998) or two additional
masses (Takenaka et al., 2009; Buschmann et al., 2007) in the legs to address swing
dynamics while keeping the CoM height constant. For instance, in these extensions,
the proposed model is formulated in a 2D space, and parameterized swing trajectories
(in the sagittal and vertical planes) are used to generate desired gaits. In (Park and
Kim, 1998) specifically, sinusoidal profiles lead to closed-form solutions with few realistic
approximations introduced. Despite the advantage of describing ground clearance effects
with a minimal coupling to the sagittal dynamics, the swing trajectory is yet imposed to
the system, which is not desirable. We look for a more generic model to work at different
speeds and frequencies, not relying on parametric trajectories to tune.

6.1.3 Multi-link pendulums

Apart from these single-mass models, there are other nonlinear extensions solved numer-
ically. In (Byl and Tedrake, 2008; Asano et al., 2004), the IP model was extended to
have two separate masses for each leg as well as a single mass at the hip level. Using
similar actuation schemes, this model could produce compass gaits on 2D-constrained
robots. In (Asano et al., 2004), the same model was modified to have another Degree of
Freedom (DoF) in the swing leg to provide ground clearance. The stance leg, however,
always remains straight in this version. In (Westervelt et al., 2007), this model was
augmented with a torso and later, it was also used by (Manchester and Umenberger,
2014) to perform natural walking on uneven terrain, using a library of motion primitives.
Another model with four masses in the legs, hip, and torso was proposed in (Gregg and
Spong, 2009) without any DoF in the stance knee. This model was used to generate
walking trajectories with steering properties.

Aiming at removing impacts, a simpler model with two passive springs in the hips
was proposed by Gomes (Gomes and Ruina, 2011). These springs are mainly motivated
by elastic properties of human muscles. By exploiting torso motions, Gomes could find
zero energy gaits. Another interesting complex model was proposed in (Gregg et al.,
2012) with a pelvis of a certain width in 3D and a mass in the center. The swing leg
also had a DoF in the knee. This 3D model takes advantage of a limited transversal
wrench in the contact point to facilitate steering. However, finding a periodic gait for
such complicated model is difficult and computationally expensive.
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6.1.4 Spring-loaded pendulums

It is always questionable which template model produces more realistic motion from the
viewpoint of geometry, torques or energy. The models above mainly address energetic
and geometric similarities. However, specific ground reaction force profiles and the elastic
behavior observed in human legs are better produced in another category of models
based on Spring Loaded Inverted Pendulum (SLIP) (Blickhan, 1989). The simplest
model in this category is composed of two massless springs (legs) connected to a point
mass. Observations indicate a better description of energy exchange in this model over
faster walking speeds and running, mimicking compliant properties of human tendons
(Blickhan, 1989). Based on this model, Iida (Iida et al., 2009) built a hip-actuated robot
walking in 2D with various springs, similar to the human muscles. Properties of the
passive SLIP itself -without hip actuation- were widely explored later in (Rummel et al.,
2010). Using the concept of Virtual Pivot Point (VPP) to stabilize the torso, the model
was also extended to have an upper body (Sharbafi and Seyfarth, 2015) which made the
motion more human-like.

In Figure 6.1, we have briefly shown key models proposed for walking in the literature.
Note that in some of them, passive springs are added to the hip actuators for energy
storage, similar to human. In this chapter, however, we do not investigate elastic behaviors
and energy-saving mechanisms.

6.1.5 Control difficulty

Except for LIP, all other models presented earlier require numerical integration to obtain
time trajectories. Therefore, in a periodic walking paradigm, the Jacobian around a
nominal solution linearizes the model and provides the framework for Floquet analysis or
discrete controller designs (Rummel et al., 2010). This approach can be used to create an
optimal library of primitives (Kelly and Ruina, 2015; Manchester and Umenberger, 2014;
Gregg et al., 2012). However, online reaction to disturbances as well as the inclusion
of other inequality constraints that are often ignored in calculating a stable basin of
attraction limit the generality of this framework. MPC, on the other hand, is powerful
in this regard. However, it requires simple and possibly linear models to facilitate online
calculations. The LIP model, therefore, fits best in the MPC framework (Faraji et al.,
2014a; Herdt et al., 2010b). MPC, its simpler version LQR, and sometimes Discretized
LQR (DLQR) (Ogata, 1995) controllers are popular in stabilizing walking gaits and
recovering large pushes (Kelly and Ruina, 2015; Byl and Tedrake, 2008). With nonlinear
models, however, a library of optimal policies is generated offline, or a discrete transition
model is considered at specific events like CoM apex or heel-strike. Such controllers can
not react to perturbations very quickly, since adjusting the plan is not computationally
affordable online.

6.1.6 Why 3LP?

In this chapter, we propose a more general version of LIP (Kajita et al., 2003) with
three linear pendulums (called 3LP) that capture torso and swing dynamics in 3D. This
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model allows prediction of future at any time in closed-form which is favorable by limited
computational resources and MPC. Compared to LIP, 3LP-based trajectories are easier
to track by inverse dynamics block in a hierarchical controller. In other words, CoM
motion becomes more natural for the humanoid robot, since swing and torso dynamics
are taken into account. Swing-leg trajectories are also more natural compared to the
template models which track an imposed angle of attack with a stiff controller (Kelly
and Ruina, 2015; Byl and Tedrake, 2008; Collins et al., 2005). Besides, using 3LP, one
can define meaningful torque limits in MPC frameworks instead of putting vague timing
or step-size limits which do not precisely reflect physical facts about the real hardware.
It should be noted, however, that the CoM height in 3LP is constant similar to LIP.

The 3LP model provides direct access to the hip and ankle torques. These input
dimensions let us find various types of gaits with simple closed-form expressions. 3LP
as a template model is therefore very useful for motion planning. Along with falling
dynamics like IP (Kuo et al., 2005) and LIP (Kajita et al., 2001a), torso-balancing hip
torques are also part of 3LP like (Maufroy et al., 2011). The most outstanding feature
of 3LP is in considering swing dynamics in a linear fashion that allow us to calculate
natural cycles. With LIP, however, a reference footstep plan is needed (refer to chapter
2). Considering Figure 6.1 again, few models in the literature consider this integral part
of walking. In these models, due to nonlinearity, numerical integration is always needed
to search for periodic gaits. In 3LP, however, we do not need to integrate the system or
to perform numerical optimizations.

This chapter merely focuses on introducing the model, formulating equations, finding
gaits and comparing them to human gaits. Setting up control problems remain for future
works. In the next section, we will explain model details and the assumptions behind.
Next, a method based on geometrical symmetry is introduced to find different periodic
gaits. We will demonstrate that for a human-like gait, actuation profiles in 3LP are
similar to those in human. Finally, we show that 3LP, despite being linear, quantitatively
explains the main optimality trend in human gaits, i.e. speed-frequency relation.

6.2 3LP dynamics
To capture the coupling of swing and torso dynamics, we have added two other pendulums
to the standard LIP model, connected with a pelvis of a certain width. In this model,
as shown in Figure 6.2, there are 2-DoF actuators in each hip and ankle. We visualize
feet of limited size in Figure 6.2, only to mention the availability of ankle torques. The
upper body (referred to as torso) and the legs are each represented by a single mass. By
construction (assuming ideal controllers), masses stay in horizontal planes of constant
height and the torso is always upright without sagittal, frontal or transversal rotations.
These assumptions are used in (Gregg et al., 2012) as well to decouple sagittal and lateral
dynamics.

Since the torso is connected to an accelerated frame (i.e. pelvis), a balancing torque
is always needed to keep the torso upright. This torque is often calculated using the
virtual pendulum concept (Sharbafi and Seyfarth, 2015), where the torso can pitch or
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Figure 6.2 – A schematic of 3LP model with all variables and model parameters. The
bottom planes show the level ground and all upper planes show where the three masses
and the pelvis are constrained to move. The torso is always upright, and the pelvis is
along the y-axis by model construction. The swing foot remains inside the bottom plane,
i.e. sliding on the ground with no force during the swing phase. Note that in single
support all contact forces for the swing leg (T2, F2) are zero. The inputs of the model are
τ2 and T3 shown in red together with arbitrary external perturbations T1 and F1 applied
to the torso. State variables are feet and pelvis positions, shown in green. Fixed model
parameters are also shown in blue, including masses and geometrical dimensions.

roll freely. Inspired by rolling contact constraints that produce more human-like gaits
(Hamner et al., 2013), we allow for a transversal wrench at stance foot to help to keep
the pelvis orientation fixed. In 3LP, we do not consider steering properties as they make
the model nonlinear. It is practically easy however to steer the robot using an inverse
dynamics layer, as we showed in chapter 2 where a simple LIP model was used. There
is no need to add heel-strike and push-off impulses in 3LP since our double support
phase smoothly takes care of the contact transition. In SLIP-based models (Sharbafi and
Seyfarth, 2015), the compliant springs automatically produce a double support phase
and perform weight transition without impulses. In 3LP, however, switching to double
support is triggered when both horizontal components of the swing foot velocity become
zero. This assumption is typically used in models with swing dynamics like (Gomes and
Ruina, 2011), though unlike 3LP, Gomes removes double support for more simplicity
(Gomes and Ruina, 2011).

In Figure 6.2, all external/internal forces and torques, as well as positions, are shown
for each interesting point of the model, i.e. contacts, hips and pelvis center. These vector
variables in our model are expressed in a rotated Cartesian frame attached to the slope.
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Table 6.1 – 3LP variable notations.

Xi Location of external forces l Leg length
Fi External forces h1 Pelvis height = leg length
Ti External moments h2 Relative leg mass height
yi Pendulum mass locations h3 Relative torso mass height
mi Pendulum masses h4 Relative force application point height
Ii Pendulum inertias h5 Torso height
xi Hip and mid-pelvis locations h Foot length
fi Pelvis forces w Pelvis width
τi Pelvis torques g Gravity = −9.81m/s2

φ Slope angle θ Torso angle (with respect to vertical)

Using the notations of Table 6.1 One can easily write geometric relations as:

x1 = [x1,x x1,y 0]T + h1 cos(φ) ẑ x2 = x1 + (ws
2 ) ŷ x3 = x1 − (ws

2 ) ŷ

X1 = x1 + h4 cos(θ + φ) ẑ X2 = [X2,x X2,y 0]T X3 = [X3,x X3,y 0]T

y1 = x1 + h3 cos(θ + φ) ẑ y2 = x2 + h2

h1
(X2 − x2) y3 = x3 + h2

h1
(X3 − x3)

(6.1)

where s = ±1 determines left or right support phases. These parameters as well as other
position variables are shown in Figure 6.2. Defining the gravity vector as:

ĝ = g (cos(φ)ẑ + sin(φ)x̂) (6.2)

where x̂, ŷ and ẑ denote the orthonormal rotated frame attached to the slope, we can
write total force equations for each mass i = 1, 2, 3:

mi(ÿi + ĝ) = fi + Fi (6.3)

The total moment equations for each mass i = 1, 2, 3 are:

Ii ω̇i = (Xi − yi) × Fi + (xi − yi) × fi + Ti + τi (6.4)

where all variables are defined in the rotated Cartesian frame (refer to Figure 6.2) and:

ω1 = 0, ω2 = Ẋ2−ẋ2

h1
, ω3 = Ẋ3−ẋ3

h1
(6.5)

Finally, we can write total force and moment equations for the mass-less pelvis around
the center point:

f1 + f2 + f3 = 0

τ1 + τ2 + τ3 + (x2 − x1) × f2 + (x3 − x1) × f3 = 0 (6.6)

which link all variables together. In these equations, we consider x1 = xpelvis, X2 = xswing

and X3 = xstance as independent variables and solve for others as dependent variables.
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6.2. 3LP dynamics

Table 6.2 – Sequencing information about the two consecutive phases that form a full
step phase.

Full step = double support + single support
duration Tds Tss

timing order 1 2
stance leg subscripts 3 subscripts 3
swing leg - subscripts 2

control input ankle hip/ankle
controllability over-actuated fully-actuated

Actuation possibilities for 3LP are selected as stance foot T3 and swing hip torques τ2 in
the sagittal and lateral planes. Note that T1 and F1 represent disturbing external forces
(at point X1 on the torso) which are zero in normal conditions.

Now, differential equations governing the bipedal motion could be obtained for
different phases. We consider a full step, consisting of a double support followed by a
single support phase, defined in Table 6.2. In double support, the weight is transferred
from F2 to F3, and in single support, the leg with variables of subscripts 2 will swing
forward. Over the next full step phase, the supporting leg can be simply changed by
altering the sign of variable d.

The equations (6.3), (6.4) and (6.6) are not enough to solve the system completely.
We require 12 new equations to find all accelerations in terms of control inputs and vice
versa. This number comes from the fact that in total, we have 12 actuation variables in
the system (torques in the hips and ankles). In single support, since the system is fully
actuated, the additional constraints can simply be added by considering zero contact
force in the swing foot and zero acceleration in the stance foot. In double support,
however, because of the inherent redundancy, we need to make assumptions to simplify
the system.

6.2.1 Single support

In this phase, the swing foot does not have any external forces and the stance foot is
fixed on the ground:

F2 = 0, T2 = 0, Ẍ3 = 0 (6.7)

To further simplify the system, we consider two modes of input torques: constant (U) and
ramp (V ) profiles. Despite being linear, these profiles can still lead to a convincing match
with human torque profiles, discussed in the next section. More complex terms might
improve the matching precision, but make the equations more complicated. Besides,
since there are fundamental geometric differences between the limbs in 3LP and human
(e.g. the number of articulated joints), higher order terms might lead to an over-fitting
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which is not desired. Overall, we have eight input parameters U and V in the system:
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t

Tss
V (6.8)

where Tss stands for single support duration, t denotes the time from the beginning
of the single support phase, and subscripts a and h denote ankle and hip respectively.
Equations of (6.7) and (6.8) together give 12 additional constraints that enable us to
solve the system completely. To this end, we define the state vector Xss(t) and the
disturbance vector W as:

Xss(t) =
�

X2,x(t) X2,y(t) x1,x(t) x1,y(t) X3,x X3,y

�T

W =
�

F1,x F1,y T1,y T1,x

�T
(6.9)

where X3 is the fixed contact point location. Using Maple (Monagan et al., 2005), we
combine all equations and obtain a linear DAE system symbolically:

d2

dt2
Xss(t) = Css

X Xss(t) + Css
U U + Css

V V + Css
W W + Css

D D (6.10)

where constant matrices Css merely depend on system parameters (refer to Appendix C
for further details). The constant vector D is also a function of slope and torso angles φ

and θ as well as the phase variable s. In this equation, Xss(t) is the state vector, U and
V represent constant and ramp inputs and W represents perturbations. Next, we define
the full state vector Qss(t) and the constant vector R as:

Qss(t) =
�

Xss(t)T Ẋss(t)T
�T

R =
�

UT V T W T DT
�T

(6.11)

Such abstract formulation facilitates the process of finding periodic gaits, discussed in the
next section. Assuming constant external forces W , we can solve this system analytically:

Qss(t) = Ass(t) Qss(0) + Bss(t) R (6.12)

where the time-dependent transition matrices Ass(t) and Bss(t) describe state evolution
over time. These matrices are in fact very easy to calculate, because of their simple
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structure:

Ass(t) =
6

�

i=1

Ass
i γss

i (t)

Bss(t) =
6

�

i=1

Bss
i γss

i (t) (6.13)

where γss
i (t) = ewss

i
t for i = 1..4, γss

5 (t) = 1 and γss
6 (t) = t. The four scalars wss

i are
square roots of the eigenvalues associated to the non-zero part of Css

X matrix (which has
4 dimensions). These values describe falling and swing dynamics, quantifying instability
and divergence properties. A shorter pelvis height, for example, leads to wss

i values with
larger magnitudes which mean that falling and swing dynamics become faster. Ass

i and
Bss

i merely depend on constant system parameters, encoding evolution of the initial state
and the effect of inputs respectively. Once these individual matrices are calculated offline,
Ass(t) and Bss(t) can be easily calculated online by few arithmetic operations. Note that
in 3LP, lateral and sagittal dynamics are decoupled, but their similarity leads to repeated
eigenvalues.

6.2.2 Double support

In this phase, the two feet are fixed:

Ẍ3 = 0, Ẍ2 = 0 (6.14)

and contact forces are being transfered from (F2, M2) to (F3, M3). Once (F2 and M2)
become zero, the next single support phase starts, where the leg with subscript 2 performs
swing motion. So far, equations (6.14) give us only 4 constraints, while 8 are yet missing.

In double support, we decided a linear transfer of weight from one leg to another.
This means the vertical component of the Ground Reaction Force (GRF) in the previous
stance leg (which has been stationary during single support) will go linearly to zero
during double support. Such straightforward policy provides simple analytic solutions
(compared to quadratic or other forms). Assume that:

�

F2,z

T2,z

�

= (1 − t

Tds
)

�

α(t)
β(t)

�

,

�

F3,z

T3,z

�

=
t

Tds

�

α(t)
β(t)

�

(6.15)

where Tds denotes double support duration and t denote the time from the beginning of
the double support phase. The variables α(t) and β(t) are (possibly complex) functions
of other variables in the system, but we are not going to find them explicitly. The linear
policy can be encoded with the following equations by removing α(t) and β(t):

t

Tds

�

F2,z

T2,z

�

= (1 − t

Tds
)

�

F3,z

T3,z

�

(6.16)

Remember that in single support, the ankle torques in the stance foot are determined by
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(6.8) and the vertical GRF is constant (because of the fixed height assumptions in the
model). Given that the vertical GRF decreases linearly with time, the Center of Pressure
(CoP) position can be simply preserved in double support by linearly decreasing contact
reaction moment T2 in stance leg (and increasing T3 accordingly):

�

T2,y

T2,x

�

= (1 − t

Tds
)

�

Ua,y + Va,y

−Ua,x − Va,x

�

�

T3,y

T3,x

�

=
t

Tds

�

Ua,y

−Ua,x

�

(6.17)

The equations (6.17) together with (6.8) will indeed result in piecewise linear ankle
torque profiles. Note that the minus signs behind the lateral-plane ankle torques Ua,x

and Va,x in (6.17) come from the symmetry concept in the lateral plane. In other words,
we assume that these constants move the CoP in opposite directions in the two feet. A
positive Ua,x for example moves the CoP to the left on the left foot, while moving it to
the right on the right foot.

Similarly to (6.15), we implement a transition policy for the hip torques as well.
Assume that:

τ2,y = (
t

Tds
)Uh,y + (1 − t

Tds
)γ(t) (6.18)

τ3,y = (1 − t

Tds
)(Uh,y + Vh,y) + (

t

Tds
)γ(t)

where τ2,y starts from a function γ(t)|t=0 in the beginning and converges to Uh,y at the
end of double support phase. Likewise, τ3,y starts from (Uh,y + Vh,y) and converges to the
same γ(t)|t=Tds

at the end of the phase. The function γ(t) in fact represents the torque
in the stance hip which is a complex function of other variables in the system. However,
we know linear trajectories of swing hip torques from (6.8). The equation (6.18) therefore
encodes a linear transition policy. Similar rules can be written for the lateral plane.

τ2,x = (
t

Tds
)Uh,x + (1 − t

Tds
)ζ(t) (6.19)

−τ3,x = (1 − t

Tds
)(Uh,x + Vh,x) + (

t

Tds
)ζ(t)

where the minus sign (behind τ3,x) is for symmetry, like before. The function ζ(t) plays
the same role as γ(t), but in the lateral plane. Now, we can remove γ(t) and ζ(t) to
make more explicit equations:

τ2,y − t
Tds

Uh,y

1 − t
Tds

=
τ3,y − (1 − t

Tds
)(Uh,y + Vh,y)

t
Tds

τ2,x − t
Tds

Uh,x

1 − t
Tds

=
−τ3,x − (1 − t

Tds
)(Uh,x + Vh,x)

t
Tds

(6.20)
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Now, equations (6.14), (6.16), (6.17) and (6.20) provide the 12 constraints needed to
solve the system in the double support phase. Note that except (6.14), other equations
are arbitrary choices to remove the redundancy. One might replace them with other
policies for the same purpose. However, our simple assumptions preserve linearity and
lead to a convincing match with human torque profiles, discussed in the next sections.

As mentioned earlier, 3LP switches to double support when the swing foot velocity
becomes zero. This assumption, however, does not guarantee zero acceleration during
the touchdown event. Therefore, a negligible discontinuity of torque and force profiles
is unavoidable. In the simplest case, even preserving the continuity of horizontal GRF
components lead to terms like tx(t) which are linear, but difficult to solve analytically.
With our specific linear transition rules, however, the profiles are almost continuous.
Some discontinuities happen only in the transversal torques which are small in magnitude,
demonstrated later in Figure 6.10.

In double support phase, the state variable consists of base positions only:

Xds(t) =
�

X2,x X2,y x1,x(t) x1,y(t) X3,x X3,y

�T
(6.21)

while other vectors are the same as before. Again, we combine all equations and obtain
a symbolic linear DAE system for the double support phase:

d2

dt2
Xds(t) = Cds

X Xds(t) + Cds
U U + Cds

V V + Cds
W W + Cds

D D (6.22)

where constant matrices Cds merely depend on system parameters (refer to Appendix
C for further details). Defining the full state vector Q(t) and the constant vector R as
before, we can obtain a similar system of closed-form solutions as:

Qds(t) = Ads(t) Qds(0) + Bds(t) R (6.23)

where the time-dependent transition matrices Ads(t) and Bds(t) describe state evolution
over time. Note that since X2 and X3 are constant here, the matrix Ads(t) is partially
diagonal with unit elements, keeping feet positions constant. The transition matrices
have the following simple structure:

Ads(t) =
4

�

i=1

Ads
i γds

i (t)

Bds(t) =
4

�

i=1

Bds
i γds

i (t) (6.24)

where γds
i (t) = ewds

i
t for i = 1..2, γds

3 (t) = 1 and γds
4 (t) = t. The two scalars wds

i are
replicated square roots of the eigenvalues associated with the non-zero part of Cds

X matrix.
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6.2.3 Full step

Having state transition matrices for both phases, we can now find closed-form equations
for the full step phase:

Q(t) = A(t) Q(0) + B(t) R (6.25)

where t denotes the time from the beginning of the full step phase (= beginning of the
double support) and Q(t) ∈ R

12 is defined as:

Q(t) =
�

X(t)T Ẋ(t)T
�T

(6.26)

and X(t) ∈ R
6 is:

X(t) =
�

X2,x(t) X2,y(t) x1,x(t) x1,y(t) X3,x X3,y

�T

The transition matrix A(t) is defined as:

A(t) =

�

Ads(t) t ≤ Tds

Ass(t − Tds)Ads(Tds) 0 < t − Tds ≤ Tss
(6.27)

and B(t) is:

B(t) =

�

Bds(t) t ≤ Tds

Ass(t − Tds)Bds(Tds) + Bss(t − Tds) 0 < t − Tds ≤ Tss
(6.28)

Note that we have used parameters Tss and Tds to calculate transfer matrices. The
variable Tds is crucial for double support calculations, though Tss only determines the
rate of time-increasing input components (V ) in the single support. Therefore, one can
easily scale Tss and V such that the ratio remains constant in (6.8). The duration of a
full step phase is defined as Tstep = Tds + Tss. Figure 6.3 provides a demonstrates of all
transition matrices and timing variables in a full step phase.

So far in this section, we have found transition matrices for the system and defined
a full phase, consisting of a double support followed by a single support. We have also
formulated matrices such that they are very fast for online calculation. The matrix A(t)
is used to find the time evolution of our system, especially until the end of a full step
phase where t = Tstep. In the next section, we are going to find different open-loop
periodic gaits based on the type of actuation desired.

6.3 Periodic gaits
Although various types of symmetric and asymmetric gaits can be generated (Rummel
et al., 2010), in this chapter, we only focus on symmetric gaits observed in normal human
walking. In other words, given timing specifications, we find a space of different vectors
that produce symmetric gaits. Each of these vectors contains initial conditions and
constant inputs. The concept of symmetry could be encoded in a single matrix along
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0 Tds+TssTds t t” Tds+t’

Ads(t”) Ass(t’)

A(Tds+Tss)

A(t)

∆t

Single SupportDouble Support

Figure 6.3 – Demonstration of transition matrices on a time axis. Δt represents arbitrary
time duration that could be as small as a control tick. Thanks to linearity, one can easily
find exact transition matrices for Δt as well which could be used for visualization and
control purposes. Otherwise, the matrix A(t) is enough for gait generation.

with the constraint of zero foot velocity at the end of the step.

Consider the vectors Q(t) and X(t) in (6.26) and (6.27) respectively. Indeed, zero-
velocity constraints imply:

�

X3,x(t) X3,y(t)
�T

= const, 0 ≤ t ≤ Tstep

�

Ẋ3,x(0) Ẋ3,y(0)
�T

= 0
�

Ẋ2,x(0) Ẋ2,y(0)
�T

= 0
�

Ẋ2,x(Tstep) Ẋ2,y(Tstep)
�T

= 0 (6.29)

The first constraint is automatically satisfied by construction of matrices Ass(t) and Ads

where we assumed stationary stance foot (and thus zero acceleration). The other three
constraints shall be satisfied in finding periodic gaits.

After a full step phase, contact positions are exchanged by applying the matrix
T ∈ R

12×12 to the vector Q(Tstep) where velocities are yet unchanged:

T =

�

TX 0
0 I6×6

�

(6.30)

99



Chapter 6. 3LP Model

where TX ∈ R
6×6 is defined as:

TX =























. . . . 1 .

. . . . . 1

. . 1 . . .

. . . 1 . .

1 . . . . .

. 1 . . . .























(6.31)

To implement the symmetry concept, we define relative difference vectors between
the base, swing foot, and stance foot positions. These vectors could be extracted from
Q(t) by the following matrix M ∈ R

12×12:

M =

�

MX 0
0 MẊ

�

(6.32)

where 0 and I are zero and identity matrices. Sub-block are also defined as:

MX =













−1 . 1 . . .

. −1 . 1 . .

. . 1 . −1 .

. . . 1 . −1













, MẊ =







I6×6

1 . . . . .

. 1 . . . .






(6.33)

where MX extracts difference vectors from the state vector and MẊ is used to constrain
swing foot velocities to zero. Comparing the difference vectors before and after a
symmetric full step, in the sagittal plane, components are equal, and in the lateral plane,
they are opposite. Besides, we have to encode velocity constraints of (6.29) as well. So,
we define a matrix S ∈ R

12×12:

O = diag( [1, −1, 1, −1, 0, 0, 1, −1, 0, 0, 1, 1] ) (6.34)

where symmetry conditions are applied to the difference vectors and the base velocity
while feet velocities are forced to zero. Now, consider in initial condition vector Q(0) and
inputs R. The state at the end of a full step is:

Q(Tstep) = A(Tstep)Q(0) + B(Tstep)R (6.35)

Applying contact exchange matrix, the initial state Q�(0) for the next phase is:

Q�(0) = TQ(Tstep) (6.36)

The difference vectors extracted from Q(0) and Q(Tstep) should satisfy symmetry condi-
tions while initial and final foot velocities in Q(0) and Q(Tstep) should be zero. One can
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write these conditions as:

MQ(0) = OMQ�(0) (6.37)

Now, for a general vector of initial conditions and actuation parameters packed together:

Y =
�

QT (0) RT
�T

(6.38)

the following equation should hold if Y represents a symmetric periodic gait:

DY = 0 (6.39)

where:

D =
�

−M + OMTA(Tstep) OMTB(Tstep)
�

(6.40)

The matrix D ∈ R
12×25, in fact, compares the difference vectors before and after a

full step phase while forcing feet velocities to zero. Note that apart from state vectors,
the hip and contact torques U and V , the disturbance vector W and the phase variable
s are considered here. However, it is meaningless in practice to consider a periodic gait
with constant external disturbance. Initial contact positions X3 would be set to zero to
avoid redundant null space dimensions.

Remember that in the previous section, there were two variables to decide: Tss and
Tds. In this section, we find various types of gaits by selecting different combinations
of actuation and timing variables. We do so by considering the matrix D which is, in
fact, a function of timing variables. Any periodic solution (a vector containing initial
states and actuation inputs) should lie in the null space of the D matrix. In other words,
solution manifolds are found by combining different null vectors of the matrix D. A
solution contains initial states and actuation parameters where available actuators are
swing hip and stance ankle torques (in sagittal and lateral directions), in constant U and
time-increasing modes V . Note that only columns attributed to non-zero values in the
solution vector are selected. In other words, we normally exclude columns related to
contact positions X3 and disturbances W .

In the rest of this chapter, we use human-like body parameters for numerical
simulations, where mass distributions and geometries are taken from (de Leva, 1996).
Table 6.3 lists these parameters for two adult-size and kid-size models, used further in
this chapter.

6.3.1 Pseudo-passive gaits manifold

First, we would like to know whether the system has any pseudo-passive walking pattern
or not. By pseudo-passive, we mean a gait in which swing hip and stance contact torques
are zero. The term pseudo indicates that in the stance hip, the actuators might produce
or dissipate power and the system is not strictly passive. This term also reflects the fact
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Model adult-size kid-size unit
Total mass 70 30 kg

Body length 1.7 1.0 m
h1 0.89 0.52 m
h2 0.32 0.19 m
h3 0.36 0.22 m
m1 45.7 19.6 kg

m2 = m3 12.15 5.2 kg
w 0.2 0.12 m

Table 6.3 – Parameters for adult-size and kid-size models used in simulations.
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Figure 6.4 – Absolute singular values of Dpassive versus Tstep, plotted for an adult-size
model. In these plots, we fix the double support time Tds = 0.3s and only change Tss. It is
notable that around Tstep = 0.86s, the system shows zero singular values which correspond
to a null space containing an infinite number of periodic solutions. These solutions are
all without swing hip or stance contact actuation referred to as pseudo-passive gaits.

that in our linear model, the legs are stretched or shortened by prismatic actuators, as
part of the model construction. For pseudo-passive gaits, we remove columns associated
to X3, U , V and W in D and obtain a reduced matrix Dpassive ∈ R

12×11. Figure 6.4
shows absolute singular values of Dpassive over time.
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6.3. Periodic gaits

One can clearly see that there is a time Tstep = Trelax = 0.86s where the system
shows an additional zero singular value. Trelax can be found by a simple root-finding
algorithm. This singular value refers to sagittal direction while the other singular value
(which is always zero) refers to lateral direction. We can simply calculate corresponding
singular vectors of Dpassive and find a null space manifold. Note that there is only one
lateral solution as the value of phase variable s should be ±1. However, the solution in
the sagittal plane can be scaled by any arbitrary positive or negative value to obtain
different modulated speeds. Therefore, the manifold of pseudo-passive compass gaits,
in this case, is only 1-dimensional. A demonstration of normal pseudo-passive compass
gaits can be found in Figure 6.6. From Figure 6.4 also, we simply conclude that for any
step time other than Trelax, the system cannot demonstrate pseudo-passive gaits.

6.3.2 Actuated gaits manifold

In this part, we are going to find manifolds of motion which can benefit from swing hip
actuation and CoP modulation as well. These inputs are of course containing constant
and time varying components for both sagittal and lateral dynamics, as discussed in the
previous section. With these inputs, we can pump energy into the swing leg and brake at
the end of the phase to produce faster swing motions. We can also apply contact torques
which modulate the CoP and resemble the fact the CoP in human goes forward from the
heel to the toes during the swing phase. Here we only remove columns associated to X3

and W in D and obtain a reduced matrix Dactive ∈ R
12×19. The corresponding absolute

singular values are shown in Figure 6.5 over time.

Surprisingly, the system does not have a distinct zero singular value at Trelax like
before. However, it has 7 zero singular values that produce a larger null space at any
given step time Tstep. The corresponding actuated gait manifold is not 7-dimensional
however. The phase variable s should always be ±1, reducing the total dimensions to
6. Besides, one can also choose active actuators and the desired speed to reduce the
dimensionality further and find a unique solution.

As demonstrated in pseudo-passive gaits, at Trelax, Dpassive has a certain 2-dimensional
null space. Now what if we calculate a 7-dimensional null space using Trelax and Dactive

instead of Dpassive? Could we still find a pseudo-passive gait out of this larger null
space? In fact, it is possible, even though no distinct zero singular value is observed in
Figure 6.5. The reason is that the rank of actuation space at Trelax is equal to 5 in the
7-dimensional null space manifold of Dactive. This means if we constrain all of them to
zero for pseudo-passive walking, we only lose 5 ranks. The other 2 ranks could still be
dedicated to the phase variable s and the desired speed, like before. So, the null space
manifold of actuated gaits already encompasses the one for pseudo-passive gaits and we
do not need to calculate them separately. In the next subsection, we are going to show a
few examples of walking gaits, using these null spaces.
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Figure 6.5 – Absolute singular values of the matrix Dactive with respect to the step time
Tstep, plotted for an adult-size model. In these plots, we have fixed the double support
time Tds = 0.3s. It is notable that the system does not show a unique zero singular value
anymore. However, there are always 7 default zero singular values that can produce
gaits for any choice of Tstep. These gaits are indeed actuated with arbitrary swing hip or
stance ankle torque profiles.

6.3.3 Numerical examples

In addition to the pseudo-passive gait which has a certain timing Trelax, we are going to
show other same-speed gaits with different timings and actuation patterns. From the
singular value analysis, we have 7 singular vectors ni, 1 ≤ i ≤ 7 for the matrix Dactive.
Each of these vectors have similar dimensions with Y in (6.38), consisting of an initial
state, with the contact point (X3) at origin, a resting swing foot (Ẋ2 = 0), a certain
actuation pattern (encoded in U and V ) and no disturbance (W = 0) of course. We pack
them together in a matrix N =

�

n1 n2 ... n7

�

. We also select a smaller yet more
human-like choice of Tds = 0.1s (Cappellini et al., 2006), and Tss = 0.6028s calculated by
the pseudo-passivity root finding procedure. The choice of speed will be vdes = 1m/s.

Given the constant matrix N , we want to find a vector of coefficients δ =
�

δ1 δ2 ... δ7

�T

that combine the columns in N and produce unique solutions. We consider minimizing
squared torques as an estimate of the mechanical power. The quadratic minimization is
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6.3. Periodic gaits

formulated as:

min
δ,U,V

UT U + V T V

s.t.












SX2,x

SU

SV

Ss













Nδ =













−vdes × Tstep

U

V

±1













(6.41)

where SX2,x
selects the row corresponding to the sagittal swing foot position (X2,x), SU

and SV correspond to the constants U and V and Ss corresponds to the phase variable
s. The specific way of encoding vdes in the optimization moves the initial swing foot
position backward to find gaits with an average velocity equal to vdes. Note that the
equality constrained quadratic optimization of (6.41) has, in fact, a closed-form solution
and there is no need to solve it iteratively.

Now consider the following scenarios:

• Pseudo-passive walking: which is calculated as mentioned earlier. In this gait,
the hip and ankle torques are all zero.

• Long double support: in this gait, we enforce ankle torques to zero by adding
more constraints to the optimization:

�

SUa

SVa

�

Nδ = 0 (6.42)

where SUa and SVa select rows corresponding to the stance ankle torques. Keeping
the same Tstep, we double Tds and decrease Tss accordingly. Note that now, the
walking cannot be pseudo-passive anymore. The optimization, therefore, finds
nonzero hip torques to produce the same speed and step length.

• Stage walking: here, we constrain the ankle torques to zero like before. Instead
of optimizing the hip torques, however, we optimize lateral velocities in the cost
function. In this case, the biped walks on a straight line without lateral bounce.

• CoP modulation: given the length of the feet, the total weight and the timing
of single support, we can calculate a constantly increasing ankle torque t

Tss
τCoP ,

acting in the sagittal plane to move the CoP forward. In this scenario, we force
the time-increasing sagittal component of the ankle torques to τCoP (and other
components to zero) by adding the following constraints to the optimization in
(6.41):

�

SUa

SVa

�

Nδ =
�

0 0 τCoP 0
�T

(6.43)
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Motion Direction

Figure 6.6 – A detailed demonstration of a full step phase in pseudo-passive walking
where snapshots are taken every 30ms. Black arrows show the direction of motion, and
the swing leg is shown in red. In this figure, lateral bounces could be seen on the right
while velocities can be inferred from the snapshots on the left. The swing leg speeds up
and slows down during a step phase while the torso has minimum speed when the swing
foot is at maximum speed. It can also be observed that the swing foot approximately
follows a straight line while the swing hip bounces laterally.

The result is a gait with time-increasing ankle torque profiles and minimal hip
actuation.

• LIP-like: in this case, keeping the original timing, we change the model of the
robot. We transfer most of the weight of each leg to the torso, and also move the
three masses closer to the pelvis by decreasing h2 and h3. Again, we disable all
ankle torques as well.

The 3D geometry of resulting gaits are shown in Figure 6.7 while a detailed diagram
of each step is shown in Figure 6.6. The accompanied video demonstrates different
features of 3LP and the five previously mentioned scenarios. It can be concluded from
the Figure 6.7 that changing different parameters does not have a major effect on the
overall geometry of walking. However, since it is important to match dynamics of the
full model, we investigate dynamic properties of these walking scenarios as well.

Although CoM trajectories look similar in Figure 6.7, they have very different
characteristics regarding velocity variations, shown in Figure 6.8. The LIP-like model
shows a significant variation in the sagittal velocity. It is not so obvious how swing
and torso dynamics affect this motion at first glance. By torso dynamics, we mean the
torques required by the stance hip to keep the torso always upright (Hodgins and Pollard,
1997; Yin et al., 2007; Coros et al., 2010; Mordatch et al., 2010). These torques are not
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6.3. Periodic gaits

Pseudo-passive walking Long double support Stage walking CoP modulation LIP-like

Figure 6.7 – Snapshots of different walking scenarios at 1m/s and approximately 1.5
step/s. These snapshots are taken in phase switching moments. Feet trajectories are
plotted along with the projection of the CoM trajectory on the ground. In pseudo-passive
walking, there is no actuation. However, one can clearly see that the model can produce
CoM trajectory, lateral bounces, and swing motions. In the long double support case,
the motion is geometrically quite similar. Stage walking produces no lateral bounce by
using proper hip torques to let the model step on a single straight line only. On the real
robot, however, one should avoid self-collision, and this motion is thus infeasible. CoP
modulation also leads to a geometry similar to pseudo-passive walking, though CoM
trajectory (the green line on the ground) starts a bit further from the trailing leg. The
influence of CoP modulation is mainly reducing variations in the sagittal CoM speed
(Figure 6.8). Finally, the motion of LIP-like model is rather similar to the pseudo-passive
case, but with higher CoM speed variations (Figure 6.8). In this case, we enforce lateral
footstep distances to mimic other scenarios, since the pelvis width is minimal. All
corresponding walking movies could be found in the accompanying video.

necessarily zero since the pelvis has nonzero accelerations. Therefore, torso-balancing hip
torques can affect the CoM motion considerably, especially since the torso is relatively
heavy. Moreover, although the swing foot has a smaller weight compared to other
parts of the body, it can be seen from Figure 6.9 that the swing leg has relatively large
velocities during single support. Such motion increases the kinetic energy quadratically
and therefore results in a significant workflow. In our model, we have described these
effects in a simplified and linear fashion, yet capturing important couplings between the
three pendulums.

Taking a closer look at Figure 6.8 reveals that even maximal CoP modulation
still does not change velocity profiles considerably. This means the difference between
pseudo-passive and LIP-like walking is way larger than that between pseudo-passive and
CoP-modulated walking. In other words, CoP authority can at most convert the pseudo-
passive gait to the CoP-modulated gait. The available CoP authority is hardly enough
to convert the pseudo-passive gait to LIP-like gait, and this gap increases substantially
at faster walking speeds. Although here the speed is moderate, we can easily infer that
LIP as a template model can only operate in a very limited range of walking speeds.
Remember that in fact an inverse dynamics or kinematics approach eventually realizes
the template motion with the full model by exploiting all control authorities of the robot
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Figure 6.8 – Sagittal vs. lateral CoM velocity trajectories for different scenarios discussed.
Note that the LIP-like model produces significant sagittal variations. The pseudo-passive
gait shows moderate variations, however, indicating that swing and torso dynamics clearly
reduce these variations. Long double support also reduces variations in both directions.
By modulating the CoP, although lateral motions remain similar to the pseudo-passive
gait, sagittal variations reduce even more, and the motion becomes smoother. Finally,
one can see that the stage walking has no lateral motion compared to the other gaits. In
general, increasing the double support duration and CoP modulation both have a similar
smoothing effect on CoM velocities. However, this does not induce any argument on
energy efficiency.

(including the CoP). This motivates therefore not to modulate the CoP in a template
level and leave the control authority free for the underlying full-body controllers to mimic
the template motion as precisely as possible.

In this section, we introduced an easy method to find manifolds of periodic motions
without any numerical forward simulation of the system. Once these manifolds were
found, we also showed how to find individual solutions, based on the type of actuation
and timing desired. We only considered gaits with minimal hip torques here. However,
to go further, we would like to investigate the effect of timing and walking speed as well.
Such investigation reveals interesting energetic properties of 3LP, discussed in the next
section.

6.4 Comparison with human data

Compared to LIP, the 3LP model is much more similar to human locomotion, because
it describes falling dynamics, swing motion, torso balance, lateral stepping and double
support features altogether. In addition to geometric similarities, we investigate ground
reaction forces and joint torques to compare the underlying dynamics that result in such
geometric similarity. For this purpose, regarding available data from human subjects
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Figure 6.9 – CoM and feet positions plotted together with velocities over a 2-step motion.
The average speed is set to 1m/s, the frequency is about 1.5 step/s and the pseudo-passive
gait is used to obtain these trajectories. It can be observed that maximum foot velocities
are up to three times larger than the average speed of the CoM. Despite a smaller mass,
therefore, the swing leg can have a considerable kinetic energy.

(Eng and Winter, 1995), we selected similar model parameters and timing, calculated
periodic manifolds and found solutions with the same speed and CoP modulation pattern.
The resulting trajectories are demonstrated in Figure 6.10 together with average human
profiles. In the following, we discuss various similarities observed in this Figure

6.4.1 Sagittal dynamics

From the last column of Figure 6.10, one can observe a good match of hip extensor and
ankle plantar flexor torques as well as Anterior-Posterior ground reaction forces. This is
despite a relatively fast walking speed and large step sizes (about 80% of the leg length).
Note also that the constant and time-increasing components of hip/ankle torques are
roughly enough to describe major trends in human curves. Nonlinear profiles in 3LP are,
however, related to the stance leg and those degrees of freedom which are not directly
controlled by desired input torques. The LIP model does not have hip torques and
produces larger A/P GRF, because of different CoM trajectories shown in the Figure 6.8.

6.4.2 Vertical GRF

By model construction, the CoM height is constant, and we do not expect two peaks in
the vertical GRF profiles, similar to SLIP-based models (Rummel et al., 2010; Sharbafi

and Seyfarth, 2015). However, the general trapezoidal shape is preserved, thanks to our
double support phase and its linear transition rules. Note that the LIP model can produce
a similar profile too. The main consequence of a constant-height profile is walking with
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Figure 6.10 – Comparing dynamic profiles of 3LP and LIP with normalized human data,
taken from (Eng and Winter, 1995). This data is for male subjects with average mass
of 77.2kg and height of 1.8m, walking at 1.6m/s and 108 steps/min. Here we use the
same CoP modulation for both LIP and 3LP for better comparison. In these curves, we
have demonstrated hip/ankle torques as well as ground reaction forces. Note that our
model does not have any knee and we consider ankle torques to approximate contact
wrenches. Most of the profiles in 3LP match the human data quite well, although lateral
and transversal dynamics have some discrepancies. The LIP model is, however, unable to
describe hip torques as it does not include swing and torso dynamics. It is also remarkable
that our specific assumptions in (6.16), (6.17) and (6.20) move the discontinuity on
variables with smaller magnitudes (shown with circles).

crouched knees which looks less human-like compared to many other template models
listed in Figure 6.1.

6.4.3 Lateral dynamics

In 3LP, we only minimize hip/ankle torques to find a unique solution out of the large
manifold of all symmetric periodic gaits. This minimization is not necessarily realistic and
human-like, as it leads to wider lateral steps, more bouncing, and often larger transversal
ankle torques. A better cost function on energy might produce more human-like gaits,
although it is doubted in (Workman and Armstrong, 1986) that optimal gaits merely
depend on energy terms. There might be terms related to balancing performance as well,
at least in lower speeds. In faster speeds also (like the human profiles demonstrated here
(Eng and Winter, 1995)), humans take closer steps laterally compared to our model.

In Figure 6.7), we see that 3LP keeps general trends like double peaks in the
Medio-Lateral (M/L) GRF, but cannot precisely describe other torque profiles. Humans
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normally tend to step as close as possible to minimize lateral motions and energy (Kuo,
1999) (Similar to stage walking in Figure 6.7). However, humans swing their foot over
an arc shape to avoid self-collision. Such a fine motion is feasible in 3LP but requires a
better objective function in (6.41). Note that the sagittal swing motion can influence
lateral dynamics as well (Kuo, 1999; Collins et al., 2005), possibly through transversal
moments. This might be another reason for the discrepancy observed between different
lateral curves since 3LP completely decouples the lateral and sagittal dynamics. In the
LIP model, though, there is no pelvis included. However, we consider a gait with the
same step-width as 3LP. Although LIP does not have hip torques, M/L GRF forces are
yet similar to 3LP, shown in Figure 6.7.

6.4.4 Transversal rotation torques

3LP preserves the general trend of transversal torques observed in human, but not
matching precisely, especially in the ankle. One major reason is that arm motions, and
pelvic rotations are not considered in the model. Another important reason is wider
lateral steps in 3LP compared to human which require larger transversal moments. Note
that transversal torques are needed to keep the torso upright and straight ahead during
swing phase, compensating the moment produced by the swing leg. In LIP, however,
since there is no pelvis and swing leg, we do not expect transversal torques.

6.5 Discussion
Compared to most of other template models listed in Figure 6.1, our proposed model
considers swing and torso dynamics in a linear formulation. On the other hand, it is
computationally similar to LIP which is vastly used in the literature to control humanoids
over a range of relatively slow walking speeds (Sakagami et al., 2002). Nonlinear models
are also popular in controlling simpler robots (Collins et al., 2005), but again over a
limited range of speeds.

Template models describe major dynamics of the robot in an abstract way used for
motion analysis or synthesis, probably in a hierarchy with more complex full models.
In such control paradigms, it is important to keep computational costs as minimal as
possible, favoring future prediction. On the other hand, template models should match
the full models dynamically. 3LP can describe many features of human walking, and
consequently, it is more precise for controlling humanoids, compared to many other
single-mass models. The energy flow in 3LP is also more similar to the human, providing
more natural motions for humanoids which have similar anthropomorphic features.

In 3LP, the pelvis width parameter has a linear effect on the lateral motion. This
parameter is used to find lateral ankle/hip torques and to determine a natural lateral
foot placement. This is compared to many other methods, e.g. the MPC controller
of chapter 2, where the two feet are forced to be apart to avoid self-collision. In the
literature, the timing and footstep locations are imposed without enough knowledge of
internal dynamics. In our model, however, since swing dynamics is included and a zero
final velocity is assumed for the feet, natural periodic gaits automatically come out of
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equations. The assumption mentioned relieves the need to calculate impact forces and
determines the timing and periodicity conditions as well.

3LP can predict human walking profiles quite well, even in relatively fast speeds
where the linearity assumption might not be realistic. Although IP-based models can
demonstrate CoM excursions quite well, a nonlinear nature makes them less suitable for
highly complex robots that require online planning. There are more advanced versions of
IP-based models in the literature, including torso and swing dynamics. However again,
nonlinear equations cannot be used in a per-time-step MPC control. The proposed model
is based on a reasonable trade-off between geometric and dynamic matching, favoring
fast computation properties. We would like to mention that the vertical excursion of
CoM, even in a very fast walking gait at 2m/s is still about 5cm (Gard et al., 2004)
which is quite negligible compared to a step-size of about 1m (pelvis excursion is about
7cm however). CoM excursion depends on step-size which does not increase linearly with
the walking speed. Humans increase the frequency as well, which in consequence affects
swing dynamics and demands more energy from the hip muscles.

We did not set up control frameworks in this chapter. Rather, we focused on
biomechanical analysis and similarities to human locomotion that can be inspiring for
generating more precise abstract plans, used to control humanoid robots. In brief, 3LP
provides:

+ Swing dynamics.
+ Torso balancing torques.
+ Double support phase.
+ Hip/ankle actuation possibilities.
+ Natural lateral motion.
+ Natural periodic gaits.
+ Pseudo-passive compass gait.
+ Computational advantages.
+ Possibility to consider hip torque limits.

Despite limiting factors such as:

- Constant CoM height.
- Flat vertical GRF profiles.
- Stretched legs.
- No steering capabilities yet.
- No arm motion.
- No torso pitch/roll DoF.

3LP can be extended to have two more degrees of freedom for the torso. It can also
include quadratic actuation terms to produce more accurate torque profiles. It should be
noted that without pelvis, steering is still possible as demonstrated in chapter 2 which is
based on LIP. Steering makes 3LP nonlinear, but one can compromise the lateral motion
and let inverse dynamics find proper actuation patterns. Without the pelvis in 3LP,
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one actually needs to impose the lateral bouncing as we did in the LIP-like scenario.
An important role of pelvis is, therefore, to produce a natural lateral motion which
automatically emerges from the optimization of (6.41). This makes the model more
generic without the need to impose the lateral bouncing. Note that the natural step
width is not easy to determine, since it depends on the leg length, stepping frequency
and available ankle torques.

It is worth mentioning that an imposed step width which is similar to the natural
step width (found when including the pelvis) might not produce very different GRF
profiles. This is induced from Figure 6.10 by comparing GRF profiles of the LIP-like
scenario and the full 3LP model. As a result, one can easily remove the pelvis and allow
for steering with the cost of imposing the step width. This can be realized by finding a
natural step width with the pelvis and then imposing it in another version of 3LP which
does not have the pelvis anymore. The second model remains natural (in terms of GRF),
linear and of course suitable for producing steering motions.

In future work, we are going to replace LIP with 3LP in our MPC-based control
framework of chapter 2. 3LP can be used in both state estimation and planning levels.
It can possibly exchange information about the CoM or the feet with the full model.
Dynamic equations of 3LP can, therefore, predict future states in a MPC framework or
help to filter sensory noises by Kalman filtering. The linear equations of 3LP can indeed
provide a non-periodic formulation of the system as well, where footsteps might act as
inputs to the system instead of the hip torques. This reformulation is similar to planning
footsteps in MPC control of chapter 2 or Capturability frameworks (Koolen et al., 2012).

Among all advantages offered by 3LP, we favor its capability to produce more natural
motions. In this regard, we can expect our inverse dynamics layer to track the template
model more precisely and therefore, being able to produce more human-like motions.
Including torso and swing dynamics in template models make them computationally
more complicated, but closer to reality. In the literature, complex models are mostly used
for offline trajectory generation. In 3LP, however, we partially include these additional
dynamic effects while keeping the model yet suitable for online control and future
prediction. The focus of this chapter was to introduce the model and to explore different
capabilities. In future, we integrate it with our hierarchical walking controller to achieve
more dynamic motions. This chapter is accompanied with a video, demonstrating general
features of 3LP together with the five gait scenarios discussed.
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7 Time-Projection Control

Continuing the previous part of the thesis which aimed at developing better template
models, this part will focus on walking control and application to the real hardware.
We start this part by presenting our theoretical contribution to walking control in this
chapter and then present the hardware experiments next in chapter 8. Remember from
chapter 2 that the MPC controller was able to adjust footstep locations online. This
was achieved thanks to closed-form equations of the linear inverted pendulum model
as well as an efficient optimization implementation. The new 3LP model described in
chapter 6 provides the same linear equations with better mechanical properties. However,
we are interested in the output of MPC optimizations in terms of footstep adjustment
strategies. In other words, we look for simpler control rules that provide such optimality
and robustness in online push recovery and gait generation scenarios. In this chapter, we
aim at finding such universal footstep adjustment controller. We use the 3LP model, find
discrete motion equations, derive discrete LQR controllers and propose a time-projection
method that maps discrete errors to continuous errors. The time-projection method
enables us to perform online reaction to perturbations while being able to modulate
the motion speed at the same time. This chapter formulates the new control paradigm,
applies it on walking stabilization and extensively analyzes the resulting push recovery
performance. Later in chapter 8 for real robot experiments, we derive simple and generic
look-up-table control rules that suggest online footstep adjustments based on deviations
from the 3LP gait1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji, Philippe Muellhaupt, and Auke Jan Ijspeert. "Time-projection
control to recover inter-sample disturbances, application to walking control."
arXiv preprint arXiv:1801.02150, 2018.

The first author developed the method and wrote the manuscript. The second author
helped with the mathematical proof, development of a simple example and formatting
of the manuscript to make it smooth and easy to understand.

1All the videos of this chapter could be found at https://youtu.be/SdhjV-adClM
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7.1 Background

Performing bipedal locomotion for humanoid robots is a challenging task regarding many
different aspects. On one hand, the hardware should be powerful enough to handle the
weight and fast motions of the swing legs. On the other hand, controllers require accurate
perception and actuation capabilities for better stabilization and predictability of the
system. Power and precision are two different and sometimes conflicting requirements.
From the perspective of geometry also, complex chains in each leg of the robot make
the control problem multi-dimensional. Due to an under-actuated nature and geometric
complexities, controlling humanoids in dynamic walking is not trivial. The hybrid nature
makes such control paradigm even more complicated since the system model changes in
each phase of the motion (i.e., left and right support phases).

In a model-based controller which benefits from mechanical models of the system, it
is common to break the complexity into multiple levels. Actuator dynamics are identified
and compensated for in a separate block of position or torque controller. The kinematic or
rigid body dynamic model is placed in an interface block to translate Cartesian variables
to joint variables and vice versa. Then, the whole complex system is approximated with
a simpler template model to describe walking dynamics (Kajita and Tani, 1991; Faraji
and Ijspeert, 2017a). The fewer dimensions of such a template model compared to the
actual system makes it possible to apply classical control theories in real time, within
capabilities of computation units and agility of the motion. The under-actuated hybrid
nature of walking is then handled with template models. In this regard, hierarchical
model-based control approaches can handle complexities in different levels and use models
to capture main dynamics of the actuators, limbs or the full body.

7.1.1 Template models

Simplified models can speed up the calculation of footstep plans, Center of Mass (CoM)
and foot Center of Pressure (CoP) trajectories. A good walking controller should stabilize
the under-actuated part of the system (also called falling dynamics) either by modulating
the CoP through ankle torques, or by regulating the angular momentum through rotation
of the torso, or finally by taking proper footsteps (all discussed in (Stephens, 2007)). The
first two strategies provide continuous control, but with strict bounds on the available
ankle torques (determined by the foot size) or body rotations. The third strategy,
however, uses the hybrid nature of walking and stabilizes the system in successive phases
by adjusting footstep locations. Inverted Pendulum (IP) (Kuo et al., 2005) and its linear
version (LIP) (Kajita and Tani, 1991; Koolen et al., 2012) are probably the simplest
models used for these three strategies, concentrating the whole mass of the robot in a
point and modeling the legs with massless inverted pendulums. In these models, swing
dynamics is absent, and therefore, the timing and the final swing-leg attack angle is
imposed by the controller. A proper attack angle which directly translates to footstep
location can stabilize the system through the third strategy, but it might require a precise
full-model inverse dynamics to ensure CoM and swing motion tracking. There are more
complex versions of inverted pendulum with masses in the legs (Byl and Tedrake, 2008),
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Figure 7.1 – The role of a discrete controller in regulating inputs at the beginning of
each phase to stabilize the robot and to track the nominal periodic solution. After one
reaction, this controller has to wait until the next event to correct for the accumulated
error of all inter-sample disturbances.

torso (Westervelt et al., 2007) and knee for the swing leg (Asano et al., 2004). In all
advanced versions of IP, due to non-linearity, optimizations and numerical integrations
are needed to obtain periodic walking gaits. These gaits are indeed more natural than
simple IP-based gaits, due to inclusion of swing/torso dynamics.

7.1.2 Discrete control

Linearization of template systems around periodic walking gaits offers a linear model for
control and stabilization using the third stabilization strategy (Rummel et al., 2010). Such
a linear model describes the evolution of possible deviations from nominal trajectories
and the effect of inputs, particularly footstep locations. Discretization of this linear
model between specific gait events, e.g., touch down or maximum apex moments can
form the basis for a discrete controller that adjusts inputs when the event triggers. This
approach is shown in Figure 7.1 where an expert controller provides corrective inputs
based on deviations observed at each event. The linear inverted pendulum (LIP) provides
analytical solutions in this regard and is widely used in slow-walking locomotions (Feng
et al., 2013; Faraji et al., 2014a; Herdt et al., 2010b; Koolen et al., 2012). In this model,
similar to IP, the next footstep location and timing should be imposed as the original
model does not include swing dynamics.

7.1.3 Limitations of discrete control

The discrete control paradigm of Figure 7.1 benefits from a very simple discrete map
and the control rate is adjusted to the frequency of phase-switches. The synchrony of
control with the hybrid phase-changes is of particular interest in walking. In the frame
of third stabilization strategy through footstep locations, once a swing phase starts, the
falling dynamics keeps growing until the next contact point is established to absorb
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kT (k+1)T

Intermitent Push

Figure 7.2 – Demonstration of an intermittent push that appears shortly during a
continuous phase and influences the system. The normal and disturbed trajectories are
shown in black and red respectively. Here, the final footstep location of this phase is not
adjusted online. A delayed reaction to disturbance only at the beginning of the next
phase might produce a large overshoot in the next footstep locations.

the extra energy. An effective stabilizing correction is therefore applied only at hybrid
phase-change moments (Zaytsev et al., 2015; Kelly and Ruina, 2015; Byl and Tedrake,
2008). The first strategy (CoP modulation) offers continuous stabilization authority
through modulation of CoP, though the effect is insufficient due to small foot dimensions.
This strategy seems more suitable for slow walking speeds and short footsteps, popular
for controlling humanoid robots. The second strategy (angular momentum) might lead
to unwanted torso oscillations in practice and can not be used alone unless a power-full
momentum wheel is mounted on the robot. The third strategy (foot stepping) is more
effective in faster speeds and larger footsteps which explains the synchrony and motivates
for discretization of the linearized model at hybrid phase-changes, but one should create
a library of controllers to handle linearization around different gait conditions (Kelly and
Ruina, 2015; Manchester and Umenberger, 2014; Gregg et al., 2012).

Although a discrete model can predict the future very rapidly in terms of computation,
there might be intermittent disturbances that shortly act on the system at any time and
disappear. As mentioned earlier, discretization of walking models is usually synchronized
with phase-change moments. However, due to unstable falling dynamics, the phase
period (i.e., stance period) is long enough for even moderate intermittent disturbances
to accumulate and result in a considerable deviation. Such destructive effect (shown in
Figure 7.2) requires taking a large step in the next phase whereas the footstep location
of that same phase could be adjusted online to stabilize with less effort. This raises an
interesting control problem in which the discretization rate is reasonable but too slow to
handle inter-sample disturbances.

7.1.4 Continuous control

As mentioned earlier, the next footstep has a vital stabilization role, but effective only once
the next contact is established. The interesting control problem is in online adjustment
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of this footstep location, although it does not have a considerable effect instantaneously
in the middle of the phase. Without such online adjustment and keeping the swing
destination fixed, the second next footstep (which is found in the next event) might
become very large to compensate for the accumulated error. This problem might naturally
happen in a hybrid system where a deviation of one state (e.g., swing location) might
not be important in one phase due to a weak mechanical coupling, but becomes very
important in the next phase where it has a strong mechanical coupling (e.g., when it
becomes stance foot location). This effect is due to a hybrid change of the system model
through motion phases. In normal continuous systems without hybrid phases, however,
the coupling between variables remains the same. In other words, since the continuous
model remains the same, it is possible to discretize at any rate and apply standard
controllers such as Discrete Linear Quadratic Regulators (DLQR) (Ogata, 1995). If
inter-sample disturbances were found to be significant for these normal systems, one
could naturally increase the control rate. In our hybrid system, however, this is not
straightforward and leads to a complicated model-variant DLQR design. Therefore,
DLQR controllers are not used very often for online control of footstep adjustment,
although they are extensively used in the first stabilization strategy (CoP modulation)
and traditional discrete Poincaré based methods (Month and Rand, 1980) which linearize
the whole motion phase.

Despite complications of DLQR design in hybrid systems such as walking robots,
there are alternative ways to realize online adjustments with very simple laws. Raibert
used a known yet simple approach for hopping where the footstep adjustment was a
function of CoM forward speed (Raibert et al., 1984). This intuitive law with a hand-
tuned coefficient moved the footstep location further when a faster forward speed was
detected. This idea was later re-formulated for walking with the linear inverted pendulum
in (Stephens, 2007; Koolen et al., 2012) where the coefficient had a more physical meaning.
The idea was to capture the motion, i.e., to find a footstep location where the CoM ends
up on top of this point with zero velocity. In both frameworks, the footstep location can
be adjusted online in a fast reaction to intermittent pushes and disturbances.

In chapter 2, we used analytical solutions of LIP and a Model Predictive Controller
(MPC) to predict CoM trajectories and adjust footstep locations. At each instance of
time, we used closed-form solutions of LIP to predict state evolution until the end of the
same phase as well as few successive phases. Considering footstep locations as inputs for
this discrete system, MPC was able to adjust the next footsteps to stabilize the robot,
recover from pushes and converge to a specific walking gait. This numerical optimization
could extend the capturability framework (Koolen et al., 2012) while providing the
same online adjustment capabilities. We were also able to generate lateral bounces
and turning gaits naturally inside the optimization while the capturability framework
does not have this flexibility. The idea of capture point helps stabilizing the robot
when the ankle torques are not enough, i.e. when the instantaneous capture point falls
outside the support polygon. The capturability framework, however, requires an intuitive
proportional gain to move the desired capture point away from the robot when a walking
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behavior is desired (Pratt et al., 2012). Besides, swing trajectories are artificially designed
to reach the destination, because the underlying template model (LIP) does not have
swing dynamics. In contrary, our proposed controller automatically generates walking
gaits and swing motions while the stabilizing controller is designed for both in-place and
progressing walking gaits. However, inequality constraints of (Koolen et al., 2012) are
not yet considered in our method which would be discussed later in the section of viable
regions.

7.1.5 A better template model?

In our MPC controller of chapter 2, the resulting Cartesian CoM trajectory and an
artificial swing trajectory (which terminates in the optimized footstep location) are given
to an inverse dynamics interface to find required joint torques for the robot. Although
MPC provided a robust performance by finding proper footstep locations, the practical
and feasible range of motions strictly depended on the choice of timing, artificial swing
trajectories, foot dimensions and the maximum step-length which should not violate the
constant CoM height assumption. This motivated us to develop a more complicated yet
linear model that captures falling, swing and torso dynamics altogether. This model,
called 3LP is composed of three pendulums for the torso and the two legs with masses
that all remain in constant-height planes (refer to chapter 6). Closed-form solutions
make 3LP suitable for online MPC similar to the framework we introduced in chapter 2.
In this regard, 3LP could relieve the need to produce artificial swing trajectories added
to LIP. The inclusion of swing dynamics, however, changed the gait generation paradigm
completely.

Remember that with the LIP model, the controller has to impose the attack angle and
phase time. This can create a library of gaits with different speeds and frequencies, but
not necessarily feasible to track with inverse dynamics. According to early bio-mechanics
studies (e.g., (Zarrugh and Radcliffe, 1978)), human’s walking frequency increases with
speed due to certain mechanical and muscle properties of the body. The particular
ascending relation observed in human is the result of optimizing Cost of Transport
(CoT) (Bertram, 2005) defined as the energy spent over the unit of traveled distance.
This quantity is due to a trade-off between falling, swing and leg lift dynamics. When
translated to humanoids, the concept approximately holds in the sense that the ankle,
knee and hip joints have to realize push-off, leg lift, and swing works. Thanks to the
inclusion of swing dynamics, 3LP uses joint torques to describe the swing motion while
LIP is blind to joint torques entirely. Gait symmetry concepts applied to the closed-form
equations of 3LP can produce a class of gaits which could be optimized energetically,
based on their required hip torques. Such optimal gaits have some dynamic torque
and ground reaction profiles similar to the human, despite the constant CoM height
assumption.

3LP gaits are obtained by combining eigenvectors of a particular matrix linearly
without a numerical integration. Thanks to linear equations, the linearization of system
equations around these gaits is very easy to calculate. The tracking problems of inverse
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Figure 7.3 – Conceptual comparison of A) DLQR controller, B) receding horizon MPC
and C) the proposed projection controller in dealing with the state observed at current
inter-sample time t in the left support phase. The DLQR controller only updates inputs
at certain discrete events. The receding-horizon MPC controller of chapter 2 used the
remaining-phase transition matrix A0 and the next transition matrices AL, AR to optimize
the footsteps at each time-step and provide online reaction. The proposed projection
controller provides the same online updating feature, but uses the same DLQR expertise
without any numerical optimization of MPC.

dynamics arising with the choice of gait timing and artificial swing trajectories with LIP
are now improved with dynamics of 3LP, and finally, we can still find analytic transition
matrices between any two instances of time in the phase with 3LP. With these new
features, is MPC still needed? As we will see next, the answer is no.

7.1.6 Time-projection controller

Intermittent disturbances can have different magnitude, duration and timing. In walking,
early-phase pushes can disturb the system more severely due to the unstable nature
of falling dynamics. Traditional Poincaré based methods (Month and Rand, 1980)
which linearize the system around a pre-optimized gait cannot capture such continuous
effects. In other words, all disturbances happening between the two discrete events
are accumulated and observed only at the next event. To set up a continuous control,
however, there should be a measure to evaluate the error in the middle of a continuous
phase. Also, one also needs to know the effect of available continuous inputs (like hip
torques/footstep locations). Any-time transition matrices of LIP and 3LP make this
evolution prediction possible.

Although LIP can produce gaits used for DLQR control (i.e. event to event control
of Figure 7.1), we used MPC in chapter 2 to handle intermittent pushes. The difference
between these two frameworks can be seen in Figure 7.3. A DLQR controller could be
used on top of LIP gaits to find discrete adjustments (Figure 7.3.A). However, when
performing continuous online control, we needed MPC to handle the remaining-phase
transition matrix A0 (in Figure 7.3) and the hybrid nature of phase-switches in a receding
horizon fashion (Figure 7.3.B). An infinite-horizon MPC without constraints translates
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Figure 7.4 – A demonstrative schematic of time-projection idea. This controller in fact
relies on the expertise of the DLQR controller. At each time-step t, the measured state
is mapped to the beginning of the phase, optimal inputs are calculated using the DLQR
controller and then, these inputs are used at the current time-step t.

to DLQR, but numerical optimizations of MPC with limited horizons offered flexibility
to model switches and the inclusion of inequality constraints.

In this work, we propose a new online control approach based on the DLQR
controller. In discrete control architectures (Kelly and Ruina, 2015; Byl and Tedrake,
2008; Manchester and Umenberger, 2014; Sharbafi et al., 2012), a certain event is
considered to decide the new angle of attack or push-off force. Similarly, we use the
DLQR controller in our proposed architecture as a core stabilizing expert. For any time
instance t in the middle of a continuous phase, we project or map the currently measured
error back in time to the previous touch-down event, where the DLQR controller knows
best how to handle it. We take the output of DLQR then and apply it to the system
in the middle of the phase at time t. Such online policy makes sure that the future
evolution of the system given the calculated input will be optimal if seen in a longer
time-span over multiple future steps (Figure 7.3.C). Because of unstable falling dynamics,
a push of certain magnitude and duration might have different effects if applied early or
late during single support. Our continuous projection controller is therefore expected to
handle such sensitivity to timing, i.e., handling continuous disturbances.

Figure 7.4 demonstrates the time-projection idea. This new method is simple
to execute, and it does not need a redesign of the controller, offline optimizations or
numerical MPC optimizations. Back projection idea is also used in (Byl and Tedrake,
2008) where a post-collision state should be rewound to a pre-collision state where an
additional impulse should be added. Then the system is forward simulated again to find
the contribution of the additional impulse. Here we use a similar projection to map the
continuous error at any time back to the discrete event, but then use the LQR controller
to find control inputs to be used at the current time-step which is conceptually different.
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7.1.7 Novelty

Time-projecting control for a walking system is based on three main motivations:

1. DLQR control rate is normally synchronized with the walking frequency. Due to the
unstable falling dynamics, this controller is sensitive to the timing of inter-sample
disturbances.

2. The DLQR controller can already stabilize the system through footstep adjustments.
There is no need to redesign this part of the controller to capture inter-sample
disturbances.

3. An online controller is needed. We want to benefit from DLQR’s stabilization
property, but avoid numerical optimizations of a receding horizon MPC.

The contribution of this work lies in formulating the time-projection idea and applying
it to walking with 3LP in simulations. The aim is to achieve the same performance of
online MPC (Faraji et al., 2014a; Feng et al., 2013; Kuindersma et al., 2014) in push
recovery scenarios, but without numerical optimizations which might need a considerable
computational power. We use 3LP for generation of more feasible gaits compared to LIP,
although all control concepts introduced could be applied to LIP as well. An advantage
of MPC could be the incorporation of inequality constraints on input torques, the center
of pressure, friction cones and footstep length to ensure feasibility of the plan. The
proposed method does not consider inequality constraints, but thanks to an analysis of
viable regions (Zaytsev et al., 2015), we provide a simple criterion that indicates whether
projection controller fails or not, i.e., whether the robot should switch to a more complex
controller or even emergency cases. Further analysis of viable regions indicates that
extreme conditions rarely happen in normal frequencies and stride lengths. Therefore, our
simple projection controller is enough most of the time, and if not, all other controllers
including MPC can hardly improve stabilization. We would also like to remark that 3LP
already describes the pelvis width and thus avoids internal collisions in natural walking.
In extreme cases where a lateral crossover is needed, an MPC controller with non-convex
constraints or advanced collision avoidance algorithm might be needed.

The rest of the chapter starts with formulation and discussion of time-projection
idea for general linear systems. Demonstration of intermittent push recovery and speed
tracking scenarios follow afterward with an extensive analysis of system eigenvalues,
push recovery strength and viable regions. We conclude the chapter by comparing the
proposed controller with other candidate controllers in the literature and discuss broader
control applications which could benefit from the time-projection idea.

7.2 Time-projection
Continuous-time LQR controllers aim at optimizing system performance over an infinite
horizon in future. In discretized and digitized controllers, this translates to a DLQR
controller with similar discrete system evolution formulas. We mention that for walking
applications, the discretization rate is often set to the step frequency. This is mainly
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because over the hybrid model switch, the final swing location which weakly couples with
other system variables (i.e., CoM state) in the swing phase will have a strong coupling
in the stance phase. Since footstep adjustment becomes effective only when the next
contact is established, the actual control update events are set to the start of hybrid
phases in discrete controllers. We challenged this paradigm by inter-sample pushes and
motivated the necessity of updating footstep locations online, in the middle of the swing
phase. At the same time, we want to keep the same optimality of DLQR controllers over
an infinite horizon.

Time-projection is more suitable for systems that have hybrid phases with a variable
model in each phase. In ordinary systems with fixed models and continuous phases, a
simple increase in discretization frequency is more straightforward and probably more
effective. We explain the time-projection idea with continuous models though, aiming at
simpler and more comprehensible formulations. The 3LP model and hybrid phase-changes
are discussed later in the 3LP section, and appropriate time-projection formulas are
included in the Appendices D and E for further information.

7.2.1 Linear system

To present the idea behind time-projection in a simple way, we consider a linear time-
invariant system in which an error should be regulated to zero at certain sampling times.
Define a state vector x(t) ∈ R

N and a control vector u(t) ∈ R
M . The system can be

described by:

ẋ(t) = ax(t) + bu(t) (7.1)

where a ∈ R
N×N and b ∈ R

N×M are constant matrices. The closed-form solution of this
system at time t is obtained by:

x(t) = eatx(0) +
� t

0
ea(t−τ)bu(τ) dτ (7.2)

For simplicity, we consider a constant input here, although this can be extended to linear
or quadratic forms without loss of generality. With a constant input, parametrized by
the vector U ∈ R

M , the equation (7.2) takes the form:

x(t) = eatx(0) + (eat − I)a−1b U (7.3)

where we assumed a is invertible. If a is singular, a similar expression can be obtained
by considering the Jordan form of a. We consider a period time T > 0 at which the
behavior of this system could be described discretely:

X[k + 1] = A(T )X[k] + B(T )U [k] (7.4)
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where X[k] = x(0), X[k + 1] = x(T ) and:

A(T ) = eaT

B(T ) = (eaT − I)a−1b (7.5)

7.2.2 DLQR controller

Assume this system has a nominal solution X̄[k] and input Ū [k]. Due to linearity, we
can define error dynamics as follows:

E[k + 1] = AE[k] + BΔU [k] (7.6)

where E[k] = X[k] − X̄[k] and ΔU [k] = U [k] − Ū [k]. Here we dropped function inputs
(T ) from A(T ) and B(T ) for simplicity. Assume this system is controllable and a DLQR
controller can be found to minimize the following cost function and constraint:

min
E[k],∆U [k]

�

∞
k=0 E[k]T QE[k] + ΔU [k]T RΔU [k]

s.t. E[k + 1] = AE[k] + BΔU [k] k ≥ 0 (7.7)

where Q and R are cost matrices. The optimal gain matrix calculated from this opti-
mization is called K ∈ R

M×N , producing a correcting input ΔU [k] = −KE[k].

Conceptual trajectories plotted in Figure 7.5.A demonstrate the set point nominal
solution X̄[k] and Ū [k] without any disturbance. As shown in Figure 7.5.B, in presence
of disturbances, this open-loop system might be unstable and easily diverge from nominal
trajectories. The nature of DLQR controller designed earlier is shown in Figure 7.5.C.
This controller is only active at time instants kT and provides corrective inputs to the
system until the next sample (k + 1)T . In this period, the effect of any disturbance
on the system is cumulative, without any correction. Because of an exponential nature
in (7.2), even a small intermittent disturbance might create a substantial error at time
(k + 1)T . This issue might be fixed by increasing the resolution and redesigning the
DLQR controller depending on disturbance dynamics. However, we can take advantage
of the already designed DLQR controller and increase the control samples easily.

7.2.3 Projection controller

Thanks to closed-form system equations (7.3), we can map the state measured at any
time t to the samples before and after. Figure 7.5.E shows projection controller idea
between samples kT and (k + 1)T . In brief, to apply time-projection:

1. Measure the current state x(t) at time t.

2. Project x(t) back in time with an unknown δÛt[k] to find a possible initial state
X̂t[k].

x(t) = A(t − kT )X̂t[k] + B(t − kT )(Ū [k] + δÛt[k])
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Here, hat notation means that these variables are just predicted at time t and they
are not actual system variables. The subscript t also indicates dependency on t.

3. Now, given X̂t[k] and X̄[k], find a projected error Êt[k] at the beginning of the
phase.

Êt[k] = X̂t[k] − X̄[k] (7.8)

4. The expertise of DLQR controller can be used here to apply a feedback on Êt[k].

δÛt[k] = −KÊt[k] (7.9)

5. Assuming that the output of DLQR is the same unknown δÛt[k], one can solve a
system of linear equations to find δÛt[k]. Defining x̄(t) = A(t − kT )X̄[k] + B(t −
kT )Ū [k] and e(t) = x(t) − x̄(t) we have:

�

A(t − kT ) B(t − kT )
K I

� �

Êt[k]
δÛt[k]

�

=

�

e(t)
0

�

(7.10)

6. The input is then directly transferred to time t without any change and applied to
the system:

δu(t) = δÛt[k] (7.11)

This simple procedure can be done for any time instance t between the coarse
time-samples kT and (k + 1)T to update the control input. The projection loop involves
solving a linear system of equations whose dimensions depend on the number of control
inputs and states in the system. Figure 7.5.F demonstrates three different inter-sample
times t1, t2 and t3 before, in the middle and after the disturbance respectively. When
following nominal trajectories, the projection controller produces zero adjustments δu(t)
indeed. During the disturbance, the controller keeps updating δu(t), and after the
disturbance, it produces the same adjustment every time until the end of the phase. The
resulting conceptual trajectories are shown in Figure 7.5.D which naturally outperform
the DLQR (Figure 7.5.C) due to a higher control rate.

A detailed demonstration of projection control is provided in Appendix F for a
simple system. We discuss continuous and discrete control designs for this simple system
and provide a numerical example. DLQR feedback gains in our case always fall within the
range of allowable gains which stabilize the closed-loop discrete system. Projection control,
however, results in a time-variant continuous feedback which is absent in continuous and
discrete LQR paradigms. This property slightly shrinks the allowable range to avoid
infinite continuous feedback gains. We precisely discuss this issue in Appendix F to
provide further insights. For our walking model and the choice of dimension-less DLQR
cost design, this property is always satisfied through simulations. Within the allowable
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Figure 7.5 – A comprehensive schematic of time-projection idea. Panel A) shows an
open-loop system with nominal trajectories. B) This system might not be stable when
subject to disturbances. C) A DLQR controller designed for events kT can stabilize this
system but provides corrections only at times kT . Such a delayed reaction might produce
large state deviations. D) The projection controller reduces this deviation by reacting to
the disturbance immediately. Such reaction is done through an online control scheme
where the control rate is faster. E) The projection controller is based on projecting
inter-sample errors back in time to the discrete events. The DLQR controller can find
appropriate corrective inputs for the system based on the projected errors. These inputs
are then applied to the system in the inter-sample time instance. F) The projection
controller is very much similar to the DLQR controller. Without disturbance at t1,
it produces no adjustment. During the disturbance, e.g., at t2, this controller keeps
updating the input. When the disturbance is finished, e.g., at t3 the inputs remain
constant until the next event.

range of feedback gains, a stability proof is straight-forward for the simple system as
provided in Appendix F. We plan to extend this proof to higher dimensions in a follow-up
work with more detailed mathematics discussions.

7.3 Simulations
In this section, we demonstrate walking scenarios which show advantages of using the
projection controller over the DLQR controller. These scenarios include simulating
intermittent pushes and speed tracking where periodic system trajectories change over
time. All simulations are done with a human-sized 3LP model in Matlab which has
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Figure 7.6 – Trajectories of A) open-loop normal, B) open-loop disturbed, C) DLQR
and D) projection controllers. Due to falling dynamics and unstable system modes, a
moderate disturbance can lead to falling in few steps. The DLQR controller updates
inputs only at phase-change times which produces large deviations due to a delayed
reaction. The projection controller, however, resolves this issue by a fast online reaction.
Note that the projection controller is only using the knowledge of the DLQR controller
and uses projection to translate continuous online errors to discrete errors. The expertise
of DLQR controller on discrete errors is then used to produce online corrections.

a mass of m = 70kg and a height of h = 1.7m. Our choice of DLQR cost coefficients
are dimensionless diagonal cost matrices Q = I8×8 and R = (mg)−2I4×4 for states and
inputs, where g is gravity. All results and qualitative conclusions of this section are in
fact valid for different 3LP models matching humanoid robots like Atlas with m = 150kg
and h = 1.88m (Feng et al., 2015), COMAN with m = 30kg and h = 1m (Moro et al.,
2011) and Walk-Man with m = 120kg and h = 1.85m (Tsagarakis et al., 2017). We
present simulation results of a human-sized 3LP only for simplicity.

7.3.1 Intermittent pushes

Consider a gait with a frequency of f = 2 step/s and a speed of v = 1m/s. We only
use the sagittal pelvis velocity as a periodic signal for demonstrations. The open-loop
velocities are shown in Figure 7.6.A where the reference nominal trajectory x̄(t) matches
the open-loop system behavior. Now, applying an inter-sample forward push in the first
phase of the motion results in an unstable deviation from nominal trajectories which
eventually lead to falling as shown in Figure 7.6.B. This is because of unstable open-loop
eigenvalues due to the natural falling dynamics. The DLQR controller can stabilize the
system by adjusting the footstep at time t = 1, shown in Figure 7.6.C. This adjustment
is a result of adjusting swing hip torques at the beginning of the phase (at t = 0.5),
where the accumulated deviation was first detected. As a result, corrective inputs ΔU

are nonzero after the time t = 0.5 until the system stabilizes completely.
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The projection controller has a different behavior, however. Without deviations,
this controller produces no corrective input. Once a deviation exists, if there is no
active disturbance applied to the system, the output of projection controller remains the
same. However, once an external disturbance is present, the projection controller keeps
updating the inputs which can be seen in Figure 7.6.D. Notice the first phase where the
external push starts acting on the system at t ≈ 0.1. At this time, corrective inputs start
increasing until the disturbance disappears at t ≈ 0.4. After, the correction produced
by the projection controller remains the same until t = 0.5. In the next phase, the new
stance foot location is already adjusted, and thus less effort is needed by the controller.
In other words, online adjustment of the swing hip torque in the first phase places the
swing foot in a proper location so that the second phase starts in good condition. Such
footstep adjustment produces a larger error norm in the first phase compared to the
DLQR controller, however, reduces this norm in the next phases considerably. As a
result, overall deviations from nominal trajectories are less with the projection controller,
thanks to an online updating scheme.

A better understanding of time-projection behavior for the walking application can
be obtained through a direct plot of actual footstep locations. For this purpose, we
reduced the speed to v = 0.5m/s to plot more footsteps in a single figure and simulated
pushes of same magnitude and duration but applied at different times during the phase.
The resulting footstep plans are demonstrated in Figure 7.7 for both DLQR and projection
controllers. As expected, late pushes have less impact while early pushes can cause large
corrective steps with the DLQR controller, shown in Figure 7.7.A. This can be confirmed
by the exponential effect of sensory or model errors in the forward integration of our
equations (Bhounsule et al., 2015). With the DLQR controller, the reaction is only taken
in phase-transition events which can introduce delays if the push is applied much earlier,
at the beginning of the phase. Although the controller can still stabilize the system,
large input torques or step lengths are not desired in practice. The projection controller
adjusts the first footstep location online during the phase when the push is being applied.
The swing leg has, in fact, a negligible influence on the system and thus, this adjustment
does not provide immediate correction. However, since the swing foot becomes the next
stance foot which has a strong coupling to system variables, an early adjustment of its
position can considerably stabilize the system in the next phase.

7.3.2 Speed modulation

Remember that 3LP equations provided a class of gaits with different speeds, but a fixed
frequency. In this test scenario, we consider changing the reference gait occasionally and
observe the tracking performance of the projection controller. We apply these changes
only at phase-transition moments, i.e., at every ten steps to make sure the controller has
enough time to converge. In Figure 7.8, resulting trajectories are demonstrated. In fact,
since there is no inter-sample disturbance, the projection controller performs similarly to
the DLQR controller. Once a new desired speed is commanded at the beginning of a
phase, the reference gait changes and thus, the controller adjusts the swing hip torques.
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Figure 7.7 – Performance of A) the DLQR and B) the projection controllers in rejecting
intermittent external pushes. In this scenario, we apply a push with the same magnitude
and duration, but at different times during the phase. We also apply the same pushes
in the opposite lateral direction when the other leg is in swing phase, and the CoM
has a different lateral motion direction. Along with the force magnitudes, we show by
percentage, the period in which the push is applied. Like Figure 7.6, the reaction of
DLQR controller is only taking place after the push with a delay. It is also notable that
a pushing force at the end of the phase has a relatively small impact. However, the same
push at the beginning and in the middle of the phase can result in larger corrective steps.
The lateral direction of the push does not influence the size of corrective steps, since the
3LP equations are linear and symmetric in both directions. Likewise, a backward push
results in the same footstep adjustment magnitude. The corresponding movies could be
found in the accompanying video.

This adjustment leads to modifying the footstep location at most in the following next
two steps. Therefore, our controller tracks new velocities in only two steps. Likewise, in
Figure 7.7, disturbances are captured at most in two steps following the analysis provided
in (Zaytsev et al., 2015).

7.4 Analysis

As motivated earlier in Figure 7.3, the goal of projection controller is to achieve online
control performance based on a DLQR controller. The projection controller is comparable
to the MPC controller of chapter 2 in the sense that it can react to inter-sample
disturbances immediately whereas the DLQR controller has to wait until the end of the
phase. The advantage of projection controller to MPC is relieving the need for online
numerical optimizations while considering an infinite horizon. In practice, however, MPC
can handle inequality constraints which are absent in the projection controller. In this
regard, we are interested to know how well our projection controller can cover the set of
viable states. In this section, we provide this analysis together with a quantification of
open-loop and closed-loop eigenvalues as well as the sensitivity to the timing of external
disturbances.
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Figure 7.8 – Performance of projection controller in transitioning between different speeds.
The original gait is simply scaled to modulate the speed within the null-space of 3LP
periodic gait equations. Since the instantaneous pelvis velocity has variations, we reported
the average speed at each discrete event by dividing feet distance with stride time. On
the top graph, speed tracking performance is shown for the desired profile of speeds which
changes randomly at every ten steps. The bottom graph is showing the root-mean-square
of controller outputs with respect to the desired gait at each step. One can see that the
controller performs the transition in almost two steps. Since we change desired speeds
only at phase-change moments, the DLQR controller would perform exactly the same as
the time-projecting controller. An example movie of this scenario could be found in the
accompanying video.

7.4.1 Eigen values

Since the 3LP model is similar in sagittal and frontal directions, we only consider the
sagittal direction. Also, since the foot velocity is forced to zero in phase-transition
moments, this dimension is further reduced to three. Therefore, we only consider
evolution of errors in three dimensions (i.e. sagittal directions of s1 = xSwing − xStance,
s2 = xP elvis − xStance and ṡ2 − ṡ1, shown in Figure 6.2). To find eigenvalues, we added
errors to these three quantities in a phase-transition moment and measured them after
one step in open and closed-loop systems. Eigen-values of the resulting Poincaré map are
shown in Figure 7.9 for the open-loop system, DLQR, and projecting controllers. Due
to linearity, such analysis is independent of gait velocity but dependent on the model
properties and the gait frequency. Therefore, these plots are repeated for different walking
frequencies in a typical range observed in human gaits (Bertram, 2005). It is observed
that both the DLQR and projection controllers can stabilize the unstable open-loop
system. Since both perform the same in the absence of inter-sample disturbances, their
closed-loop eigenvalues are always similar.

The walking system considered in this chapter is interesting regarding eigenvalues.
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Figure 7.9 – Eigen-values of the walking system in the sagittal direction of s1, s2 and
ṡ2 − ṡ1, calculated over one step. Due to the similarity of lateral and sagittal dynamic
equations, lateral eigen-values are duplicates of the plotted sagittal eigen-values here. A)
The open-loop system has a large unstable mode depending on the walking frequency.
The close-loop systems (with B) DLQR and C) projecting controllers) both stabilize the
unstable system through foot-stepping strategy. Note that the DLQR and projecting
controllers perform the same in absence of inter-sample disturbances.

Because of falling dynamics, this system has a large unstable mode which highly depends
on frequency. As observed in Figure 7.9, the open-loop system at f = 0.8 step/s has a
very large eigenvalue, indicating that the system deviates more if given a longer phase
time. In slow walking speeds, humans use a relatively slow frequency determined by
a trade-off between falling and swing costs (Bertram, 2005). Based on our eigenvalue
analysis, the third stabilization strategy of adjusting footsteps might not have enough
control authority in slow frequencies. Therefore, the first continuous control strategy of
modulating the CoP might be more effective in these walking conditions. The second
eigenvalue in the open-loop system is small and stable while the third one might be stable
or not, depending on the frequency.

7.4.2 Push recovery strength

In addition to stability analysis, we would like to characterize how well the projection
controller can recover intermittent pushes. In particular, the sensitivity of footstep
adjustments with respect to the timing of external pushes is important. To this end, we
simulated the open-loop system, DLQR and projection controllers with pushes of the
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Figure 7.10 – Demonstration of intermittent push recovery performance for the open-loop
system, DLQR and projection controllers. In these plots, we show the start and end
times of the push application period as a percentage of the phase (like Figure 7.7).
Surfaces show error norms, calculated at touch down events over three consecutive steps.
The open-loop system is unstable, the DLQR controller overshoots and the projection
controller reacts immediately when the push is being applied. The projection controller
is therefore much stronger in rejecting even long-lasting intermittent pushes which span
throughout the whole phase.

same magnitude, but variable timings and durations like Figure 7.7. The results are
shown in Figure 7.10 over three consecutive steps. We applied the push between certain
times of the phase, shown by percentage on the two horizontal axes. Error surfaces
demonstrate the norm of error with respect to the nominal gait, calculated at touch
down events and plotted along the vertical axis.

Figure 7.10 is demonstrating that a push of same magnitude and duration might have
a more severe effect on the system if applied earlier in the phase. While the open-loop
system is unstable, the other two closed-loop systems recover the push successfully, but
with certain dynamics. At the end of the first step, the DLQR controller produces an
error similar to the open-loop system. However, due to a delayed reaction, it overshoots
in the second step. The projection controller, however, adjusts the footstep online during
the first step to avoid the overshoot. Figure 7.10 also indicates that longer pushes have
more severe effects, especially if they start earlier in the phase. If a push continues until
the end of the phase, the projection controller performs slightly worse compared to itself,
yet much better than the DLQR controller.

7.4.3 Viable regions

Computations in the projection controller involve solving a linear system of equations
(7.10) at every fine control time-sample. However, other online controllers like MPC might
require more computations due to multiple iterations required to optimize a particular
cost function with constraints. The advantage of using MPC over projection is mainly
the inclusion of inequality constraints. Without such constraints, the viable region for
our linear setup is in fact unlimited. Although the proposed framework ignores these
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constraints, we would like to characterize the valid set of states in which our controller
produces feasible actuator inputs and leads to feasible states, within limitations of the
actual hardware.

In this work, we considered constraints on hip torque limits and footstep distances
in an adult-size 3LP model. Torque limits are physical limitations, and footstep distances
are artificially introduced to prevent violation of constant height assumptions on the real
hardware. The torque limits are represented by simple boundaries (± 80Nm) while next
footstep locations should lie on a diamond region centered at the stance foot location
(with equal diameters of 1.7m, compared to a leg length of 0.9m in the model). The
latter constraint could be more complex like using a circle around the stance foot, but
here we used diamonds to preserve linearity of constraints and our analysis. Considering
realistic regions indeed require non-convex constraints, especially when foot cross-over
and self-collisions are considered.

Due to the coupling of frontal and sagittal motions when adding diamond regions,
we cannot split the reduced 6-dimensional discrete error system into 3-dimensional
subsystems anymore. Therefore, it is not possible to completely visualize viable regions.
Additionally, these regions are now depending on the forward velocity as well. In other
words, over faster speeds and thus longer stride lengths, possible foot-adjustments are
more limited compared to slower speeds. Therefore, we need to consider the effect of
stepping frequency, speeds and dimensionality altogether. With the inequality constraints
mentioned earlier, the goal would be to find the maximum set of viable states for each
controller (Zaytsev et al., 2015) as well as the maximum set for all possible controllers.

Convex polyhedrons of viable regions are calculated for six consecutive steps which
seem enough to give an approximate of their complex shape. We also divided each
phase into five shorter sub-phases where time-projection and arbitrary input profiles (for
maximum viable set) can provide continuous input modifications. The maximum viable set
includes all states which are capturable in 6 steps, i.e., with feasible arbitrary inputs and
states over these six steps. We observed that increasing steps and resolution exponentially
increases the dimensionality and polyhedron computation times while having almost no
effect on precision. Since the resulting polyhedrons typically had thousands of vertices,
we used a ray-casting method and a linear programmer to search along ray directions and
find intersection points with the boundaries. For 2D visualizations, we used a resolution
of 100 rays per 360 deg.

Geometric constraints are active at faster speeds while torque limits are active at
faster frequencies. It is impossible to view the full polyhedron from all perspectives,
but spatial projections on important subspaces are shown in Figure 7.11. We take
error vectors e1, e2 and e3 added to the symmetry vectors s1 and s2 and ṡ2 − ṡ1 as
error measures respectively and plot viable sets with respect to these error dimensions.
The diamonds and torque boundary shapes are implicitly observable in some spatial
projections while others provide a less intuitive shape. Compared to the DLQR controller,
the projection controller has a larger viable set due to an online update scheme. The
maximum viable set is slightly larger in some regions though, indicating that there are
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Figure 7.11 – Different spatial projections of 6-dimensional viable regions calculated for
the DLQR and projection controllers together with the maximum viable region. The
reference gait has a velocity of v = 0.5m/s and a frequency of f = 3 step/s. Due to an
online update scheme, the projection controller always has bigger viable regions compared
to the DLQR controller. In some dimensions, however, the maximum viable region is
slightly larger.
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Figure 7.12 – The effect of walking speed and frequency on viable regions. This figure
only demonstrates spatial projections of 6-dimensional polyhedrons on one subspace of
position-velocity errors. As demonstrated over few choices of velocities and frequencies,
the gait velocity mainly shifts the region while faster frequencies can shrink it considerably.

other types of controllers that can stabilize a slightly bigger set of erroneous states,
compared to the projection controller.

Further, we are also interested to see the effect of walking speed and frequency on
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these regions. Again, it is hard to inspect the full-dimensional polyhedron, though we take
a position/velocity spatial projection which is more insightful. Figure 7.12 demonstrates
viable regions for different choices of walking frequencies and velocities. The velocity
mainly shifts the viable region while the frequency can shrink it due to torque limitations.
In Figure 7.12, the maximum choice of frequency is unrealistic regarding the human data
(Bertram, 2005) just for demonstration purposes. In normal walking conditions, however,
the DLQR and time-projection controllers can cover most of the maximum viable region.

7.5 Discussion
In this chapter, motivated by the hybrid nature of walking systems, we formulated a
new control framework that can be used for online control. This controller is based on a
DLQR controller which works at a rate synchronized to the system’s phase-change rate.
Such synchrony and a simple derivation of error-dynamic equations which is blind to
hybrid phases allow us to use the standard DLQR framework with a fixed model of error
evolution. However, in dealing with inter-sample disturbances, this controller cannot be
simply used at a higher rate, because of the hybrid phase-change nature. In Appendix C,
we show that for normal systems without hybrid phases, increasing the DLQR rate up to
a continuous control is always possible. In our hybrid system, however, we introduced
the time-projection idea which maps inter-sample errors to discrete errors where they
could be easily treated with the DLQR controller. Although time-projection can be used
for simple systems as well (refer to Appendix C), increasing DLQR rate and continuous
control seem easier for these type of systems.

7.5.1 Physical explanation

Through extensive simulation and analysis, we showed that time-projection could adjust
the footstep location online which naturally outperforms the DLQR controller that has a
delayed reaction. This has a benefit in hybrid systems like walking robots since the swing
state has little influence on the stability of the system, but as soon as it becomes the next
stance foot location, it tightly couples with other system variables. Therefore, investing
control effort in adjustment of this state in an online fashion does not improve stability
instantaneously (unlike modulating the CoP), but saves a lot of control effort in the
next phase of motion. Time-projection helps to translate (projecting) phase-dependent
inter-sample errors to phase-free discrete errors where a standard DLQR knows best how
to stabilize them.

7.5.2 3LP advantage

We used 3LP as a walking model to facilitate gait generation and produce more human-
like gaits. This was an improvement to the LIP model we used in chapter 2. However, the
main novelty of this work lies in introduction of the projection controller which replaces
the MPC controller of chapter 2. Footstep adjustment is a known strategy in robotics
hopping (Raibert et al., 1984) and walking (Koolen et al., 2012). Our projection controller
generalizes this idea into a DLQR control paradigm where controllers can be designed
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more systematically. Besides, using 3LP as a physical model helps to find physically more
meaningful control laws for footstep adjustment. In 3LP, in fact, footstep adjustment is
made through swing hip torques whereas, in other models without a swing leg, this is
done directly through adjustment of the final attack angle which translates to footstep
location. We believe that the combination of 3LP with time-projection provides a unified
control framework in which, in addition to the CoM states, swing location and swing
dynamics are also considered. Constraints on modulating the CoP and ankle torques are
often used in the literature during trajectory planning (Herdt et al., 2010a). However,
hip torques are also important to be considered, especially for swing and torso dynamics.
3LP is the first linear template model that can provide information on hip-torques at an
abstract level. In (Byl and Tedrake, 2008) for example, since swing dynamics are absent,
the hip controller stiffly tracks the desired attack angle only after the mid-stance event.
If a hip torque is applied earlier, it can sometimes cause the robot to fall backward.

7.5.3 Comparison to MPC

The added-value of using time-projection over MPC would be the reduction of computa-
tions while considering infinite horizons instead of MPC’s receding horizon. However,
this framework cannot handle inequality constraints like MPC. Thanks to the analysis
of viable regions, we have now a more clear view of other possible controllers. We
demonstrated that for normal walking gaits and reasonable constraints imposed by the
hardware, time-projection could stabilize the system most of the time. Other controllers
can only cover a slightly larger range of disturbed states. If the robot is severely dis-
turbed, inequality constraints of viable regions can simply determine feasibility of a
projection control. With such criteria, the algorithm can easily switch to other compli-
cated controllers or even emergency cases. The analysis of viable regions further shows
that other controllers can rarely recover if time-projection fails. So, most probably,
the robot needs emergency actions. In this regard, MPC controllers cannot do much
better than time-projection either, despite considering inequality constraints in their
numerical optimization. However, we acknowledge that exploring non-convex inequalities
for footstep regions as well as timing adjustment could be possibly handled by nonlinear
and non-convex MPC controllers.

7.5.4 Different from intermittent control

As we talk about intermittent disturbances, to avoid confusion, it is worth mentioning
that the class of intermittent controllers (Gawthrop and Wang, 2007) are much different
from our projection controller. In this work, we propose an architecture based on per
time-step measurement and feedback paradigm. Inspired by certain experiments, however,
scientists propose a different control architecture for humans (Gawthrop et al., 2011),
successfully applied to simple systems too (Bhounsule et al., 2015). Instead of traditional
observer-predictor-feedback paradigms, intermittent controllers use a kind of feedback
which occasionally modifies certain parameters of the low-level feed-forward or feedback
controller. Such architecture can better deal with systems in which high-level information
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is available with lower frequencies or longer delays, like humans. Compared to recent
inverse dynamics methods (refer to chapter 3), intermittent control is computationally
less demanding of course, but versatility of this approach is yet questionable. Indeed,
intermittent control in mixture with Neuro-Muscular model (Geyer and Herr, 2010)
might provide a reasonable explanation of the control system in humans, especially at
slow walking speeds. It is, therefore, a very interesting candidate for the control of 3LP
in our future works.

7.5.5 Measurement requirements

In this chapter, we assumed the robot state is observable. In other words, the relative
pelvis and feet positions and their time derivatives are perfectly measurable. For rigid
robots without series elastic elements and precise encoders, this assumption can be
realistic. On most of the humanoids, however, a complex Kalman filtering is needed
to calculate these states (refer to chapter 3). In this work, the instantaneous error
is calculated based on measured positions and velocities while there is no need for a
disturbance (external force) observer. However, such information about disturbance can
further improve the performance. Knowing that a disturbance exists, the controller can
take preventive actions to reduce deviations from nominal trajectories ahead of time.

7.5.6 Performance

Various analyses show that time-projection has similar stabilization and controllability
properties with the DLQR controller. However, it performs much better in recovery of
intermittent pushes. Overall, advantages of our proposed architecture combined with the
3LP model are:

+ Resistant against intermittent perturbations.
+ No need for offline optimization.
+ Computationally light compared to MPC.
+ Online policy refinement.
+ Slightly expanded viable regions compared to the DLQR.
+ Covering most of the maximum viable region.
+ Speed-independent stability analysis.
+ Optimal future behavior, thanks to the seeding DLQR.
+ Generic design for different model sizes, walking speeds and frequencies.

And disadvantages would be:

- Fixed timing.
- Lack of inequality-constraint support.

7.5.7 Other applications

The new projection controller can simply replace our previous MPC controller of chapter
2, bringing many advantages. In future works, we want to use the proposed controller in
combination with inverse dynamics and compare it with our previous MPC controllers.
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We would also like to exploit fast computational properties of the 3LP model to set
up nonlinear MPC controllers that can adjust the timing. The inclusion of non-convex
constraints for avoiding self-collision is indeed another interesting future extension. Finally,
in this chapter, we only explored external pushes and not other types of disturbances like
uneven terrain. The formulation of 3LP is yet limited to impact-less locomotion which
could be extended to handle impacts and height variations. However, the concept of
time-projection is yet applicable to other complex models, computationally challenging
though if closed-form solutions are not available. Applying time-projection to quadruped
locomotion would also be interesting, given that these systems might have more than
two distinct phases of motion. This chapter is accompanied with a video, demonstrating
walking motions of speed tracking and intermittent push recovery scenarios.
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8 Walking and Push Recovery

In this chapter, we use the 3LP model and time-projection control of chapters 6 and
7, and apply them on the real hardware in the simplest form. The discussions of this
chapter mainly focus on hardware issues and limitations, especially delays, backlashes,
velocity saturations and imperfect series elastic elements. Our hierarchical controller
in fact proposes a systematic way of handling these issues without being sensitive to
any tuning parameter. Forward and inverse kinematic models translate full-body joint
positions to equivalent 3LP states and vice-versa. We use the 3LP model to generate
walking gaits at different speeds. We also apply our time-projection control at the
same level of abstraction, i.e. comparing desired and actual 3LP states and suggesting
footstep adjustments. The experiments of this chapter cover a wide range of applications
including walking at different speeds, extreme push recovery scenarios and emergent
walking conditions in which an external force pulls the robot. Although 3LP and time-
projection equations might look complex, they encode walking mechanics in a simple way
which can be applied on the real hardware without complex calculations. It should be
noted that we rely on the physical springs on the robot to absorb impacts in the position
control mode of this chapter. A better solution is to use the inverse dynamics of chapter
3. However, we could not achieve a convincing tracking performance without using joint
positions on the real hardware. Position control provides a better tracking but leads to
certain issues, especially systematic spring deflections that require compensation. This
chapter provides extensive discussions on all these issues which may happen in many
other robots as well1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji, Hamed Razavi, and Auke Jan Ijspeert. "Push recovery with step-

ping strategy based on time-projection control." arXiv preprint arXiv:1801.02151,
2018.

The first author developed the method, performed experiments and drafted the
manuscript. The second and third authors gave helpful comments and corrections.

1All the videos of this chapter could be found at https://youtu.be/AULSwcesQqo
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8.1 Background

Humanoid robots are designed to perform different locomotion and manipulation tasks like
humans by exploiting similar kinematics and mass distribution properties. In this work,
we aim at walking gait generation with the emphasis on push recovery properties and
stepping strategy. We discuss critical ingredients needed in perturbed walking conditions
together with requirements that the particular hardware platform imposes on the control
design. Based on these concepts then, we introduce a very simple controller that benefits
from well-established theories in previous works but implements look-up-table control
laws to stabilize the robot and recover external disturbances. The proposed controller
is very simple to implement, computationally very fast and yet generic with no critical
parameter to tune. We will continue this section by introducing key concepts required
for perturbed walking. We explain our walking model and control theories developed in
previous works in the following two sections briefly. All low-level control strategies that
tackle hardware limitations, including velocity limits, delays, noises, backlashes, spring
deflections and ground clearance strategies, are explained in a separate section afterward.
We conclude the chapter then by a wide range of experiments that demonstrate the
effectiveness of our method to perform dynamic walking and push recovery.

8.1.1 Compliance in walking

Virtual or physical leg compliance is a determinant feature of humanoid walking on
uneven terrain or perturbed conditions. In the absence of severe impacts, e.g., on perfectly
known terrains or in static locomotion conditions (Rebula et al., 2007), compliance does
not play an important role. In periodic flat-ground walking also, the control method
can be adapted to minimize the impacts and smoothen the locomotion. Non-periodic
walking conditions, however, require more compliance due to an unexpected timing
of contact phase changes. Many walking controllers rely on swing leg compliance and
contact force sensors to provide a phase-based or adaptive contact switch (Pratt et al.,
2012; Gehring et al., 2013; Kelly et al., 2016; Lim et al., 2001). Phase detection through
contact force measurement helps to choose the right swing/stance controller for each leg
which improves stability (Aoi and Tsuchiya, 2006; Faber and Behnke, 2007; Collins and
Ruina, 2005), despite a fixed timing in the desired periodic gait. A simple strategy could
be early termination or polynomial extrapolation of trajectories in case of early or late
phase transition respectively (Faraji et al., 2013).

Compliance and damping can prevent non-smooth changes in velocities over impacts
(Park and Chung, 1999) and make state estimation easier. Besides, adding Series Elastic
Elements (SEA) in the joints help to reduce impacts and to protect the actuators. However,
one requires an acceptable level of precision in state estimation and actuation. This
translates to a proper spring deflection (Hutter et al., 2017) or force gauge measurement
(refer to chapter 3) for a closed-loop torque control. With SEA actuators, a stiff position
control is also possible, but the physical springs typically determine the effective stiffness
due to softer properties. Actuators with SEA elements can improve the efficiency of
walking too. Depending on the spring size and actuator’s isometric force generation
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efficiency, robots or prosthetic devices can absorb energy during impacts and rerelease it
when redirecting the Center of Mass (CoM) velocity (Sreenath et al., 2011; Collins et al.,
2005; Grimmer et al., 2016). In some robots like COMAN (Moro et al., 2011) or MIT’s
Spring Flamingo (Pratt and Pratt, 1998), however, the SEA elements are not big enough
to store a considerable amount of energy. Overall, the walking controller should not fight
against SEA’s functionality. In other words, the controller should demonstrate at least a
passive behavior to let the springs absorb impacts or store energy smoothly (Sreenath
et al., 2011). In this work, since our robot COMAN has small springs, we are mainly
interested in transient push recovery conditions and stability rather than energetics and
efficiency.

8.1.2 Swing dynamics

Due to a small size (height of ≈90cm and mass of ≈30kg), COMAN requires a relatively
high frequency for stepping. The stepping time in a child of about the same stature (age
range of 3-4 years old, height of 105±2cm and mass of 17.3 ± 0.7kg) is about 0.45s while
that in a child with about the same mass (age range of 6-7 years old, height of 125±1cm
and mass of 25.3 ± 0.9kg) is about 0.47s at self-selected speed (Hausdorff et al., 1999).
On the one hand, COMAN is more massive than an average child of the same height.
On the other hand, the leg mass in COMAN is about 22.5% of the body mass while
this ratio is about 17.3% in human (de Leva, 1996). Stepping times longer than 0.5s in
COMAN lead to large lateral bounces and static motions (e.g., 1s in (Kryczka et al.,
2015)). Besides, unlike MABEL (Sreenath et al., 2011) and many other biped robots,
ankle actuators are distal to the knee in COMAN which further increases the leg inertia
around the hip.

With a small size, yet relatively heavy legs and high inertias, the swing dynamics in
COMAN has a considerable influence on CoM dynamics. Walking at a high frequency
could be challenging due to actuator tracking delays, extra torques needed in the hip
joints, fast ground clearance and knee motions, filter delays in state estimation and
impacts in case of perturbations. However, at the same walking speed, increasing the
frequency reduces the step length which makes application of linear constant CoM height
models easier. Besides, SEA elements help to reduce intrinsic impacts of such a high
cadence, which makes dynamic walking possible with COMAN too. This goal requires an
advanced gait generation method which considers swing dynamics and internal coupling
between lower limbs and the upper body.

8.1.3 Gait generation

In chapter 2, we used the Linear Inverted Pendulum (LIP) model (Kajita et al., 2001a)
with closed-form equations in a Model Predictive Control (MPC) framework to adjust
footsteps in an online fashion. We also introduced an artificial swing trajectory which
terminated at the optimized footstep location, hoping that the underlying inverse dynam-
ics can track the template motion. The available control authority for inverse dynamics
was modulating the Center of Pressure (CoP) to track the CoM and swing trajectories.
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Such hierarchical controller worked at a walking frequency of 2 step/s and speeds up to
0.35m/s in a perfect simulation environment.

Tracking issues in the inverse dynamics layer (due to a limited foot size) motivated
us to extend LIP with two other pendulums to model the swing leg and the torso. The
new linear model, called 3LP (introduced in chapter 6), assumes ideal actuators in the
legs to keep limb masses and the pelvis in constant height planes. It also assumes a
perfect stance hip actuator to keep the torso upright. 3LP allows different stance ankle
and swing hip torque profiles as inputs which can create various walking gait patterns.
Thanks to inclusion of swing and torso dynamics, 3LP can produce more human-like
CoM trajectories compared to LIP which facilitates tracking for the underlying inverse
dynamics controller.

In this work, we focus on the sagittal plane push recovery performance while leaving
the robot bounce left and right with a fixed frequency of 2.5 step/s (step time of 0.4s)
to reduce lateral bounces. We assume decoupled lateral and sagittal dynamics (Kajita
et al., 2001b, 2003) which requires smaller step lengths (or large feet to provide transverse
torques) in practice. Equations of 3LP are also decoupled in lateral and sagittal directions
which further supports this assumption. Due to inclusion of pelvis, 3LP is restricted to
straight walking unlike the 3D LIP model we used in chapter 2 for steering. However, the
pelvis produces a natural lateral bouncing in 3LP that does not need to enforce artificial
feet separation like chapter 2.

For open-loop gait generation in the present work, we use Cartesian trajectories of
3LP and convert them to joint trajectories. Such unstable walking gait in the sagittal
plane can be stabilized with the time-projecting controller of chapter 7. We only focus on
stabilization of sagittal plane dynamics in this work and rely on intrinsic limited stability
of lateral plane bounces through a combination of waist roll (Omer et al., 2005) and leg
lift (Collins et al., 2001) clearance strategies without any ZMP control (Zhao et al., 2008),
momentum control (Kuo, 1999), lateral footstep adjustment (Kryczka et al., 2015) and
variable timing (Pratt et al., 2012). This combination is particularly chosen to reduce
knee joint motions (motivated by limited maximum joint velocities of our particular
hardware) during ground clearance and produce more stretched-knee postures (Omer
et al., 2005; Ogura et al., 2003).

8.1.4 Control approach

Due to the fast nature of falling dynamics, the walking cycle has an unstable mode whose
strength depends on the robot size and walking frequency (refer to chapter 7). A popular
way of stabilizing the gait is to consider specific events (e.g., touch-down or mid-stance)
and obtain Poincaré maps (Teschl, 2012) as discrete models. Classical control techniques
(e.g. Linear Quadratic Regulators (LQR) (Ogata, 1995)) can then stabilize the system by
proper control input adjustment (Zaytsev et al., 2015; Kelly and Ruina, 2015; Byl and
Tedrake, 2008; Rummel et al., 2010). The idea of phase space constant time to velocity
reversal planner (Kim et al., 2016) also falls in the same category where a new footstep
location is calculated only once per step. Although the computations involved are CPU
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intensive and the update rate is relatively slow, Kim achieved 18 successful steps on a
foot-less robot called Hume (Kim et al., 2016). This is considerable given transversal
slippages of the point-feet, but an external motion capture system helped the state
estimation in this work. Other key elements that helped Hume achieve this performance
were a relatively high CoM, a high stepping frequency, and relatively light-weight legs.
In chapter 7, by considering the effect of strong inter-phase disturbances, we motivated
the need for an on-line adjustment of the next footstep location. Due to a relatively weak
coupling of swing and CoM dynamics in slow walking conditions, adjusting the next
footstep location becomes effective only in the next phase where this position becomes
the new stance position which is tightly coupled to other system variables (Raibert, 1986;
Koolen et al., 2012). Modulating the CoP through ankle torques can provide immediate
stabilization, but is only useful in small disturbance conditions (Asano et al., 2004; Moro
et al., 2011).

On-line adjustment of footstep locations is widely studied in the literature to recover
strong pushes (Faraji et al., 2014a; Feng et al., 2013; Herdt et al., 2010b; Koolen et al.,
2012) during walking. However, the underlying simple template models (like LIP) require
inverse dynamics or ZMP controllers to use ankles for a better tracking. Therefore, a
combination of stepping and CoP modulation strategies is usually used (Faraji et al.,
2014a; Kryczka et al., 2015; Feng et al., 2013) for humanoid walking. Intuitive attack
angle adjustment rules which capture the extra CoM velocity in hopping (Raibert, 1986)
are extended to walking conditions too through capturability framework (Koolen et al.,
2012). That framework aims to find a footstep location that captures the motion and
brings the CoM to rest conditions. One significant strength of the capturability framework
is considering certain limitations, particularly the step length which is typically due to
the use of crouched knees and the LIP model. Given such constraints, capture regions
can be calculated for multiple steps as well when disturbances are too large. For walking
generation, however, a proportional gain is practically needed to move the desired capture
point away systematically to let the robot progress forward (Pratt et al., 2012). Using
the 3LP model for walking generation potentially solves this issue. Besides, we use
the time-projection controller of chapter 7 which works for arbitrary walking speeds.
Capturability offers an efficient start/stop state machine (Pratt et al., 2012) which is not
implemented in our work yet and considered for future improvements.

Previously in chapter 2, we extended the capturability idea and formulated a MPC
controller that implemented a similar concept and allowed for automatic gait generation
(based on LIP) inside the MPC. At each instance of time, this MPC controller simulated
evolution of the measured state over a receding horizon and optimized footstep locations
based on a given desired velocity. A simple arc trajectory then determined instantaneous
foot accelerations which, together with the CoM accelerations (according to LIP) were
converted to joint torques through inverse dynamics. The IMU placed on the pelvis also
helped to regulate the torso orientation which leads to a natural falling with the given
CoM accelerations. This framework was later extended by Feng (Feng et al., 2016) and
applied to Atlas for push recovery and walking generation which featured robustness.
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The control approach we use in the present chapter is very similar to the mentioned
MPC controllers (Faraji et al., 2014a; Feng et al., 2016) regarding performance, but much
simpler in structure.

High-level stabilization:

On top of the 3LP gaits, one can derive transition equations like Poincaré maps and
use an infinite horizon discrete LQR (DLQR) controller for footstep adjustment. This
architecture offers the same optimality as our MPC, but due to a discrete nature, it
is sensitive to intermittent short disturbances. Therefore, we introduced the simple
time-projection scheme which maps measured errors at any time to the previous discrete
event and uses the expertise of DLQR to find on-line footstep adjustments. In the present
work, we use gait generation of the 3LP model, optimality of LQR and online properties
of time-projection to achieve the same performance as the MPC (Faraji et al., 2014a;
Feng et al., 2016). The new framework offers more natural gaits and faster computations
because of the 3LP model and time-projection control respectively. It takes both the
CoM and swing errors (positions and velocities) into account to ensures stability for
a high-frequency gait and considerable swing dynamics. Compared to Raibert’s law
(Raibert, 1986) and the capturability framework (Koolen et al., 2012), it effectively
adjusts the attack angle by variable gains (on CoM and swing errors) which are found
systematically through the DLQR design and time-projection. These gains are also
consistent with 3LP’s falling and swing dynamics.

Low-level joint control:

Motivated by the specific anthropomorphic features of our COMAN robot, we use the
3LP model instead of LIP in this work which provides more natural CoM and swing
trajectories and improves tracking. Although we have achieved a convincing balancing
performance through pure torque control and inverse dynamics in chapter 3, we found
the pure torque control less precise in the absence of position or velocity tracking for
faster-walking tasks. In the literature also, a combination of torque, velocity and position
controllers is typically used to ensure compliant and precise tracking (Pratt et al., 2012;
Feng et al., 2015). In chapter 2, the inverse dynamics layer could compensate for the
inconsistency of LIP trajectories with the real system. In this work, however, thanks to
a better consistency of 3LP trajectories, we found inverse kinematics and the physical
compliance enough for the range of walking speeds and push recovery scenarios considered.
Unperceived locomotion on uneven terrain might require a considerable leg compliance;
therefore, we limit the experiments of this work to flat-ground gaits. We only rely on the
physical compliance of the robot to absorb impacts and restrict our simple framework to
position control. This only requires a simple yet adaptive foot lift strategy to avoid foot
scuffing.
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8.1.5 Novelty

The novel contribution of this work lies in application of the previously-developed time-
projecting controller on the real robot in push recovery and stabilization of walking
gaits. We also use the previously-developed 3LP model to generate more natural gaits
while keeping the same linear properties of LIP for computations. An extensive set
of results demonstrate that the effective control authority is footstep adjustment in
our experiments rather than CoP modulation. A considerable portion of the present
article is also dedicated to the description of hardware limitations in our robot and the
compensatory control strategies which help better realize the 3LP trajectories and the
time-projection control. All these control ingredients together motivate application of
the proposed method on robots with small feet, soft structural compliance, heavy legs,
fast walking frequencies and extreme push recovery conditions.

To implement these ideas on the hardware, we have used well-established methods
in the literature for lateral bouncing, leg lift strategies, and torso regulation. The
present work is limited to the application of time-projection control on the 3LP gaits.
Therefore, we decided to keep a fixed timing instead of a phase-based control, which
improves the stability considerably. We also relied on robot’s SEA properties while virtual
compliance can further smoothen the motion and improve stability. In the next section,
we introduce COMAN, discuss sensor qualities and extensively analyze issues arising with
SEA elements together with our specific control blocks to compensate them. Open-loop
and closed-loop control details are also described in the same section. Different scenarios
of in-place walking, intermittent push recovery, continuous push recovery, walking gait
and ankle stiffness measurements are presented in the results section. Finally, the chapter
is concluded by a discussion of results and possible future improvements.

8.2 Hardware control
In this section, we explain implementation details of our controller on the real hardware,
describe limitations and motivate individual control blocks used to track 3LP gaits and
stabilize them via time-projection. As mentioned earlier, COMAN has relatively short
and heavy legs which motivate considering swing dynamics at the gait generation level.
However, SEA actuators and hardware compliance improve stability and performance
in perturbed walking conditions. We believe performing torque control might bring
additional compliance, which is beneficial, however low signal qualities and the hardware’s
mechanical status to date do not allow a convincing tracking performance. Therefore, we
limited our focus to a position control paradigm.

Figure 8.1 shows the big picture of our entire control framework with all individual
components. The 3LP Cartesian gaits are augmented by foot lift strategies and converted
to joint angles through inverse kinematics. Hip switching and SEA compensation blocks
further augment joint-space trajectories and make them suitable for position control.
Actual link encoder and IMU signals are then used for a state estimation whose output
goes to the time-projecting controller. This controller simulates the instantaneous
measured state until the end of the phase and takes the resulting footstep adjustment to
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Figure 8.1 – The entire control architecture proposed in this paper. Given a desired
walking speed, 3LP produces a nominal gait A which describes the motion of pelvis and
both feet in the Cartesian space. We take these trajectories, add fixed and adaptive
foot lift components to the swing foot and pass them through an inverse kinematics
layer which finds desired joint angles B. The swing hip follows the desired joint angle
while the stance hip follows the desired torso angle which is realized by a smooth switch
between swing hip encoder and IMU on the pelvis. A time-projection based adjustment
is also added to the swing hip trajectory. We add a fixed small angle to the stance knee
trajectory to compensate compression of SEA springs in the knee. Joint trajectories are
tracked by relatively stiff position controllers on motor shafts before the springs. This
creates a posture C which is called the ghost robot, referring to pre-spring motor positions.
The actual link positions D are defined by post-spring encoders though, passed through
a forward kinematics layer to obtain actual Cartesian feet and pelvis positions. The IMU
signal is also used at this stage to orient the robot properly. After a relatively strong
filtering of Cartesian positions to remove noise, we apply a dead-zone function too which
makes them clean for time-projection control. We take the currently filtered state E,
simulate it until end of the phase by a closed-loop time-projection controller to obtain the
posture F . We measure the final attack angle adjustment (with respect to the nominal
gait) and add it to the swing hip trajectory then. If an external push is applied, the
instantaneous error (after filtering) produces a proper attack-angle adjustment through
time-projection which captures the push in few steps.

augment the swing hip angle found in earlier control stages. Such adjustment stabilizes
the motion, especially in the presence of external disturbances. In the rest of this section,
we discuss each control block in details.
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8.2.1 Low-level challenges

COMAN (height of ≈ 90cm and mass of ≈ 30kg) has 23 actuated joints and is equipped
with pre-spring and post-spring encoders, strain gauge torque sensors, a high-end IMU
and two 6D contact force sensors (Colasanto et al., 2012). It offers a proper level of
compliance with the SEA elements which are soft enough to absorb impacts and stiff
enough to keep the posture upright. However, the quality of sensory data, actuation
limitations, joint backlashes and extra spring deflections make the control of walking at
a relatively high-frequency choice of 2.5 step/s more challenging.

Sensor quality:

COMAN has incremental optical encoders to measure pre-spring motor shaft positions
and absolute differential magnetic encoders to measure post-spring link positions. The
optical encoder signal has a good quality due to a division by harmonic drive’s reduction
ratio (N = 101). The absolute encoder, however, covers the whole span of 360 deg by
only 12 bits which produce a considerable quantization error. Dedicated actuator control
boards are connected to local LAN dispatchers which are all connected in a tree-shaped
topology whose root goes to the external controlling PC. This network architecture
together with internal low-level motor controllers lead to a delayed position tracking
of at least 20ms in the stiffest and aggressive conditions. Due to the quality of link
encoders, delays, backlashes and the fact that we do not want to "fight" against the
physical compliance to benefit from impact absorption properties, we perform position
control only on the motor shaft (and not the link position) with proper signals from the
optical encoder. Figure 8.2 shows sensor qualities and delays in an in-place walking task
and important joints involved.

The ghost robot:

As mentioned earlier, SEA compliance in COMAN is enough to let it keep balance to
some extent, but depending on the commanded knee angles, spring compressions produce
an error in tracking. Imagine we command a crouched standing posture shown in Figure
8.3 with the CoP in the middle of the feet. Due to the ankle pitch compliance, the robot
tends to lean forward while due to the knee compliance, the robot leans backward. These
two effects slightly cancel each other, but in practice, the knee deflection systematically
perturbs the state estimation more. This is because the relative horizontal feet-pelvis
position highly depends on the knee angle (with a radius equal to the shank length), but
much less on the ankle angle. Thus, the mismatch between actual and ghost postures is
small but needs to be considered in control design. Note that we solely rely on the pelvis
IMU for state estimation. An alternative would be to assume a flat foot on the ground
and to build the kinematic chain upwards. We avoid this approach to minimize the effect
of ankle spring deflections, slippages and foot tilt/roll effects. Because of a particular
actuator design, a backlash appears in the joints of COMAN over time which requires
regular maintenance. At the time of experiments, we had significant backlashes in the
knee and ankle joints which were partially removed by external rubber bands (as shown
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Figure 8.2 – Typical trajectories of joints involved in an in-place walking gait. Link
encoders produce noisy signals which cannot be used for stiff position control directly,
but motor encoders are precise enough for this purpose. In the hip pitch joints, we use
a switching control rule in swing and stance phases which applies footstep adjustment
and corrects for IMU angles respectively. Due to the noise on these signals, we use a
smaller position gain in hip pitch joints which increases the tracking delay. Considerable
spring compressions are also observed in the knee and ankle pitch joints which increase
the mismatch between actual and ghost robots in practice.

in the accompanying video). However, these inaccuracies further complicated the state
estimation described later in this section.

Actuator limitations:

In chapter 3, to perform whole-body inverse dynamics and torque control, we attempted
to identify a model for COMAN actuators. We designed training trajectories with static
and dynamic profiles and used a simple proportional controller to track these trajectories
by producing actuator voltages. By measuring the output torque, we were able to relate
actuator voltages, velocities and output torques together:

v(t) = Ri(t) + kN θ̇(t)

kNi(t) = τout(t) + Av θ̇(t) + Ac sign(θ̇(t)) + Jmθ̈(t) (8.1)
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Figure 8.3 – When commanding a resting posture with the CoP in the middle of support
polygon, spring compressions lead to a different posture. Ankle spring compressions
make the robot lean forward while knee spring compressions make it lean backward.
These two effects cancel each other to some extent, but in practice, the torso would have
an undesired rotation depending on desired knee angles and CoP locations. The actual
CoM might also move backward for 1-2cm.

where v(t) denotes motor voltage, R denotes terminal resistance, i(t) denotes motor
current, k denotes torque constant which is assumed to be equal to the back-emf constant,
N is harmonic drive ratio, τout(t) is output torque, θ(t) is shaft position, Jm is reflected
rotor inertia and Av and Ac are coefficients of a simple Coulomb-Viscous friction model.
Since current measurements were not reliable enough, we combined equations of (8.1)
and obtained:

v(t) = αθ̇(t) + β[Jmθ̈(t) + τout(t) + Ac sign(θ̇(t))] (8.2)

where:

α =
RAv

kN
+ kN, β =

R

kN

In COMAN actuators on average α ≈ 5.42 Vs/rad, β ≈ 0.45 V/Nm, Jm ≈ 0.23 Nms2/rad
and Ac ≈ 1.66 Nms/rad. This means voltages are converted to joint torques with a
coefficient of β ≈ 0.45 V/Nm and there is a damping of α/β ≈ 12 Nms/rad in practice.
A challenge in our experiments was to operate the robot in a reduced maximum voltage
of 15V which leads to a theoretic velocity bound of θ̇max = ± 2.43 rad/s. Regarding the
choice of walking frequency (2.5 step/s), the knees do not have enough time to bend
fast which makes the knee-bending foot lift strategy limited. We have demonstrated
this effect over some perturbed gait trajectories in Figure 8.4 where fixed and adaptive
leg lift strategies (described later) command a fast bending angle to the right knee.
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Figure 8.4 – In normal or perturbed walking conditions, a small leg lift of 2-3cm cannot
be easily achieved due to a saturation of actuator velocities. The maximum velocity is
determined by power supply voltage and motor properties. Due to the targeted perturbed
walking conditions in our experiments, we operate the robot with a slightly lower but
safe voltage to avoid high currents and unwanted shut-downs. This limits the leg lift
performance which might lead to falling when a fast swing progression is commanded,
but the foot is not lifted enough, and the toes still touch the ground.

We normally operate the robot with knee angles of 0.4rad ≈ 23 deg while, as depicted
in Figure 8.4, a leg lift of 2-3cm cannot be completely realized due to saturated knee
velocities. In practice, we cannot operate the robot in straight-knee postures either,
although our inverse kinematics (appendix B) is able to handle singularities. Limited
velocities motivated us to combine a hip-roll foot lift strategy with the knee-bending
strategy to provide an extra leg left without overloading the knee joints. A delayed leg lift
is hazardous in practice, for example when the hip is pushing for a fast swing trajectory,
but the foot is yet not lifted enough to clear the ground. In this case, the toes might
touch the ground much earlier than expected which may lead to an immediate fall.

SEA compensation:

As described earlier, due to the spring compressions, the ghost robot might mismatch
the actual robot considerably. This mismatch is hard to compensate in the ankles since
the CoP moves back and forth easily in practice and the compression angle is variable.
In the knees, however, this compression is quite constant assuming relatively short step
lengths. Due to heavy duty daily operations, the knee springs get permanently deflected
in COMAN over time which requires frequent replacement. In this regard, we perform an
open-loop in-place walking gait before experiments to identify steady-state knee spring
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Figure 8.5 – Histograms of typical knee spring compressions during an in-place walking
gait when experiments where done. These plots depend on the status of springs because
they permanently deflect over time and lose their original stiffness which needs a regular
replacement. Assuming short step lengths, we compensate these deflections by a feed-
forward angle added to the desired knee trajectories. The compensating angles µleft

and µright are constant all the time, but multiplied by the contact forces to make them
effective only during the stance phase in each leg.

compressions which are plotted as histograms in Figure 8.5. This test can be easily
repeated to identify the current state of the robot before experiments. In our algorithm,
the statistical average of these histograms is used as a constant, multiplied by normalized
contact forces and added to the desired knee angles. In other words, assuming Fleft(t)
and Fright(t) to represent instantaneous filtered contact force measurements, mg to be
the total weight and µleft and µright to represent mean deflections, we add δθleft(t) and
δθright(t) to the desired knee trajectories:

δθleft(t) = − |Fleft(t)|
mg

µleft

δθright(t) = − |Fright(t)|
mg

µright (8.3)

These adjustments can be a function of time as well, but we found this adaptive
compensation smoother. Besides, the magnitude of adjustment is so small that it
does not cause shaking when directly combined with contact forces and given to the
stiff position controllers. However, the compensatory influence is considerable. Given a
shank length of ≈ 25cm, δθleft(t) and δθright(t) each compensate about 3.2cm and 1.4cm
of errors on relative horizontal pelvis-feet positions respectively.

8.2.2 Open-loop control

This section introduces simple strategies used to generate a periodic rhythm of motion
based on 3LP gaits. The components of our open-loop control are gait generation by
3LP, foot lift strategies and hip switching rules.
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Lateral plane:

As motivated earlier, a simple foot lift strategy through rotation of hip pitch, knee and
ankle pitch joints brings the robot close to actuator velocity boundaries. However, we can
use the hip and waist roll joints as well to lift the entire leg. This strategy is inspired by
pelvic roll observations in human walking, and used by WABIAN-2 robot earlier (Omer
et al., 2005) to achieve straight-knee walking gaits. Figure 8.6 demonstrates both foot lift
strategies side-by-side. In this work, we use a combination of the two to make sure that
knee actuators stay far from their limits in normal conditions. This enables the actuators
to reach fast yet feasible velocities in perturbed walking conditions. Lateral bounces
in 3LP are as small as 2.2cm total displacement of the pelvis, given the desired step
width of 25cm and step time of T = 0.4s. These bounces induce sinusoidal trajectories
of about 0.03rad ≈ 1.7 deg amplitude in the hip roll joints. However, a much larger
pelvis roll of 0.1rad ≈ 5.7 deg leads to a foot lift of only 1.4cm (pelvis width is about
14cm in COMAN). Since the hip-roll strategy requires much larger motions in the joints,
it becomes dominant, and there is no need to use lateral bounces of 3LP anymore. In
practice, we command a sinusoidal pelvis roll trajectory of:

δθroll(t) = 0.1 sin(
πt

T
) (8.4)

and a half-sine vertical Cartesian trajectory of:

δzfixed(t) = 0.01 sin(
πt

T
) (8.5)

to the swing foot to lift it about 2.4cm in total. This makes the robot converge to
a natural lateral bouncing, similar to WABIAN-2 robot (Omer et al., 2005). In this
paper, we do not use any specific lateral footstep adjustment, momentum regulation or
variable-timing phase-based control. Also, we set the ankle roll gain to a small value to let
the foot adapt to the ground and establish at least a border contact. This increases the
effective contact area in perturbed conditions (Collins and Ruina, 2005), provides more
realistic ground reaction forces (Hamner et al., 2013) and reduces unwanted transverse
slippages during walking.

Sagittal plane:

Given a desired velocity, open-loop 3LP gaits q(t) are generated in the Cartesian space and
assigned to the robot through inverse kinematics. Both foot lift strategies augment the
desired Cartesian positions and orientations of 3LP and given to our inverse kinematics
controller (appendix B). We consider Cartesian pelvis and feet positions for tracking and
state estimation in this work. The pelvis point is precisely in the middle of the two hip
joints, and the foot position is on the ankle joint axis, slightly (3cm) shifted forward to
be precisely in the middle of the foot. The advantage of considering the pelvis instead of
CoM is avoiding the influence of upper-body arm oscillations which can highly perturb
the CoM state. In COMAN, the two arms are rather heavy, and shoulder springs are
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Foot
Lift

Pelvis 
Roll

B)

Foot
Lift

A)

Figure 8.6 – A) Knee-bending and B) hip-roll strategies used to lift the foot in our
walking gait generation. In practice, an open-loop foot lift of about 2.4cm is achieved
through a combination of both strategies at the same time.

much softer than those used in the legs. This can highly perturb the state estimation in
perturbed walking conditions.

Position control:

In this work, similar to MIT’s Spring Flamingo (Pratt and Pratt, 1998) and many other
robots, we use stance hip joints to regulate the torso angle instead of tracking the desired
stance hip angle. This can be perfectly done with inverse dynamics and torque control
and by using IMU orientations as feedback on pelvis orientations (chapter 3). In 3LP also,
ideal stance hip actuators ensure an upright torso posture by calculating the required
torque to be applied. Since we do not have torque control available in the present work,
we only rely on position control. We use a simple time-based transition law that changes
the desired and actual angles from swing command and hip encoder to zero torso angle
and IMU pitch signal during swing and stance phases respectively. The hip actuator
then tries to reduce the error by applying a proportional voltage. Denoting the IMU
pitch by θpitch(t), the desired hip angle (in both phases) by θdes(t) and the measured hip
angle by θact(t), our transition law for the hip is formulated as:

v(t) = kd[γ(t)(θdes(t) − θact(t)) + (1 − γ(t))(−θpitch(t)] (8.6)

where γ(t) = e−(t/t1)2

in stance phase and γ(t) = 1 − e−(t/t1)2

in the swing phase, t is the
time since beginning of the phase and t1 = 0.2T . The choice of t1 is based on the force
transfer rate during contact switch time (double support ≈ 20%), v(t) is commanded
actuator voltage and kd is the proportional gain. Figure 8.9 demonstrates the switching
rule for different moments of the gait. The position control for all other joints is simply
defined by:

v(t) = kd[θdes(t) − θact(t)] (8.7)
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Figure 8.7 – The quality of filtered state errors over a task of in-place walking. These
values should be zero in ideal conditions. However, joint backlashes, calibrations and
model mismatches in forward kinematics produce systematic errors that cannot be
filtered out with a simple time filter of (8.8). We simply fit a Gaussian model on
these measurements and estimate the typical standard deviation which is later used to
determine the threshold for a dead-zone function.

where θdes(t) and θact(t) are the corresponding desired and actual angles. The control
gains are set to 10 V/rad for ankle roll joints, 100 V/rad for hip pitch joints and 500
V/rad for all other joints.

8.2.3 Closed-loop control

Our proposed control paradigm is based on planning and stabilization in the Cartesian
space. We use inverse kinematics to convert Cartesian 3LP gaits to joint angles and then
forward kinematics to calculate the actual Cartesian positions at each instance of time.
In this section, we are going to discuss our closed-loop control which stabilizes the robot
by dynamic footstep adjustment. The closed-loop controller has three main blocks: state
measurement and filtering, adaptive lift strategy and footstep adjustment.

State estimation:

We use link encoder (post-spring absolute encoder) and IMU measurements to build
the kinematic chain and then to find relative horizontal pelvis-feet vectors s1(t) =
xswing − xstance, s2(t) = xpelvis − xstance (shown in Figure 6.2) and their derivatives. Due
to a quantization error, however, these vectors have a considerable noise to be filtered.
Besides, joint backlashes and geometric model mismatches also contribute to a more
systematic erroneous state measurement. We cancel the quantization error by a simple
Infinite Impulse Response (IIR) filter of the form:

s(t) = (1 − ζ)s(t − δt) + ζ ŝ(t) (8.8)

where ŝ(t) is the observed signal at time t, δt ≈ 2ms is our effective control rate and
ζ = 0.1 is tuned to provide a right level of signal filtering and delay. In practice, this
parameter was tuned together with position control gains on the hip pitch joints to ensure
fast tracking and to avoid high frequency shakes due to actuation delays. To estimate
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Figure 8.8 – The smooth dead-zone function used to filter systematic errors due to
backlashes, calibration and model mismatch problems. Compared to the sharp dead-zone
function, the smooth function provides a considerable attenuation (≈ 64%) which makes
it suitable for error reduction.

velocities, we simply use time differentiation over the filtered s1(t) and s2(t) signals,
and another averaging filter afterward with a window of 30 samples. More systematic
errors due to backlashes and model mismatches are canceled by introducing a dead-zone
function. We denote the errors of s1(t) and s2(t) with respect to the nominal gait by
e1(t) and e2(t). We run an open-loop in-place walking in which the robot only bounces
left and right without any forward or backward progression. This gait is stable in a
very limited region of states, depending on the stiffness of ankle joints and the feet size.
Figure 8.7 shows statistical values of filtered errors e1(t) and e2(t) and their derivatives
in the sagittal direction. With ideal actuation and measurements, these values should be
zero all the time. However, they have a certain standard deviation which we measure by
fitting a Gaussian model on the data. A smooth dead-zone function:

y = x − arctan(
πx

2a
)
2a

π
(8.9)

can attenuate the signal by 64% at the threshold value a, shown in Figure 8.8. We
apply such dead-zone on each of the signals in Figure 8.7 and set the threshold a to
their standard deviation. Our two-stage filtering helps to stay in the limited basin of
attraction produced by CoP modulation, but smoothly and automatically switching to
foot-stepping strategy whenever disturbances get large.

Adaptive foot lift strategy:

One of the key control components in perturbed walking conditions is foot lift which
should provide enough ground clearance to allow for a complete swing motion and a
precise tracking of next footstep locations, which then play important roles in stabilization.
However, due to actuation limitations and especially velocity limits (shown in Figure
8.4), we cannot lift the foot in COMAN as much as desired. Previously, we introduced
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Figure 8.9 – Phase transitions in commanded, ghost and actual postures defined in
Figure 8.1. The focus of this figure is to investigate hip switch rules and adaptive foot
lift strategies, demonstrated here for example in an in-place walking gait. When the
right leg is stance phase at time t = −0.2T , the commanded posture implies a pelvis
position on top of the stance foot position. Due to external pushes, the robot might
fall where the pelvis moves forward, getting away from the stance foot. This naturally
happens since the stance hip is regulating the torso angle and not the desired hip angle.
At time t = 0, a phase transition happens while the robot is still falling. The toes of the
ghost robot penetrate in the ground while ankle springs compress and move the CoP
forward in an attempt to resist against the push passively. When the swing phase starts
at t = δt, the actual hip angle is far from desired, the ankle spring is still compressed,
and the toe in the ghost robot penetrates the ground. An adaptive foot lift strategy is
therefore needed on top of our fixed strategies which are only designed for the commanded
posture. The adaptive lift, depending on the current posture, provides an extra lift on the
commanded posture which leads to enough ground clearance shown at t = 0.2T . It also
applies a corrective orientation to compensate leg rotation and ankle spring compressions
(described better in Figure 8.10).

a mixture of knee-bending and hip-roll fixed foot lift strategies which already provide
few centimeters of ground clearance. However, since the stance hip pitch is assigned to
regulate the torso angle, the stance foot might get away from the pelvis, depending on
external pushes and falling dynamics. Since in stance phase, we lose track of desired
stance hip pitch trajectories in favor of torso regulation, the amount of leg lift needed in
the early next swing phase should depend on the actual relative swing foot position. To
better understand this effect, imagine the robot is performing in-place walking, and a
strong push is applied from behind. The pelvis naturally moves forward with respect
to the stance foot in the same phase while the torso is kept upright by the stance hip
joint. In the next phase, the stance leg goes to swing mode, where the desired gait
is only in-place walking. The desired swing hip angle is almost zero while the actual
angle is such that this leg is left behind the robot in very early moments of the swing
phase that has just started. Figure 8.9 demonstrates this effect in details. At time
t = −0.2T for example, the right leg is in stance mode, and the robot is falling forward.
Assume the phase transition happens at t = 0 where the robot is still falling forward.
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At time t = δt, the right leg has started the swing motion, but its actual position is
far from the commanded position. The fixed foot lift strategies are designed for the
commanded posture (shown in Figure 8.9) while the actual swing foot position needs an
extra lift to clear the ground safely. Our Adaptive foot lift strategy is straightforward. It
calculates the relative horizontal pelvis-swing position out of the filtered error signals
(i.e., e2(t) − e1(t)) and approximates the actual hip angle:

θ̂act(t) ≈ arctan(
e2(t) − e1(t)

z
) (8.10)

where z is the constant pelvis height in 3LP model. This approximation is already
filtered and registered in the inertial frame thanks to the IMU orientation while the
actual post-spring hip encoder angle θact does not have these properties. The amount of
adaptive leg left would be:

δzadaptive(t) = z[1 − cos(θ̂act(t))] sin(
πt

T
) (8.11)

which compensates the mismatch between commanded and actual postures, shown in
Figure 8.9. The use of a sinusoidal signal is to ensure extended legs at phase transition
moments and to prevent the robot form collapsing in practice. At time t = 0.2T , the
adaptive lift strategy induces an extra lift in the commanded posture (shown in Figure
8.9) which goes to inverse kinematics and produces an extra foot lift, whenever the actual
swing foot is unexpectedly far from the desired swing foot position.

Due to hip switching rules and in addition to the foot height mismatches explained,
the orientation of the foot might also not be horizontal in early swing phases (shown in
Figure 8.9). This is purely due to rotation of the swing leg in the previous stance phase
which has to be corrected in the current swing phase. This effect is shown in Figure 8.9
on the ghost robot. Note that the commanded posture requires a flat foot, however in
stance phase, the robot falls forward and the whole stance leg rotates, leaving the foot
behind the pelvis. Now, since stiff position controllers are tracking the desired ankle
angles, the ghost foot penetrates the ground. However, the SEA elements compress in
this case and bring the CoP to the toes. This has a positive stabilization effect during
the fall and slows it down. However, in the early next swing phase, although the robot
attempts to lift the foot through fixed and adaptive strategies, the ankle spring is still
releasing, causing the toes to keep touching the ground at time t = 0.1T , shown in Figure
8.10. Therefore, there are two distinct effects: I) foot orientation mismatch because of
our hip switch rule, II) spring release which happens whenever the CoP goes towards the
toes, regardless of the control algorithm. Figure 8.10 provides a closer perspective aiming
at a better clarification of spring dynamics in the early swing phase. To compensate
both effects, we simply add feedback on the foot orientation:

δθpitch(t) = −θ̂act(t) (8.12)

where θ̂act is coming out of the forward kinematics model. This feedback which is added
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Figure 8.10 – The effect of ankle spring compressions in early swing phases. Consider a
phase change happens at t = 0 where the stance leg switches to swing phase. Due to
external pushes, the pelvis might move forward during the stance phase which brings the
CoP forward too, since a fixed ankle angle is commanded. The movement of CoP is in
fact due to the resistance of ankle spring against rolling which indeed provides positive
stabilization properties, depending on the ankle spring stiffness. Now, when the swing
phase starts at t = δt, the ankle spring is still compressed which continues to release
during the leg lift. At some point, the spring releases completely which is when the
actual toe-off happens, and the swing can start. In our adaptive lift strategy, we add
some orientation correction feedback to speed up this effect.

to the desired foot orientation before inverse kinematics keeps the foot orientation always
horizontal with respect to the ground. Therefore, our adaptive lift strategy is composed
of both foot height and foot orientation compensations.

Footstep adjustment:

The second part of our closed-loop control is footstep adjustment based on time-projection
control. Remember that the adaptive lift strategy was introduced to handle perturbed
walking conditions and to make sure that desired footstep locations can be realized by
providing enough ground clearance. After filtering errors e1(t), e2(t) and derivatives, we
have an estimate of robot’s current state error which is further passed through dead-zone
functions to reduce systematic errors. This state variable is used in the time-projection
controller to find footstep adjustments. In the absence of disturbances, the time projecting
controller produces the same corrective input when the error evolves in time according
to the natural system dynamics. In other words, once the external push is released, it
leaves an error in the system which follows system’s dynamical equations. In this regard,
assuming short and bounded forces, we expect the time-projecting controller to produce
the same final footstep in all time instances after the intermittent push until the end
of the phase. Due to IMU and encoder noises, we have to decrease position controller
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Figure 8.11 – A) The instantaneous output of time-projecting controller on the 3LP
model in terms of hip torques. B) The resulting footstep adjustment by simulating the
current measured error until the end of the phase. In our position-controlled framework,
we measure and filter errors at any time t, perform an inner product by the corresponding
gain vector of these figures at time t and truncate the result to find a safe final footstep
adjustment. This value is then divided by the 3LP pelvis height z to obtain an attack
angle adjustment.

gains in the hip joints to avoid shaking. This inevitable policy introduces more delay
in the tracking of the desired hip trajectories, yet is enough to stabilize the system and
realize commanded footstep locations. Because of these practical reasons and to set
up a simple controller, we directly use the final footstep location to let the swing leg
reach it on time. At each control tick (every 2ms approximately), we take the current
Cartesian state and simulate it until the end of the phase in a closed-loop 3LP simulation
where the time-projecting controller adjusts the swing hip torques. The resulting footstep
adjustment at the end is extracted (from posture F in Figure 8.1) and converted to a
proper attack angle.

In practice, thanks to the linearity of 3LP and time-projection control, we can simply
extract control laws offline and interpolate them in the form of a look-up-table on-line
which is computationally very efficient. Note that the effective sagittal error vector
used here has 4 dimensions (sagittal components of e1(t), e2(t) and their derivatives).
The output of projecting controller has two dimensions in the form of constant and
time-increasing torques which are added together at each instance of time t and produce
a single swing hip torque values. On the other hand, when simulating the current error
until the end of the phase, the time projecting controller produces a footstep adjustment
in the sagittal direction which has one dimension. Therefore, two different look-up-tables
can be produced, one for a torque-controlled paradigm and one for our position-controlled
paradigm. Each control table maps a four-dimensional error into a single output. The
control gains of individual error dimensions are shown in Figure 8.11 at different phase
times. These gains depend on model properties and the walking gait frequency, but
not the speed (refer to chapter 7). In practice, we only take filtered errors and perform
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inner product with an interpolation of the final swing position control gains in Figure
8.11. A truncation of 15 cm ≈ 0.35z is also applied to avoid huge steps and breaking
the hardware when too strong pushes lead to failure during experiments. Results are
finally divided by the 3LP pelvis height z to approximate the equivalent attack angle
adjustment.

Having explained both open-loop and closed-loop simple control policies, we are
interested in assessing the effect of each control block as well as push recovery and walking
scenarios in different conditions. These results are presented in the next section.

8.3 Results
The results presented in this section are categorized into five groups of in-place walking,
intermittent push recovery, continuous push, normal walking and stiffness measurement
scenarios. We explore the functionality of closed-loop and open-loop control configurations
where the foot-stepping mechanism is just disabled in the second case. We further continue
with the closed-loop controller and in-place walking and show how the algorithm can
take corrective steps to recover pushes in different directions. Next, we disable the
footstep adjustment and demonstrate the limited stability of open-loop controller which
is due to passive CoP modulation. This controller can easily follow a continuous external
push and pull while behaving almost on the margin of stability. Finally, we show how
different walking gaits can be generated with this framework where we only change
the desired speed in the 3LP gaits. Finally, we perform a simple standing experiment
and demonstrate the effective level of ankle stiffness in COMAN which further clarifies
dynamic walking features of our controller.

8.3.1 In-place walking

As motivated in the beginning, CoP modulation provides a fast yet limited control
authority for immediate stabilization. Foot-stepping, on the other hand, provides stronger
stabilization, but only over phase changes. SEA elements and internal joint backlashes
lead to a relatively compliant ankle joint, shown at the end of this section. The passive
ability of ankle springs in resisting against falling together with the fact that during
in-place walking, the swing foot comes under the pelvis all the time make the open-loop
gait stable in a limited region of states without any time-projection control. Figure
8.12.A shows foot positions with respect to the pelvis during this open-loop gait which is
also used in Figure 8.7 to design the dead-zone functions. In Figure 8.12.B, we show how
the complete closed-loop system behaves when dead-zone functions reduce systematic
errors of Figure 8.7.

Without dead-zone:

Without dead-zone functions, the closed-loop system gets perturbed completely. This
is shown in Figure 8.12.C where the robot is still stable, but stumbling considerably.
In these conditions, the lateral stability of the robot is also systematically influenced
because of unexpected touchdown events shown in Figure 8.13. Here, the adaptive foot
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Figure 8.12 – In-place walking in A) open-loop, B) closed-loop and C) closed-loop without
dead-zone functions. This figure shows horizontal foot locations only at phase change
moments over 10s of walking, i.e., 25 steps. The open-loop gait is stable in a very limited
region of states thanks to the passive CoP modulation of ankle springs and the natural
swing trajectory which always comes under the pelvis during an in-place walking gait.
When applying dead-zone functions in closed-loop control, the in-place walking gait is
only slightly perturbed in figure B). Without the dead-zone functions, however, the
walking gait is completely perturbed. Here, the footstep still stabilizes the system, but
the timings and trajectories are all perturbed systematically, which is not desired. The
corresponding movies of all the three scenarios could be found in the accompanying
video.
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Figure 8.13 – Closed-loop in-place walking when the dead-zone functions are disabled. In
this case, the robot stumbles considerably due to the systematic errors in state estimation.
The time-projecting controller stabilizes the system despite an erroneous measured state.
However, actual phase change moments might happen earlier or later, depending on
adaptive foot lift trajectories which are also subject to an erroneous measured state.
This illustrates the effectiveness of dead-zone functions in improving the repeatability of
closed-loop in-place walking gaits.
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t = 0.2 t = T = 0.4 t = 3Tt = 2T t = 4T t = 5T

Backward Push

Forward Push

t = 0.2 t = T = 0.4 t = 3Tt = 2T t = 4T t = 5T

Figure 8.14 – Short intermittent pushes during an in-place walking gait in different
directions. On top, the robot almost takes three corrective steps to recover the forward
push while it only takes two steps the recover a lighter backward push. Snapshots are
taken at phase change moments every T = 0.4s. The corresponding movies could be
found in the accompanying video.

t = 0.2 t = T = 0.4 t = 3Tt = 2T t = 4T t = 5T

Backward Push

t = 7T t = 9Tt = 8T t = 10T t = 11Tt = 6T

Figure 8.15 – Recovery process of a strong backward push during in-place walking.
Snapshots are taken at phase change moments every T = 0.4s. Since the passive CoP
modulation is almost ineffective in the backward direction, the stepping strategy takes
multiple steps to recover the strong push. Despite a safety threshold which limits the
step size, the push is so strong that it violates decoupling assumptions, leading to a
sudden rotation at t = 5T . The new undesired perturbation requires the robot to take
more backward steps to recover completely and go to a rest condition. The corresponding
movie could be found in the accompanying video.

lift strategy commands different clearance heights due to erroneous measured states.
This can lead to unexpected touchdown events which prevent a complete swing when
happening earlier than expected or produce an early stance phase when the leg is still in
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a swing phase.

8.3.2 Intermittent push recovery

Although the passive CoP modulation provides little stability over in-place walking
in the absence of considerable disturbances, we would like to know how effective the
foot-placement strategy is. We use the same closed-loop in-place walking gait of the
previous part and apply short intermittent pushes on the torso.

Moderate Pushes:

Figure 8.14 shows a sequence of walking snapshots taken at phase change moments when
a forward and backward push is applied to the system. Depending on the timing of
the push, a small footstep adjustment takes place in the same phase with the push, but
the next footstep locations recover the push gradually. Due to the safety threshold (=
15cm) applied on footstep adjustments and depending on the push strength, the recovery
process might take more than 1-2 steps. Note that we typically command the pelvis
in the middle of the support polygon. Ankle SEA springs, therefore, compress slightly
as shown in Figure 8.3 due to a non-zero ankle torque when the CoP is not exactly
under the ankle joint. Because of this default compression, the passive CoP modulation
strategy resists more against forward pushes than backward pushes. Although most of
the stabilization comes from the stepping strategy, overall, recoverable forward pushes
can be slightly stronger than backward pushes.

Strong pushes:

Our control design and safety thresholds target small, yet dynamic footstep adjustments
which do not violate the linearity of 3LP, sagittal-lateral decoupling, and actuator
limitations. When a strong push is applied, some of these assumptions might not be
valid anymore. The robot might be still able to recover, but over multiple steps or with
an extra effort. Figure 8.15 shows such strong backward push during in-place walking.
As mentioned earlier, the passive CoP modulation is almost ineffective in the backward
direction which further complicates the recovery for the stepping strategy. The robot
takes multiple backward steps to recover the strong push, but suddenly, a transverse
slippage happens in the right foot which rotates the robot slightly. This happens due to
the violation of sagittal-lateral decoupling assumptions. After this slippage, the robot
takes a few other backward steps to stabilize completely.

8.3.3 Continuous pushes

Apart from impulsive pushes, we are also interested in investigating the performance
when the robot is subject to a moderate continuous pushing/pulling force. In these
conditions, bounded-push assumptions behind the time-projecting controller are violated.
As mentioned earlier, the open-loop controller is also stable due to a passive CoP
modulation, but in a very limited region of states. This controller weakly reacts to
perturbations, almost on the margin of stability which makes it compliant in following

167



Chapter 8. Walking and Push Recovery

64 65 66 67 68 69 70 71 72 73 74

-0.1

0

0.1

0.2

S
w
in
g
P
ro
gr
es
s
(m

)

A) Forward Push

-0.2

0

0.2

0.4

L
ef
t
V
er
ti
ca
l
G
R
F
(k

N
)

74 75 76 77 78 79 80 81 82 83 84

Time (s)

-0.1

0

0.1

0.2

S
w
in
g
P
ro
gr
es
s
(m

)

B) Backward Push

-0.2

0

0.2

0.4

L
ef
t
V
er
ti
ca
l
G
R
F
(k

N
)

Right Support

Left Support

e1 = xswing − xstance

Pushes

Figure 8.16 – The emergent walking of the open-loop controller when an in-place walking
gait is commanded and a moderate yet continuous external A) forward and B) backward
force is applied. In-place gait requires swing foot to come under the pelvis while
the external drag causes a continuous falling. Passive CoP modulations in the ankle
SEAs slightly resist the force and provide a weak stability. However, the gait does not
have a large basin of attraction and requires a smooth profile of external forces. The
important property of this controller is compliance to external pushes and emergent
speed modulations, although no specific desired velocity is commanded. In this scenario,
the robot can sometimes reach a peak velocity of ± 0.2m/s. The corresponding movie
could be found in the accompanying video.

the pushing/pulling force. Figure 8.16 demonstrates this behavior in the presence of
continuous pulling and pushing forces applied to the right hand. In these scenarios, we
disable the stepping strategy while still keeping the adaptive foot lift active. Depending on
actuator capabilities, the robot can easily reach walking speeds of up to ± 0.2m/s. When
enabling the stepping strategy, however, the robot naturally uses footstep adjustments
to slow further down. This leads to a stumbling behavior and a less rhythmic motion
compared to the open-loop controller. Movies of both scenarios are included in the
accompanying video.

8.3.4 Walking

Remember that due to the linear properties of 3LP and the time-projecting controller,
with a fixed walking frequency, the controller remains unchanged at different walking
speeds. While keeping the same closed-loop control architecture, we now change the
desired speed in 3LP to produce variable trajectories. Figure 8.17 shows two different
cases of walking at 0.1m/s and 0.2m/s together with snapshots from the robot. The same
dynamic stabilization mechanism can be seen in small variations of swing foot trajectories
where the controller provides adjustments for stabilizing the gait. One can notice that,
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Figure 8.17 – Walking gait generation with the same controller used previously for
in-place walking. In these scenarios, we command a desired velocity of A) 0.1m/s and
B) 0.2m/s which produces different 3LP gaits and Cartesian profiles. Here, the passive
CoP modulation has little stabilization role while the time-projecting controller plays
an important role, observed in small trajectory variations. Figure C) shows snapshots
of the faster gait on the real robot, taken at phase transition moments. Movies of both
scenarios could be found in the accompanying video.

however, the actual phase transition takes place slightly earlier than expected in faster
walking speeds. This can be due to a tracking delay in the hip joints or extra spring
compressions in the stance leg which limit the ground clearance and influence the swing
phase timing. The time-projecting controller can still stabilize the system, handling these
timing issues.

8.3.5 Effective ankle stiffness

The last experiment presented in this section aims at quantifying the actual passive
stiffness of ankle springs in COMAN. To this end, we command a stand-still posture
to the robot with stiffest position gains everywhere, the CoP in the middle of support
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polygon and disabled feedbacks. In this scenario, as depicted in Figure 8.18, both ankles
contribute a resisting force against external pushes applied to the neck. As Figure 8.18.A
and Figure 8.18.D show contact force readings and external gauge values respectively, a
minimal pulling force of ≈ 7N can easily move the pelvis by ≈ 5cm (and the torso by ≈
9cm) which implies an effective stiffness of only ≈ 31 Nm/rad per ankle. Note, however,
that the position controller with a high gain of kd = 500 and an effective voltage-torque
coefficient of 1/β ≈ 2.2 leads to a stiffness of ≈ 1100 Nm/rad in series which is much
larger than the overall stiffness. Besides, we also have small backlash problems in the
joints which further limit the influence of ankle springs. This experiment illustrates that,
despite having relatively large feet in COMAN, our controller is mostly relying on the
footstep adjustment strategy rather than the passive CoP modulation in recovery from
disturbances.

8.4 Discussion
In this paper, we proposed a very simple but robust control architecture that can stabilize
the robot against external pushes. Motivated by specific properties of our hardware,
including heavy legs, we used a model called 3LP which can capture swing and torso
dynamics and produce more dynamically consistent gaits compared to LIP. We also used
the rich literature of Poincaré maps and DLQR controllers for walking control together
with our time-projecting controller that resolves the continuous-discrete mapping and
offers an on-line control scheme. This controller, in a very simple position-controlled
architecture, can suggest footstep adjustments that stabilize the robot against external
disturbances. By using the 3LP model, we are performing a model-based control. However,
thanks to a close dynamical match of this model to the real robot, both gait generation
and on-line control in our architecture take falling and swing dynamics into account.
This knowledge is encoded in a very simple control look-up-table that stabilizes the robot
easily without using any advanced state estimation algorithm like Kalman filtering or
advanced inverse dynamics.

8.4.1 Dynamic walking

Over an extensive range of results and analysis, we showed that both passive CoP modu-
lation and foot-stepping strategies are involved in our controller. The CoP modulation
alone has a limited basin of attraction while the foot-stepping strategy is sensitive to
the sensory data but more powerful in recovering strong disturbances. We resolved the
sensitivity with simple filters and dead-zone functions on the sensory data. However, the
effective ankle stiffness was determined by the physical hardware and much smaller com-
pared to the virtual compliance realized through position controllers. Our architecture is
not designed for an active CoP or Zero Moment Point (ZMP) control, and we only rely on
the passivity of ankle springs to resist or at least damp falling dynamics. CoP modulation
has, therefore, a very limited influence regarding COMAN’s foot size and effective ankle
stiffnesses. Our controller provides stability against very small disturbances through a
passive CoP modulation and recovers more substantial disturbances dominantly through
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Figure 8.18 – Standing robot subject to external pulling forces applied to the neck. A)
Filtered sagittal forces measured by contact force sensors of the robot. B) Measured
contact moments and the pelvis displacement reported by forward kinematics. C) The
actual rest condition. D) The maximum forward lean due to the external pulling force.
One can observe that with a minimal external force, the pelvis in COMAN can easily move
forward which induces an effective stiffness of ≈ 31 Nm/rad in each ankle spring. The
virtual compliance realized by the position controller on the motor shaft is much stiffer,
effectively negligible in series with such compliant physical springs. The corresponding
movie could be found in the accompanying video.

an active foot-stepping strategy. Our proposed algorithm can be suitable for taller robots
like Atlas or robots with even smaller feet sizes like Marlo, Cassie or Humo as well. This
is an advantage for our model-based controller which encodes robot and gait properties
all in the 3LP model. It produces then a consistent time-projection look-up-table control
which only depends on the gait frequency. Position control gains and filtering constants
are simply chosen to provide the stiffest control without shaking which could be tuned
for other robots easily during a simple standing task.
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8.4.2 Decoupling assumptions

We focused on sagittal plane dynamics only while producing lateral bounces through
simple open-loop foot lift strategies existing in the literature. The relatively wide choice
of step width improved the lateral stability, though limited the sagittal-lateral decoupling.
Our controller is nevertheless limited to the constant-height assumption of 3LP as well
which further limits step sizes in practice. Besides, velocity limitations of actuators also
do not allow for fast swing motions. Inspired by numerous works on simple passive
walkers with wide feet and human observations, we decreased the ankle roll stiffness and
allowed for a wider foot contact in practice which increases available transverse torques
and prevents unwanted turning around the yaw axis. For most of the experimental
scenarios presented in this paper, the decoupling assumption was valid. When applying
large pushes, however, the robot takes longer steps which might lead to small rotations,
yet capturable with our powerful foot-stepping algorithm.

8.4.3 Constant CoM height

This assumption is initially used in the 3LP model to derive linear equations of motion
which computationally facilitate gait generation and control. The idea of time projection
can be extended to nonlinear models too, as long as one can linearize the system around
a certain periodic trajectory and find any-time transition matrices A(t) and B(t), used
in time-projection. We believe that the simple control look-up-tables found here can
be used in other robots as well through the adjustment of model properties and the
desired walking frequency. All the knowledge of falling and swing dynamics together with
the optimality of LQR design are encoded in these look-up-tables which produce very
simple swing hip torques or desired attack angles. A fixed frequency is an underlying
assumption behind 3LP and time-projection. However, we showed that the architecture
could tolerate significant phase mismatches too. This makes time-projection suitable
for phase-based bipedal walkers and robots taller than COMAN. The algorithm might
also work on smaller robots. However, they usually have larger feet which make them
statically very stable.

8.4.4 Hardware limitations

The present manuscript features discussions of COMAN hardware in a very deep level.
We presented actuator models, velocity limits, sensory data qualities, actuation delays,
backlashes and systematic model errors. We used a mixture of fixed foot lift strategies to
maximize the lift and to avoid overloading actuators in terms of velocities. The dynamic
matching of 3LP with the robot is so close that our controller does not need a good
quality of state estimation and control. We only read encoder and IMU positions while
relying on internal actuator properties for a high-frequency damping. We also use very
simple filtering policies that are all tuned based on actual robot data, position control
gains, and control loop delays. The unified control framework has only a few parameters
to tune and does not include tunning of any critical parameter. A higher amount of foot
lift, of course, pushes actuators towards their velocity limits but improves the stability.
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A stronger filtering provides cleaner signals which allow for higher gains in the hip joints,
but in practice increase the delay too which is not desirable in our relatively high walking
frequency.

8.4.5 Compliance

Our control architecture includes specific components to compensate for systematic
errors arising from hardware compliance, but not fighting against this advantageous
property that protects the hardware in perturbed walking conditions. We used a simple
compensation in the knee springs to adjust unwanted rotations and pelvis shifts. We
also used a simple orientation feedback to compensate ankle spring deflections in early
swing phases. These simple policies improve stability considerably. We also employed
a switching control rule for the hip joints which is also inspired by the vast body of
literature on planar walking robots. This policy regulates the torso orientation while
providing natural falling dynamics which is originally encoded in the stance hip joints
of 3LP too. We believe a torque control paradigm can further increase compliance, but
the available level of compliance in the physical SEAs of the robot was enough for our
perturbed walking conditions.

In future, we would like to extend this framework to the lateral direction too by
finding lateral foot-placement suggestions. Since dynamic equations are the same in
3LP for both sagittal and lateral planes, the same control look-up-tables can be applied
in the lateral direction. However, one should carefully handle internal collisions which
might happen in case of large lateral pushes. We hope to reduce the step width by
an active control of lateral stability which can then help reducing the overall walking
frequency and provide a more human-like walking. We also aim at upgrading our low-level
joint controllers with feed-forward velocity and torque terms calculated by 3LP and the
time-projecting controller. This can improve compliance and tracking delays. Finally,
we consider improving low-level control-board issues, renewing springs and improving
backlashes on COMAN to increase the voltage, to reduce mismatches and to improve
sensory precision respectively. This can further enlarge the operational region of actuators
and the overall controller. Hardware imperfections and possible model mismatches always
exist, but dynamic foot placement is strong enough to stabilize the robot through hybrid
walking phases. This motivates us to add more human-like features like CoM excursions,
straight knees, and toe-off phases to achieve faster speeds in future work. This paper is
accompanied with a video demonstrating walking and push recovery scenarios.
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9 Energetic Model

In the previous parts of the thesis, we discussed all the hardware experiments and robot
control scenarios. This part of the thesis goes beyond robot control and uses our new
walking model to analyze human walking energetics and kinematics. Remember from
chapter 6 where we argued that the 3LP model can describe the trade-off between
falling and swing dynamics. This energetic trade-off partially describes the optimal
choice of speed-frequency relation in human walking. However, the 3LP model is missing
important mechanical effects in the vertical direction which are necessary to reconstruct
the entire energy landscape of human walking. In this chapter, we aim at building a
generic walking cost model in which 3LP describes the cost of horizontal effects while
additional components predict vertical costs. This cost model can predict the entire cost
landscape of human walking and therefore, replicate the speed-frequency trend as well.
In this chapter, we derive this cost model and demonstrate its application in a number
of other walking conditions. While this chapter is mainly motivated by explaining the
human cost landscape from a mechanical viewpoint, it gives us essential hints on the
mechanical components missing in the 3LP model. Including these components may
improve efficiency and control, but with the cost of possible nonlinearities. In the next
chapter 10, we aim at a better understanding of human lower-limb kinematics by studying
walking asymmetries and then in chapter 11, we propose a method to include the missing
vertical effects in the 3LP model.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji, Amy R. Wu, and Auke Jan Ijspeert. "A simple model of me-

chanical effects to estimate metabolic cost of human walking." Nature Scientific
Reports, 8(1):10998, July 2018.

The first and second authors have equal contributions. The second author drafted the
manuscript, and the first author helped draft the manuscript. The first and second
authors carried out simulations and data analysis together.
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Chapter 9. Energetic Model

9.1 Background

Energetic economy has been shown to have a large influence on human walking behavior.
For example, at a given speed, humans tend to walk with a preferred step length that
coincides with minimum metabolic cost (Bertram, 2005; Zarrugh et al., 1974). Despite
the complexity of relating walking mechanics to energetic expenditure, past studies have
determined important contributors towards the overall energetic cost of walking, such as
the work performed during step-to-step transitions to redirect the center of mass (CoM)
velocity and the cost of generating muscular force for body weight support and for leg
swing (Donelan et al., 2002; Grabowski et al., 2005; Doke et al., 2005; Gottschall and
Kram, 2005). To the best of our knowledge, however, no study to date has used walking
mechanics to present a unified cost landscape that can predict metabolic cost under
various walking conditions. Without understanding the major energetic contributions, it
would be difficult to identify the energetic consequences of compensatory movement in
abnormal gait or prescribe effective treatment. Likewise, reducing the metabolic cost
of impaired walking towards normative levels may contribute towards the efficacy of
prosthetic and orthotic devices (Ferris et al., 2007).

The metabolic cost of walking is the overall energy consumption from many different
mechanisms in the body, including muscle dynamics, blood circulation, and aerobic
processes (Workman and Armstrong, 1986). In human gait experiments, this cost is
typically calculated from measurements of oxygen consumption and carbon dioxide
production minus the basal metabolic rate of standing to yield net metabolic power
(Brockway, 1987). Metabolic cost is conventionally expressed in two different ways: the
metabolic energy consumed per unit of time (metabolic rate or power) or the metabolic
energy consumed per unit of distance (Cost of Transport, CoT).

Several papers have tried to relate the metabolic cost of walking to walking mechanics.
Despite a measurable energetic cost, the average mechanical work per stride during steady-
state level walking is near zero. In early biomechanical studies, Saunders identified various
geometric determinants of walking (e.g. torso rotation, lateral torso tilt, midstance knee
flexion) and postulated that all these determinants are the result of body’s best effort to
flatten and smoothen the CoM trajectory, i.e. minimizing accelerations (Inman et al.,
1953). To the contrary, numerous studies have identified the energetic benefits of non-flat
pendular dynamics of the CoM due to potential energy and kinetic energy exchange
(Cavagna et al., 1976). These simple inverted pendulum walking models demonstrate
that no work is needed during each step. Rather it is the positive work performed to
restore lost collisional work during the step-to-step transitions that dictates metabolic
cost (Donelan et al., 2002). Other mechanisms, such as swing leg dynamics and torso
balance, are also important contributors to energetic cost during walking. While leg
swing can be explained by passive pendular dynamics (Mochon and McMahon, 1980)
and thus is sometimes unmodeled in simple walking models (Srinivasan and Ruina,
2006), experimental studies have shown that it contributes approximately 10% of the
net metabolic cost (Gottschall and Kram, 2005). Despite its relatively small weight, leg
swing oscillations forced at frequencies above the natural frequency can have a significant
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energetic consequence due to muscle force production at the swing hip (Doke et al.,
2005). Furthermore, due to pendular falling dynamics, the pelvis also has a considerable
acceleration in walking direction. This requires the stance hip muscles to apply torques
to the torso, which are comparable in magnitude to swing torques (Liu et al., 2008).

Modeling the energetic cost of walking is challenging due to the complexities of the
musculoskeletal system and its intricate relationship with neural locomotor mechanisms
(Ijspeert, 2014). Translating from chemical processes at the molecular level to muscle
force production and metabolic consumption is nontrivial and difficult to measure. The
indeterminate relation between muscle work and joint mechanical work further complicates
biomechanical analysis and modelling. Despite these difficulties, both sophisticated
neuromusculoskeletal models (e.g. (Anderson and Pandy, 2001)) and simple inverted
pendulum models (e.g. (Kuo, 2001)) have shown that minimizing some form of metabolic
cost of transport leads to patterns similar to those of healthy human gait. While the
complexity of the former models precludes further insight, the simple walking models
permit linear separation of cost factors, such as pendular and swing dynamics (Kuo,
2001). Experimental studies suggest that a large portion of the energetic cost of walking
can be attributed to a few factors (e.g. ≈ 28% for body weight support, ≈ 45% for CoM
work (Grabowski et al., 2005)), but it is still unclear if and how these determinants can
be combined to predict metabolic cost under various walking conditions. We propose a
simple metabolic cost model to provide meaningful estimates of the human metabolic
rate under general walking conditions. First, to encapsulate walking dynamics in a simple
manner, we utilized a 3D linear model that can describe major sagittal plane and frontal
plane dynamics (i.e. pendular falling, swing and torso-balancing effects) over a wide
range of walking speeds and step frequencies (refer to chapter 6). While this model can
capture horizontal energetic contributors during normal walking, it cannot fully capture
the empirical CoT data as a function of speed and step frequency from Bertram (Bertram,
2005). Therefore, we needed additional components to capture such unmodeled costs.

We demonstrate that the total energy expended by the body is largely determined by
a linear combination of four main mechanical components (i.e. linear separation premise).
These are (i) sagittal and frontal dynamics (termed “3LP dynamics”), (ii) CoM vertical
velocity redirection, (iii) ground clearance, and (iv) body weight support. We chose these
four components because previous studies have shown that they contribute greatly to the
metabolic cost of normal walking. They were also the minimum number of components
needed to reproduce Bertram’s cost surface, especially at the extreme locations. To scale
mechanical work components to metabolic cost, we used both a constant efficiency of
25% and a variable efficiency dependent on step frequency.

After building the model with fits to Bertram’s data, we tested model validity and
generality by replicating walking conditions from six other experiments in literature
and comparing model predictions with reported energy measurements. The simulated
experiments from literature were intended to investigate each cost component. CoM
redirection cost was examined with step width studies (Donelan et al., 2001), and the
swing component was evaluated with added mass to the leg (Browning and Kram, 2007).
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We tested the cost of additional foot lift during swing (Wu and Kuo, 2016) to isolate and
further assess the ground clearance component. Comparisons with simulated reduced
gravity conditions (Farley and McMahon, 1992) further evaluated the effect of gravity
on the vertical cost components. The data from flat walking experiments (Ortega and
Farley, 2005) were used to isolate weight support component. Finally, to test how the
model fares with varying anatomical properties, we also investigated the metabolic cost
of walking for obese individuals (Browning and Kram, 2005).

While these experiments can induce any number of biomechanical changes, we
were interested in the choice of step frequency within the experimentally-modified cost
landscape. We chose step frequency over other gait parameters because we can use the
speed-step length surface of our cost model to estimate the optimal step frequency from
the known experimental walking speed. Therefore, the model evaluated the cost landscape
to predict the optimal step frequency (with respect to minimizing CoT), without any
knowledge of experimental data other than imposed test conditions of walking speed,
experimental parameter change, and subject mass and height. We focused specifically
on how well the model could predict reported trends by comparing coefficients from a
linear or quadratic fit (depending on the original experiment). We also estimated the
contributions of each of the four mechanical components and how they change under
different walking conditions, insights which cannot be easily obtained from empirical
testing.

9.2 Methods
Our cost model is composed of four mechanical components: sagittal and frontal dynamics,
CoM velocity redirection, ground clearance, and body weight support (see equations
and schematics in Figure 9.1, cost curves in Figure 9.3). The overall metabolic cost is
composed of the energies of these mechanical effects, scaled by the inverse of muscle
efficiencies (Equation (9.5)). We evaluate our cost model by comparing model predictions
with experimental measurements from different walking conditions in literature (Figure
9.4).

9.2.1 Metabolic cost model

Model development and choice of components

The four components were determined as follows. We started with the 3LP model, our
first component, which was developed in chapter 6. As a great simplification of human
dynamics, we did not expect 3LP alone to be able to predict the empirical CoT, and we
used Bertram’s cost surface to conceptually help us identify most important components
missing in 3LP. One advantage is that 3LP can describe pendular and swing dynamics
together. This combination can naturally explain the trade-off between push-off and
swing costs (Kuo, 2001) but seems insufficient to explain the overall cost of transport
surface in different walking conditions (Bertram, 2005). In particular, 3LP does not
account for changing vertical dynamics with large step lengths and does not demonstrate
high CoT at slow speeds, as found in humans.
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Figure 9.1 – The four energy components of the metabolic cost model and their formula-
tions. The cost components are from (A) 3LP dynamics, (B) CoM velocity redirection,
(C) ground clearance, and (D) weight support. (A) 3LP is composed of three linear
pendulums (blue), two represent legs and one for trunk. Translational and rotational
kinetic energies are calculated from the linear and angular velocities of each segment.
The 3LP cost is the integral of the positive component of the kinetic energy change
rate. (B) CoM velocity redirection cost accounts for the vertical work to change CoM
velocity at the step-to-step transitions, which is not accounted for by the 3LP model.
Similar to Kuo (Kuo, 2002), the magnitude of the velocity redirection, and thus kinetic
energy, depends on geometry (i.e. the angle α between the legs). This angle comes from
3LP geometry (represented in blue). (C) Ground clearance cost is the potential energy
to lift the leg. We used a constant c of 16.5% of leg length for lift height. Since the
vertical CoM displacement must be constant, there is a corresponding penalty to move
the ‘rest of body’ mass down. (D) Supporting the body during stance requires extensor
muscular force to keep the leg from collapsing. The metabolic cost of the vasti muscles
performing leg extension is calculated from the Alexander-Minetti curve (Alexander,
1997), following the work of Srinivasan (Srinivasan, 2011). The leg angle β(t) is derived
from 3LP geometry (blue), and we used a constant knee angle θ = 8.4 deg.
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This suggests that the model may be missing cost components, especially in the
vertical direction, and we strived to add a minimal number of components to produce
the cost surface. Vertical CoM excursions and the associated push-off cost seemed most
relevant for the cost of greater step length. Leg lift could possibly explain the high
CoT in slow speeds and less dynamic walking conditions (Ivanenko et al., 2002). The
constant non-zero knee angle reported by (Zelik and Kuo, 2010) at different walking
speeds, which could be related to the significant contribution of weight support on
energetic cost (Grabowski et al., 2005), was not captured in any of the previous three
components. Therefore, we added a fourth component to our cost model for body weight
support. This component captures the metabolic cost of producing an isometric force
at non-fully stretched knee angles. At very slow speed and frequency conditions, where
the first three components together underestimates Bertram’s CoT surface, this weight
support component could explain the mismatch. We used both a constant efficiency and
a variable efficiency (Massaad et al., 2007) to scale mechanical power to metabolic power.

The free model parameters are minimum stance knee angle, amount of ground
clearance, center of pressure (CoP) profile, and muscle efficiency. Values for all four were
determined by calculating the best fit to Bertram’s data, within the constraint of existing
data (see Figure 9.6). Best fit was determined by the smallest average p-value between
model and human CoT across the entire cost surface. We found that constant values in
the middle of reported ranges generally provided a good fit and thus used these values.
However, we also found that a variable efficiency parameter had the best fit, especially
as a function of frequency. We decided to show estimates for both constant efficiency
and variable efficiency to demonstrate the effects of added complexity.

3LP dynamics: swing cost, torso balance cost

To generate gait as well as measure the swing and torso balancing dynamics, we needed
a dynamic walking model that can describe active torques at the hip. We used the
previously developed 3LP model of chapter 6 for this purpose. The 3LP swing and torso
balance cost is the positive component of overall mechanical power over one simulated
step of the 3LP model. Given step time Tstep and translational and rotational kinetic
energy KEtrans and KErot, the 3LP cost is calculated by:

E3LP =
� Tstep

0
[

d

dt
(KEtrans + KErot)]+dt (9.1)

This integration is actually done for variations of translational and rotational kinetic
energies in the sagittal and lateral directions separately. There is no variation in the
potential energy due to constant mass heights. The cost of all vertical motions is captured
in the other three cost components.

CoM redirection cost

An immediate mechanical effect missing in 3LP is the consequences of pendular falling
dynamics in the vertical direction. At the end of each step, negative work is performed
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to redirect the body CoM velocity, and positive work must be performed to recover
collisional losses. Both in simulation and in human experiments, the ideal time is to
provide a push-off force by the trailing leg right before collision (Kuo, 2002; Donelan
et al., 2002). To address the vertical component of this push-off cost, we introduced the
velocity redirection work, calculated using 3LP gait geometry. Considering the position
of the model’s legs at push-off and the pelvis horizontal velocity vector, we calculated
an augmented 3D pelvis velocity vector, orthogonal to the leading leg. The energetic
consequence ECR was then calculated similarly to the method proposed in Kuo (Kuo,
2002) but using the vertical component of the velocity. Assuming horizontal pelvis
velocity vx at the push-off moment and attack angle α, both given by 3LP gait, the
vertical CoM velocity change due to collisional impact is given by vz = vx tan(α). The
push-off work needed to compensate this loss is:

ECR =
1
2

Mv2
z (9.2)

We used body mass M at the pelvis as a proxy for CoM. Only the vertical component
was considered because the forward and lateral costs have already been included in the
3LP model.

Ground clearance cost

During the swing phase, humans nominally walk with a nonzero amount of leg lift,
possibly to avoid foot scuffing or obstacles. The maximum toe lift over the entire swing
phase is few centimeters (Winter, 1992), whereas during the swing initiation, the heel is
already lifted due to the action of rolling on the toes and flexing the knee. Although
an extra passive shank lift (due to the leg inertia) happens shortly after push-off, it
does not increase the maximum heel height significantly (Ivanenko et al., 2002). We
assumed prismatic legs which simplify the complex knee mechanism but provide a good
approximation of leg CoM trajectories (Figure 9.1).

The cost of foot lift is partly attributable to mechanical work, which increases with
lift height (Wu and Kuo, 2016). Therefore, to associate a cost to foot lift, we simply
considered the mechanical work to lift the heel to a fixed maximum height c of 16.5% of
leg length, the middle of the range of reported maximum heel lift heights over different
speeds (Ivanenko et al., 2002) (Figure 9.6-2). Based on average anatomical data (de Leva,
1996), we calculated the vertical displacement of the leg’s CoM accordingly and associated
a potential energy cost which should be provided by the leg muscles. Assuming a heel
lift of c (as percentage of leg length L), a mass ml for each leg, and a leg CoM located u

units below the hip joint, the leg CoM lifts Δhl = Lc(u/L) = uc units with a heel lift of
c. The energetic consequence is:

EGC = 2mlΔhlg (9.3)

where the gravity is denoted by g. While leg swing encompasses a cost to both swing the
leg and clear the ground, 3LP already encodes the swing cost. The ground clearance cost
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simply accounts for the work to lift the leg vertically. Also note that the lift of the swing
leg displaces the body CoM vertically, but vertical motions of the CoM were already
considered in the previous cost components. We assume that during the lifting of the
swing leg, the rest of the body moves in the opposite direction, in order to keep the CoM
at the same vertical level and to avoid interference between cost components. Therefore,
the cost EGC is the sum of the mechanical work to lift the foot first and then, to lift the
rest of the body back to the initial CoM height.

Weight support cost

During the stance phase of walking, leg extensor muscles must act to prevent the stance
leg from collapsing under the weight of the body. This cost is not captured in the 3LP
model and indeed not straightforward to calculate directly based on a mechanical work,
especially since muscles are not ideal actuators and consume energy when applying forces
isometrically. As a simple model of weight support, we calculated this cost from the
knee torque required to maintain a constant knee angle θ = 8.4 deg (Figure 9.6-1). This
angle was derived from the minimum knee angle at mid-stance, which we observed to
be relatively constant over a range of walking speeds (Zelik and Kuo, 2010). Calculated
in a similar manner as Srinivasan (Srinivasan, 2011), we converted the knee torque
to an isometric muscle force applied by vasti group muscles and then calculated the
metabolic cost EWS from this force production using muscle-specific parameters and
Alexander-Minetti metabolic rate curves (Alexander, 1997) (see Figure 9.1). Assuming
thigh length lu, body mass M , gravity g, and stance leg angle with respect to gravity
β(t) (determined by 3LP gait geometry, see Figure 9.1), the torque required in the knee
is approximated by τvas(t) = Mg cos(β(t))lu sin( θ(t)

2 ), θ = 8.4 deg is the knee angle
assumed to be constant in the model. Given vasti group muscles’ maximum rotational
velocity ωmax and the Alexander-Minetti’s cost curve Φ( ω

ωmax
), where ω(t) is the time

derivative of θ(t), the weight support cost is calculated as:

EWS =
� Tstep

0
τvast(t)ωmaxΦ(

ω(t)
ωmax

)dt (9.4)

This simplified method neglects co-activation of the antagonist hamstring muscles during
early stance. However, previous simulations have found that hamstring muscles contribute
little to support the body (Anderson and Pandy, 2003).

Total cost: scaled by muscle efficiencies

We propose that the overall energetic cost can be approximated by the sum of all
aforementioned costs. While the fourth cost EWS already accounts for the conversion
from mechanical energy to metabolic cost, the first three costs are expressed as mechanical
work and need to be scaled by muscle efficiency η to be converted from positive mechanical
work to metabolic input.

Ewalking = (E3LP + ECR + EGC)/η + EWS (9.5)
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For whole body behavior, muscle efficiency parameter η could vary widely depending
on walking conditions (e.g. from approximately 20% to 33% at different speeds, (Figure
9.6-3, (Massaad et al., 2007)). We chose to apply η = 25%, derived from isolated muscle
(Heglund and Cavagna, 1987) and inclined walking (Margaria, 1968) studies and typically
used in biomechanics studies (Donelan et al., 2002; Grabowski et al., 2005).

Variable muscle efficiency

Inverse dynamics calculations on recorded kinematic data of subjects walking at different
speeds result in a variable overall muscle efficiency (Figure 9.6-2) when compared to
actual oxygen measurements (Massaad et al., 2007). Since walking frequencies were not
originally reported in (Massaad et al., 2007), we obtained them using the speed-frequency
relations reported in (Snaterse et al., 2011). A variable efficiency function was then
defined by interpolating muscle efficiencies reported by Massaad as a function of these
frequencies. We recalculated the cost model (see Figure 9.3) by this variable efficiency
function and observed a better match in different regions of the speed-frequency CoT
surface, especially in normal walking conditions. Using speed as interpolation variable
for efficiency instead of frequency only worked around the optimal walking regions, but
perturbed the surface completely in other regions (see Figure 9.3).

Experiment Replication

Six experimental conditions were replicated in simulation with little modifications to
the model. Step width (Donelan et al., 2001), added mass (Browning and Kram, 2007),
extra foot lift (Wu and Kuo, 2016), and obesity (Browning and Kram, 2005) experiments
were recreated by simply imposing the specific parameter varied in the study (step
width, additional segment mass, foot lift height, and body mass, respectively). Simulated
reduced gravity conditions (Farley and McMahon, 1992) was imposed by applying a
constant upward force to the 3LP model and scaling half of the ground clearance and
weight support costs by gravity reduction factor (see Equation (9.3) and Equation (9.4)).
Note that the leg experiences full gravity (to be comparable with the actual experiment)
while the other half of the body is vertically moving in reduced gravity conditions, when
calculating the ground clearance cost for this particular case. For all experiments, the
model was scaled by the average body mass and height of subjects participating in the
experiments, and gaits were found at the experimentally imposed walking speeds.

In flat walking condition (Ortega and Farley, 2005), the CoM height was kept
constant which, imposed by the constant CoM height trajectory of 3LP, required the
knee angle to change with time. To calculate this knee angle trajectory, we solved a
simple inverse kinematic problem between the fixed stance foot point on the ground and
the pelvis location at each instance of time in 3LP. We superposed a 2-segment leg model
composed of thigh and shank segments only. Since the pelvis height is constant in 3LP,
these two segments can capture the peak knee angle difference between flat and normal
walking conditions during stance phase (Ortega and Farley, 2005). Weight support cost
was simply calculated by considering the force required for the new knee profile (see
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Equation (9.4)).

Analysis

To evaluate the speed-step frequency predictions, we used a paired t-test to determine
if the mean of the cost of transport at a given speed and step frequency pair was not
statistically significantly different from the model’s prediction (significance defined as
p < 0.05). We estimated the cost of transport for each subject from Bertram’s study
using subject mass and height. The average and standard deviation of the p-values
over all speed and frequency conditions are reported. Since p ≥ 0.05 does not indicate
similarity, we also calculated the 95% confidence interval at each reported speed-step
frequency and evaluated whether model prediction was contained within this interval.
For the other scenarios, we did not have access to individual subject data and therefore
could not perform similar statistical tests. To assess the model under these conditions,
we performed a linear fit of model estimates against measured data to determine how
well they correlated. A trend of unity represented perfect agreement. Additionally, we
fit a linear or quadratic curve to our model estimates, depending on the original fitting
equation used in the respective papers (Table 9.2). We then compared the trend and
offset values with those reported.

Given experimental condition and walking speed, the estimated metabolic cost was
the minimum with respect to step frequency. This limits model predictions to walking
conditions that do not overtly induce strong preferences for other objectives, such as
safety or robustness. Model estimates (Figure 9.4) and optimal frequencies (Figure
9.2) are compared with the reported frequencies. Given the cost surface for different
speeds and frequencies, optimal trends for speed constrained, frequency constrained
and step-length constrained walking conditions (Bertram, 2005) (see Figure 9.5) were
determined.

We also evaluated the sensitivity of our results to the model’s four free parameters
(mid-stance knee angle θ, max heel lift height c, muscle efficiency η, and center of pressure
distance CoP), which were derived from existing measurements of human data (Figure
9.6). We repeated the replicated experiments using the minimum and maximum values
reported for those parameters, instead of the average, and compared the modified variable
efficiency predictions.

9.3 Results
Our model produced a metabolic cost surface by the superposition of four components,
each with its own energetic penalty profile, over a range of speeds and step frequencies
(shown as cost of transport in Figure 9.3). We observed from our model that the
metabolic cost landscape is composed of energy tradeoffs. Walking at low speeds with
high frequencies is penalized by leg lifting effects. Taking larger steps increases costs
due to CoM redirection, as was found previously with simulation and empirical data in
(Donelan et al., 2002). Walking at very slow speeds and slow frequencies is costly due to
weight support.
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Figure 9.2 – Correlation between metabolic rates from model estimates and actual
measurements for the six experiments under study. Model estimates (blue crosses for
variable efficiency, red circles for constant efficiency) are plotted against empirical data,
along with corresponding linear fits (solid blue for variable efficiency, dashed red for
constant efficiency, see Table 9.1 for fit values). A slope of unity with zero bias means
perfect agreement with empirical data.

We reproduced Bertram’s speed-step frequency study in simulation and compared his
measurements with the output of our cost model. As expected due to model fitting, the
simulated cost surface corresponded well with empirical data (Figure 9.3), and a variable
muscle efficiency term provided a better match. Model outcomes were not statistically
significantly different from data for constant (p = 0.152 ± 0.234, mean±s.d.) and variable
efficiencies (p = 0.377 ± 0.273, mean±s.d.). Model outcomes fell within the data’s 95%
confidence interval (47% for constant, 92% for variable efficiency), indicating that our
linear separation premise could potentially provide an explanation for the real data.
Model’s optimal cost of transport was 2.13 J/kg/m at 1.03 m/s with a step frequency
of 1.88Hz with variable efficiency. Using a constant efficiency yielded an optimal cost
of transport of 2.62 J/kg/m (at 0.925m/s). For both gaits, approximately 50% of the
costs were due to ground clearance. Without changing model parameters (other than the
experimental variable), we were able to reproduce experimental data from six different
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Figure 9.3 – The metabolic cost model and its four components, shown as cost of
transport, at different walking speeds and step frequencies with experimental data
reported in (Bertram, 2005) for comparison. The overall cost of transport is composed
of the swing and torso cost from sagittal and frontal dynamics (3LP dynamics), CoM
velocity redirection, ground clearance, and weight support costs. Each component is
dominant at different speed-step frequency combinations. CoM redirection is costly at
long step lengths, foot lift at slow speeds and high frequencies, and weight support at
slow speeds. These components can be combined with constant muscle efficiency (red
crosses) or variable efficiency (blue crosses) to yield costs more similar to experimental
data (mean represented by black circles, standard deviation by vertical lines).

walking conditions and compare model estimates with empirical data (shown in Figure
9.4, quantified in Table 9.1 and Table 9.2). The model generally could estimate changes
related to gait configurations (e.g. step width, flat walking) but not other changes (e.g.
anatomical, added mass at the shank). The model was also better at estimating trends
(metabolic cost as function of the experimental variable) than offsets.

9.3.1 Step width

To examine 3LP’s ability to produce motions in the frontal plane, we compared model
predictions against step width experimental data (Figure 9.4A). Like the original study,
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Table 9.1 – Trends, offsets, and goodness-of-fit values from linear fitting of correlations
between metabolic rates from model estimates and metabolic measurements. For the
measurements, we used polynomial equations reported in the original papers since we did
not have access to individual subject data. The goodness-of-fit values are close to one,
indicating that model estimates follow similar polynomial trends found in the original
papers. Both constant efficiency estimates and variable efficiency estimates are shown. A
slope of unity with zero bias means perfect agreement with empirical data (see Figure
9.2) for visualization). If fits were not reported in the original paper (indicated by †), we
performed fits on the empirical data for model comparison.

Experimental Parameter (x)
Trend a Offset b R2

Variable Constant Variable Constant Variable Constant

Step Width (m) 0.758 0.998 0.981 1.15 1.000 1.000
Added Mass: waist (kg) 0.278 0. 404 2.097 2.516 1.000 1.000
Added Mass: thigh (kg) 0.547 0.716 1.451 1.763 1.000 1.000
Added Mass: shank (kg) 2.038 2.36 -2.016 -2.053 1.000 1.000
Added Mass: foot (kg) 1.378 1.49 -0.504 -0.045 1.000 1.000
Extra foot lift (m) 0.497 0.611 1.425 1.858 1.000 1.000
Reduced Gravity (g) 1.145 1.796 -0.293 -1.157 1.000 0.998
Flat Walking † (m/s) 1.074 1.228 -0.936 -0.959 0.986 0.989
Obesity † (m/s) 0.897 1.25 0.303 0.021 0.989 0.995

estimated metabolic costs varied quadratically with step width (R2 = 1.000 for both
constant efficiency and variable efficiency). Metabolic cost matched empirical data fairly
well in trend (0.758 for variable efficiency and 0.998 for constant efficiency estimates
against metabolic data, where 1.000 indicates a good fit) but not in offset (0.981 and
1.150, variable efficiency and constant efficiency). Step width costs were dominated by
increases in the 3LP and CoM velocity redirection costs.

9.3.2 Added mass on the leg

Additional mass was added to the model equivalent of a foot, shank, thigh, and waist to
evaluate leg dynamics in the sagittal plane. These added masses led to a linear increase
in metabolic cost (R2 = 1.000). As also observed in the original experiment, added mass
was more costly when placed at distal location than proximal ones (Figure 9.4B). Added
mass to the foot increased metabolic cost the most while adding mass to the waist had
the least effect. However, the model also overestimated the distal mass cost increase rates
(shank: 2.038 and 2.360, foot: 1.378 and 1.490, variable efficiency and constant efficiency)
and underestimated the proximal mass cost increase rates (thigh: 0.547 and 0.716, waist:
0.278 and 0.404, variable efficiency and constant efficiency). Swing dynamics (3LP) and
ground clearance played a greater role with distally located added mass than proximal
mass placement.
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Figure 9.4 – Comparison of model metabolic rate (red lines) with data from six walking
experiments from literature (black circles, solid lines). Model predictions include with
variable efficiency (solid blue line) and with constant efficiency (dashed red line). The
six comparisons were on A) step width (Donelan et al., 2001), B) added mass to the leg
(Browning and Kram, 2007), C) extra foot lift (Wu and Kuo, 2016), D) simulated reduced
gravity (Farley and McMahon, 1992), E) CoM flat-trajectory walking (Ortega and Farley,
2005), and F) walking with obesity (Browning and Kram, 2005). Fitting equations, from
the original experiments when possible, were used to investigate trends (see Table 9.2).
Patch layers represent the contribution of each cost component (yellow: ground clearance,
orange: 3LP dynamics, green: CoM redirection, purple: weight support).

9.3.3 Extra swing foot lift

We applied various foot lift heights to estimate the metabolic cost of clearing the ground
during swing. The model, predicting a linear increase (R2 = 1.000), underestimated the
metabolic cost in trend (0.497 for variable efficiency, 0.611 for constant efficiency) with
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an offset in magnitude (1.425 and 1.858, variable efficiency and constant efficiency). Not
surprisingly, the leg lifting cost accounted for the majority of the increase with some
contribution from swing dynamics (Figure 9.4C).

9.3.4 Simulated reduced gravity

We conducted two comparisons to further investigate the cost of body-weight support.
For the first study, we investigated simulated reduced gravity, where a counter weight
force is applied to the upper-body, not to the entire body as under true reduced gravity
conditions. The model estimated a linear increase of energy with gravitational acceleration
(R2 = 1.000 for variable efficiency, R2 = 0.998 for constant efficiency, Figure 9.4D). In
trends, the variable efficiency estimate (1.145) provided a better match to empirical data
than the constant efficiency (1.796). As gravity decreased, weight support cost reduced
as expected (Farley and McMahon, 1992; Grabowski et al., 2005), along with CoM
redirection and ground clearance. 3LP costs also indicated that in very low gravities, leg
swing motion becomes costly again.

9.3.5 Flat-trajectory walking

The second evaluation for weight support cost replicated flat walking (i.e. minimal
vertical CoM movement) studies, which demonstrated that reducing COM displacement
does not lead to reduced energetic cost (Gordon et al., 2009; Ortega and Farley, 2005).
Here we used experimental data from Ortega (Ortega and Farley, 2005). Here we varied
the stance knee angle with simple inverse kinematics as a function of stride (see Methods)
to model a constant CoM height trajectory. The cost of flat walking increased linearly
with speed (R2 = 0.986 for variable efficiency, R2 = 0.989 for constant efficiency, Figure
9.4E). The cost model estimated the main trend reasonably well (1.074 for variable
efficiency, 1.228 for constant efficiency) with some offsets (-0.936 and -0.959, variable
efficiency and constant efficiency). We observed a substantial increase in weight support
cost. Thus flat walking creates unfavorable muscle-related changes, which agrees with
reports of increased muscle activation and co-contraction during flat walking (Massaad
et al., 2007).

9.3.6 Walking with obesity

Finally, to investigate changing anatomical properties, we estimated the metabolic cost of
walking for obese individuals. We did not expect to be able to reproduce this condition
due to the simple scaling of body mass in our model. We found that this cost increased
quadratically with speed (R2 = 0.989 for variable efficiency, R2 = 0.995 for constant
efficiency, Figure 9.4F) but overestimated trends (0.897 for variable efficiency, 1.250 for
constant efficiency). The majority of the cost increases were due to CoM redirection and
3LP dynamics.
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9.4 Discussion

We sought a simple but unified model that could predict the metabolic cost of walking
at various speed and step frequency combinations, as well as be generalizable to a
range of different walking situations and anthropometric dimensions. We proposed that
this could be achieved with a linear combination of four main components: the costs
of swing and torso dynamics, CoM velocity redirection, ground clearance, and weight
support. To test the model’s linear separation premise, we used a combination of these
components to reproduce empirical speed-step frequency data and then tested the model
with six different experiments. Overall, this simple model was able to predict some of
the energetic trends and magnitudes reported in biomechanically important experiments,
demonstrating that linear combinations of these four components could constitute the
main metabolic determinants of walking.

Model composition suggests that the optimal metabolic cost is moderated by tradeoffs
among different component surfaces. This is comparable to the tradeoffs (Bertram, 2005;
Kuo, 2001) producing the optimal speed-step frequency curve found in humans (Zarrugh
and Radcliffe, 1978; Bertram and Ruina, 2001). As other studies have found, CoM
redirection costs penalize longer step lengths (Donelan et al., 2002), and swing costs
penalize fast step frequencies (Doke et al., 2005). The model also suggests that weight
support costs are more prominent at slow walking speeds, and increasing the frequency
at slow speeds incurs high ground clearance costs due to leg lifting. Our model estimates
were similar to those of other energetic models and human studies aimed at decoupling
the cost of walking. At the optimal (preferred) speed and step frequency, we found that
24% of the optimal cost can be attributed to swing and 76% to stance. In comparison
with computational approaches, neuromuscular models with muscle models also estimated
approximately 30% for swing and 70% for stance (Umberger, 2010). We found that
swing costs increased with greater step frequency, to the contrary of Umberger’s model
(Umberger, 2010) but in agreement with experimental results from Doke (Doke et al.,
2005).

The cost model was able to estimate energetic cost under various speed-step frequency
combinations in both trend and magnitude. The model only differed at very large step
lengths, where the linear decoupling of horizontal and vertical motions is weaker, due to
larger CoM vertical excursions. The relative accurate predictions elsewhere imply that
the four cost landscapes do encompass the overall energetics (Figure 9.3) and thus can
be used to yield further insight. Our dimensionless cost of transport (energy over body
weight and distance) at the model’s preferred walking speed (1.03m/s) and step frequency
(1.88Hz) was 0.217, a difference of 8.7% in comparison to the average experimental value
of 0.2 using net metabolic cost at 1.25m/s (Wu and Kuo, 2016). More physiological
models and energy calculations had similar error magnitudes. In comparison with net
cost, Endo and Herr’s model had ≈ 10% error (Endo and Herr, 2014). Compared with
human gross cost of transport of 0.3 (Wu and Kuo, 2016), sagittal plane walking models
from Umberger et al. (Umberger et al., 2003) and Song and Geyer (Song and Geyer,
2012), who used the same muscle energy formulations, had approximately 15% error
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and 5% error, respectively. Our model did not greatly overestimate costs like other 3D
models (e.g. by 63% (Anderson and Pandy, 2001)), and Roberts et al. (Roberts et al.,
2016), who included measured kinematics and kinetics, had a 12% error.

We tested if the model could estimate metabolic cost of six experiments without
knowledge of the step parameters chosen by subjects. Using only the reported subject
mass, subject height, experimentally-fixed walking speed, and experimental variable,
the model estimated an optimal step frequency (Figure 9.5) which was very close to
the measured frequency in most of the six experiments. Interestingly, despite large
differences between predicted and empirical step frequencies for the reduced gravity
and flat walking condition, model cost estimates are not very different from measured
costs, indicating that perhaps the model is not sensitive to the choice of step frequency.
Since the model was fit to Bertram’s CoT surface, we expected our model to be better
at estimating the energetic consequences of changing speed and/or frequency. This is
partially reflected in the flat walking and obesity experiments, where walking speed
was the main experimental variable (see Figure 9.4). Model predictions in flat walking
experiment were reasonable, likely also due to the use of the Alexander-Minetti curve for
the weight-support component (Alexander, 1997). Predictions in increased step width
and reduced gravity conditions were also relatively good, perhaps because energetic
changes were small, and the model roughly stayed within linear regions. Of the six
experiments, we did not expect the model to estimate the metabolic cost of obese walking.
While the model obtained a decent fit, the obesity prediction was similar to those for
normal walking. The model cannot differentiate well between obese and normal walking.

Added mass and extra foot lift experiments extend beyond linearity and decoupling
assumptions, which may explain why model predictions failed. The human knee-ankle
mechanism is also much more complex than in our model. We can attribute some of the
estimation errors to the efficiency of muscles. For example, using a lower walking efficiency
of 19.5% improves trend estimates for foot lift (Figure 9.6). However, with the 3LP
component, it is unclear whether the errors are due to decoupling assumptions, muscle
efficiencies, or some other unknown parameter that we did not consider. We found that
prediction trends were relatively insensitive to the choice of free parameters—mid-stance
knee angle θ, max heel lift height c, muscle efficiency η, and center of pressure CoP
(Figure 9.6). Except for reduced gravity and flat walking, changes in knee angle mainly
changed biases and not trends. Heel lift and center of pressure variations produced
minor changes in cost estimation. Muscle efficiency seemed to have the largest influence,
affecting the trend for normal subjects and obese subjects. Therefore our cost model is
more robust to parameter variations in predicting trends, but less precise when estimating
exact magnitudes. More accurate trends are arguably more important than magnitudes
when estimating human energetic consumption because relative changes between nominal
and new conditions can be detected.

Our cost model successfully demonstrates the speed-constrained optimization hy-
pothesis (see Figure 9.5) proposed by Bertram (Bertram, 2005) as well as provides
reasonable trend estimates of human energy expenditure under varying anatomy and
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Figure 9.5 – (A-F) Comparison of experimental step frequencies and model-optimal
frequencies by minimizing the cost of transport for each experiment and (G-I) predicted
optimal trends by constraining different walking parameters (Bertram, 2005). We repeated
optimizations for both constant and variable efficiencies. Increasing and decreasing trends
are captured in all conditions despite a bias between the curves. The constant efficiency
yields optimal frequencies typically closer to human. The variable efficiency seems
unreliable, since there is no evidence for how it actually changes in different experimental
conditions. Our model fails at predicting human frequency behavior in reduced gravity,
flat walking, frequency-constrained and step-length constrained conditions. We consider
muscle efficiencies to be the main reason behind such discrepancy.

walking conditions. The intrinsic power of this method comes from the separation
principle—the decoupling of different phenomena in a linear fashion and studying each
separately. Linear separation of energy-related components is not uncommon, as evi-
denced by both simple models (e.g. summation of push-off, hip actuation, swing leg
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costs in Kuo (Kuo, 2001)) and more complicated musculoskeletal models (e.g. addition
of various heat rates and mechanical work in Anderson (Anderson and Pandy, 2001)).
Linear separation implies more than an addition of energy costs, suggesting that the
decoupling of highly complex and interconnected human locomotor functions could still
encompass the major costs of walking. As is evident from the added mass experiment
and extra lifting conditions, the vertical and sagittal dynamics can, to some extent, be
separated. This may be similar to how the control of walking in the sagittal plane and
the frontal plane can be considered separately, as demonstrated in simulations (Kuo,
1999) and in human experiments (Bauby and Kuo, 2000). Similarly, the separation of
stance, swing, and balance control, with limited sensory exchange despite their inherent
interconnectivity, has been shown to simplify gait coordination on robots and assistive
wearable devices (Sharbafi et al., 2017).

The six validation experiments were chosen to isolate cost components. For example,
foot lift experiments were to study foot-to-ground clearance and reduced gravity to
study weight support. The swing cost in 3LP could also be isolated to some extent
by the addition of distal masses to the legs. Due to gait geometry, however, vertical
CoM redirection cost highly correlates with the horizontal falling dynamics in 3LP.
Comparisons with the flat walking experiment attempted to cancel the vertical component
but significantly increased the weight support cost. Additional experiments and analysis
are needed to further separate each cost component. For example, a modified flat walking
experiment with some weight support could possibly isolate the 3LP cost. We can further
challenge 3LP and CoM redirection costs by investigating asymmetric walking gaits
(e.g. on inclined terrains, with constant pulling forces or with extra torso bending).
We can also investigate lateral swing dynamics in 3LP with swing foot circumduction
experiments. These extra validations may require extensions of 3LP or experiments with
human subjects, which we consider for future work.

Our use of mechanical measures to estimate metabolic cost is limited by their rather
abstruse relationship. Metabolic cost can be incurred without net mechanical energy,
such as during cyclic locomotion or muscle co-contraction. Observed mechanical work at
a single joint could entail not only positive muscular work, but also contributions from
elastic tendons or bi-articular muscles, which act across multiple joints. Positive and
negative muscle work also contribute differently towards metabolic cost (Margaria, 1968).
Thus it is unsurprising that the ratio of whole body metabolic cost to mechanical work
can vary widely depending on walking condition (Massaad et al., 2007; Williams, 1985).
Nonetheless, simple mechanical models and biomechanical experiments have shown that
mechanical measures could largely account for changes in metabolic cost (Donelan et al.,
2002; Tzu-wei and Kuo, 2014).

We were positively surprised by favorable energetic trend predictions. Not surpris-
ingly, there were also inaccuracies in estimated magnitudes. Multi-segment leg motions
and internal muscle properties were highly simplified. Telescoping actuators, meant to
reproduce knee-ankle energy pumping and absorption mechanisms, are not physiological
but can produce human-like pendular dynamics in the sagittal plane. Passive coupling
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Chapter 9. Energetic Model

between knee flexion and leg swing is also missing, which implies that the hip actua-
tor contributes more to swing the leg. Unmodeled changes in leg inertia during knee
flexion could also explain trend differences for the added shank mass and extra foot
lift experiments. Indeed, we have omitted several features of human walking, including
a non-infinitesimal double-support phase, a non-constant muscular efficiency, arm and
transversal pelvic motions, and more anthropometric features. For example, while 3LP
does include the mechanical work to balance the torso, our simplified upper body model
neglects upper body angular momentum with no arms and a torso that remains vertical
with respect to gravity. We believe these missing features do contribute to the observed
differences between estimated and empirical data in some of the experiments, especially
the use of muscular force to regulate whole body angular momentum (Herr and Popovic,
2008; Neptune and McGowan, 2011). Arm dynamics, for instance, affect metabolic cost
rates, with an increase of 26% if swinging anti-normally (Collins et al., 2009).

More complex (e.g. nonlinear) or physiologically complete models (e.g. neuromuscu-
lar, multi-segmental model) could provide more realistic predictions in different walking
conditions. For example, this model uses whole body mechanical work to capture the
work performed by the muscles, instead summing energy consumptions at the muscle level
(Wang et al., 2012). Accounting for muscle dynamics could provide better estimates and
predict muscle-related effects that our model cannot capture. Additional features such
as muscle co-contraction and realistic mass distribution could provide a better energy
estimate in experiments, such as obesity, but might overfit the general CoT surface. More
complicated models may also require potentially time-consuming optimization routines
contending with more tuning parameters and appropriate objective functions to find
periodic gaits.

Here we have proposed a minimalistic model to capture main trends in the CoT
curve. The proposed cost model is based on a linear walking model, for which periodic
gaits can be easily found. Such computational advantage makes our model suitable for
prediction of transient walking conditions, such as accelerations and decelerations in
walking speed. The proposed cost model can also be easily tailored to subject height,
leg length and pelvis width. Its effectiveness in estimating changes with body weight
(due to obesity results) requires further investigation. By decomposing the overall cost
landscape into different components, our model suggests the dominant physical effects of
different walking conditions. Quantifying these components for some gait condition can
be performed empirically and would require clever but possibly laborious experimental
procedures and apparatuses. Here separate experiments are not needed to study the
effect of each component. While we acknowledge the difficulty in translating additional
gait assistance to reduction of metabolic cost, the resulting decomposition could still
help physiotherapists or biomechanists improve assistance or promote rehabilitation by
targeting components that contribute the most towards whole body measurements, such
as metabolic power. Thus this simple cost model creates insights not easily obtainable in
human experiments and potentially valuable towards improving or augmenting human
performance.
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Figure 9.6 – The choice of free parameters in our model based on human measurements
and the sensitivity of the variable efficiency results to parameter changes. (Top Row)
Model parameters were based on (1) knee angle trajectories (Zelik and Kuo, 2010) at
speeds ranging from 0.9m/s to 2m/s, (2) heel lift heights (Ivanenko et al., 2002), (3)
overall muscle efficiencies (Massaad et al., 2007), and center of pressure (Browne, 2016).
Parameter variations about the nominal value varied from the maximum (darkest line) to
minimum (lightest line). (A-F) Sensitivity of metabolic predictions in the six experiments
(nominal result shown by middle curves). Using the maximum parameter value (darkest
line) to the minimum value (lightest line) produced variation mostly in magnitude and less
in trend. Except for muscle efficiencies, parameter variations led to offsets in magnitudes
but not changes in trends.
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Chapter 9. Energetic Model

Table 9.2 – Comparison of trends, offsets, and goodness-of-fit from curve fitting of
the original energy measurements reported in the studied experiments against our
model predictions. Both variable efficiency and constant efficiency estimates are shown,
parenthetically for the latter. Trend a is in units of W/kg over the experimental variable,
which is linear or quadratic depending on the fitting equation. Offset b is in W/kg. Model
R2 values indicate the goodness-of-fit of predictions to fitting equation. Unless reported
otherwise, experimental values were derived from the referenced paper (first column). If
fits were not reported in the original paper (indicated by †), we performed fits on the
empirical data for model comparison. Equations used for the step width and obesity
experiments are quadratic of the form ax2 + b. For other experiments, we used a linear
equation of the form ax + b. N/A, not available.

Experimental Parameter (x)
Trend a Offset b R2

Model Human Model Human Model Human

Step Width (m)
4.848

(6.382)
6.4

2.639
(3.333)

2.19
1.000

(1.000)
0.91

Added Mass: waist (kg)
0.012

(0.018)
0.045

2.752
(3.469)

2.36
1.000

(1.000)
0.65

Added Mass: thigh (kg)
0.041

(0.054)
0.075

2.752
(3.466)

2.38
1.000

(1.000)
0.72

Added Mass: shank (kg)
0.155

(0.179)
0.076

2.752
(3.470)

2.34
1.000

(1.000)
0.61

Added Mass: foot (kg)
0.276

(0.298)
0.2

2.743
(3.476)

2.36
1.000

(1.000)
0.85

Extra foot lift (m)
7.173

(8.817)
14.43

2.118
(2.710)

1.39
1.000

(1.000)
0.81

Reduced Gravity (g)
1.054

(1.646)
0.93

1.078
(1.003)

1.19
1.000

(0.998)
0.55

Flat Walking † (m/s)
4.643

(5.299)
4.299

−1.512
(−1.600)

-0.468
0.988

(0.990)
0.984

Obesity † (m/s)
1.273

(1.774)
1.437

0.991
(0.992)

0.77
0.989

(0.995)
0.541
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10 Walking Asymmetries

As mentioned earlier, the focal point of this thesis is the 3LP model which contributes to
different chapters summarized in Figure 1.2. 3LP is a walking model purely encoding
falling, swing, and torso balancing dynamics. This mechanical model is scalable in different
dimensions and can be used to model and analyze human walking as well. 3LP, of course,
does not include all geometric and mechanical details, but it can approximately describe
important dynamics and energetics with acceptable precision (refer to chapters 6 and 9).
In this chapter, we study lower-limb kinematics in human walking while approximating
the overall dynamics by the 3LP model. When rotating the torso considerably or walking
on inclined surfaces, the triangular coordination of the two legs becomes less symmetric.
This is due to extra forces applied on the body in different locations which could be
easily modeled in the 3LP equations. We study these effects and perform a comparison
between human data and the 3LP model. This chapter continues the comparisons of
chapter 6 to explore further kinematic similarities. It provides a useful explanation of
how asymmetries in walking can compensate each other. Also, it gives us insights on
how the lower-limb joints adapt to the overall asymmetries and how the vertical motions
are produced. We use these insights in the next chapter 11 and propose a human-like
walking trajectory generator based on the 3LP model.

Publication Note: The material presented in this chapter is adopted from:

• Amy Roning Wu, Salman Faraji and Auke Jan Ijspeert. "Effects of trunk lean

and ground slope on leg angle asymmetry during human gait." in preparation,
2018.

The first and second authors conceived of the study, designed the study, and conducted
the experiments. The first author drafted the manuscript, and the second author
helped draft the manuscript. The second author carried out the data analysis, and
the first author helped with the data analysis.
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Chapter 10. Walking Asymmetries

10.1 Background

The human locomotor system is capable of performing stable bipedal walking in various
conditions. Humans can carry heavy backpacks (Caron et al., 2013), negotiate inclined
grounds (Kawamura et al., 1991), pull objects when walking (Lee et al., 1991), and bend
our trunk to reduce height in low-seam coal mines (Gallagher et al., 2011). The complex
neuromuscular system tolerates these additional constraints and compensates for them
to achieve stable locomotion. Sometimes these constraints can be internal as well as
external. Muscle length and joint limits in hip extension can change gait kinematics and
dynamics at faster walking speeds (Kerrigan et al., 1998) or on steep inclines (Kozma
et al., 2018). In these conditions, once the constraint is reached, the locomotor system
has to adjust other joint angles to maintain walking stability. For example, subjects
with lack of hip extension compensate with excessive lumber extension or plantar flexion
(Godges et al., 1993). Considering single-mass models for bipedal walking (Hemami et al.,
1973), a stable gait may have symmetric kinematics in level walking. More specifically,
the relative position of leading and trailing feet with respect to the Center of Mass (CoM)
is similar during (instantaneous) double support (Kuo et al., 2005) (as demonstrated in
Figure 10.1A). This effectively keeps the average CoM position on top of stance foot in
periodic walking (Lugade et al., 2011).

Bipedal walking stability is easy to understand theoretically with simple models.
However, given the kinematic and dynamic complexities of lower-limbs in human, it
remains hard to extend simple theories to these complex systems. In unusual walking
conditions such as fast speeds, stooping, inclined walking or external interactions, the
hip, knee and ankle joints follow different trajectories and sometimes apply considerably
larger forces to the system to maintain stability. Despite such complexities, the CoM
to ankle vector remains the same in different backpack loading conditions for example,
suggesting dynamic stability (Caron et al., 2013). McIntosh et al. also report that the
pelvis-foot angle is proportional to slope in inclined walking (McIntosh et al., 2006). For
subjects that have a limited range of motion in some joints (for example limited hip
in elderly, or limited ankle in amputees), other joints in the leg have to increase their
range of motion to compensate and keep the pelvis-foot angle the same (McIntosh et al.,
2006). These compensatory mechanisms are very interesting because of their crucial
roles and applications in control of bipedal robots (Pratt et al., 2001) and powered
lower-limb assistive devices (Sawicki and Ferris, 2009). While individual limbs can be
approximated by spring-damper systems in symmetric and asymmetric walking conditions
(Aminiaghdam et al., 2017), understanding the interactions between them remains difficult
in the joint-level.

In stoop walking for example, since the torso is always tilted forward, the hip
joints apply large torques to prevent the trunk from falling (Gallagher et al., 2011). In
consequence, these torques change the geometry of stance leg by increasing the attack
angle at heel-strike. Because of such asymmetries, the muscles have to operate outside
their usual functional regions, which is costly. A 20% height decrease in stoop walking
increases the gross metabolic cost by 31-49%, while a 40% height decrease results in a
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Figure 10.1 – Possible sources of asymmetries in walking. A) In normal walking conditions,
the triangle formed by geometric center of the foot pad and the pelvis is almost symmetric
at phase transitions. Symmetry index α is defined as the subtraction of individual leg
angles α1 and α2 with respect to the vertical line (orthogonal to the ground). B) Tilting
the trunk forward or backward (e.g., in stoop walking) can shift the pelvis position
to keep the CoM roughly unchanged to maintain balance. C) Inclined walking and
gravitational pulling and pushing forces along the slope can induce similar shifts. D)
Likewise, external forces can induce the same effect in level walking. E) While it is
uncomfortable, humans can walk on the heels and toes only, which shifts the CoP and the
pelvis accordingly. By combining these asymmetry sources, one can reduce the overall
asymmetry and get close to symmetric normal walking conditions. In each block, the
left character shifts the pelvis forward while the right character shifts it backward. The
dashed triangle is equivalent to the one of normal walking.

drastic increase of energy up to 350% (Bedford and Warner, 1955). Besides, the knees
are also more flexed in stoop walking compared to normal walking (Gallagher et al.,
2011), although the level of vertical CoM excursions are found to be the same in both
conditions (Saha et al., 2008). Possible reasons could be gaze stabilization or avoiding
large fluctuations in the overall potential energy which might be costly for the muscles
again (Saha et al., 2008). In inclined walking, on the other hand, there is more stress
on the knee joints to bear the weight (Leroux et al., 2002). The hip muscles work a
lot in uphill and the ankles absorbs a lot of energy in downhill (McIntosh et al., 2006).
Due to these complex mechanisms and various other factors in inclined walking, head
stabilization becomes difficult (Cromwell, 2003), and gait stabilization becomes more
challenging evident by Center of Pressure (CoP) variations (Kawamura et al., 1991), and
all spatio-temporal parameters of walking and Ground Reaction Forces (GRF) change as
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well (McIntosh et al., 2006). In consequence, extreme uphill and downhill locomotion
has different energetics from level walking.

In unusual conditions like stooping or inclined walking, as mentioned earlier, different
sources of asymmetry result in different limb functionalities. In stooping (Figure 10.1B),
the large hip torques required to keep the trunk fixed induce reactive torques in the limbs
(Müller et al., 2017). In inclined walking (Figure 10.1C), because of the slope angle, the
gravity accelerates or decelerates the motion as if an external force (Figure 10.1D) was
applied to the body along the locomotion direction (Kawamura et al., 1991). Likewise,
walking on the toes or on the heels (Figure 10.1E) can change limb geometries whereas
in normal walking (Figure 10.1A), the CoP naturally moves forward from the heel to the
toes (Francis et al., 2013). However, in knee-flexed or trunk-flexed walking conditions
(stooping), an increased level of activity in gastrocnemius lateralis muscles is reported
(Grasso et al., 2000). This indicates that the CoP moves faster towards the toes during
the stance phase (Kluger et al., 2014). A similar effect is observed in downhill walking,
although the CoP behavior is almost normal in uphill walking (McIntosh et al., 2006).
Figure 10.1 summarizes some asymmetry sources and their geometrical consequences.

While the musculoskeletal system is very complex, we can still include few more
details to single-mass models and achieve a much better understanding of dynamic
walking geometries. Bipedal systems can be simplified by three segments as well: two
lower-limb and one upper-body segments attached together through the pelvis. These
three segments might by rigid in length (Gomes and Ruina, 2011), elastic like a spring
(Maufroy et al., 2011) or stretchable with prismatic actuators (Hasaneini et al., 2013).
These models have certain benefits and drawbacks, but they all share symmetric leg
coordinations in periodic walking. Favoring faster computation properties, we developed
3LP, a linear model with three pendulums to represent the trunk, swing and stance leg
segments in chapter 6. This model can easily simulate compass walking gaits (without
feet) to achieve symmetric kinematics. However, it is possible to apply ankle and hip
torques as well to modulate the motion. We can also tilt the trunk or gravity to simulate
stooping or inclined walking conditions. The 3LP model simplifies limb mechanisms with
simple prismatic actuators and keeps the CoM height constant (to achieve linearity), yet
it can generate meaningful walking dynamics.

To simulate asymmetric walking conditions, Spring Loaded Inverted Pendulum
(SLIP) models are predominantly used in literature and produce more realistic GRF
profiles than the 3LP model (Iida et al., 2009). Extensions of SLIP models assume
inertia for the trunk and allow for hip torques to balance it through Virtual Pivot Points
(VPP) control (Maus et al., 2010). VPP refers to a point above CoM at which the
GRF vectors roughly intersect. Andrada et al. observed VPPs in the GRF profiles of
quails and used extended SLIP models to replicate similar kinematics (Andrada et al.,
2014). The work of Andrada et al. is interesting in the sense that in quails like many
other birds, the trunk is titled for almost 90 deg. In human stoop walking, therefore,
similar VPP points exist (Müller et al., 2017), and similar extended SLIP models could
be applicable (Aminiaghdam et al., 2017). Compared to these extended SLIP models,
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our 3LP model can simulate swing dynamics, inclined walking and CoP modulation in
addition. Therefore, it seems a better candidate to model various asymmetric walking
conditions of Figure 10.1 within the range of parameters where the underlying linearity
assumptions remain roughly valid (step lengths not larger than the leg length).

Three configurations could provide a forward bias of the CoM to aid in asymmetric
walking conditions. First, the trunk could lean forward but maintain symmetry between
the legs. Second, the trunk could remain aligned with gravity atop of a CoM shifted
forward (i.e. anteriorly shifted pelvis) relative to the feet. A third option would be
combination of trunk flexion and asymmetry. We hypothesize that this combined strategy
is employed by humans and that asymmetry is a function of speed, inclination angle, and
trunk angle, possibly with opposing contributions. We use the 3LP model to simulate
mechanical interactions of joint-level mechanisms in asymmetric walking conditions –fast
speeds, torso flexion and inclined walking– at a more abstract level. By quantifying
asymmetry as the triangle formed by the two feet and the pelvis (see Figure 10.1), we
compare human gaits with our model at different walking speeds, trunk angles and
ground inclinations. This study potentially quantifies the interplay between asymmetry
sources and mechanically explains why some asymmetries can compensate for each other.

10.2 Methods
This section describes our mechanical model, human experiment protocols, and analysis
procedures. We refer to chapter 6 for derivation of 3LP walking model equations
and details. We determined asymmetry from the model walking at different speeds,
frequencies, inclination angles, trunk angles, step width and double support times. These
parameters as well as anatomical properties are taken from human walking experiments
described next. The model therefore finds trajectories and inter-leg postures that satisfy
periodicity and dynamic balance. Our definition of asymmetry index α reflects the
shift in the triangle formed by the two legs and the pelvis during the middle of double
support (see Figure 10.1). In case of symmetric triangles like Figure 10.1A, the index α

is zero while shifting forward and backward makes it negative and positive respectively.
Therefore, α is a signed variable with our definition.

10.2.1 Experiment

To compare model with human data, we measured the inter-leg asymmetry at different
trunk angles, ground slopes, and walking speeds from healthy, young adults subjects
walking on a treadmill. Asymmetry α was defined as the difference between the angle
of the trailing leg and the angle of the leading leg relative to a vector orthogonal to
the walking surface during double support (Figure 10.2B). Positive asymmetry values
mean the inter-leg angle is biased posteriorly, and negative asymmetry values indicate an
anterior bias (Figure 10.1). Prescribed trunk angles were imposed by real-time visual
feedback of trunk angle measured through an inertia measurement unit (Xsens MTi-30,
Enschede, Netherlands). Ground slope and walking speed were set by the treadmill
(Forcelink N-Mill, Culemborg, Netherlands). Five subjects (N = 5, 3 male, 2 female)
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walked on three slope grades with three trunk angles and three walking speeds. The trunk
angles imposed were 0 deg, 15 deg, and 30 deg relative to gravity. The slopes tested were
0%, 7%, and 14% grade, corresponding to 0 deg, 4 deg, and 8 deg, respectively. The
speeds were 2 km/hr (0.56 m/s), 4 km/hr (1.11 m/s), and 6 km/hr (1.67 m/s), yielding
a set of slow, normal, and fast speeds. Subjects walked with a combination of these
trials. Subjects also performed an additional trials of normal walking at each slope and
speed (with self-selected trunk angles). Each of the 36 trials were 2 min in duration and
performed in randomized order. To determine the maximum hip extension angle, we also
included a static condition where subjects placed their feet at a self-selected distance
apart and leaned their trunk back as far as possible. Subjects’ age ranged from 25 to 29
years of age and had body masses M of 68.1 ± 14.6 kg (mean±s.d.) and leg length L of
0.925 ± 0.073 m (measured from the greater trochanter to the ground during standing).
All subjects were healthy and had no known gait impairments. All subjects provided
written informed consent according to Institutional Review Board procedures.

We measured lower and upper body kinematics with motion capture (Optitrack,
NaturalPoint, Inc., Carvallis, OR, USA, collected at 120 Hz). Passive reflective markers
were placed bilaterally on the ankle (lateral malleolus), knee (lateral epicondyle), hip
(greater trochanter), and shoulder (acromion). We also placed three markers on each foot
(third metatarsal, fifth metatarsal, calcaneus), three on the pelvis (sacrum, left/right
anterior superior iliac spine) and four on the trunk along the spine (three spanning mid
to upper back, C7). Asymmetry, joint angles, and step parameters were computed from
the kinematic data. The trailing leg was the vector from mid-foot (between calcaneus
and third metatarsal) to the greater trochanter of the trailing leg. The leading leg was
defined similarly. The trunk was defined as the vector from the average of pelvis markers
to the average of the shoulder markers. We reported dimensionless measurements using
base units of body mass M , standing leg length L, and gravitational acceleration g.
Walking speed was normalized by

√
gL (mean 3.011 m/s), step length and step width by

L (mean 0.925 m), and step time by
�

L/g (mean 0.307 s).

10.2.2 Analysis

We analyzed asymmetry and kinematic data with respect to inclination angle, trunk
angle, and walking speed to test our hypothesis. We used a linear regression model to
determine the relative contributions of each parameter to asymmetry α.

α = Cvv + Cθθ + Cφφ + C0, (10.1)

where v is walking speed, θ is trunk angle, φ is inclination angle, and C0, Cv, Cθ, and
Cφ are scalar coefficients. C0 represents constant offsets. Linear fits were performed for
all data of each subject simultaneously while allowing each subject to have an individual
constant offset. Additional fits were performed on gait parameters, such as step width
and step time, to determine if they changed with experimental conditions. We also
performed t-tests on trunk angle conditions to verify that subjects achieved significant
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Figure 10.2 – The 3LP model and human walking experiment. A) In the experiment
setup, we attached an IMU to the subject and calibrated it during normal standing.
During the walking trials, we asked the subject to follow a reference angle on the screen
by adjusting the actual trunk angle plotted in real time. The red dots indicate the
markers used to record kinematics with a motion capture system. B) The 3LP model
can simulate similar walking conditions. Model properties were matched to the subject’s
height and weight while walking speed and slope angles were set to the desired values.
The trunk angle, walking frequency, step width and double support times are also set to
the actual average values recorded from the subject.

differences in trunk angle relative to 0 deg for each of the commanded trunk positions.

10.3 Results

For both subjects and the model, we found that each parameter affected asymmetry, with
the inclination angle inducing the greatest change (Figure 10.4). In the model, inclination
angle had a negative relation with asymmetry while the trunk angle had the inverse
relation. The speed, however, does not influence asymmetry considerably. In the human
data, only the slope parameter changed asymmetry similarly to the model. The trunk
angle only had small changes in asymmetry (towards reducing asymmetry magnitude), and
walking speed asymmetry decreased in value (towards increasing asymmetry magnitude).
On average, subject asymmetry changed at a rate of -3.77 deg/(m/s) (speed), -1.54
deg / deg (slope), and 0.14 deg / deg (trunk) with offset 1.72 deg. In comparison, the
model’s asymmetry increased at a rate of 0.39 deg/(m/s) (speed), -1.81 deg / deg (slope),
and 0.54 deg / deg (trunk) with offset -2.29 deg. To produce a change in asymmetry of
14.5 deg relative to normal walking (4 km/hr, 0 deg inclination, 0deg trunk angle), the
model would either have to increase the slope by 14% or bend backwards by 27 deg. For
the same change in humans, subjects would have had to walk on a slope of 17% or bend
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Figure 10.3 – Measured trunk angles for different commanded trunk angles, inclination,
and speed. A) Commanded and measured trunk angles (mean and s.d. of all speeds and
slopes). All three levels of imposed trunk angles were significantly different from each
other (P<0.05). B) For the 0 deg trunk condition over all speeds, subjects were able to
maintain the commanded trunk angle (P>0.05), which was significantly different from
their self-selected trunk angle (P<0.05). C) Self-selected trunk angle changes with speed
(0 deg inclination) are significantly greater at the fastest speed compared with normal
speed (4 km/hr). Asterisks (*) indicate statistical significance (P<0.05) from 0 deg in A)
and from 4 km/hr in C).

backwards by 104 deg.

Each experimental condition affected subjects’ gait. The treadmill imposed the
walking speed and slope. Visual feedback of desired trunk angles yielded significant
differences in trunk angles (Figure 10.3, all P<0.05 relative to 0 deg condition). The
greatest trunk level (30 deg) resulted in measured angles about 45 times greater than
the lowest level (0 deg). Even at 0 deg trunk angle on 8 deg slope, subjectively the most
difficult condition, subjects maintained upright trunk relative to gravity (P>0.05 relative
to 0 slope condition).

The walking conditions had little effect on step parameters and expected effects on
joint kinematics. For the inclined walking conditions, subjects exhibited slightly longer
step length, step width, step period, and double support (Table 10.1), while for non-zero
trunk flexion conditions, these parameters were shorter. Speed elicited expected changes
in spatio-temporal parameters (Grieve and Gear, 1966), increasing both step length
and step frequency. Walking with greater trunk angle resulted in smaller changes in
kinematics (Figure 10.5) than for speed or inclination changes. At higher inclinations,
we observed more knee and hip flexion at heel-strike.

10.4 Discussion
We sought to understand inter-leg symmetry as a function of different walking speeds,
inclination angles, and trunk angles. From experimental data, we found that asymmetry
increased in magnitude with speed and inclination but decreased in magnitude with
trunk angle. In contrast, speed had a small effect on the model asymmetry, and trunk
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Figure 10.4 – Asymmetry values obtained from simulations and experiments as a function
of different experiment parameters. The three columns in this figure each correspond
to changing one parameter while keeping the other two fixed at their nominal values:
speed of v = 4 km/hr, trunk angle of θ = 0 deg and slope angle of φ = 0 deg. Model
predictions are calculated based on scaling the 3LP model by average subject anatomies
and simulating walking with gait parameters obtained from human experiments. The two
lines plotted for heel CoP and toe CoP are also obtained by running the same walking
model, but keeping the CoP constant at the heel and toe. Coefficients and quality of fit
are reported in Table 10.1.
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Figure 10.5 – Mean kinematics from a set of experimental conditions (same as shown for
asymmetry in Figure 10.4). The three columns in this figure each correspond to changing
one parameter while keeping the other two fixed at their nominal values: speed of v = 4
km/hr, trunk angle of θ = 0 deg and slope angle of φ = 0 deg.

had a greater effect than found with humans. For both model and data, inclination
changes induced the largest changes in asymmetry.

While predicted asymmetries followed a similar trend to human data in inclined
walking, there was mismatch for walking speed and trunk angle changes. According to
Table 10.1, human walking frequencies and double support times are very sensitive to
the choice of speed, which might explain why asymmetry trends are slightly different
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Figure 10.6 – The asymmetry index α by model predictions over a wide range of inclination
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times and step width by interpolating the data presented in (Snaterse et al., 2011),
(Cappellini et al., 2006), and (Donelan et al., 2002) respectively as a function of walking
speed. Normal and feasible angles are shown by red regions, since bending back may
not be comfortable for humans. The model is still able to simulate these infeasible
walking conditions, indicating the possibility to compensate other sources of asymmetry
by wearing heavy backpacks for example and maintaining erect postures. Note that the
asymmetry is close to zero in neutral conditions, but the current definition is sensitive to
double support duration. Ideally calculating the asymmetry index at the middle of the
double support phase would remove this subtle bias at least in the model.

Table 10.1 – Quantitative results for fits to asymmetry and step parameters. Fit parame-
ters include trend value (means±95% confidence interval, CI) and offsets (means±s.d.)
of linear fits. Fit variables include normalized speed v, trunk angle θ and slope angle φ.
R2 values indicate the goodness of fit, and P-values indicate statistical significance of
the trend (*P<0.05). Quantities are reported in dimensionless form, with body mass,
gravitational acceleration and leg length as base variables.

Trend Offset R2

Speed (cv) Slope (cφ) Trunk (cθ) c0

Human asym. -0.20 ± 0.04 -1.54 ± 0.11 0.14 ± 0.04 0.03 ± 0.01 0.83
Model asym. 0.02 ± 0.01 -1.81 ± 0.02 0.54 ± 0.01 -0.04 ± 0.00 1.00
Step length 2.06 ± 0.07 0.26 ± 0.19 -0.15 ± 0.07 0.60 ± 0.02 0.95
Step width 0.04 ± 0.02 0.03 ± 0.06 -0.01 ± 0.02 0.05 ± 0.01 0.08
Step period -5.58 ± 0.32 0.84 ± 0.87 -0.48 ± 0.31 6.09 ± 0.07 0.87
Double support -2.59 ± 0.21 0.54 ± 0.56 -0.37 ± 0.20 2.05 ± 0.05 0.78

between model and human when changing speeds (Figure 10.4). In the model, the CoP
moves linearly from the heel to the toe. To test the sensitivity of the model to CoP
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location and progression, we determined asymmetry trends for when the CoP is fixed
at the heel and at the toe (Figure 10.4). We observed that CoP can introduce a bias
which might bring the predictions closer to human data for the θ = 30 deg trunk flexed
conditions. Kluger et al. (Kluger et al., 2014) reported that CoP moves forward slightly
faster during normal walking than in extreme trunk flexing conditions, which suggests
the CoP might help compensate for the asymmetry caused by trunk flexion. A similar
effect of increased forward progression of CoP was also reported for downhill walking in
(McIntosh et al., 2006). While both the 3LP model and previous results point to the
importance of CoP on asymmetry, we did not record CoP displacements and thus cannot
experimentally verify this effect.

Both model and empirical data indicate that leaning the trunk forward increases
asymmetry while walking uphill and walking faster decreases asymmetry. Therefore,
trunk lean could compensate the asymmetric effect of speed and inclination. A possible
mechanical explanation for the need for compensation in humans could be the discomfort
of reaching hip extension limits in very negative asymmetries (i.e. shifting the pelvis
forward). In our experiments, when walking at maximum speed (v = 4 km/hr) and
inclination (φ = 14%), we measured a maximum hip extension angle of −9.9 ± 7.1 deg
(mean ± s.d.) at self-selected trunk angles and −12.6 ± 4.0 deg at imposed zero
trunk angles. Maximum hip extension angles during static conditions were found to be
−17.2 ± 7.6 deg. Performing t-tests with respect to static angles, walking at zero trunk
angle was not significantly different (P = 0.259) while walking with self-selected trunk
angle was significantly different (P = 0.032). This indicates that walking with imposed
zero trunk angle was close to the hip joint limits, perhaps leading to discomfort for our
subjects.

The kinematic and spatio-temporal changes with speed, inclination angle, and trunk
angle were similar to those previously reported. Speed-induced changes in both step
length and step time non-linearly, as found in (Grieve and Gear, 1966). Walking uphill
leads to increased trunk flexion (Rosa et al., 2018), as also seen in our data (see Figure
10.5). We also observed similar knee and hip changes in flexion presented in (McIntosh
et al., 2006) with inclined walking. Similar to a neuromuscular reflex-based model, which
found that the trunk favored more flexion at faster walking speeds (Song and Geyer,
2012), subjects exhibited increased trunk lean with speed (Figure 10.3). Walking with
greater trunk angle resulted in small changes in kinematics (Figure 10.5), given the
limited range of angles we explore in our experiments. At higher trunk angles up to
90 deg, more kinematic changes in the joint angles are expected (Aminiaghdam et al.,
2017; Müller et al., 2017; Leroux et al., 2002).

We observed that the model predicts rapid asymmetry changes with inclination and
trunk angles, but not with the walking speed (see Table 10.1 and Figure 10.4). Our
model also did not have a notion of "comfort" and therefore the hip limits reached by
human subjects do not explain model behavior. Humans can also use pelvis rotation and
lumbar flexion to compensate for reaching their maximum hip extension limits (Vogt
and Banzer, 1999; Leroux et al., 2002). In our model, however, these flexibilities are
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not included. Our model can also approximate adjustments in the pelvis position due
to different sources of asymmetry but, with only telescoping legs, can not explain or
produce joint-level adjustments (e.g. knee bending) .

We used linear fits to describe asymmetry as a function of speed, trunk, and slope
angles because we found that a model with cross-terms did not markedly improve the fit
(0.999 R2 vs 0.999 R2 for model predictions, linear and nonlinear models respectively)
and (0.833 R2 vs 0.862 R2 for human data, linear and nonlinear models respectively).
Model asymmetry is also considerably sensitive to CoP profile, yet we used a simple linear
progression of CoP in the 3LP model. For future studies, we plan to conduct similar
experiments and explore larger trunk flexion levels while recording ground reaction forces
and CoP. This would hopefully provide enough data to find a more complete model of
asymmetry.

Our study investigates the changes in inter-leg symmetry with various speeds,
inclination angle, and trunk angles. We compared human data to data from a 3D walking
model and found that both predicted a decrease in asymmetry with inclination angle and
an increase with trunk angle. This leads us to conclude that while forward bias of the
CoM is important for forward progression on positive slopes or fast speeds, the resulting
hip angle may be uncomfortable or not easy to control. Trunk lean may be used then to
compensate by reducing asymmetry. Thus, the role of trunk in walking is an important
mechanical component that has whole-body effects on control and energetic costs and
should not be neglected.
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11 Human-Like Animation

The method presented in this chapter is chronologically developed at the end of the
project. We used observations and expertise obtained in all other chapters to propose
a more complete model of walking. This model is in fact tailored to an application
of animation in which the goal is to produce human-like trajectories. This goal could
be potentially achieved with very complex and realistic models of walking that include
muscle details and neural circuits. However, our method aims to achieve a similar
performance with microsecond calculations only. Such a hard requirement is achieved via
derivation of closed-form equations in different levels. The proposed framework of this
chapter can produce periodic and perturbed gaits in different walking conditions. We
use the 3LP model of chapter 6 as a core to simulate walking dynamics at an abstract
level. Besides, we use the time-projection control of chapter 7 to stabilize the gait in case
of transitions or perturbations. On top of these two components, we introduce a novel
component that produces vertical trajectories for the pelvis as well as human-like leg
coordinations. As mentioned in chapter 9, these components have energetic consequences
that influence the overall walking behavior. We also saw in the walking experiments of
chapter 8 that missing human-like gait features, especially the toe-off motion, can be
geometrically very restricting for the robot. The method of this chapter tries to include
these features while respecting computational advantages of the previously developed
components. Although there was no time left in the project to use the newly developed
method on the real hardware, we believe the ideas presented here would make the dream
of human-like walking on the robot close to reality1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji and Auke Jan Ijspeert. "Scalable closed-form trajectories for

periodic and non-periodic human-like walking." arXiv preprint arXiv:1803.10048,
2018.

1All the videos of this chapter could be found at https://youtu.be/FdNrNeOqBHw
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Chapter 11. Human-Like Animation

11.1 Background
The musculoskeletal system of human has multiple degrees of freedom and many muscles
used to produce a wide range of activities. In particular, human walking features many
complex motions in the lower-limbs produced by gravity and muscle forces. This complex
system can be simplified to reproduce walking behaviors in simulation environments,
depending on the level of details needed. The limbs can be simulated with multi-segment
rigid bodies while rotary actuators in the joints can play the role of muscles to some extent.
Such huge simplifications are probably enough to produce very realistic locomotion
behaviors, however, a powerful controller is needed to stabilize the gait. A unified
framework is hard to achieve given different anatomical properties, gait parameters,
styles of motion and environment conditions. Besides, a plausible controller in this
framework should easily handle transition conditions as well as capturing disturbances
to simulate interactions with the environment. Many successful controllers are proposed
in (Yin et al., 2007; Tsai et al., 2010; Coros et al., 2010; Mordatch et al., 2010) for
example which use motion-capture data, simplified models or dynamic equations to
achieve amazing walking behaviors.

In this work, we mainly focus on simulating essential principles of walking in the
lower-limbs. We propose a method that combines trajectories of 3LP, a simple walking
model developed earlier in chapter 6, with additional features that result in a human-
like gait. We use the previously developed time-projection controller of chapter 7 to
stabilize the gait and perform transitions. Recorded human data is also used to validate
trajectories quantitatively. Thanks to linearity of the 3LP model and simplicity of the
controller, we offer closed-form solutions for all lower-limb trajectories of human walking
in a wide range of parameters. Our method, therefore, captures the main principles of
walking with microsecond calculations. It can simulate walking behaviors multiple orders
of magnitude faster than physics-based simulators which work at best in real time. This
could be used for video games and animations especially on portable electronic devices
with limited computational capabilities.

Animating walking behaviors is primarily inspired by biomechanics studies which
quantify human gait properties and explain the mechanics behind. There are multiple
techniques used to reproduce the behavior, ranging from pure interpolation of human
data to detailed physics-based simulations that implement low-level control rules to mimic
human behavior. This section reviews different walking animation methods proposed in
the literature to highlight some key inspiring ideas. We classify the existing literature
into three main categories: interpolation of recorded data, artificial trajectory synthesis,
and physics-based simulation. We are more interested in a trade-off between genericity
of the method and computation times. In this regard, each category provides certain
advantages and limitations discussed as follows.

11.1.1 Interpolation of recorded data

Using a motion-capture system and markers placed on different body parts, one can
capture human locomotion trajectories in different conditions. Choi et al., for example,
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used a motion library to plan bipedal locomotion in un-structured environments (Choi
et al., 2003). They planned probabilistic road-maps which determined a sequence of
character configurations based on foothold locations. Similarly, Lee et al. used a human
motion database to control animated avatars (Lee et al., 2002). A Markov process was
used in this method to plan motion phases while blending transition rules were applied
to produce smooth motions based on a relatively large database of recorded data in
non-periodic walking conditions. Similarly, a single set of periodic walking trajectories
were scaled in (Okada and Miyazaki, 2013) and applied to a robot after fixing dynamical
consistency.

Assuming a fast data query from the database, interpolations could be done relatively
fast in terms of computations. However, if dynamical consistencies are considered like
(Okada and Miyazaki, 2013), a small modification of trajectories is needed. Such
modification might not be visually notable, but it might require expensive iterative
computations. Besides, the quality of animations might heavily depend on the quality of
recorded data. The method in (Lee et al., 2002) for example requires enough data-points
to produce transient conditions. It is also sensitive to glitches and slippages. In a broader
perspective, generalizing interpolations to characters with different anatomical properties
than the dataset is feasible but challenging (Hodgins and Pollard, 1997). Covering a
wide range of locomotion parameters such as speed, frequency, and style is also hard
with a sparse database (Hodgins and Pollard, 1997). Besides, a realistic simulation of
interactions with the environment seems impossible in this approach due to the absence
of physics in the interpolations.

11.1.2 Artificial trajectory synthesis

A similar approach is to consider parametric trajectories instead of interpolating a motion
database. Given the wide range of kinematic data reported in biomechanics studies,
one can design empirical trajectories with appropriate phase and adjustable amplitudes
for certain variables in the system. The approach proposed in (Boulic et al., 1990) for
example considers sinusoidal variations for pelvis translations and rotations. It also
considers similar trajectories for the hip, knee, ankle, thorax, shoulder and the elbow
joints. A predefined phase and adjustable amplitude (as a function of velocity) for
each of these trajectories can produce walking motions in a wide range of speeds. The
relation of step frequency and speed is also taken from human data while an inverse
kinematics algorithm slightly modifies trajectories to ensure contact constraints. The
parametrization process can be done over key-frames too. The approach proposed in (Li
and Liu, 2000) for example interpolates between different postures defined for certain
gait events to obtain continuous trajectories. By changing the key-frames only, plausible
walking trajectories can be obtained for different inclined terrains and walking speeds.
The speed-frequency relation, as well as the double-support time ratio, is taken from
human data in (Li and Liu, 2000).

Parametric trajectories have a wide range of applications in robotics. Handharu et
al. used parametric trajectories for the foot and the knee to produce walking motions
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Figure 11.1 – An overview of our proposed simulation architecture. Given certain walking
parameters shown in red, a reference 3LP gait is calculated based on which the time-
projecting controller suggests footstep adjustments. The resulting trajectories of the 3LP
system are then converted to a more human-like posture.

with toe and heel joints (Handharu et al., 2008). Similarly, Ogura et al. used parametric
trajectories for the waist roll, foot positions, and the knee joints to produce stretched-knee
walking patterns (Ogura et al., 2003). The approach proposed in (Ogura et al., 2006) used
similar prescribed knee trajectories and optimized other parametric trajectories to find a
ZMP-stabilized gait, validated on the WABIAN-2 robot. ZMP refers to Zero Moment
Point around which contact reaction forces produce no moment in the horizontal direction.
Manually designed Center of Mass (CoM) height trajectories together with a robust
inverse kinematics method could later produce stretched-knee gaits on a refined version of
this robot (Kryczka et al., 2011) as well. Although dynamic consistencies were resolved in
all these methods (Handharu et al., 2008; Ogura et al., 2003, 2006; Kryczka et al., 2011)
by proper regulation of ZMP trajectories (Vukobratović and Borovac, 2004), no online
control method was proposed. Heerden, on the other hand, used sinusoidal reference
trajectories for the pelvis and optimized jerks in a Model Predictive Control setup to
plan CoM trajectories with variable heights (Van Heerden, 2015). This framework offered
reactive stepping and online control, though costly in terms of computations, and missing
the knee and ankle joints. The method proposed in (Griffin et al., 2017) offers a faster
online control based on the capturability control framework (Koolen et al., 2012), though
uses manually tuned set-points for the knee joint in different phases of motion to achieve
stretched-knee walking.

Parametric trajectories are easy to design and tune for specific gaits, but hard to
generalize for a broader range of walking conditions, e.g., at different speeds, frequencies,
inclinations, walking styles, foot lifts, character sizes, etc. So far, we have only discussed
trajectory generation methods (interpolation and synthesis) that impose kinematics. An
alternative approach would be to compromise the animation speed and simulate system
dynamics directly by time-integration to let the kinematics emerge automatically, i.e.
taking dynamics into account.
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11.1.3 Physics-based simulation

Simulating the full dynamical model simply translates to a complicated control problem.
The walking system has multiple degrees of freedom while the type of task is hybrid,
involving a change of mechanical model in each phase of motion (i.e., left, right or double
support). Very similar to the few interpolation approaches mentioned earlier, one can
use recorded human data or parametric trajectories to produce animations via position
control. However, such open-loop controller might only be stable over a small set of
states. To tackle this problem, Yin et al. simplified walking dynamics with a single mass
and improved stability by suggesting footstep adjustments (Yin et al., 2007). In their
simulation framework called SIMBICON, they obtained desired joint angles by applying a
Fourier transformation on the recorded human data and taking only essential harmonics.
While replicating the recorded trajectories, they used a simple proportional controller
in the stance hip to regulate the trunk orientation. A control rule was also introduced
to adjust the next footstep location as a linear function of CoM relative position and
velocity (with respect to the stance foot) by tunable gains. Using task-specific parameter
tunings, SIMBICON was able to achieve realistic walking gaits with different torso styles,
leg lifts, motion directions, and push recovery properties. The method proposed by (Tsai
et al., 2010) was also very similar to SIMBICON and relied on motion-capture data.
However, Tsai et al. used an inverted pendulum model to adjust the footstep locations
instead of the original tunable gains used on the relative CoM position and velocity in
SIMBICON.

The free parameters of the SIMBICON framework together with initial conditions
were later optimized by (Wang et al., 2009) using mechanical power terms in the objective
function to produce more natural walking gaits. The optimized framework removed
dependency on the motion-capture data and handled inclined walking as well. However,
the optimization procedure had to be repeated for characters with different body shapes.
Favoring generalization of the controller, Coros et al. also removed any dependency on
the motion-capture data and only used few parametric spline trajectories to allow for
human-like knee and ankle trajectories (Coros et al., 2010). They used the inverted
pendulum model as a core motion generator with parametric swing leg motions. The
resulting trajectories were converted to joint-space via inverse kinematics. In the low-
level control, he used small gains to track the desired joint angles in addition to gravity
compensation and Center of Pressure (CoP) modulation for better compliance and
stability. Assuming a decoupling between horizontal and vertical dynamics, Mordatch
et al. used a Linear Inverted Pendulum (LIP) and a Spring-Loaded Inverted Pendulum
(SLIP) to describe motions in these directions respectively (Mordatch et al., 2010).
They formulated a robust nonlinear Model Predictive Control (MPC) problem to plan
the motion, although reaching a reactive online control slowed down their simulations
considerably. The complete inverse dynamics formulation used by (Mordatch et al., 2010)
could, however, unify the gravity compensation and CoP modulation rules of (Coros
et al., 2010) and produced natural upper-body motions. Apart from simplifying the
dimensionality problem, inverse dynamics can provide compliance (chapter 3), realize
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imprecise Cartesian plans (You et al., 2016) and allow for multi-character interactions
(Vaillant et al., 2017).

A sub-category of physics-based simulation methods aims at finding task-specific
controllers, but not using simplified models. A network of neurons stimulating virtual
human-like muscles (neuro-muscular model) can be optimized for example to produce
human-like walking gaits at different speeds (Geyer and Herr, 2010). Likewise, a character-
specific optimization of control gains and set-point angles for a musculoskeletal model
combined with the SIMBICON stabilization rules can also produce realistic walking
behaviors (Geijtenbeek et al., 2013). Individual controllers can be composed together to
cover a wider range of tasks using support vector machines (Faloutsos et al., 2001) or
interpolation of control laws (Laszlo et al., 1996). Offline optimizations can also achieve
more versatility by using exteroceptive sources of information. The reinforcement learning
method proposed in (Heess et al., 2017) for example can achieve robust locomotion in
rich environments by using very simple reward functions. Another promising method of
generating locomotion behaviors aims at optimizing a sequence of end-effector trajectories
through contact-invariant optimizations (Mordatch et al., 2012). This approach can
produce realistic walking gaits (Posa et al., 2014). However, a considerable offline
optimization effort is needed to obtain a single walking gait.

11.1.4 The proposed method

Although physics-based simulations can potentially produce various kinds of locomotion
scenarios (Vaillant et al., 2017), the control algorithm remains a big challenge. Even
for very simple walking behaviors, these simulations can hardly go faster than real-
time (Mordatch et al., 2010). However, since dynamic equations are being integrated,
interactions with the environment are made possible given stable controllers. Direct
integration of multi-body symbolic equations (Docquier et al., 2013) would slightly speed
up the animation (Van der Noot et al., 2015), but the effect of interaction forces should be
included in the symbolic equations. A much faster speed can be achieved via interpolation
or trajectory synthesis methods, however, producing interactions is not possible. In this
work, we propose a method that can cover a wide range of walking conditions generated
by physics-based simulations (Yin et al., 2007; Coros et al., 2010; Mordatch et al., 2010)
while offering 2-3 orders of magnitude faster simulation speeds. While physics-based
simulations need sub-millisecond integration times and hardly reach real-time factors,
we use closed-form solutions of 3LP (as fast as microseconds only) to update the state
only at display frames (e.g., 30 frames per second). This boost of speed easily makes
real-time crowd walking simulations possible. It also enables computationally limited or
portable electronic devices to simulate interactive walking scenarios easily.

To be precise, the proposed method is a novel hybrid combination of physics-based
simulations and interpolation methods summarized in Figure 11.1. The physics of walking
in our method is encoded in the 3LP model which is composed of three linear pendulums
to model falling, swing and torso balancing dynamics. 3LP supports walking at different
speeds, frequencies, double-support times, torso bending styles, terrain inclinations and
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subject heights and weights. Our symbolic equations also support external forces and
torques applied to the torso while the time-projection controller of chapter 7 automatically
captures these perturbations by adjusting footstep locations. This controller supports
all the previously mentioned walking conditions without any parameter tuning. Since
masses in the 3LP model are fixed to constant-height planes, we introduce a kinematic
conversion to produce height variations. This part of our method involves adaptive
trajectory synthesis without any tuning of parameters unlike the literature (Boulic et al.,
1990; Li and Liu, 2000). Given a 3LP state (pelvis, torso and toe positions), our conversion
adaptively varies the pelvis height to produce human-like excursions (Gard et al., 2004),
lifts the swing toe to provide ground clearance (Wu and Kuo, 2016) and resolves a single
Degree of Freedom (DoF) in each leg to produce thigh-shank-foot kinematics. These
variations are all adaptive, independent of the previously mentioned walking conditions
and calculated in closed-form.

11.1.5 Novelties

While covering a wide range of walking conditions, the proposed method simplifies physics-
based simulations favoring faster computations. The 3LP model and the time-projection
control are originally developed to control a real robot for walking and push recovery
applications explained in chapter 8. Therefore, the novelty of this work mainly lies in
adding torso styles and terrain inclination features to the 3LP model and more importantly,
introducing an adaptive kinematic conversion to produce human-like gaits from 3LP
states. This work mainly focuses on producing lower-limb kinematic trajectories while
upper-body and pelvis oscillations can be included via predefined scalable trajectories
similar to (Boulic et al., 1990; Li and Liu, 2000). An essential advantage of the 3LP
model and time-projection control is in closed-form future predictions, given walking
speed and external disturbance profiles. The proposed kinematic conversion method also
produces human-like postures while preserving this property. In other words, the current
converted posture does not depend on the previously converted postures. The entire
method, therefore, enables a fast approximation of future kinematics in few microseconds
which makes it suitable for model predictive control too. Knowing formulas of the 3LP
model and the time-projection control form previous chapters, in the next section, we
formulate our adaptive kinematic conversion method. We continue by demonstrating
different walking gaits and conclude by a discussion on the supported range of walking
conditions as well as promising aspects for future work.

11.2 Kinematic conversion
In this chapter, we only use swing hip torques in the 3LP model for active control and
leave the stance ankle torque profiles fixed, i.e., moving the CoP linearly from the heel
to the toe or vice versa, depending on the direction of motion. The model state in 3LP
is composed of horizontal pelvis and feet positions. A torso angle θ, slope angle φ and
constant external force Fdrag are simply added to the original 3LP equations of Chapter
6. These constant terms can change periodic gaits, but not the derivation of control rules.
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Figure 11.2 – A schematic of the 3LP model used in this chapter for walking gait
generation. This 3D model is composed of three linear pendulums connected with a
massless pelvis to simulate natural lateral bounces. All masses and the pelvis stay in
constant-height planes which make the model linear. The torso also remains upright by
an ideal actuator placed in the stance hip joint. The state of this model is described
by the pelvis and swing foot horizontal positions while the swing hip and stance ankle
torques serve as inputs to generate different walking gaits.

All variables are expressed in a rotated coordinate frame attached to the slope, shown by
dashes in Figure 11.2.

The idea of kinematic conversion is to make the 3LP posture more human-like. As
mentioned earlier, we focus on adding pelvis vertical excursions, ground clearance and
lower-limb motions to the gait. Other human-like features like pelvis rotations and upper
body motions are not considered in the present work. Our simple conversion algorithm
only needs the current 3LP state and phase time t as inputs. Knowing other constants
including phase timing parameters Tds, Tss, the slope angle φ, anatomical properties and
the ground clearance height, our conversion algorithm performs the following steps:

1. Pelvis height: Find a smooth trajectory based on relative feet and pelvis positions.

2. Ground clearance: Synthesize a vertical toe position profile.

3. Knee target points: Find two target points for the knees that translate to hip
angles and solve the inverse kinematics redundancy of each leg.

These small modifications are based on trajectory synthesis and minimally influence
3LP’s overall falling and swing dynamics. Here, we simply rely on decoupling assumption
between vertical and horizontal dynamics similar to (Mordatch et al., 2010; You et al.,
2016). A more precise but computationally expensive approach would be to use the
full dynamics equations and perform vertical adjustments only within the null-space
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11.2. Kinematic conversion

of horizontal tasks (Griffin et al., 2017). The remainder of this section describes our
adaptive kinematic conversion method in details.

11.2.1 Pelvis height

The horizontal dynamics of walking in our simulations is approximated by the 3LP model
assuming constant heights for the pelvis, the two feet, and all limb masses. Given a
3LP state in periodic or transient walking conditions, our kinematic conversion takes
the relative foot-hip positions and calculates a smooth pelvis height trajectory. This is
done via a simple mixture of geometric variables at each instance of time. Remember
that the legs in 3LP are modeled by extensible prismatic actuators. Given certain
footstep locations, if we assume fixed-length legs like the normal inverted pendulum
model, we obtain arc shapes for the pelvis which sharply intersect together (Kuo et al.,
2005). Human pelvis trajectories are similar to smooth sine shapes, however, going
to a minimum during the double support phase (Gard et al., 2004). To produce such
trajectories, we use two different methods:

1. Fixed mixture: we consider fixed leg-length arcs around the CoP in each foot and
introduce a soft weighting between them to produce the final pelvis height profile.

2. Adaptive mixture: we consider variable leg-length arcs around the CoP in each
foot and apply a soft minimum function to produce the final pelvis height profile.

While the first method is enough for periodic walking and small perturbations, it cannot
support backward walking or extreme toe-off stretching in perturbed conditions. The
second method, however, simply produces a feasible pelvis height for both legs.

Remember that all the 3LP equations are solved in a rotated coordinate frame
attached to the slope (refer to Figure 11.3). Therefore, the gravity vector is rotated and
the nominal leg length (the variable l in Figure 11.2) is reduced by a factor of cos(φ).
This ensures a stretched leg when walking at zero speed on the slope. For a given 3LP
state, we define relative vectors p(t) and q(t) by:

p(t) = P (xstance(t) − xpelvis(t)) +
�

0 ws
2

�T

q(t) = P (xswing(t) − xpelvis(t)) +
�

0 −ws
2

�T
(11.1)

where the variable s = ±1 indicates left or right support phases, the parameter w denotes
pelvis width and the matrix P is a simple operator to project the quantities on the x − y

plane shown in Figure 11.2. Example sagittal components of p(t) and q(t) are shown
in Figure 11.4E for an adult person (height of 1.7m) walking at a speed of 1m/s and
a frequency of 1.7 step/s. During in-place walking, we assume that the CoPs stay in
the middle of each foot (the CoP in swing foot is virtual). Depending on the distance
between the two feet, we move CoPs to the toes or heels. This is done via a linear profile
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Figure 11.3 – A snapshot of inclined walking in early swing phase. A) The given 3LP
state in the background can be split into B) swing and C) stance legs. Depending on the
sagittal distance of the two feet, we calculate CoP points (virtual in the swing foot) and
create candidate pelvis height arcs around the heel points. For the trailing leg, the CoP
is on the toe which produces the red arc. For the front leg, the CoP is on the heel which
creates the blue arc. For each leg, by intersecting a vertical line (passing through the
pelvis in 3LP) with the arc, we find a candidate pelvis height. Now, compared to the
maximum height possible (equals the leg length l), we calculate errors ep and eq for each
leg and apply a smooth maximum function on them which is shown in E). The resulting
maximum e determines the final pelvis height with respect to the maximum height l.
Given the pelvis and toe positions for each leg then, we just need to resolve a single
degree of freedom in each leg to find the complete thigh-shank-foot posture. This is done
by determining a target point for the knee on the ground which implicitly determines
the desired hip angle. In case the foot penetrates the ground, this angle is adjusted to
keep the foot always flat.

in which a step length equal to the leg length produces a half-foot CoP movement:

pCoP(t) =
h

2
(1 +

q(t) − p(t)
l

)

qCoP(t) =
h

2
(1 +

p(t) − q(t)
l

) (11.2)

where the parameters h and l denote foot length and leg length shown in Figure 11.2
respectively. We also assume no lateral movements for the CoP in each foot. As observed
in Figure 11.4E, the trajectories p(t) and q(t) have non-zero derivatives at the boundary
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11.2. Kinematic conversion

times (in the beginning and at the end of the step phase). These derivatives produce
sharply intersecting arc shapes for the pelvis whereas setting them to zero would produce
flat trajectories. To achieve this, we define an additional signal α(t)ṗ(t) where the
polynomial α(t) has derivatives of −1 at t = Tds and t = T shown in Figure 11.4A.
This signal can correct the derivatives by setting them to zero when added to p(t) and
q(t) (shown in Figure 11.4E). Therefore, modified relative positions p̄(t) and q̄(t) can be
defined as:

p̄(t) = p(t) + α(t)ṗ(t)

q̄(t) = q(t) + α(t)ṗ(t) (11.3)

which represent smooth relative positions between the hip and the heel in each leg,
ensuring zero derivatives at the phase boundary times. Assume we put a rotated
coordinate frame (along the slope) on each heel and express the modified relative 3LP
pelvis position by [X Y Z] in this frame where Z = l cos(φ) shown in Figure 11.3B. Now,
fixed leg-length arcs can be found as:

Z2 = (X + xCoP + l sin(φ))2 + Y 2 + zfixed(X, Y, xCoP)2 (11.4)

where the constant l sin(φ) is added to compensate the effect of slope. The candidate
pelvis heights for each leg are:

zp,fixed(t) = zfixed(p̄x(t), p̄y(t), pCoP(t))

zq,fixed(t) = zfixed(q̄x(t), q̄y(t), qCoP(t)) (11.5)

where x and y are sagittal and lateral components respectively. Now, according to the
first method, the final pelvis height trajectory could be found by a smooth transition
from the arc on the stance foot zp,fixed(t) to the arc on the swing foot zq,fixed(t):

zfixed(t) = (1 − γ(t)) zp,fixed(t) + γ(t) zq,fixed(t) (11.6)

which is shown in Figure 11.4F. The function γ(t) implements a smooth transition
shown in Figure 11.4C. The resulting curve zfixed(t) features zero derivatives at the phase
boundary times while it peaks approximately in the middle of the single support phase.
Overall, the converted pelvis position is matching 3LP’s pelvis position horizontally and
shifted down from l cos(φ) to the new height zfixed(t). The first method produces a good
approximate of human trajectories, but there is no guaranty that the next touch-down
happens on the heel. In backward walking or perturbed conditions, for example, the
next step might touch down on the toes. In these cases, the resulting pelvis height (at
t = T ) should be feasible for the other stance leg which is still on the heel. However,
the formula (11.6) always converges to the swing arc at t = T which could become
infeasible. Therefore, the mixture used in (11.6) is meaningful in terms of producing
vertical excursions, but limited to periodic forward walking conditions.
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To overcome limitations of the first method, we replace the time-based mixture of
(11.6) with a smooth maximum function in the second method to better decide between
swing and stance leg arcs. Also, we slightly modify the arcs to allow for more leg flexion
and extension in the stance phase. Consider Figure 11.3D which shows different pelvis
arcs depending on the position of CoP. When walking in-place, no matter what other
gait parameters are, the arc is calculated around the heel position. In maximum step
length conditions, however, the CoP moves to extremities according to (11.2). In this
case, we use a specific nonlinear function δ(x) (Figure 11.4D) which maps the linear CoP
movements of (11.2) into asymmetric profiles:

f(xCoP) = Δ =
h

2
δ(

2
h

xCoP − 1) (11.7)

When the CoP goes to the toes (xCoP = h), the function f produces a value of h/2 and
when the CoP goes to the heels (xCoP = 0), this function returns −�h/2. Based on this
function, we formulate our modified arcs by following ellipses:

(
x − 2Δ

l + 2Δ
)2 + (

y

l
)2 + (

z

l + Δ
) = 1 (11.8)

which are shown in Figure 11.3D. The dashed circle in this plot shows the maximum
workspace of the pelvis rotating around the toe. We consider smaller arcs (the ellipse
shown in red) when the CoP is at the toes to avoid extra lifting and over-extension.
The green circle also shows the minimum workspace when rotating around the heel (for
in-place walking). When the CoP is at the heel, the blue ellipse produces a small knee
flexion at the touch-down moment (like human (Liu et al., 2008)) determined by the
choice of � = 0.2 shown in Figure 11.3D and Figure 11.4D. Our specific design of δ(x)
and adaptive ellipses of (11.8) produce convincing human-like trajectories compared to a
few human gaits recorded (discussed in the next section). However, they could be tuned
further in future work to better match human trajectories in a wider range of walking
conditions.

Given a 3LP state, we calculate the CoP points, split the legs and create an ellipse
for each of them in the rotated coordinate frame (shown in Figure 11.3). A vertical line
coming down from the pelvis in each case intersects with the ellipse and determines the
candidate pelvis height of that leg. Denoting the modified relative 3LP pelvis position
by [X Y Z] like before, the vertical line in the rotated coordinate frame is:

y = Y, x − X = tan(φ)(z − Z) (11.9)

which intersects with the ellipse of (11.8) and results in the following equation (as a
function of z):

(
X + tan(φ)(z − Z) − 2Δ

l + 2Δ
)2 + (

Y

l
)2 + (

z

l + Δ
) = 1 (11.10)
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The height of intersection point (denoted by z = zadapt(X, Y, xCoP)) solves the equation
(11.10) and therefore, each leg gives a candidate pelvis height:

zp,adapt(t) = zadapt(p̄x(t), p̄y(t), pCoP(t))

zq,adapt(t) = zadapt(q̄x(t), q̄y(t), qCoP(t)) (11.11)

Unlike the time-based mixture of (11.6), in the second method, we use a smooth minimum
function between zp,adapt(t) and zq,adapt(t) which is implemented as:

zadapt(t) = l − max(l − zp,adapt(t), l − zz,adapt(t)) (11.12)

where max(a, b) is defined as:

max(a, b) =























√
a2 + b2 0 ≤ a, b

a b < 0 ≤ a

b a < 0 ≤ b

a + b +
√

a2 + b2 a, b < 0

(11.13)

and shown in Figure 11.3E. The time-trajectory of zadapt(t) shown in Figure 11.4G is
very similar to zfixed(t) (shown in Figure 11.4F) in periodic walking conditions. Figure
11.3A also visualizes the mechanism of finding individual pelvis heights and the smooth
maximum function max(a, b). Due to the fact that we always choose the minimum pelvis
height in the second method (which is of course feasible for both legs), we can support
non-periodic and backward walking as well as extremely asymmetric triangular leg
coordinations which happen in inclined walking or presence of dragging forces. Therefore,
we prefer the second adaptive method over the first fixed-time mixture method. The
modified ellipsoid design of the arc shapes also produces realistic knee flexion during the
touch-down and ankle extension during the push-off moments.

11.2.2 Ground clearance

Remember that both feet in the 3LP model are constrained to have a zero height. To
make them more realistic, we consider simple vertical sinusoid curves that lift the swing
toe vertically. These curves are scaled by the ground clearance parameter as a percentage
of the leg length. Our simple design of these trajectories produces realistic motions, but
cannot simulate foot flapping effects shortly after the touch-down moment (in which
the foot completely lands on the ground after the heel-strike). We consider adding this
feature in future work.

11.2.3 Knee target points

Given the pelvis and toe positions in the Cartesian space, the task in this stage is to
resolve a single degree of freedom in each leg to find a human-like thigh-shank-foot
posture. Our strategy is to determine the hip angle based on certain target trajectories
on the ground. In each leg, the thigh vector (connecting the hip to the knee joint) points
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Figure 11.4 – Composition of smooth relative positions and knee target trajectories
based on relative foot positions and phase timing of 3LP. A) The polynomial α(t) is
used to correct the nonzero velocities of p(t) and q(t) at the boundary times. When
multiplied by ṗ(t) in and added to p(t) or q(t), the specific design of α(t) can result in
zero derivatives at the boundaries. B) The polynomial trajectory β(t) is designed to
perform a faster progress than α(t). When polynomial β(t) is multiplied by ṗ(t) in and
added to q(t), it produces a trajectory which moves forward even during 0 ≤ t ≤ Tds. C)
The polynomial trajectory γ(t) used for a time-based mixture of zp,fixed(t) and zq,fixed(t)
in the first method to produce a soft transition. D) The nonlinear function δ(x) which
maps the linear motions of CoPs into asymmetric profiles Δ for each leg. These profiles
adjust the default circular pelvis arcs (shown in green, Figure 11.3D) into different ellipses
for swing and stance legs according to (11.8). E) Original relative foot-hip positions
p(t) and q(t), addition of smooth CoP trajectories pCoP(t) and qCoP(t) and addition of
corrective signals α(t)ṗ(t) and β(t)ṗ(t) to produce smooth trajectories q̄(t) and p̄(t) (used
for pelvis height trajectory generation) and uq(t) (used together with up(t) as knee target
trajectories). The synthesized signals are mere functions of 3LP state and phase timing
without any history or dependency on the past. F) The arc trajectories zp,fixed(t) and
zq,fixed(t) (produced from p̄(t), q̄(t), pCoP(t) and qCoP(t)) are smoothly combined together
with γ(t) to generate the final pelvis height trajectory zfixed(t). G) The adaptive arc
trajectories zp,adapt(t) and zq,adapt(t) are smoothly combined together by max(a, b) to
generate the final adaptive pelvis height trajectory zadapt(t).

towards a target trajectory on the ground shown in Figure 11.3A. Once the hip angle
is determined, the configurations of shank and foot segments are found by solving a
simple Inverse Kinematic (IK) problem between the knee and the toe, restricting the
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Figure 11.5 – Kinematic configurations of the leg segments in human walking at different
speeds (subject height of 1.76m). The black segments indicate body postures at the
touch-down and toe-off moments approximately. Given the knee marker trajectories,
it is obvious that the thigh segment already starts swinging forward before the entire
leg starts its swing phase. This requires target swing trajectories on the ground that
progress forward during the double support phase already.

foot segment inside the sagittal plane. Our IK formulation also does not allow for a heel
position below the toe position vertically.

We design the knee target trajectories by a similar mixture of geometric variables
(foot positions) introduced earlier. In fact, for the stance leg, the relative position:

up(t) = p(t) + α(t)ṗ(t) + pCoP(t) (11.14)

is a good target trajectory. A careful inspection of human trajectories at different walking
speeds reveals that the Cartesian swing knee position already starts moving forward
before the swing phase starts. This effect is shown in Figure 11.5 at different walking
speeds. The relative position q(t) + α(t)ṗ(t) + qCoP(t) is not a good target trajectory
for the swing leg, since it remains constant during the double support phase and starts
moving forward only in the single support phase (Figure 11.4E). To overcome this issue,
we introduce a polynomial β(t) shown in Figure 11.4B, a modified version of α(t) which
is approximately two times larger, but with similar derivative properties. The swing
target point is now defined by:

uq(t) = q(t) + β(t)ṗ(t) + qCoP(t) (11.15)

which already starts moving forward during the double support phase shown in Figure
11.4E. The two target trajectories up(t) and uq(t) are eventually used to find the hip
angles which then determine the leg configuration completely.

11.3 Results

Implementation of the 3LP simulator and the kinematic conversion is currently done
in MATLAB with a simple GUI (shown in Figure 11.9) that allows the user to change

225



Chapter 11. Human-Like Animation

(km/h) (km/h) (km/h)

(km/h) (km/h) (km/h)

Figure 11.6 – Snapshots of human walking and synthesized walking trajectories at
different speeds. The choice of step frequency, double support duration, torso angle
and ground clearance parameters as well as body properties are taken from each human
experiment and used in the corresponding simulation. The overall horizontal dynamics
of walking is encoded in the 3LP model which produces human-like limb motions. On
top of 3LP trajectories, our kinematic conversion can produce vertical excursions for the
pelvis, human-like knee angles at the touch-down moments and realistic coordinations
of thigh-shank-foot segments. However, the current method is unable to produce foot
flapping motions after the heel-strike.

subject/gait parameters as well as to test transient conditions 2. A C++ implementation
of the 3LP model and the time-projection controller is also available for robotic applica-
tions of chapter 8. These codes only contain pure mathematic formulas in closed-form.
The most computationally complex function in our method solves a linear system of
equations to find periodic walking gaits. We use the Eigen library (Guennebaud et al.,
2010) to perform this operation in microseconds. The inverse kinematic problem at the
last stage of the kinematic conversion is also as simple as finding roots of a second-degree
polynomial in closed-form. Using the MATLAB interface in this section, we present a
collection of various walking trajectories produced with the proposed framework.

11.3.1 Different speeds

We start this section by providing a comparison of synthesized walking trajectories against
human trajectories at different walking speeds (2,4,6 km/h). The data presented here
is collected by a lab motion-capture system from treadmill walking. Five subjects with
average height of 1.76± 0.11m and weight of 68 ± 14 kg participated in the experiment,
walking for a minute at each desired speed to collect enough gait cycles. We measured

2Source codes available online at https://biorob.epfl.ch/research/humanoid/walkman.
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gait parameters and replicated each experiment by our model to find corresponding
synthesized gaits. Example collected and synthesized trajectories of one subject are
demonstrated in Figure 11.6 which visually look very similar. Over all subjects and
speeds, we found average correlations of 0.80 ± 0.06 for the hip angles, 0.86 ± 0.04 for
the knee angles and 0.72 ± 0.09 for the ankle angles. Our method can produce many
features of human walking such as pelvis vertical excursions (Gard et al., 2004), ground
clearance (Wu and Kuo, 2016), heel-toe motions (Cappellini et al., 2006) and lateral
bounces (Donelan et al., 2002). However, it does not produce pelvis and trunk rotations
as well as foot flapping. Apart from scaling with respect to the walking speed parameter,
our method supports variation of many other gait conditions as follows.

11.3.2 Model sizes

The 3LP model is scalable with respect to the mass and subject height properties. In this
work, we considered average human anatomic proportions (de Leva, 1996) to scale all limb
masses and body segments only with the overall body mass and height. However, both
the 3LP model and kinematic conversion are independent of body properties without
needing any re-tuning. Figure 11.7A shows a child at the height of 1m performing a
walking gait similar to a tall adult of 2.5m shown in Figure 11.7B. In these case, we
scaled the walking speed proportionally. The gait kinematics in 3LP is independent of
the body mass however.

11.3.3 Inclined walking

By increasing or decreasing the terrain inclination, we can produce human-like walking
gaits without re-tuning of any other parameter. The resulting kinematics shown in Figure
11.7C,D are very similar to the human data (Leroux et al., 2002). However, our method
is not able to simulate extreme climbing cases where the hands are also involved. An
interesting feature of inclined walking is extra knee flexion at the touch-down moment
on positive slopes (Leroux et al., 2002) which is observed in Figure 11.7D as well.

11.3.4 Walking frequency

Although human walks at a particular combination of walking speeds and frequencies
(Bertram, 2005), the frequency can be changed while keeping the speed constant. This
directly influences the step length which is increased for example when the frequency is
decreased (shown in Figure 11.7E). While the 3LP model easily supports this modulation
of frequency, our kinematic conversion method can produce realistic walking gaits in
both low frequency and high frequency conditions shown in Figure 11.7E, F.

11.3.5 Backward walking

The 3LP model can easily simulate backward walking by finding solutions in the linear
null-space of initial gait conditions. The CoP motion can also be easily reverted to make
the motion more realistic. This fact is reflected in the kinematic conversion method
as well by automatic reversion of pCoP(t) and qCoP(t) trajectories in (11.2). Without
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Figure 11.7 – Gait snapshots produced at different walking conditions. By default, we
simulate an adult person (height of 1.7m, a weight of 70kg) walking at a speed of 1m/s,
a frequency of 1.7 step/s and a ground clearance of 5% leg length. A) and B) show
walking gaits for a child and a very tall person. C) and D) demonstrate inclined walking
conditions at moderate slopes. E) and F) show the effect of changing walking frequency
which directly influences the step length. G) and H) show backward walking gaits. I) and
J) demonstrate no foot clearance and extra foot clearance conditions. K) and L) simulate
walking gaits with different torso styles. Finally, M) and N) simulate walking gaits with
considerable external dragging forces. Generation of walking gaits while combining all
these conditions is also possible.

changing other parameters, the 3LP model can easily walk backward at different speeds
while the kinematic conversion produces human-like coordinations of lower-limb segments
shown in Figure 11.7G, H.

11.3.6 Ground clearance

Our model simulates this motion with a simple sinusoidal curve while the actual curve in
human might be slightly different, especially in extra foot lift conditions (Wu and Kuo,
2016). Our simple strategy produces visually plausible walking gaits (shown in Figure
11.7I, J) while the main inconsistency comes from missing the short flapping phase after
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Figure 11.8 – Different scenarios of perturbed walking conditions where the robot is subject
to large external pushes of 50N applied continuously during a step phase. Our time-
projecting controller can easily stabilize the 3LP model while the kinematic conversion
takes the 3LP state and produces human-like trajectories. Pure interpolation methods
for walking animation cannot simulate perturbed walking conditions interactively while
physics-based animations require a lot of computation power to simulate such interactions
with the environment. Our hybrid approach, however, can cover a wide range of transient
walking conditions.

the heel-strike. Also, an extra ground clearance might slightly affect the swing dynamics
which is not included in the 3LP model.

11.3.7 Torso style

A vast part of the walking animation literature introduces methods to produce walking
gaits at different torso angles, referred to as torso styles. This is achieved via a simple
proportional-derivative controller in the stance hip to regulate the torso angle while foot-
placement algorithms automatically compensate the dynamic effects of such asymmetry
(Yin et al., 2007; Mordatch et al., 2010; Coros et al., 2010). Our 3LP model can
easily simulate these scenarios while the kinematic conversion adjusts the kinematics
automatically, shown in Figure 11.7K, L. Note that bending backward is uncomfortable
for human while in simulations, it is theoretically possible. The extra vertical excursion
observed in Figure 11.7L is also less human-like. When bending forward, humans damp
these vertical excursions by an increased flexion in the knees at the mid-stance moment
(Grasso et al., 2000), probably for the sake of comfort or gaze stabilization. Our method,
however, produces a peak in the pelvis height trajectory at this moment which results in
a stretched-knee posture. This probably prevents our method to simulate extreme torso
bending conditions.

11.3.8 Dragging forces

Another interesting scenario is to produce periodic walking gaits subject to constant
external dragging forces. This could be useful in a simulation of pulling or pushing heavy
objects (Coros et al., 2010). 3LP can easily produce such walking gaits by including
the external force in symbolic equations. We considered forces applied to the torso
while 3LP formulations can be easily changed to simulate other force application points.
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Although the triangular coordination between the two legs in 3LP becomes asymmetric
in these conditions, the kinematic conversion can still produce lower-limb coordinations
adaptively.

11.3.9 Push recovery

The main purpose of incorporating a physics-based animation in our method is to
model interactions with the environment. In addition to simulating constant external
forces discussed previously, we are interested in simulating transient conditions due to
disturbances as well. This simulation scenario involves time-integration, i.e., considering
small time-steps, applying arbitrary disturbance forces at each time-step and finding
system evolution through integration. Thanks to the linear equations of the 3LP model,
the system evolution can be described by a single closed-form matrix which relieves the
need to perform iterations. Also, if the disturbance pattern is known beforehand, we can
find closed-form equations and avoid using small time-steps, depending on the precision
required. Figure 11.8 demonstrates transient walking conditions due to external pushes
applied in different directions. While the 3LP model and the time-projecting controller
can produce natural and stable horizontal motions, the kinematic conversion takes the
3LP state and produces vertical motions adaptively.

The strength of our method lies in generating walking trajectories in different
combinations of all the previously-mentioned gait conditions. We limit our results
section to discuss each gait condition separately. However, thanks to the closed-form
solutions available, changing many gait conditions at the same time does not need any
re-tuning of trajectory generation or control parameters. The next section will provide
a comprehensive discussion of these strengths and intrinsic limitations of the proposed
approach.

11.4 Discussion

The proposed method combines physics-based and pure interpolation approaches in the
literature for walking trajectory generation. We simulate physics by a linear simplified
model called 3LP that has closed-form solutions. On top of this model, in the present work,
we propose an adaptive kinematic converter which synthesizes human-like lower-limb
postures. The resulting trajectories follow the overall dynamics of 3LP while remaining
geometrically feasible in transient conditions. The goal of such a hybrid approach is
to achieve faster simulation speeds while offering an online walking control. We can
simulate interactions with the environment to some extent and produce transient walking
trajectories thanks to a previously developed walking controller called time-projection.
This controller together with the 3LP model encapsulates important dynamic properties
and control rules needed to stabilize the gait in a wide range of walking conditions.
Therefore, the proposed model-based approach does not have any parameter to tune.
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11.4.1 Closed-form solutions

The 3LP model and the time-projection controller were originally developed to extend the
LIP model and MPC control paradigm of chapter 2 for humanoid walking applications.
The closed-form equations of 3LP or LIP enable MPC controllers to stabilize the system
in an online fashion by adjusting footstep locations. Our MPC controller of chapter
2 was able to solve a quadratic optimization problem in less than a millisecond and
suggest footstep corrections online. The time-projection control, however, aims at finding
closed-form solutions for the numeric optimizations of MPC. Therefore, the combination
of a linear model and time-projection control can offer simulation speeds as fast as
microseconds. Besides, thanks to all these closed-form solutions, we do not need to
use sub-millisecond simulation time-steps like (Yin et al., 2007; Mordatch et al., 2010;
Coros et al., 2010) to ensure numerical stability. To generate animations, we only need
to consider movie frames (e.g., 30 frames per second) and find the system evolution in
between by closed-form matrices.

While walking gait generation and stabilization with a simplified model are developed
in our previous work, in the present chapter, we aimed at filling the gap with reality. In
other words, we proposed a kinematic conversion method to convert walking trajectories
from the 3LP space to a real character with thigh, shank and foot segments. The novelty
of this chapter, therefore, lies in the conversion method and the entire architecture that
produces periodic and transient human-like walking trajectories. Using an intuitive
mixture of the geometric variables in 3LP, we can produce smooth vertical excursions
and human-like thigh-shank-foot coordinations. Although we do not simulate dynamics
of these leg segments explicitly, each leg follows the approximate dynamics encoded
in the 3LP model. Following the same philosophy of developing closed-form solutions
in the 3LP model and the time-projection controller, the kinematic conversion is also
formulated in closed-form. Various parametric trajectory design or interpolation methods
already exist in the literature and offer a similarly fast simulation speed, but they cannot
produce transient walking conditions. They also need either a large library of human
trajectories to interpolate or a large set of trajectory or control parameters to produce as
many walking conditions. The proposed architecture is mathematically involved, but
generic and straightforward to be used in walking control, animation or analysis.

11.4.2 Limitations

Walking dynamics in our method is simulated in the 3LP model which relies on lineariza-
tion assumptions. 3LP is an extension of the LIP model and both assume linear pendular
dynamics. 3LP can simulate swing and torso balancing dynamics (in addition to falling
dynamics of the LIP model) which allow for simulation of faster walking gaits. However,
the resulting motions are valid only where the coupling between horizontal and vertical
dynamics is negligible. Our method cannot simulate very large step lengths. Besides, the
time-projection controller does not consider such feasibility boundaries. Although this
controller always stabilizes the gait, in extreme conditions, it might produce large step
lengths that violate decoupling assumptions. These conditions only happen in case of very
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Figure 11.9 – The GUI developed to simulate periodic and non-periodic walking conditions.
This picture shows boundaries of different gait parameters within which the synthesized
gait stays reasonably human-like. In this GUI, there is a possibility to apply perturbations
with different strengths and timing. For steady walking conditions also, the metabolic
rate estimates of chapter 9 and the asymmetry index of chapter 10 are printed. The
source code of this GUI is available for download at https://biorob.epfl.ch/research/
humanoid/walkman.

large disturbances or considerable sudden changes in the desired gait parameters (such
as speed or frequency). The linearity assumptions allow for simulation of flat or inclined
walking conditions, but not uneven terrains or structured environments. However, if the
terrain profile is known in advance, we can design certain height change profiles and solve
the new linear time-variant 3LP equations numerically. Besides, the 3LP model does not
simulate turning in the current implementation due to nonlinearities. We can remove
the pelvis width and allow the 3LP model to turn, but an artificial separation of the two
feet is needed (explained in chapter 2). We consider these fundamental improvements for
future work.

The present framework can simulate different gait conditions as shown in Figure
11.7, however, some transient conditions are not always easy to model. We cannot
simulate torso oscillations unless we linearize the torso and give it a degree of freedom.
In this work, the 3LP model assumes a fixed torso angle and finds necessary stance hip
torques to realize this assumption. Variations in the external dragging forces are easy
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to simulate though, since they can be treated as perturbations. A transient change of
speed, step frequency and double support time is possible in our current framework. The
time-projecting controller can handle them stably.

While the entire framework can simulate a wide and continuous range of walking con-
ditions with different combinations, the natural human-like choice of walking parameters
remains un-modeled. Humans can also walk at various gait conditions, but not necessarily
be energy optimal or comfortable. When changing the walking speed, humans change
the frequency (Bertram, 2005), double support ratio (Cappellini et al., 2006), ground
clearance (Ivanenko et al., 2002) and torso orientation (Song and Geyer, 2012). All these
parameters change in inclined walking as well (Vogt and Banzer, 1999). Our framework
provides the necessary platform to simulate all these walking conditions, but not including
human-optimal relations of parameters. Realistic choices of these parameters can be
extracted from the related biomechanics literature in walking animations like (Boulic
et al., 1990; Li and Liu, 2000). Other human-like walking features such as arm motions
or pelvis rotations can be added easily without affecting the overall walking dynamics
(Boulic et al., 1990).

11.4.3 Applications and future work

In a trade-off with some of the features offered by physics-based frameworks like rough-
terrain locomotion (Mordatch et al., 2010; Coros et al., 2010), we achieved much faster
simulation speeds by simplifying the physical model. Our method provides pure mathe-
matical formulas with a minimal dependency on the Eigen library for a matrix inversion
(Guennebaud et al., 2010). Our source codes can be easily integrated with other simula-
tors to produce animations on visually more human-like characters. It can be used for
crowd-walking simulations as well as animations on portable electronic devices with a
limited computational power. Besides, the ideas introduced in this chapter can be used
to control humanoids or simulated robots. In particular, our kinematic conversion can be
used to produce more human-like pelvis trajectories and thigh-shank-foot coordinations.
All the source codes would be freely available online after publication.
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12 Conclusion

In previous chapters, we discussed the development of various building blocks in our
control architecture (shown in Figure 1.1). It has multiple layers to deal with complexities
of a walking system from different aspects. In this chapter, we briefly review the presented
material again and conclude simulations and real-robot experiments conducted in the
project. We believe it is crucial to fill the reality gap when transferring simulations to
the real hardware. Therefore, we first provide a discussion on these challenges, which
might be inspiring for other researchers in the field. Going to a higher level, we then
continue by discussing our control architecture and the assumptions behind. Further, we
analyze the walking gaits from a biomechanical point of view, proceed by enumerating
the promising control aspects, and finally discuss possible future directions.

12.1 Low-level hardware complexities
We chronologically started with walking simulations in an ideal environment in chapter 3.
However, throughout the project, we noticed multiple physical effects that can potentially
make the control setup challenging. The proposed hierarchical architecture helped us
identify these challenges in a systematic way and propose appropriate solutions in a
modular manner.

12.1.1 Sensory noise

COMAN is equipped with multiple sensory devices (Colasanto et al., 2012). It has
a high-end IMU which provides clean signals, but other sensors require further signal
processing. COMAN has precise optical encoders that provide clean motor position
and velocity signals. However, after the series elastic elements on the link side, the
encoders only have 12 bits of resolution which introduce quantization noise when building
the kinematic chains. In practice, we used motor shaft velocities with link positions,
which together approximated the overall state of the robot with acceptable precision.
The velocities are used for state estimation, and for compensation of Coriolis forces in
inverse dynamics which become significant in very fast and dynamic motions. Given the
ideal stiffness level of springs in COMAN and the limited range of joint velocities it can
produce, our assumption practically remains valid. The dead-zone functions we used to
filter the quantization noise and backlash errors in the walking experiments of chapter 8
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actually produced larger errors in state estimation. Our powerful foot-stepping strategy
is, however, able to recover from these errors as shown in chapter 8.

Strain-gauges of COMAN (in the joints and the feet) have considerable noise which
is filtered by onboard DSPs (Tsagarakis et al., 2013). This introduces a significant delay,
and besides, since the bias point changes quite rapidly during experiments (mostly with
the temperature), we had to re-calibrate in each trial. The delays can cause oscillations
which could be canceled by extra damping. However, we preferred to tackle this problem
by a combination of feed-forward terms and a disturbance observer which limited the
influence of our delayed joint-torque measurements (Le Tien et al., 2008). The observer
is practically used to compensate Coulomb frictions (only 4% of the maximum joint
torque) and provide transparency. This strategy was fine for the dynamic balancing
tasks of chapter 3, where the inverse dynamics controller imposed the dynamics and
demanded relatively high torques. For the walking experiments of chapter 8, where the
choice of frequency was more natural (according to pendulum dynamics), we needed
less torques in the hip joints, almost comparable to the Coulomb frictions. While more
transparency was needed in this case, technical problems with the torque sensors and the
delayed control loop practically prevented us to use torque sensors and torque control for
walking. The 3LP model in this case helped by producing more consistent trajectories
which were easier to track. We also relied on the mechanical compliance of springs to
capture the impacts. Although we used position control for walking, we acknowledge
that using torque control with inverse dynamics can improve tracking and compliance
together which is considered for future work.

12.1.2 Backlashes and mechanical softness

We expected the series elastic elements to absorb impacts and thus protect the hardware.
But soon after starting our walking experiments, significant joint backlashes appeared
in the knee joints, and to a lesser extent in the ankle and hip joints. This problem
came from permanent spring deflections and torque sensor strain gauges which open
space inside the encapsulating flanges. Despite a regular maintenance which is necessary,
we believe that the control algorithm should be robust against these problems to some
extent.

Inverse dynamics and pure torque control are somehow robust to backlashes when
the feed-forward term (of the motor model) is dominant. A small down-scaling of the
estimated Coulomb friction (through disturbance observer) can also stabilize the system
further. Backlashes and soft springs become more problematic in position control, where
we can stiffly control motor positions (via the optical encoders on motor shafts), but not
the actual link positions. We do not actually want to control link positions stiffly. This
cancels the mechanical compliance of springs which is essential for impact absorption.
Absolute encoders provide a good estimate of link positions. However, these values
do not necessarily match the desired angles (because of the backlash and soft springs).
Depending on the severity of backlash and spring softness, we can have significant tracking
errors.
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The spring softness can be somehow compensated by a feed-forward bias (as a
function of required torque) in the desired motor position trajectories. The backlash,
however, could be filtered in a higher level. The discrete behavior of backlash is relatively
deterministic at a joint level. It highly correlates with the joint torque, but remains hard
to estimate robustly, given that it is mixed with spring deflections in the encoder signals.
We have solved this problem for the walking experiments of chapter 8 by using dead-zone
functions. We minimally apply them on a few Cartesian variables which mix all the noisy
sensory data together (with forward kinematics). At this higher level, all mechanical
plays together seem to have a more random effect as shown in chapter 8. Our foot-step
adjustment is also strong enough to stabilize the system with and without the dead-zone
functions, although we acknowledge that such functions cannot be easily extended to
other Cartesian tasks.

12.1.3 Control delays

COMAN has individual motor-board controllers connected through an Ethernet network.
While pinging individual joint boards takes at most a millisecond, a continuous data
exchange with all the motor controllers at the same time introduces a delay of almost
20ms. Although we can control the robot with an effective rate of 1kHz, in practice,
the communication latency limits the performance. Using feed-forward terms in all
control stages (for the motors, full-body inverse dynamics, and the 3LP model in footstep
planning), we can improve the dynamic consistency of control inputs with the system
(Pratt and Williamson, 1995; Mistry et al., 2010). This makes tracking easier and reduces
the control effort which is subject to significant delays in our robot.

The above low-level challenges were the most important limiting factors in real
hardware experiments. Other issues such as Coulomb frictions, model mismatches,
temperature effects and yaw observability are typical in other robots as well. We refer to
chapters 3 and 8 for detailed discussions of these issues. Next, we focus on challenges
arising from restricting assumptions behind our proposed control hierarchy.

12.2 Hierarchical control challenges
Our hierarchy is based on planning and control of states in the Cartesian space. We have
forward and inverse kinematics/dynamics layers to perform such conversion in different
types of controllers discussed in previous chapters. While these models are obtained
from CAD files and are reasonably precise, there are certain assumptions imposed by the
template models we use which limit the conversion precision in different balancing and
walking conditions.

12.2.1 Singularities

Both the LIP and 3LP template models used in chapters 2 and 8 are linear, meaning
that they keep the CoM in a constant height plane. While this assumption brings
computational advantages in our MPC and time-projection controllers, the resulting
motion in the robot becomes crouched and less human-like similar to (Pratt et al.,
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2012; Feng et al., 2016). Such posture has significant energetic consequences and causes
hardware damages in the long term. Besides, it is not always easy to plan optimal
CoM height trajectories in the Cartesian space unless some information about the full
model is available (Inman et al., 1953). We attempted to tackle this problem by using
soft constraints in our inverse kinematics/dynamics algorithms. We can command an
unfeasibly high CoM while the low-level controller tries to achieve this task as much as
possible (i.e., going to the maximum height where at least one of the knees gets stretched
completely). We studied this idea in chapter B and identified different challenges
including joint position/velocity limits for which we proposed a nonlinear optimization.
This solution is validated for balancing tasks on the real hardware, but not for walking
motions. However, is the idea of maximum knee-stretching a good solution for walking?
In other words, does it produce human-like vertical CoM motions in different walking
speeds?

12.2.2 CoM height

Producing human-like limb coordinations with our template models is challenging for
many reasons. In the normal fixed-length Inverted Pendulum model (IP), collision
and push-off works are needed to redirect the CoM velocity (Kuo et al., 2005), and
the resulting trajectories would sharply change directions during phase transitions. In
flat-foot walking and stretched-knee conditions, it is almost impossible to apply the
vertical push-off force needed for those sharp transitions. Therefore, the idea of maximum
knee-stretching is not a good solution for walking. The LIP model solves this problem,
though results in a very crouched posture in the stance leg. Using both IP and LIP
template models, in fact, we often ignore the feet in the real robot and only rely on
the ability to modulate the CoP. The feet segments can make trajectory generation
more complicated, though they help to produce smooth vertical motions for the CoM
(Adamczyk and Kuo, 2013). This can be done by going to the toes and stretching the leg
while effectively lifting the heel during the stance phase. In flat-foot walking, however,
the CoM has to go down during phase transitions to keep the heel on the ground. In
human-like animations of chapter 11, we attempted to propose a better solution for our
trajectory generation method. This new method effectively creates pelvis arcs from the
CoP points, not from the heel positions (demonstrated in Figure 11.3). When rolling on
the toes, the robot loses controllability (Griffin et al., 2017), though it can have more
realistic CoM vertical motions. The idea proposed in chapter 11 works for animations
and is not yet validated on the real hardware.

12.2.3 Swing dynamics

The LIP model used in chapter 2 can produce relatively fast locomotion patterns for two
main reasons:

• MPC control and foot-stepping strategy are both very powerful in capturing
steady-state errors (i.e., model mismatches) (Feng et al., 2016; Pratt et al., 2012).
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• Inverse dynamics can use stance-ankle torques to compensate for swing dynamics.

Remember from simulations of chapter 2 that we did not use the CoP modulation strategy
to stabilize the motion and left this actuation dimension for the inverse dynamics layer.
However, when attempting to realize MPC-based walking with inverse dynamics on the
real robot, we noticed that the torque tracking performance is not precise enough to
compensate for swing dynamics. In other words, due to torque tracking delays and fast
dynamics of walking:

• The real robot was not able to reach the desired footstep locations in time.

• The CoM moved in an unexpected direction most of the time because of such
tracking problems.

Inspired by these observations, we took the following steps to achieve walking on the
real hardware in chapter 8:

• We developed the 3LP model described in chapter 6 to produce dynamically more
consistent Cartesian trajectories.

• We used position control and the low-level firmware of COMAN for faster tracking
with shorter delays.

• We directly commanded the final footstep position (calculated through time-
projection) to let the hip controller reach it stably at the end of swing phase.

Remember from time-projection control theories of chapter 7 and Figure 7.6 that once
perturbation disappears, the projecting controller produces a constant footstep adjustment
until the next touchdown event. The MPC controller of chapter 2 also showed a similar
property, but we used smooth swing-foot trajectories to reach the final target position
over time. In fact, ideal torque tracking in simulations and the powerful inverse dynamics
controller (used in chapter 2) could provide a convincing tracking precision. On the real
hardware, however, we needed to command the final adjustment directly to compensate
for tracking delays.

12.2.4 Torso balancing dynamics

The LIP model used in chapter 2 is blind to torso balancing dynamics, i.e., the effect of
stance hip torques that keep the torso upright during locomotion. We used full-body
inverse dynamics and IMU feedback to guaranty an upright torso in the simulations of
chapter 2. In real hardware experiments of chapter 8, however, we used the 3LP model
to produce dynamically consistent Cartesian trajectories. Although the IMU feedback is
still used in our hardware walking experiments of chapter 8 like (Pratt and Pratt, 1998),
we believe the feed-forward precision provided by inverse dynamics is practically not
needed anymore when using the 3LP model.
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12.2.5 Arm dynamics

Both the LIP and 3LP models assume a single mass for the entire upper-body of the
robot. In COMAN, the arms are comparable to the legs in terms of mass and length,
i.e., similar pendular dynamics. The inverse dynamics controller used in chapter 2 could
keep the arms fixed by compensating their pendulum dynamics (although this strategy
is not natural (Collins et al., 2009)). Therefore, it was convenient to command CoM
trajectories directly. On the real robot, due to the mechanical springs in the shoulders
which have lower stiffness compared to other joints, the two arms naturally move back
and forth during locomotion. We normally keep the upper-body joints fixed in our
inverse kinematics or dynamics controllers. However, in state estimation, arm oscillations
directly influence the CoM variables at frequencies very close the stepping rate. In our
walking experiments of chapter 8 on the real hardware, we measure and control the pelvis
positions instead of CoM. Besides, we always lift the arms by bending the elbows. This
strategy reduces the length of these limbs and increases their natural frequency.

12.3 Walking gait analysis
The proposed architecture is entirely based on classical control and mechanical models.
We decompose the control problem into multiple abstraction levels and propose a precise
solution that works in simulation and on the real hardware, though in a limited range
of speeds compared to the human. Thanks to various biomechanical studies performed
in the final stages of our project, we obtained a better view of hardware and software
limitations. This section will cast light on the proposed control architecture from a
different perspective.

12.3.1 Missing vertical pelvis motions

Motion planning with linear template models and precise tracking of constant pelvis-
height trajectories can successfully produce a walking gait, but less human-like. The
robot needs to crouch more to take longer steps while keeping the pelvis height constant.
Geometrically, the maximum knee-stretch happens at the touchdown and toe-off moments.
However, human walking gait is different. As discussed in chapter 11, at the touchdown
moment in Figure 11.6, the pelvis is closer to the front heel than the trailing heel. The
forward progression of CoP during the stance phase keeps the walking gait symmetric,
but around mid-foot positions instead of the heels. More precisely, the triangle made by
the two legs is symmetric around the average CoP position. Since the pelvis is much
closer to the front heel at phase transition moments in human, and since the front knee
is almost stretched at this moment, we can conclude that the trailing heel can never
reach the ground even with a maximum knee-stretch in the trailing leg. In brief, at phase
transition moments:

• Because of the feet, the heel-pelvis-heel triangle is asymmetric.

• The front leg is almost stretched, and both legs have the same length (thigh+shank
segments).
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• Conclusion: Keeping the same pelvis height, even if we stretch the trailing leg
completely, the trailing heel cannot reach the ground at this event.

This simple argument suggests that at some point before the phase transition (refer to
recorded heel trajectories of Figure 11.5), the stance leg goes on the toes and thus, the
stance heel is lifted (shown in Figure 11.6). Apart from controllability issues of standing
on the toes, the feet can make the gait asymmetric. At the same time, they can minimize
vertical excursions by lifting the pelvis when going on the toes (Adamczyk and Kuo,
2013). Without feet (i.e., compass gait), the heel-pelvis-heel triangle might be symmetric,
but vertical excursions are more pronounced (for the same step length) (Gregg and Spong,
2009). Such vertical motions are costly in terms of potential energy and CoM velocity
redirection work (refer to chapter 9) (Kuo et al., 2005). In conclusion, even though we
can simulate CoP progression in the 3LP model of chapter 6 and produce asymmetric
gaits, we can never account for human-like vertical excursions of the pelvis with this
simple model. This is a purely geometric problem and less related to the assumption of
dynamic decoupling between horizontal and vertical motions in the 3LP model.

12.3.2 Footstep adjustment

In the abstract template level according to Figure 1.1, we use LIP or 3LP models to plan
and stabilize the motion. The stabilization part is straightforward, meaning that after
all MPC optimizations in chapter 2 or complex calculations of time-projection in chapter
7, the resulting footstep adjustment is, in the end, a simple function of state errors. We
use CoM position and velocity errors in MPC control and the LIP model of chapter 2.
Later in chapter 8, we consider swing dynamics and include swing foot position and
velocity errors as well. In literature, this strategy is very well known and established.
The SIMBICON controller used a linear function of CoM errors with tunable gains (Yin
et al., 2007). Coros et al. used the LIP model (Coros et al., 2010), Mordatch et al.
used MPC on both LIP and SLIP models (Mordatch et al., 2010) and the capturability
framework proposed a systematic way of footstep adjustment for capturing external
pushes (Koolen et al., 2012). Due to constant horizontal velocities of the CoM during
ballistic motions in hopping robots, Raibert was able to only use the CoM velocity for
attack angle adjustment (Raibert et al., 1984). In walking gaits due to exponential falling
dynamics, one needs to consider relative CoM position errors as well. In this regard, the
LIP model provides a good basis for modeling falling dynamics in walking. A reasonable
footstep adjustment rule in walking is, therefore, a function of CoM errors probably
with time-variant coefficients. The task-specific constant coefficients of SIMBICON
controller might not be optimal (Yin et al., 2007). But thanks to the LIP model, the
capturability framework (Koolen et al., 2012) and MPC controllers (Mordatch et al.,
2010; Faraji et al., 2014a) can implement this time-dependency efficiently. Through
the development of 3LP model and time-projection, we attempted to generalize these
frameworks by considering swing dynamics and providing automatic gait generation and
simple control look-up-tables. Our method is, therefore, well suited for humanoid robots
with relatively heavy legs (like COMAN), although it supports normal robots as well. It
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can also generate high frequency gaits in which swing dynamics becomes important.

12.3.3 Gait parameters

Many traditional walking algorithms used on humanoid robots produce quasi-static gaits
with a precise ZMP tracking (Sakagami et al., 2002; Zhao et al., 2008; Kryczka et al.,
2015). This can be simply noticed from large lateral bounces in the movies. Compared to
human and from the viewpoint of pendular natural frequencies, many robots in literature
perform walking in frequencies much different from their human-like frequencies. In
quasi-static gaits, adult-size robots might take step phases as long as 1.5s while kid-size
robots might spend almost 1s in each step. It is well-known that in human, the gait
frequency increases with speed monotonically (Bertram, 2005). However, the mentioned
numbers are far from normal walking gaits (about 0.8s and 0.5s in adults and kids
respectively (Hausdorff et al., 1999; Liu et al., 2008; Cappellini et al., 2006)), and even
different from human-like frequencies in slow walking speeds (Bertram, 2005). Recent
control algorithms can produce more dynamic motions while recovering from stronger
pushes (Pratt et al., 2012; Feng et al., 2016). This is done through footstep adjustment
instead of CoP modulation.

We performed a comprehensive analysis of energetics in chapter 9 to study walking
mechanical effects in different combinations of speeds and frequencies. We suggested three
determinant cost components for human walking: push-off work, swing dynamics and leg
lift costs. These components become important in large step lengths, fast frequencies
and short step lengths respectively (refer to figure 9.3). Walking at high frequencies
is costly for the hip joints; it produces large transverse torques in the stance foot and
also introduces position or torque tracking challenges. To achieve faster walking speeds
with linear models, taking larger steps is challenging for the knees (in terms of larger
torques in more crouched postures). A better choice is to increase frequency and speed
at the same time to keep the step length constant. However, depending on the hardware
platform, the swing dynamics becomes more critical in higher frequencies. Few recent
methods can reach faster walking speeds by using a step time of 0.5s on adult-size robots.
The reason is to take shorter steps to avoid violating linearity assumptions. In human,
this frequency is typically used when walking faster than the normal speed (i.e., faster
than 1-1.25m/s). In conclusion, there might be ways to compensate for constant and
flat CoM height and foot orientations to some extent. However, they may come with a
cost of enforcing non-human-like dynamics, i.e., too slow or too fast stepping frequencies
(Bertram, 2005). Simple walking models without swing dynamics can discover walking
to running transitions, but they do not estimate the energies of high-frequency walking
precisely. (Srinivasan and Ruina, 2006).

12.3.4 Flat walking consequences

The fourth cost component introduced in chapter 9 quantifies weight-support costs which
are negligible in regular human walking. In flat-CoM walking conditions and crouched
postures, however, it becomes significant. We studied flat walking conditions in chapter
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9 to get inspiration for humanoid control tasks. We also attempted to formulate a
singularity-tolerant inverse kinematics algorithm in chapter B to better prepare our
lower level blocks in the control hierarchy of Figure 1.1. This algorithm improves the
energy efficiency up to three times for balancing tasks in two scenarios where crouched
postures and unfeasibly high CoM positions are commanded (to achieve straight-knee
postures). However, if we command infeasible pelvis heights in walking gaits and only
rely on linear models, the resulting pelvis trajectory would contain sharply intersecting
arcs (at phase transition moments). These arcs are not only human-like but also not
realizable because of missing push-off force exertion mechanisms in flat-foot walking
conditions. Constant-height pelvis trajectories, on the other hand, may require a small
push-off force only in horizontal directions. The typical straight posture of the trailing
leg is not considered a limitation in this case. Such analysis indicates a fundamental
problem in our trajectory generation method. Our latest animation method of chapter 11
suggests one possible solution in which dynamics and control are handled in the template
space, and the kinematic conversion method adds vertical motions, assuming decoupled
horizontal and vertical dynamics. This conversion method uses the full model though,
i.e., using the feet and knee joints at the same time. Therefore, the resulting trajectories
are not considered template trajectories anymore. In other words, we need to consider
lower-limb geometries to produce human-like vertical motions for the robot.

12.3.5 Leg lift principles

Remember from walking experiments of chapter 8 that velocity saturation in the knee
joints of COMAN limited our capability to lift the leg quickly. Therefore, we introduced
a second strategy which used the hip roll joints to rotate the pelvis. In human, however,
the situation is different. As discussed earlier, the stance leg goes on the toes sometime
before the phase transition moment. At the same time, the stance knee joint starts to flex
a bit which is shown in Figure 11.6. In a singular straight-knee posture, geometrically,
the knee joint has to rotate a lot to reduce the overall length of the leg by few centimeters.
In a flexed posture, however, a much smaller rotation is needed to achieve the same
length reduction. When using linear models and flat-foot walking conditions on the
robot, we mentioned that the trailing leg is almost straight at the push-off moment.
Because of a singular posture, we need to rotate the knee very quickly to achieve some
ground clearance. In human, this is somewhat easy because the knee joint already starts
to flex before the push-off. Therefore, although human trajectories have inspired the
design of COMAN (Colasanto et al., 2012) and the actuators are ideally capable of
performing human-like locomotion, control limitations and model simplifications in our
control hierarchy introduce such unnecessary difficulties. In conclusion, going on the toes
and flexing the knees may facilitate the leg lift mechanism.

12.3.6 Thigh-shank-foot coordinations

As discussed in the walking experiments of chapter 8, we needed adaptive foot-lift
strategies to account for tracking errors due to mechanical springs in perturbed walking
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scenarios. Remember that the commanded gait was in-place walking in these scenarios
and the stance hip only regulated the torso angle. Therefore, the pelvis could naturally
move forward with an external push while the desired stance hip angle was still zero.
In fact, the rest of joint angles were also calculated according to an in-place walking
gait. Due to such postural mismatches in case of perturbations (refer to Figure 8.9), we
needed to provide an additional leg lift to make sure that no scuffing happens in early
swing phase. In general, increasing the amount of leg lift reduces such risks in perturbed
walking conditions (Voloshina et al., 2013). In human, however, this is done adaptively
depending on the terrain and somehow optimally (Wu and Kuo, 2016). Inspired by
various studies in the literature (Yin et al., 2007; Coros et al., 2010; Mordatch et al.,
2010; Pratt et al., 2001), we use the stance hip to regulate the torso angle both in 3LP
model and hardware experiments. In other words, since we do not use CoP modulation,
we do not have enough control over the CoM position, i.e., the robot naturally falls.
Therefore, we believe that in a generic walking controller that supports perturbed walking
conditions, the entire stance leg posture may depend on the actual relative position of
the stance foot (with respect to the pelvis), not the desired position. The same principle
could be applied to the swing leg as well, although the swing hip ideally tracks the desired
swing trajectory most of the time.

As suggested in chapter 9, the energetic cost of walking is dominantly determined
by push-off work, swing dynamics, leg lift motions and weight support torques in normal
walking conditions. These mechanical effects relate to the step length, walking frequency,
ground clearance and vertical pelvis excursions respectively. The control problem, i.e.,
the strategy to generate and stabilize the motion, is equally influenced by the choice
of these parameters. A large step length breaks linearity assumptions, a fast frequency
introduces hip tracking issues, a high leg-lift is hard to achieve with limited knee-joint
velocities, and a crouched posture or flat walking is costly in the knee joints. So far in this
chapter, we discussed how human overcomes these issues by lower-limb joint mechanisms
and dynamic walking, i.e., the ability to stabilize the motion with minimal dependency on
ankle torques. In other words, the human can quickly stabilize the motion despite going
on the toes for a few moments. This stabilization may be done by footstep adjustment
or using the upper-body momentums, but to a lesser extent with CoP modulation.

We wrap up this section by concluding that having feet in the robot is advantageous
from various aspects compared to compass gaits (i.e. without feet). In more traditional
control algorithms, this body segment and the ankle torques help stabilize the motion.
We believe that this is a minimal advantage and probably produces a weak stabilizer
depending on feet dimensions. We might damp the falling behavior with CoP modulation
like (Coros et al., 2010) in certain parts of the phase. However, it is better to move the
CoP on the toes and lift the stance heel whenever needed. With this strategy, we may
lose controllability, but gain a nice thigh-shank-foot coordination that helps push-off

and leg-lift mechanisms. This would reduce CoM vertical motions and besides helps the
hip joint to flex earlier which facilitates the swing motion (refer to Figure 11.5). Given
all these discussions, to what extent can our control theories support dynamic walking?
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This will be discussed in the next section.

12.4 Promising control aspects
We motivated our control hierarchy by the fact that we require fast and straightforward
models to predict the motion and find meaningful control inputs. Among CoP modulation,
footstep adjustment and momentum stabilization strategies, we focused on footstep
adjustment as a robust method to capture strong perturbations. This strategy is a
meaningful way to handle speed transitions since steady-state footstep patterns also
change during such transitions. In chapter 7, we extensively discussed the fact that
footstep adjustment does not have an immediate effect until the next phase starts.
However, we also emphasized that it is necessary to adjust the footstep location online
before the next touchdown happens. Therefore, we somehow need to know the future
evolution of state variables to find proper footstep locations online, even though they
do not have any immediate influence like CoP modulation or momentum regulation
strategies.

12.4.1 Capturing systematic perturbation by foot-stepping

The theoretical background introduced in this project through development of the 3LP
model and time-projection control translate to very simple control rules. Although
we derive them based on linearity and fixed phase-time assumptions, they result in
powerful stabilization rules that cover a wide range of walking conditions. In the
walking experiments of chapter 8, we showed that our controller could easily comply with
constant external dragging forces to produce emergent walking gaits. We also showed
that internal perturbations might distort the phase timing (refer to Figure 8.13), but
footstep adjustment is yet powerful enough to stabilize the motion. Such robustness
comes from dynamically consistent trajectories of the 3LP model as well as dynamically
consistent control rules of time-projection. In ideal simulation environments also, as
discussed in chapter 2, a robust walking was achieved on uneven terrains and slopes, with
model errors, sensory noises and also with control delays. Thanks to the whole-body
compliance offered by inverse dynamics and torque control, the robot was able to comply
with unforeseen terrain variations without any planned adaptation. More precisely,
despite a fixed timing in our gait generation method, early or late touchdown events
did not perturb the gait significantly. Therefore, our footstep adjustment methods may
go beyond the assumptions used to derive them mathematically. In other words, even
un-modeled systematic or steady-state system errors (such as slopes or dragging forces)
may not make the system unstable unless they are too strong. Foot-stepping strategy
and compliance can together make the control algorithm robust against systematic and
occasional perturbations to some extent.

12.4.2 Compliance

In the balancing tasks of chapter 3, we proposed a powerful control architecture in which
the robot shows whole-body compliance. Due to hardware maintenance issues though,
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we were not able to use this framework in the walking experiments of chapter 8 and only
relied on the mechanical springs to achieve compliance. The inverse dynamics controller
of chapter 3 may:

• Reduce impacts on a robot like COMAN with rigid feet. This would significantly
reduce vibrations.

• Help better control the torso orientation through a unified whole-body framework.

• Reduce rotational slippages in the stance foot by adapting to the terrain shape
compliantly.

• Prevent the feet from rolling or tilting when external pushes are applied.

• Help to damp the falling behavior by CoP modulation.

We used different control strategies and dominantly relied on the mechanical springs to
achieve these goals in our walking experiments. However, the inverse dynamics controller
would unify all these strategies together and provide a better control framework. This
remains to be tested, ideally on a robot platform with better torque tracking than
COMAN.

12.4.3 Swing dynamics

In different parts of the project, we attempted to add a sense of internal limb dynamics
to the template models. Various Cartesian motion planning approaches in literature
optimize CoM, momentum, contact points and contact force trajectories. Using the
point-wise modeling technique of chapter 4, we split the concentrated point-mass into
multiple limb masses and re-wrote the equations of motion. Such new model adds no
extra free variable to the dynamic equations used in other popular Cartesian planners.
However, it allows for modeling of internal momentum exchanges between the limbs which
may produce physically more consistent trajectories. Our formulations further support
inclusion of approximate limb inertias as well, assuming that limb lengths do not change
much during locomotion. This assumption might be realistic in slow walking conditions,
but in complex multi-contact locomotion, the case might be different. Through the
development of point-wise modeling in chapter 4, the 3LP model in chapter 6 and motion
planning in chapter 5, we were looking for approximate ways of modeling important
dynamics in the robot. We believe having a sense of some dynamical effects inside
the template planner is better than ignoring them completely. However, increasing the
precision by including complex geometric and dynamic effects is more against the concept
of template planning. In particular, we want to keep a reasonable level of details to
assure fast computations.

12.4.4 Model-based control

One major concern throughout the project was portability of the proposed method
to different robots. We chose a model-based control framework for various reasons.
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The models helped us understand different mechanical effects, not through equations
and mathematics, but through multiple handy simulations in which we could change
parameters and immediately identify the effect. In the absence of practical models,
e.g., in approaches based on learning algorithms, particle swarm optimizations, grid
searches or data-driven approaches, it is probably time-consuming to understand different
physical effects, since a huge offline computation/data collection effort might be needed.
Physical effects do not necessarily refer to walking dynamics; they might cover sensory
imperfections, actuator dynamics, frictions, mechanical plays and body softness. More
importantly, a quick test of candidate control mechanisms and parameters helps better
designing the controller. Mechanical models, at different levels of abstraction, helped
us identify and distinguish between walking dynamics and the rest of other effects
mentioned. Therefore, we were able to model/simulate these effects easily (in stable
walking conditions) and obtain more intuition for the real hardware. Our control hierarchy
is easily scalable to different robots. We encode robot-specific information into the models
and derive control rules accordingly. This process naturally does not require re-tuning of
parameters, offline optimizations or data collections.

12.4.5 Decomposition of planning and control

Another primary concern throughout the project was the ability to control a wide range
of walking gait conditions, i.e., we were not interested in finding local controllers. It is
popular in literature to train a library of local controllers for different walking conditions
and link them via interpolation or transition rules (Kelly and Ruina, 2015; Manchester
and Umenberger, 2014; Gregg et al., 2012; Lee et al., 2002; Choi et al., 2003). Instead, we
aimed at finding a unified framework in which we do not need to re-tune the controller
depending on state variables (or the desired gait). This philosophy can simply translate
into a feed-forward and feedback control design in which dynamics and physics are all
encoded in the feed-forward trajectories. However, we learned that a generic controller
should not be blind to system dynamics. To keep such generality in our latest controller
which is time-projection of chapter 7, we used 3LP dynamic equations to derive DLQR
controllers. Therefore, our control design is matching dynamics of the desired feed-
forward 3LP gaits. Our MPC controller of chapter 2 also features the same property
as the LIP model is used in both planning and stabilization at the same time. The
resulting footstep adjustment rules depend on robot’s anatomical properties and the
walking frequency. However, other gait parameters discussed in chapter 11 such as
speed, step width, external dragging forces and torso angle appear as constant terms in
the 3LP equations, and therefore, they are not considered in derivation of DLQR and
time-projecting controllers. This makes our footstep adjustment rules generic for all
these walking conditions. The slope angle may have some influence though by changing
the pendular dynamic properties.
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12.5 Future directions

Our primary goal in this thesis was to perform robust and fast locomotion on a real robot.
Although human-like locomotion was not the primary goal, over various biomechanics
studies we learned that faster speeds and energy optimality could be achieved in our robot
by making the locomotion more human-like. However, limited hardware capabilities, as
well as the linearity assumptions in our control algorithm, prevented us from achieving a
fast human-like motion with the real robot. In this thesis, we proposed better solutions
for dynamic walking and control with footstep adjustment instead of CoP modulation
strategy. Our controllers can recover from stronger pushes and perturbations. The
maximum walking speed we achieved on the real hardware is very close to the maximum
capabilities, however, we believe that this robot is probably capable of achieving faster
speeds and more human-like motions with improvements in the control method. In this
section, we are going to discuss possible improvement as well as further applications of
the models and tools developed.

12.5.1 Better template models

We aimed at improving the conventional LIP model by adding swing and torso balancing
dynamics. Various other template models exist in the literature and provide different levels
of abstraction (refer to Figure 6.1). However, they do not provide closed-form solutions
due to non-linearity and the need for time-integration. The 3LP model proposed in
chapter 6 is a linear model that can produce a wide range of walking conditions discussed
in chapter 11. There are other three-mass models in the literature which provide partially
linear equations, but with imposed swing dynamics (i.e., artificial swing foot trajectories).
The 3LP model encodes dynamics by hip and ankle torques which makes it more realistic
and generic. Using similar linearity assumptions, we can extend the 3LP model to have
arms, limb segments or a moving torso. As explained later, a moving torso may help
to implement the momentum regulation strategy. Other features might have negligible
contributions in the range of walking conditions we can achieve with the real robot. In
complex multi-contact motions of chapter 5, since all the limbs can move, we think it is
better to represent the torso by a trapezoid to account for pelvis and shoulder width.
This may improve geometric inconsistencies primarily.

During different optimizations, especially in the posture planning tasks of chapter
4, we noticed that having limb segments in the template model introduces various
unnecessary numerical difficulties including singularities and joint limits. Our solvers
can solve these issues but take more optimization iterations to tackle the nonlinearity.
We believe that prismatic length boundaries or simple work-space representations may
encode reachability constraints efficiently and simplify optimizations. We prefer to denote
each limb by a vector which represents a virtual prismatic actuator (like chapter 5).
However, we are looking for better objective functions that quantify the cost of all joint
torques in the limb only by these geometric vectors and contact forces, at least in static
conditions. With these functions we can plan optimal postures without considering the
limb segments individually and thus, avoid numerical difficulties.
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12.5.2 Better planning

We argued that the primary limiting factor in achieving faster speeds in our method is
probably a geometric constraint. Planning with linear template models assumes prismatic
stretchable legs. However, the seemingly complex lower-limb mechanism can physically
support more human-like gaits while we do not take advantage of this capability. We
believe that our foot-stepping strategy can easily support dynamic walking, i.e., going on
the toes or performing compass gaits. This controller shows a compliant walking behavior
in the sense that it can handle systematic model errors which translate to steady-state
tracking offsets. These errors could be external dragging forces, slopes, control delays or
even further, violations of horizontal and vertical decoupling assumptions. In these cases,
one probably needs to command a slightly different desired velocity to compensate for
such steady-state errors. We believe our controller would be powerful enough to stabilize
a human-like fast walking gait. However, 3LP trajectories are widely ignoring lower-limb
functionalities and advantages.

We have attempted to produce more realistic motions in the human-like animations
of chapter 11. In this method, we rely on 3LP dynamics and stabilization, but slightly
modify the constant vertical trajectories of 3LP to add pelvis excursions as well as
human-like lower-limb coordinations. This new method is not validated on a full model
yet, neither in simulations nor on the real hardware. However, we have used all the
observations on real hardware as well as the intuitions obtained through biomechanic
studies to properly design such kinematic converter. In this method, human-like lower-
limb trajectories are obtained by applying an intuitive inverse kinematic algorithm
on the 3LP states. We avoid any time-integration on the full model which keeps the
entire method as fast as the 3LP model itself. Besides, we include necessary geometric
details and make sure the resulting joint-trajectories are feasible. We hope to conduct
extensive human experiments in future to quantify this method and compare it with
human. The synthesized trajectories are eventually useful for locomotion on exoskeletons,
powered lower-limb assistive devices, humanoid robots and virtual characters in gaming
or animation applications.

12.5.3 Better stabilization

The 3LP model ideally supports both CoP modulation and foot-stepping strategies in
the current format introduced in chapter 6. We require to free the third pendulum
(which represents the upper-body) and let it move to implement the momentum control
strategy. Our derivation of DLQR and time-projection controllers is general enough to
support addition of such new states and control input dimensions. On the resulting
model which would be complex but still linear, we can perform MPC optimizations as
well to include inequality constraints and a variable phase timing. We believe that the
three CoP modulation, foot-stepping, and momentum strategies can work together to
recover from much larger external pushes. Shorter swing times also help the footstep
adjustment to capture the falling dynamics faster and prevent large overshoots. These
improvements are considered for future work.
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12.5.4 Better lower-body control

Our real-hardware experiments with inverse dynamics are limited to the balancing tasks
of chapter 3. We found the whole-body compliance offered by inverse dynamics very
powerful in the sense that it can improve robustness in perturbed walking conditions. In
future, we have to adapt our formulations to support point-contacts, e.g., when going on
the toes. However, since our new planning method of chapter 11 involves calculation
of time-trajectories for the individual joints, we might need to revise inverse dynamics
formulations and adapt them to joint-space instead of task-space. We believe that for
faster gaits and perturbed walking conditions, compliance is a vital component that
should be integrated into our walking controller.

12.5.5 Further biomechanic studies

We mentioned that our latest trajectory generation method of chapter 11 requires further
validation. We are interested in conducting a unified set of human experiments and
obtaining human-like geometries for all the different walking conditions mentioned in
that chapter. The recording of dynamics would also help to quantify any violation of
the linearity assumptions. Besides, we would like to perform a quantitative comparison
of our time-projection controller with human behavior. In this regard, we may need
an experimental setup in which we can apply controlled and measurable perturbations
to humans. Besides, our new trajectory generation method might further improve
the energetic model of chapter 9 in the sense that it can simulate more complex link
functionalities. The resulting kinematics may also help to perform inverse dynamics to
find equivalent muscle activations. The 3LP model, time-projection control, human-like
animation, energetic model and the study of asymmetries are all packed in a lightweight
walking animation software that hopefully gives useful insights to researchers in robotics,
biomechanics and computer graphics communities. This package is distributed along
with this thesis.

12.6 Final words
This thesis presented a hierarchy of components for walking control and used different
tools to reduce dimensionality and map the complexities of walking into simplified models.
The philosophy behind such a control paradigm was the need to predict future due to
intrinsic instabilities of the system and lack of controllability over single steps. The model
predictive control allows us to plan footsteps and ensure walking stability even though the
robot is unstable at each instance of time. Despite mathematical complexities, with this
strategy, we can easily generate walking at different speeds and recover from significant
disturbances which are not possible with conventional methods. In the proposed hierarchy,
our main contribution has three folds:

• Proposing a new simplified modeling technique inspired by molecules to speed up
calculations considerably.

• Deriving a simplified model that provides better dynamical matching with the real
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system.

• Developing an analytical controller that adjusts footstep locations optimally by a
model-based future prediction.

A significant strength of this work lies in inspirations from human locomotion and
biomechanics principles. By decomposing the system into smaller components, we could
understand different mechanical effects individually and treat them simply by allowing
them to play their roles. An alternative was to acquire a better robot and apply some
black-box control while being blind to these effects. However, the proposed approach can
effectively comply with many of these effects at the same time which makes it flexible
and portable to other robots as well. More importantly, because of such inspirations, the
tools and methods developed in this project seem useful to analyze human locomotion
too. Therefore, going beyond search and rescue which was the primary application of this
project, we have developed components that could be useful in rehabilitation, computer
gaming, and animation communities. In future, we hope to see extensive applications of
our tools and methods in all these fields. Specially with faster computational tools, our
modeling techniques can help producing more dynamic and agile motions together with
online reactions and control in both bipedal and multi-modal locomotion.
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A Force Estimation

This appendix describes an extended application of full-body dynamic equations in
balancing tasks. Since the robot is equipped with contact-force sensors in the feet
and joint-torque sensors, we can use this information to estimate interactions with the
environment without having physical touch sensors on the skin. We present an efficient
method to estimate external forces on the robot without having physical touch sensors
mounted. We consider simulation scenarios in which the robot performs compliant
balancing motions with the inverse dynamics controller, and external forces are applied to
different body parts arbitrarily. Since the controller is compliant, these forces can change
the posture and at the same time result in different joint-torques. Using the IMU sensor
and joint encoders, and also assuming non-sliding contacts, we estimate accelerations in
the robot through an optimization method first. Together with joint torques and contact
forces, we then use these accelerations in the equations of motion to find a residual vector
presumably corresponding to an unknown source of external force. Our method searches
over all the body segments and finds the force application point with an analytic method.
It can ideally handle dynamic scenarios as demonstrated, although due to hardware
issues, we did not find the chance to validate it on the hardware. This part primarily
focuses on balancing tasks and interactions with the environment. It is worth mentioning
that this method is not used in the walking push recovery scenarios of this thesis in
chapters 2 and 8 although it could be very valuable1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji and Auke Jan Ijspeert. "Designing a virtual whole body tactile

sensor suit for a simulated humanoid robot using inverse dynamics." In Intel-
ligent Robots and Systems (IROS), IEEE/RSJ International Conference on,
pages 5564–5571, 2016.

1All the videos of this chapter could be found at https://youtu.be/Fnws2rtgIR4
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A.1 Background
In humanoid robotics control, dynamics-based approaches are becoming more and more
popular (Faraji et al., 2015; Feng et al., 2015; Kuindersma et al., 2014). Such trend has
many motivations behind, especially compliance and precision. Compliance is a crucial
feature of a humanoid robot in the tasks that involve human-robot interaction. However,
going further, compliance can be beneficial for the robot as well, mainly regarding safer
operation and avoiding self-damage. Compliance has two different types, active and
passive (Wang et al., 1998). Passive compliance is mainly inspired by human tendons
and their energy storing role in addition to absorbing impacts that often exist in loco-
manipulation tasks. However, from the control perspective, certain tasks might require
different levels of compliance in the task or joint space. Such compliance cannot be
realized by passive elastic elements that are often in series with actuators (Pratt and
Williamson, 1995) in most new humanoid robots (Colasanto et al., 2012). Here, the
other type of compliance becomes very important, i.e., active compliance. The control
algorithm takes advantage of sensory data available on the robot to generate actuator
policies that behave as if a real spring is there in the robot. Such virtual elastic element
(Pratt et al., 2001) can be used in control paradigms such as balancing, manipulation or
locomotion tasks.

In this chapter, based on our previous compliant balancing controller of chapter 3,
we propose a complementary component that estimates external disturbances as well,
using the available sensory data. This architecture is briefly presented in Figure A.1.
By fusing available sensory data, we can estimate global states and take advantage of
dynamics equations to control the robot. On the other hand, we can also use same
equations and dynamics sensory information to identify mismatches and associate them
to unknown sources of error. In the following, we first briefly describe the proposed
architecture.

A.1.1 Inverse dynamics

As soon as active compliance is considered, we also need to think about available
kinematics and dynamics information. Such information can be used in model-based
or model-free control approaches that try to perform the desired tasks while providing
a certain level of compliance. Kinematics information gives the current state of the
robot and determines how precise the desired task is being executed. On the other hand,
dynamics information can be used to determine interactions and compliance. Among
different control approaches, inverse dynamics is becoming very popular as it can deal
with the complex nature of humanoids efficiently.

A.1.2 State estimation

The complexity of humanoids can be both due to high dimensionality and a floating-
based nature. The latter is practically more important in fact, although it seems not if
computational power is solely considered. Inverse dynamics requires the full state of the
robot including joint configurations and base variables, expressed in the global frame.
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Figure A.1 – Control/estimation architecture proposed to estimate external disturbances.
The sensory data available from the robot are fused together to estimate the current
state of the system, including positions, velocities, and accelerations. These states are
used to perform desired tasks using inverse dynamics and torque tracking blocks. On
the other hand, using the redundancy in the dynamics information available, we can
estimate external disturbances and their locations.

Since the robot does not have direct measurements of base variables, there is often a
geometric filter block that fuses all available sensory data to determine the full state.
Therefore, inverse dynamics is always accompanied by another complex routine that has
certain limitations.

A.1.3 Torque tracking

Apart from observing the state, inverse dynamics also needs a precise torque tracking
implemented at the actuator level. Although models are not very accurate, precise
torque tracking can still increase consistency of the model with the real robot. This
block requires measurements of either direct joint torques, or corresponding series elastic
deflections or the electrical current in the actuators. Compared to the traditional position
controlled robots (Sakagami et al., 2002; Moro et al., 2011), torque measurement can
provide additional information about interactions or un-modeled phenomena.

A.1.4 Dynamics inconsistency

The idea behind using the model is to generate control policies that realize tasks of
certain priorities (Herzog et al., 2014). The knowledge required for many of these tasks
is already available in the model. Balancing task, for example, is mainly linked to
gravity compensation and keeping the static stability which relates to dynamics and
kinematics information respectively. We developed a different formulation of inverse
dynamics problem in chapter 2 which considers system dynamics, desired tasks and
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physical limitations altogether to generate proper joint torques. This general and versatile
formulation was later combined with state estimation and torque tracking algorithms
and successfully tested on our real COMAN robot in chapter 3. An essential feature of
our implementation is pure torque control. We do not put secondary loops over joint
velocities or positions that require integration of desired joint accelerations, coming out
of inverse dynamics. This simple feature improves precision, compliance, and stability by
avoiding interfering stiffnesses.

Our formulation let us define all the tasks in Cartesian space. There are certain
trajectories considered for the end effectors (hands, feet, CoM and torso orientation) and
followed by Cartesian PID regulators that generate accelerations in the end. The notion
of active compliance appears here since our inverse dynamics compromises different tasks
by predefined priorities. In case of an external perturbation, for example, the desired
acceleration is nonzero, while the robot does not move anymore (refer to (Faraji et al.,
2014a, 2015) for real demonstrations). In fact, inverse dynamics is blind to the external
disturbance and produces a force that reacts to the perturbation, proportional to the
displacement.

A.1.5 External force estimation

In the present work, we want to investigate dynamics errors and infer information about
perturbations. This is possible only thanks to the three previously mentioned blocks
which estimate the global states precisely, plan consistently and execute the plan with
fast torque controllers. Thanks to 6D contact force/wrench sensors and all joint torque
sensors in our platform, apart from the control, we can re-write the equation of motion
with available sensory data. We also take advantage of other kinematic constraints to
determine joint accelerations. Now, we can simply investigate if there is any mismatch in
the equation of motion and associate it with an external force. Figure A.2 demonstrates
a simple scenario which gives intuition on how joint torques and contact forces can
determine external force positions.

This idea is not new however and appears in literature, in the context of model
identification (Traversaro et al., 2014) or impedance control (Le et al., 2013). The main
motivation behind looking at the equation of motion is to avoid direct measurement due
to many reasons.

• In some cases, there are concerns about pricing, weight or complexity. In robotics
arms, for example, force estimation by joint torque sensors is popular, either for
identification of new objects or better control performance (Colomé et al., 2013;
Le et al., 2013). These robots are however much simpler in terms of degrees of
freedom and more importantly, fixed to a table. Therefore, it might be reliable
enough to estimate contact forces by the equation of motion, as state estimation
is simpler. Note that this method can be applied to position-controlled robots as
well, as far as they have torque sensors.

• On the other hand, it is less practical to put many small sensors together to form a
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Fext

Figure A.2 – An intuitive figure, demonstrating how an unknown external force can
be estimated based on the internal sensory data. In this case, the lateral force exerted
on the hand tip produces an additional torque in all the joints. However, we can only
measure the torque around the joint pivot vector in each joint. Therefore in the scenario
of this figure, only the shoulder roll sensor detects a larger torque. After the arm, this
torque appears in the waist joint as well, going down to the contact 6D force/wrench
sensors. The proposed algorithm is limited to a single external force, although it can
potentially explore more forces under certain conditions. We also assume a point-wise
perturbation without an external wrench to simplify the problem.

tactile suit with many cables which increase the weight. The artificial skin proposed
in (Mistry and Righetti, 2012; Strohmayr and Schneider, 2013) is useful however
in certain manipulation tasks. The flexible skin proposed in (Noda et al., 2012)
is also very useful in human-robot interaction. However, it is not always easy to
anticipate how humans especially elderly and kids would touch the robot.

These shortcomings in the literature of force estimation have motivated us to propose
a general approach to estimate external force strengths and locations on the whole body
of the robot, without adding any other physical sensor.

The proposed approach uses contact force information to infer the strength of a
single external force and then searches over the surface of all links in the robot to find
the best matching correspondence. The first part to find force strengths is inspired by
a straightforward approach proposed in (Kaneko et al., 2012) which uses the second
Newton law, written for Center of Mass (CoM). For the second part, we propose a similar
algorithm used in (Likar and Zlajpah, 2014), though computationally more efficient.
Searching over body segments of the robot requires exact geometries of the surfaces.
Likar approximates link shapes of an ABB manipulation arm by cylinders (Likar and
Zlajpah, 2014) and then sets up constrained optimization problems to find the force
application point on all cylinders. In our method, however, due to the complexity of our
humanoid robot in terms of the number of links, we approximate link shapes by ellipsoids
which look realistic and propose an exact alternative solution of similar optimization
problems. The core idea behind our approach is to break down unknown Jacobians and
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to find local positions in closed-form.
We can cover the whole body of the robot, compared to the limited application

of explicit physical touch sensors. We are also not restricted to the end-effectors and
basically, search for both forces and application locations over the whole body of the
robot. Although the presented work is yet limited to a single external force, it can be
instrumental in model identifications and refinements as well as human-robot interactions,
for example detecting pushing or pulling forces. In this chapter, we do not use the
estimated forces to improve the balancing controller. However, this can be another
application of the proposed method. In next section, we will introduce details of our
search algorithm as well as underlying assumptions. Next we will demonstrate the results
and discuss the performance and in the end, conclude the chapter with proposing possible
future extensions.

A.2 Methodology
For this chapter, we base the estimator and simulations upon our previous inverse
dynamics controller of chapter 3 where a multi-stage controller performs state estimation
and balancing using inverse dynamics. A closer look at these publications will indeed
give more insight on the application of the proposed method. Note that in this work, we
do not feed the estimated external forces back to the controller to improve the balancing
performance.

As mentioned previously, the proposed estimation method has three main stages,
acceleration, force strength and force location estimation. The general equations of
motion for the whole body of the robot are basically written as:

M(q)q̈ + h(q, q̇) = τ +
�

JT F (A.1)

Where q ∈ R
6+23 denotes the full state of the robot (including global position and orien-

tation of the base), M(q) denotes mass matrix, h(q, q̇) denotes gravitational, centrifugal
and Coriolis forces, τ is joint torques, J denotes translational and rotational contact
Jacobians and F denotes contact forces or wrenchs. In this set of equations which
follows Kane’s convention (Kane and Levinson, 1983), the first six rows are actuation-less
(τ1..6 = 0) and describe global frame dynamics of the floating based robot. Apart from
dynamics equations, we also have to consider fixed contact constraints:

J̇(q)q̇ + J(q)q̈ = ẍ (A.2)

Where ẍ represents contact acceleration which is zero in case of static contacts. A more
detailed discussion about these constraints can be found in chapter 3.

We have a direct measurement of joint torques and contact forces as well as q and
q̇ for the joints. We have also developed another state estimation algorithm in chapter
3 which serves as the basis of this chapter. This algorithm determines full vectors q

and q̇ by fusing all sensory data on the robot and contact constraints. However, to
estimate additional external forces, we need to know joint accelerations as well. So before
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mentioning the main force-estimating stages, we introduce another stage to determine
joint and global accelerations. In the following, these three stages are described.

A.2.1 First stage: acceleration estimation

In addition to contact forces F and M , joint torques τ , joint positions q and velocities
q̇, our robot COMAN is equipped with an Inertial Measurement Unit (IMU) on the
pelvis which provides linear accelerations and angular velocities as well as orientations,
internally calculated in the IMU by fusing other two variables. Although most of the
sensory information is used in the underlying state estimation of chapter 3, we use
dynamics information (forces, torques and accelerations) again in this stage to find the
full vector q̈. As a rough estimation of joint accelerations, we differentiate joint velocities
to obtain q̈opt. COMAN has optical encoders to measure the velocity directly. However
this differentiation is not accurate, because the velocity is measured before the series
elastic elements, not after on the link side. We similarly differentiate the gyro velocity
to obtain an estimation of base’s angular acceleration q̈gyr. A quadratic optimization
problem is then formulated to fuse these estimations with IMU accelerations q̈IMU, the
equation of motion (A.1) and contact constraints (A.2).

min
q̈

VQδE
(δE) + VQδR

(δR) + VQδI
(δI) +

nc
�

i=1

VQδi
(δi)

M(q)q̈ + h(q, q̇) = τ +
�nc

i=1 JT
i F + δE

q̈(1..3) = q̈IMU + δI

q̈(4..6) = q̈gyr + δG

q̈(7..29) = q̈opt + δO

J̇i(q)q̇ + Ji(q)q̈ = ẍi + δi, i = 1..nc (A.3)

Here, we define VQ(ψ) = ψT Qψ to represent a quadratic function. The role of slack
variables δ in this formulation is to create flexible fusion of sensory data and reject
noises, similar to Kalman filtering. In fact optimization approaches are becoming
more popular for filtering sensory data in humanoid robots (Xinjilefu et al., 2014a) as
they provide the option to add inequality constraints, compared to the conventional
Kalman filtering (Bishop et al., 2001). It is also easy to prove that such optimization is
equivalent to Kalman filtering, if the quadratic cost matrices are equal to the inverse
of covariance matrices in Kalman formulation. In our implementation however we tune
these matrices manually and keep them constant. Although we lose optimality, the
performance still remains acceptable. The choices for positive definite cost matrices
are heuristically diagonal-shape with the following numbers QδE

: 1, QδI
: 104, QδG

: 1,
QδO

: 1 and Qδi
: 104 to ensure constraint satisfaction and give more importance to the

IMU accelerations than velocity differentiations. This quadratic problem is solved in
less than 100µs by CVXGEN QP optimizer (Mattingley and Boyd, 2012). Note also the
structure of our generalized floating base coordinate vector where the first three elements
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are global translation (of the pelvis), the second three are global rotation (of the pelvis)
and the rest are joint coordinates.

A.2.2 Second stage: force strength estimation

In this work, we limit the formulation to detection of a single external force, although it
can be easily extended to detect an additional external moment at the same time. The
strength of external force can be simply calculated by looking at the first three lines of
the equation of motion. Since in the previous stage, more importance is given to the
IMU reading rather than the equation of motion, the vector δE estimates the projection
of external force onto the space of floating base generalized coordinates. Regarding the
structure of our state vector, the first three elements of δE indeed estimate the external
force vector itself. Note that the vector δE can already be used in the balancing controller
to improve the performance without performing the next stages of this estimator. This is
more generic, without the limiting assumption of a single force or ellipsoid geometries. In
the present work, however, we do not explore this possibility and leave it for future works.
Note also that in case of static balance, all accelerations are zero and the external force
can be calculated more simply. However, we prefer to keep the mass matrix (and the
first stage accordingly) to explore dynamic motions. Disabling the first stage is indeed
equivalent to a static algorithm which is compared with the full estimator later in the
results section.

A.2.3 Third stage: force location estimation

Once the extra force is calculated, we can consider the equation of motion again. In fact
the resulting δE in the first stage accounts for an unknown external force Fext that is
applied to an unknown point P , located on an unknown body link Bi of the robot:

δE = Jv
P

T RT
Bi

Fext = Jv
P

T F̂ext (A.4)

Where RBi
denotes body’s rotation matrix. Note that all Jacobians are originally written

in the local frame in Kane’s formulation. Therefore we have to transform the globally
expressed Fext back to the local frame of Bi to obtain F̂ext.

In the following, we are proposing a procedure to find the body index i and the
force location P . Note that P is expressed in the local frame of the body Bi. Therefore,
we do not exactly know the Jacobian Jv

P unlike many other approaches that assume
known Jacobian (Colomé et al., 2013). Figure A.3 demonstrates Bi, the exact link shape,
approximate ellipsoid and the unknown point P . Considering the frame Bi located on
the CoM of the body link Bi, we can use known Jacobians to find the translational
velocity of the point P :

xP = xBi
+ RBi

P (A.5)

ẋP = RBi
Jv

P q̇ = RBi
(vBi

+ S(ωBi
)P )

vBi
= Jv

Bi
q̇
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P

RBi

Fext Sol.1

Sol.2

Figure A.3 – Demonstration of the upper arm of the robot, approximated with an ellipsoid
of a proper size. The local frame Bi is placed on the CoM of the link, which we consider
the centroid of the ellipsoid as well. When an external push is applied on the link at a
local point P , the algorithm intersects a line calculated based on the measured dynamics
variables with all the ellipsoids over the whole body and then selects the one making the
minimum cost.

Where S(ψ) represents skew-symmetric matrix, obtained from the vector ψ. Similarly,
we can find the angular velocity of the body Bi on which the point P is located:

RP = RBi
(A.6)

ωBi
= Jω

P q̇ = Jω
Bi

q̇

Now, we can link the two sets of equations together:

RBi
Jv

P q̇ = RBi
(Jv

Bi
q̇ + S(ωBi

)P )

= RBi
(Jv

Bi
q̇ − S(P )ωBi

)

= RBi
(Jv

Bi
q̇ − S(P )Jω

Bi
q̇)

Therefore, the Jacobian of the point P can be written as:

Jv
P = Jv

Bi
− S(P )Jω

Bi
(A.7)

Which is written in terms of known Jacobians Jv
Bi

and Jω
Bi

for the Bi frame. However
we still need to determine the vector P to obtain the full Jacobian. Coming back to the
equation (A.4), we can write:

δE = Jv
P

T F̂ext = (Jv
Bi

− S(P )Jω
Bi

)T F̂ext (A.8)

= Jv
Bi

T F̂ext − Jω
Bi

T S(P )T F̂ext

= Jv
Bi

T F̂ext − Jω
Bi

T S(F̂ext)P

As a result, we can obtain a relation for P :

S(F̂ext)P = −(Jω
Bi

T )+(δE − Jv
Bi

T F̂ext) (A.9)

261



Appendix A. Force Estimation

where ()+ denotes pseudo-inversion and Jω
Bi

and Jv
Bi

are known. Although there are three
equations in (A.9), due to rank deficiency of skew symmetric matrices, we effectively
have two equations with three unknown components of P .

Since we also know that the force application point is located on the body surface of
the robot, we have to intersect the resulting line obtained from (A.9) with the surface
of each link Bi to obtain two points maximally, in case of convex link geometry. Our
proposed method, however, approximates each link with an ellipsoid which matches the
actual link shape as much as possible. Such ellipsoid is formulated around the CoM of
Bi:

P (1)2

a2
+

P (2)2

b2
+

P (3)2

c2
− 1 = 0 (A.10)

Where the semi-principal axes have a length of a, b and c, proportional to the diagonal
elements of the inertia tensor for each link with slight hand tunings. Our geometric
model is based on exact CAD models of the robot (Colasanto et al., 2012). In future,
however, we plan to set up optimization routines to adjust the positioning and scaling of
the ellipsoids for better matching.

Now, we have the third equation to find all components of the variable P . A simple
approach is to take two variables out of (A.9) in terms of the third variable, replace them
in (A.10) and solve a polynomial of degree two. In the end, depending on the polynomial,
we might have zero, one or two solutions. In case of having no solution, we simply set
the discriminant of the second-degree equation to zero to obtain two points close to the
ellipsoid. The proposed search procedure takes the following steps:

1. Calculate the full acceleration vector q̈ through the first stage.

2. Extract the external force vector Fext out of the first three lines of (A.1).

3. Search over all body links Bi: solve the closed-form equations for P .

4. Calculate the norm of the error vector e1 = δE − JT
P F̂ext.

5. Calculate the distance of P to the ellipsoid by taking the left hand side of equation
(A.10), e2 = lhs (A.10).

6. Pick the link with minimal error e1 + e2.

This procedure is in fact very fast compared to optimization based approaches proposed
in (Likar and Zlajpah, 2014). All the stages together can run in real-time (100µs) on a
moderate Core i5 CPU. The algorithm can also be extended to other geometric shapes
easily as the idea of intersecting lines with the volumes is the same. The key point
to obtain closed-form solutions is indeed to decompose the Jacobian into known and
unknown parts. In the next section, we demonstrate simulation results over different
tasks, followed by discussions on the performance and generality of this approach.
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Figure A.4 – Few positions where the balancing robot has stabilized after being pulled
by an arbitrary external force. In this figure, red arrows are pulling forces applied
manually in the user interface of our simulation software, while green arrows show the
final estimation. Ellipsoids are transparently shown in red, demonstrating the body
link subject to the pull, determined by the algorithm. One can verify that arrows have
minimal shift while the estimated body links are matching the actual links (where the
red arrows originate from). In general, detection of a force applied to the upper links is
easier as it influences the torque in many joints down to the foot. Also, detecting forces
on bigger links is easier too, since finding an intersection is more probable. Therefore,
one can deduce that the forces being applied to the torso are the easiest to estimate.

A.3 Results

As explained, at each time step, the search process determines the force vector, body link
and the local point P where the external force is applied. In this implementation, we do
not set up specific time-filtering algorithms to deal with noises and other uncertainties.
Instead, we rely on our state estimation methods to provide a clean and stable fusion of
sensory data. It should also be noted that in practice, out of the two solutions obtained
for the best link, we only consider the one corresponding to a pulling force, i.e., the point
where the external force vector goes out of the body link. On the real robot, however, the
other point should be selected as disturbances are mainly pushing forces unless someone
can pull the robot.

A.3.1 First scenario: exploring different body links

The first scenario is characterizing the resulting precision for all the links of the robot.
Here, we apply forces to various links of the robot, while performing stable and compliant
balancing task. We let the robot stabilize and demonstrate the final force estimation
and the corresponding body link in Figure A.4. One can obviously see that in static
situations, the algorithm finds an acceptable estimate of the external force, although
sometimes the body link is very narrow like the lower arm. In these cases, the intersection
is hard to find, regarding uncertainties available in the procedure. The estimated force
application points P are acceptable too, although there is a shift sometimes due to our
state estimation method or passive elastic elements (joint springs). Since on the real
robot, link-side encoders (after springs) do not have enough resolutions, we always use
the motor-side encoders to build kinematic chains. In the simulations of this work also,
we follow the same convention to be more realistic.

263



Appendix A. Force Estimation

Figure A.5 – Demonstration of different pulling forces applied to the left thigh. Red
arrows are actual force vectors while green arrows demonstrate the estimated force.
Although the matching is good in most of the cases, the left robot can not estimate the
body link correctly.

Although the precision is convincing, there are situations where the force cannot
be uniquely estimated. For example, imagine in Figure A.4, there is an external force
applied to the tip of the hand, directly upwards. In this case, the algorithm might report
any of the links in the arm, as the external force produces the same torque in the shoulder
joint. Finding a unique solution is even more challenging in dynamic motions, depending
on the force magnitude, agility of the task, closeness of the force to the joint pivot, etc.
The external force vector can always be estimated, i.e., the second stage is robust as long
as being provided with correct accelerations. However, there should be another high-level
method that decides whether the reported link and P variables are correct or not. We
leave the design of such complex method for future works. However, in this chapter, we
would like to characterize the performance and argue about challenging parts of this
algorithm.

A.3.2 Second scenario: exploring force directions

In the second scenario, we investigate the effect of force direction and keep the body link
choice fixed. Figure A.5 demonstrates a scenario where different pulling forces are applied
to the left thigh of the robot. Detecting forces on the two legs is also challenging as there
is redundancy in the loop created when both feet are supporting a portion of the weight.
One can observe that in Figure A.5, there is only one case where the algorithm reports a
different body link, i.e., shank. This can be due to many reasons such as the inaccuracy
of ellipsoidal approximations, redundancy problem or alignment of the external force
with the shank. However, it is promising that the reported body link is the shank, close
to the original thigh link.

A.3.3 Third scenario: dynamic motion

An alternative to the proposed method is to completely remove accelerations from the
equation of motion, assuming that the robot is static. In this case, we can disable the
first stage of the algorithm as it is not required anymore. This alternative is, of course,
simpler and less demanding regarding online calculations. However, it only works when
the motion is very slow. Remember that there are uncertainties in the model, state
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Figure A.6 – In the dynamic scenario, the robot is performing a combination of two
different tasks at the same time: following a sinusoidal trajectory of 15cm up and down
and turning around the yaw axis with the same regime for 50 degrees.

estimation, geometry approximation, etc. If these uncertainties are dominant, i.e., their
magnitude is larger than the external force, the algorithm might jump between different
body links and provide a less reliable estimation. Therefore, we are interested to know
whether accelerations can help in dynamic motions or not. In other words, the first stage
of the estimator is supposed to compensate dynamic effects so that the error vector δE

merely depends on the external force and uncertainties.

To investigate the role of accelerations, we consider a second version of the estimator
where accelerations are set to zero. Such static estimator is compared with the original
one over some dynamic motions in Figure A.7. The robot is performing up and down
motions with turning around the yaw axis, demonstrated in Figure A.6. Meanwhile, we
apply different forces and compare the estimated values coming out of the two static and
dynamic variations. As expected, it is obvious that the dynamic formulation performs
better in estimating the force magnitude, even in the absence of external force where
the magnitude is zero. It can also provide a more stable body link estimation, although
it fails over the course of last perturbation where the ellipsoid is too narrow to find
intersections. Overall, accelerations are helping to keep consistency and compensate the
fast motions of the robot. Therefore, the proposed algorithm performs better than static
formulations, with a minimal computational requirement.

In case of small force magnitudes or swift motions, another high-level algorithm is
needed to threshold the estimated force and filter out jumps in the body index. Adding
more damping to the controller will also reduce these jumps. The required precision, of
course, depends on the final application of the proposed method. In case of human-robot
interaction or model identification, indeed a statistically correct estimation over a certain
period of time is expected, and occasional jumps are tolerable. In an online control,
however, one should carefully filter these jumps to avoid instability.

A.4 Discussion

In this chapter, we proposed an estimation architecture of multiple stages to determine
the global state of the robot, accelerations and external disturbances at the same time.
We fuse available sensory data to calculate global states and from the mismatch observed
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Figure A.7 – Comparing performance of the full algorithm in dynamic motions with
the case where the first stage is turned off. In this case, accelerations are zero and
the algorithm is static. Here, we apply four forces to different body links and plot the
estimated force magnitude and the body index. The geometry of the force is also shown
on top of the curves. It is obvious that the dynamic estimator performs better, at least
over the first three perturbations. It stably reports the body index and rarely jumps to
another value. The last pull is more challenging to detect however, as the ellipsoid is too
narrow to find intersections. Note that the curves are not meaningful when no force is
applied, though the dynamic estimator can estimate the force magnitude (which is zero)
better than the static estimator. Full demonstrations are available in the multimedia
attachment.

in the equation of motion, we estimate the external force vector. Then we search over
all body links to find the point where this external force is applied. The procedure
requires knowledge about link geometries which we approximate by ellipsoids to reduce
the burden of calculations. Although the proposed method requires optimization for
determining accelerations, in the next stages, the closed-form solutions help speeding up
the search process.

We characterized the estimation precision for different body links, force directions
and dynamic motions. The algorithm proves to provide acceptable results for rather small
forces (equivalent to 0.5-1kg compared to the weight of robot which is about 30kg). This
is promising for application on the real robot although a higher level filter is required. The
process is, in fact, challenging due to model mismatches, state estimation inaccuracies,
ellipsoid approximations, singularities, redundancies and the noise. In this chapter, we
tried to implement the algorithm as realistic as possible, simulating conditions on the
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real robot. The proposed algorithm has certain advantages over other similar works:

• Estimating force magnitude and direction.

• Finding force application location.

• Working in dynamical motions as well.

• Computationally very fast.

• Handling floating based calculations.

• Handling many degrees of freedom.

However currently, the method is limited to detection of a single external force. In
future, we would like to extend the method to detect external moments and possibly
multiple forces. Detecting a single moment is rather straightforward since it can be
simply detected from the contact wrenches measured. Considering exact link geometries
as well as testing the method on the real robot are also part of our future work. Please
refer to the multimedia attachment for full demonstrations of the scenarios discussed in
this chapter.
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We introduce a novel inverse kinematics algorithm in this appendix which is robust
to singularities. The motivation behind this study was to improve the performance of
balancing and walking tasks by letting the robot stretch the legs completely and avoid
high torques in crouched postures. These torques lead to high energy consumptions
in the non-ideal actuators of the knees and harm the series elastic elements in the
long term. Stretched legs, on the other hand, lead to singularities in the Jacobian
matrices which mean controllability issues. They further require swift motions in the
knee joints which are not possible on the real robot as well. Therefore, we introduce a
nonlinear optimization method in this part to resolve these issues as well as respecting
the joint-angle limits at the same time. The proposed method uses similar soft strategies
of our inverse dynamics (in chapter 2) to impose priorities between Cartesian tasks,
namely tracking the given CoM horizontal positions and compromising for the vertical
positions in favor of constraints. The experiments of this part involve various symmetric
and asymmetric squatting and balancing motions on the real hardware which show
effectiveness of the proposed method. In fact, the safe operational regions used in this
chapter were integrated into our inverse-dynamics method as well and validated in
simulations. However, due to hardware issues on the torque sensors, they remained to be
validated on the hardware in future and we did not report them in the thesis1.

Publication Note: The material presented in this chapter is adopted from:

• Salman Faraji and Auke Jan Ijspeert. "Singularity-tolerant inverse kinematics
for bipedal robots: An efficient use of computational power to reduce energy
consumption." IEEE Robotics and Automation Letters, 2(2):1132–1139, 2017.

1All the videos of this chapter could be found at https://youtu.be/tFx-WaNbNOY

269



Appendix B. Inverse Kinematics

B.1 Background

Bipedal robots are often mechanically very complex, designed to perform various types
of tasks apart from walking. The location and the number of degrees of freedom (DoF)
are mainly inspired by the human skeletal system, comprising limbs with at least six
joints. From a control perspective, it becomes difficult however to plan a trajectory for
each joint individually to perform a desired motion at the end-effector level. Therefore,
one prefers to transform complex joint-space formulations into Cartesian space (Khatib,
1987), making trajectory planning easier. Using such transformations, one can easily
convert Cartesian trajectories to joint motions, required by individual joints in the robot.
Cartesian control is popular in manipulation (Khatib, 1987), humanoid balance (Sentis
et al., 2010) and locomotion (Moro et al., 2011). The output of this transformation can
generate joint positions, velocities, or accelerations. The first two quantities are often
used in position-controlled robots (Inverse Kinematics, IK), while accelerations are used
more often with the full dynamics model of the robot (Mistry et al., 2010), resulting in
desired joint torques (Inverse Dynamics, ID).

Although IK conversion is nonlinear, there are various methods to solve it either in
a closed-form (Diankov, 2010) or iteratively (Goldenberg et al., 1985), both suitable for
online control. The ID problem is more complex but linear with respect to accelerations,
forces, and torques. One can solve this linear system in a closed-form (Mistry et al.,
2010) or set up a quadratic optimization problem (QP) to consider boundary constraints
(Righetti et al., 2013). These constraints can ensure satisfaction of physical limitations
on joint torques, contact frictions, and joint positions. The latter constraint is typically
realized by putting boundaries on accelerations based on Taylor series expansion of
joint positions. In chapter 3, we successfully combined our QP-based ID algorithm
with advanced state-estimation and torque tracking methods and demonstrated various
compliant balancing behaviors on the COMAN robot. However, on one hand, the position
limit constraint was not effective as it produced largely infeasible accelerations very close
to boundaries. On the other hand, the algorithm was not numerically stable enough in
singular positions. In practice, operating in crouched postures with bent knees caused
higher torques and therefore, less precise tracking performance. Besides, the consequence
over the long term was permanent spring deflections in series elastic elements, increased
backlash, over-heating and large power consumption in addition to less human-like
postures.

In the literature, there are plenty of algorithms proposed for stretched-knee walking.
Apart from model-free walking approaches (Van der Noot et al., 2015), which deal with
singularity problem differently, a large number of model-based algorithms are based on
preplanned knee trajectories, where other joint angles are adjusted to realize desired swing
or Center of Mass (CoM) motions (Ogura et al., 2006; Handharu et al., 2008). Likewise,
the walking planner proposed in (Kurazume et al., 2005) modifies a parametrized 2D
CoM trajectory to limit large knee velocities close to singular positions. For arbitrary
balancing tasks, however, such periodic trajectories can not be found. The idea of
limiting velocities is inspiring, though, the time linkage between positions and velocities
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is encoded in the CoM trajectory, not in the IK method. In other words, preplanned
Cartesian CoM velocities are found in a way to satisfy limitations on the velocity of the
knee joint. The same paradigm is proposed in (Naksuk and Lee, 2005) for balancing
tasks, but again, the trajectory planner handles stretched knee postures.

Given desired Cartesian trajectories, the IK or ID method is supposed to find
joint trajectories that follow the task as precise as possible while satisfying physical
constraints automatically. In this article, instead of focusing on planning trajectories,
we aim at studying physical limitations and propose algorithms that handle them in a
unified online control setup. We limit our study to IK methods to explore important
aspects of joint position boundaries and singularities exclusively. In future, however,
force/torque constraints of our previously developed ID method (in chapter 3) will be
combined with geometrical constraints studied in this article to address a larger number
of hardware limitations.

Stretched-leg postures are more convenient for the mechanical hardware of humanoid
robots, but they introduce two major difficulties to the control problem:

1. Singularities: which mainly refer to the alignment of the hip, knee and ankle joints
and lead to ill-conditioned Jacobians. Such postures limit controllability and might
produce large velocities in the knee joint.

2. Joint position limits: which should be respected together with velocity limitations
to avoid impacts, especially in the knee.

Handling these problems requires a robust method that safely approaches the singularity,
does not vibrate, and safely leaves the singularity again. Besides, in all these phases,
the method should find the closest solution to the desired task. Singularities and joint
limits can be handled in planning level or inside the low-level IK algorithm. For any
specific task, one can adjust the planner to match better with the geometry of the robot.
However, we focus on the baseline IK method to make it robust and general, without
modifying Cartesian planners.

For manipulators, robust IK methods (Chiaverini et al., 1994; Buss, 2004) have
been developed to deal with singularity conditions robustly. These methods either bring
the target position closer to the manipulator (Buss, 2004) or find the closest solution
(Chiaverini et al., 1994). The former falls into planner-level category while the latter is
more interesting as it provides a generic IK method, normally in the form of least-squares
error minimization. To handle stability of trajectories in singular postures, one can add
a damping term which is widely used in literature (Chiaverini et al., 1994; Kryczka
et al., 2011; Sugihara, 2011). Such damping can improve numerical stability in redundant
robots as well (Kryczka et al., 2011). Although one can modify weightings in these
unconstrained least-squares optimizations to avoid joint limits (Dariush et al., 2008),
expressing them explicitly in constrained optimizations is also popular (Escande et al.,
2010). A more general form of such optimization is formulated in (Suleiman, 2016)
or (Vaillant et al., 2016) where velocities are strictly bounded or adaptively damped
respectively.
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All previously mentioned methods are based on time-integration, where the outcome
of optimization is being integrated over time to obtain desired joint positions. Another
class of IK methods solves the exact nonlinear constraint by performing many iterations
in the same time-step (Wang and Chen, 1991). Each iteration here is similar to solving a
quadratic program like before, aiming at getting closer to the exact solution. Adding
position and velocity limitations as well as singularities are less studied in this class of
optimizations, mainly because of computational cost.

Focusing on previously-mentioned geometrical constraints, we formulate a general
IK module that handles inequality constraints in the form of nonlinear optimizations.
We use generalized-coordinate models instead of per-limb models and go beyond walking,
to target arbitrary whole body balancing tasks for our floating-based humanoid robot in
3D. By reimplementing popular IK methods in the literature, we show that getting to
singular positions and coming out in a safe manner can most of the time be problematic
for IK methods based on time-integration. Therefore, the novelty of this work lies
in proper analysis and handling of singularities and joint limitations via the proposed
nonlinear method which combines positions, velocities and inequality constraints in the
same optimization. Our analysis covers multiple behavioral and computational aspects,
proving applicability of the proposed method for the real robot. This is demonstrated
for a couple of different symmetric and asymmetric balancing tasks. The structure of
this chapter is as follows: in the next section, we formulate different IK optimization
problems and present our proposed formulation. Next, we will demonstrate simulations
and experiment results, characterizing the performance and handling physical limitations.
Finally, we conclude the chapter by discussing possible future improvements in the last
section.

B.2 Methodology

The problem of inverse kinematics refers to the conversion of a set of Cartesian tra-
jectories to joint-space. These trajectories which are called tasks hereafter, describe
the translational or rotational motion of interesting points of the robot, for example
CoM, hands, or feet. Given that sometimes tasks cannot be realized exactly due to the
singularities or joint position limits, one might compromise a few, depending on the
application and precision requirements. Imagine we have x ∈ R

M tasks, where a subset
of size N ≤ M can be compromised. If the robot has q ∈ R

K Degrees of Freedom (DoF),

the goal is to find q that satisfies f(q) = x +
�

δ 0
�T

where the slack variable δ ∈ R
N is

to be minimized. Alternatively, one can find q̇ that satisfies [∂f(q)/∂q]q̇ = ẋ +
�

δ 0
�T

and integrate to get q over time. In case of adding limitations, an inequality of the
form lb ≤ g(q, q̇) ≤ ub should be satisfied as well, where lb, ub ∈ R

K represent limits
and g(q, q̇) could be a nonlinear function. Is it better to optimize positions and then
differentiate to find velocities or alternatively, find velocities first and then integrate them
to get positions? This question has many aspects, including computational cost, tracking
precision, robustness in singularities, ability to approach joint limits and ability to escape
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from singularities safely. Here, we consider five different IK algorithms and compare
them regarding the previously mentioned criteria. The first three (IK1, IK2 and IK3)
are common in robotics while the other two (IK4 and IK5) are new ones proposed in
this chapter.

B.2.1 IK1: Error integration

Similar to (Chiaverini et al., 1994), one can find joint delta angles based on the task
error and then integrate over time. To handle singularities, we also introduce damping
factors (diagonal positive definite matrix R), resulting in the following unconstrained
quadratic optimization problem:

min
∆q,δ

δT Qδ + ΔqT RΔq

f(q−) +
∂f(q−)

∂q−
Δq = x +

�

δ

0

�

(B.1)

where q− is the previous desired trajectory and Δq ∈ R
K is motion adjustment to

be found. The matrix R ∈ R
KxK is the well-known damping in least-square methods

(Chiaverini et al., 1994). Imagine SN is a selection matrix which takes the N compromised
tasks out of the vector x if multiplied from left, i.e. SN x. Similarly, SM−N selects the
rest of the tasks. Defining the Jacobian J = ∂f(q−)/∂q− and the error E = x − f(q−),
the optimization of (B.1) has a closed-form solution, calculated by setting the derivative
of the Lagrange equation to zero:

�

Δq

λ

�

=

�

JT ST
N QSN J + R JT ST

M−N

SM−N J 0

�† �

JT ST
N QsN

SM−N

�

E (B.2)

where † is Moore-Penrose pseudo-inverse and λ is Lagrange coefficient for M − N exact
constraints. The desired trajectory and its derivative are then found by:

q = q− + Δq, q̇ =
Δq

Δt
(B.3)

where Δt is the time-step. This fast formulation is equivalent to integrating velocities,
only requiring to solve a linear system of certain dimensions. Note that the error, however,
converges to zero over time-steps with certain dynamics.

B.2.2 IK2: Conjugate gradient method

In this method, we perform all iterations in a single optimization at each time-step:

min
q,δ

δT Qδ

f(q) = x +

�

δ

0

�

(B.4)
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This optimization is solved via conjugate gradient method where each iteration is solved
similar to (B.2) with same damping mechanism. The velocities are then found by solving
the following optimization:

min
q̇,δ

δT Qδ + Δt2q̇T Rq̇

∂f(q)
∂q

q̇Δt = ẋΔt +

�

δ

0

�

(B.5)

where the time-step Δt is used to preserve consistency with (B.1). This optimization
can be solved in closed-form, similar to (B.2). Here, we find the exact solution for both
positions and velocities at each time-step, yet without inequality constraints.

B.2.3 IK3: Integrating errors with inequality constraints

To handle position and velocity limits, one can introduce boundary conditions to (B.1),
i.e. constraining the first stage of IK1. An arbitrary safety criterion can also be defined
as a function of q and q̇. For example:

g(q, q̇) =
(2q − (ql + qu))2

(qu − ql − 2qs)2
+

q̇2

q̇2
max

− 1 ≤ 0 (B.6)

which represents an ellipse spanning between minimum and maximum joint limits
ql, qu ∈ R

K , allowing for maximum velocity q̇max in the middle and zero velocity in
boundaries (refer to Figure B.5A). Reducing velocity boundaries when approaching joint
limits helps avoiding impacts and sudden stopping which is harmful for the mechanical
hardware. The variable qs is a safety margin for the joint limit. If position controllers of
the real robot overshoot in certain trajectories, this variable helps avoiding reaching the
limit and producing impacts. Equation (B.6) is element-wise, though we avoid indices
for simplicity. One can define polygon-based safe regions as well, similar to (Suleiman,
2016). The quadratic optimization problem for this stage will be:

min
∆q,δ

δT Qδ + ΔqT RΔq

f(q−) +
∂f(q−)

∂q−
Δq = x +

�

δ

0

�

g(q− + Δq, Δq/Δt) ≤ 0 (B.7)

Next, the unknown positions q and velocities q̇ are calculated in a similar way to (B.3).
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B.2.4 IK4: Direct position optimization

The formulation of our proposed IK method is similar to (B.4), though with inequality
constraints:

min
q,δ

δT Qδ

f(q) + γ[
∂f(q)

∂q
(q − q−) − ẋΔt] = x +

�

δ

0

�

g(q, (q − q−)/Δt) ≤ 0 (B.8)

The regulator γ is introduced to help the joint getting out of singular positions faster, as
explained in the next section. The novel formulation of IK4 is similar to IK2, although
the optimization method is not conjugate gradient anymore and velocities result from
differentiation, instead of being linked to the derivatives of the task ẋ directly.

B.2.5 IK5: Two-slack optimization

The flexible formulation of IK4 allows for escaping the singularity by incorporating the
knowledge of ẋ into the optimization. A similar way is to define a new slack variable on
velocities:

min
q,δ,�

δT Qδ + γ�T Q�

SN [
∂f(q)

∂q
(q − q−) − ẋΔt] = �

f(q) = x +

�

δ

0

�

g(q, (q − q−)/Δt) ≤ 0 (B.9)

which decouples velocity and position equations, resulting in slightly faster convergence
shown later. The behavioral performance however remains the same as IK4.

Note that IK1 and IK3 are similar in the sense that they both integrate velocities
to find positions. The integration in these methods is over time, where trajectories reach
the target with particular dynamics. On the other side, IK2, IK4 and IK5 are similar
because they perform all iterations at once to reach the desired reference trajectory faster.
In IK3, IK4 and IK5, we add inequality constraints to make sure the motion is feasible
whereas in IK1 and IK2, there is not such guaranty.

B.3 Results

The five IK methods are evaluated in this section over different symmetric and asymmetric
balancing tasks for our robot COMAN. This kid-size robot weighs about 30kg and is
about 1m tall. Disabling the upper body of the robot, we have K = 18 DoF out of
which six degrees are floating base variables for the pelvis of the robot. We consider
six Cartesian tasks of three dimensions: orientations of the two feet and torso (three
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Parameter simulations real robot
Q diag([1 .. 1]) diag([1 .. 1])
R diag([1e-2 .. 1e-2]) diag([1e-2 .. 1e-2])
γ 10 10
n 15 iterations 15 iterations

q̇max 4 rad/s 2 rad/s
qs 0 deg 5 deg

ql and qu joint specific joint specific

Table B.1 – All parameters used in our IK formulations. Except γ and R to be tuned,
the rest of these parameters are robot specific or for safety reasons. The matrix R is
manually tuned to ensure precise and robust tracking of our fast motions. The parameter
γ depends on the speed of motion. Larger values make our fastest task numerically
unstable. For slow tasks however, this value can be increased.

tasks), positions of the feet and position of CoM (three tasks). In this chapter, we do not
explore redundant systems and limit our application to a fully actuated case (M = 18).
We also compromise the CoM position task (N = 3) to handle singularities better.
The position and orientation of both feet are fixed in our experiments. All closed-form
solutions like (B.2) are calculated with LU factorization of Eigen library while inequality-
constrained optimizations are solved with SNOPT. This package uses sequential quadratic
programming and a similar factorization method. Besides, the damping factors R are
already implemented in SNOPT which provide numerical stability of trajectories in
singular conditions. The model of the robot is also calculated by SD-Fast and forward
simulations are done in Webots. For this chapter, we consider a unit-diagonal Q matrix
that gives equal weight to different CoM tasks. In optimization-based methods (IK2,
IK3, IK4, IK5), we iterate n times and always use the solution of the previous time-step
to make the optimization faster, i.e. warm starting. In general, the optimization is
continuous but non-convex, because of nonlinear constraints. Previous solutions however
help to find locally optimal continuous solutions. Simulations and control of the real
robot are done on a Core-i5 1.7GHz CPU in C++ language, using no balancing feedback
and purely sending position commands. All parameters are listed in Table B.1.

B.3.1 Symmetric squatting without singularity

The first trivial task is an up-down motion of CoM (at 1Hz) without reaching limits
or singularities. This scenario merely compares baseline performance of the algorithms.
Although iterating n = 15 times is enough, we explore fewer iterations as well to
investigate the effectiveness of this extra computational cost. Note that our optimization
package uses SQP method, and we only limit major iterations, not those performed at
each QP stage. Figure B.1 demonstrates the tracking error of the five IK methods in
logarithmic scale as well as the computation time. On average, IK4 and IK5 are better
than others, even after reducing the number of iterations. IK2 and IK3 are more sensitive
to the number of iterations, however. We can also notice that extra iterations of IK4
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Figure B.1 – Simple symmetric squatting simulations are shown in A) without reaching
singularities. We repeat the test for n = 15 in B) and n = 3 iterations in C). In each
group, top: task error, middle: task derivative error and bottom: computation time
(filtered). All IK methods provide convincing tracking down to few millimeters. IK2,
IK4 and IK5 perform roughly 2 orders of magnitude better, thanks to exact nonlinear
equations. With fewer iterations, IK2 and IK3 perform worse while IK4 slightly loses
precision. This means that most of the work is done in minor iterations of the first QP
step in the nonlinear optimization. The fastest algorithm is IK1 in this simple test, but
less precise.

and IK5 are not improving the error considerably. For this simple yet fast scenario, IK1

seems to have enough precision and light computation time which makes it attractive for
many robotic applications. However, we will show that it is not well-suited for singular
motions.

B.3.2 Symmetric squatting with singularity

One is now interested to know how these IK methods behave when going to singular
postures. The results of this test are shown in a similar squatting task of a larger CoM
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excursion in Figure B.2. In this case, the reference trajectory goes beyond limitations,
though all IK algorithms can comply with it, thanks to flexible formulations. Although
they all approach the singularity without vibration, they leave this posture with different
dynamics. Integration based methods (IK1 and IK3) are slower while direct position-
based methods (IK2, IK4 and IK5) escape faster. The motion of IK1 is infeasible as it
goes beyond q̇max. It is expected, though, because there is no boundary imposed. Here,
IK4 and IK5 are less sensitive to iteration numbers, and the extra iterations do not
improve the precision considerably. Other algorithms (IK2 and IK3) are very sensitive,
though, often introducing large delays.

B.3.3 Asymmetric squatting with singularity

So far we only explored symmetric tasks with few joints being active. One is also
interested to know how these algorithms perform in asymmetric cases where only one leg
goes to singularity at a time. Here, we simulate similar squatting with singularities and
add a tilt and roll motion to the torso. Figure B.3 shows the resulting trajectories, where
we observe that IK1, IK2 and IK3 fail. IK4 and IK5 are both stable, though IK5

freezes with n = 3 iterations. Here, IK4 and IK5 cost more computation times (with
n = 15) but guarantee a feasible motion. Unlike symmetric cases, IK1 and IK2 produce
infeasible motions here which are not desired. Even though IK3 was able to handle
symmetric singularities and satisfy safety criteria, it is not able to handle asymmetric
motions due to its limited integrating nature. This test proves the capability of our
proposed formulations (IK4 and IK5) to handle different arbitrary tasks, where IK4

only needs few iterations which cost around 2ms of computation time.

B.3.4 Simulating other joint limits

Along with singularities, we mentioned that joint limits are also important for IK

algorithms. Here, we simulate a large tilting motion of the torso where the CoM is also
required to be high. Leaning forward is fine, but when leaning backward, the hip-pitch
joints reach the limit, where the IK algorithm must leave the singular position in the
knee, compromise the CoM task more, and eventually respect the limit in the hip. This
task is not doable with IK1 and IK2 due to violating boundaries and with IK3 due to
the slow integrating nature. IK4 is, however, able to handle the task demonstrated in
Figure B.4. If we use IK2, the robot ignores infeasible hip trajectories which might affect
the actual CoM position and endanger the overall balance shown in the accompanying
video.

B.3.5 Effect of boundary design

One might be interested in using polygon boundary models (Suleiman, 2016) instead
of circular ones (B.6). The ultimate effect depends on the task velocity and the design
of such polygon. As observed in Figure B.5, polygons can generally add a delay when
coming out of the singularity, since the derivative of velocity with respect to position
is bounded close to joint limits. With a circular shape, however, the joint can quickly
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Figure B.2 – Large symmetric squatting simulations are shown in A), spending few
moments in singularity. We repeat the test for n = 15 in B) and n = 3 iterations in C).
In each group, top: CoM trajectory, middle: knee angle and bottom: computation time
(filtered). Although the reference trajectory is infeasible, except IK3, other algorithms
can comply, i.e going to singular posture without vibration and coming out. IK1 and
IK3 have a large delay when coming out of the singular posture. They result in large
velocities (often infeasible) afterwards to catch up with the actual trajectory. IK2, IK4

and IK5 come out faster however. When performing fewer iterations, IK4 and IK5 can
still do the job while IK2 and IK3 perform worse. IK4 requires more iterations than
IK5 on average. Considering the version with fewer iterations however, it turns out that
the extra computation is not practically useful in this case.

accelerate and escape the singularity.

B.3.6 Effect of γ

As said before, the variable γ ≥ 0 mainly influences dynamics of recovering from
singularities in IK4 and IK5. Consider Figure B.6, where the real robot is performing
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Figure B.3 – Large asymmetric squatting simulations are shown in A), where each leg
spends few moments in singularity, but not at the same time. We repeat the test for
n = 15 in B) and n = 3 iterations in C). In each group, top: CoM trajectory, middle:
knee angle and bottom: computation time (filtered). Here, only IK5 (n = 15) and IK4

can survive the motion, while other versions either get frozen or lead to falling eventually.
It is also observed that IK1 and IK2 can cause infeasible knee angles which is not desired.
IK5 requires more iterations to perform the task while IK4 can still survive with few
iterations.

symmetric squatting with singularity. In the case of γ = 0, although the joint can still
leave the singularity (with more delay), when reaching the actual knee trajectory, it
suddenly changes velocity which is not desired (demonstrated in Figure B.5C too). Large
accelerations cause high currents which are harmful for electronics of the robot. Here,
γ helps to get out of singularity faster, by using the knowledge of ẋ which is negative
(Figure B.5B). Besides, γ can smoothen the transition when joining the actual trajectory
too. Although slower tasks might still be stable with larger γ, we found that γ = 10 is
enough to cover all simulations mentioned in this chapter. Larger values make IK4 and
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A) IK2: Motion sequence B) IK4: Motion sequence
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Figure B.4 – When leaning backward, the robot must leave the singular posture in the
knee to respect the joint limit in the hip-pitch joint. IK2 gives infeasible hip angles
A) and keeps the knee in a straight posture while IK4 can easily handle the task B).
Trajectories of the knee and hip joints are shown in C) and D) respectively. Refer to the
accompanying video for full demonstrations.

IK5 unstable in very fast motions. One can also think of limiting accelerations by adding
more inequalities, but this might add unwanted oscillations (Suleiman, 2016). Besides,
such constraints do not help to get out of singularity faster, because the knowledge of ẋ

is missing.

B.3.7 How singularities improve power consumption

We tested a rather simple motion on the real robot both in a singular and multiple
crouched postures to compare the power consumption. Demonstrated in Figure B.7, the
robot is performing a lateral motion with torso twisting. This scenario is computationally
hard due to asymmetry, but IK4 can still handle it even with n = 3 iterations. We
have plotted the average power consumption of the robot in all scenarios as well. It is
known that humanoids consume more power in crouched postures. Here we fit a line
to experimental measurements to quantify the steep rise of power consumption. In the
most crouched scenario which is quite similar to many humanoid robot demonstrations,
COMAN consumes over three times the power of stretched leg scenario (because of
nearly zero knee torques in stretched-leg postures, similar to Figure B.6D). This test

281



Appendix B. Inverse Kinematics

0 20 40 60 80 100

-4

-2

0

2

4

6

8

10

12

14

1 2 3 4 5
0.45

0.5

0.55

reference

IK2

IK4, γ = 0, circular

IK4, γ = 10, polygon

IK4, γ = 10, circular

IK5, γ = 10, circular

x: reference

IK
2

IK
4
, γ = 0, circular

IK
4
, γ = 10, polygon

IK
4
, γ = 10, circular

IK
5
, γ = 10, circular

circular  

boundary

sharp

delayed escape

from singularity

possible 

hyperbolic

velocities 

polygon 

boundary

velocity overshoot   

violating safety limits

sharp

smooth

A)
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Figure B.5 – The role of joint boundaries and the parameter γ in our IK algorithms. A)
and B) reference and actual CoM height trajectories, C) knee trajectories in position-
velocity space. Starting from an arbitrary point within the feasible boundaries, the knee
joint approaches the singularity in 0 degrees over the defined boundary. It spends few
moments in the singular position without vibrations and then comes out with certain
dynamics. The boundaries limit hyperbolic velocities of the joint when approaching
singularity. When coming out, however, it takes time for the joint to catch the actual
trajectory again. Different boundaries might introduce certain delays, depending on the
task. Here, a too safe design of polygon boundary proposed by (Suleiman, 2016) leads to
a high delay. Note also that removing γ results in a delayed escape from singularity and
instantaneous jump in the velocity which is not desired (refer to Figure B.6 too).

motivates the benefit of our proposed IK method in many balancing tasks to reduce
power consumption and provide more human-like postures.

B.4 Discussion

Balancing with crouched knees is very popular for humanoids as it provides full control-
lability properties. However, it brings many mechanical problems in the long term and
requires more electrical power. Motivated by solving these practical issues, we formulated
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Figure B.6 – The real robot in A) is performing large and symmetric squatting motions
(like Figure B.2) with IK4 while reaching singularities. This task requires large velocities
demonstrated in B) when approaching or coming out of singularity. One can clearly
observe that the current C) and joint torque D) decrease drastically in singular position.
Thanks to circular boundaries, the knee joint does not hit the limit with high current,
i.e. safely approaches the joint limit and singularity. Coming out of singularity, however,
the algorithm without γ results in a momentary peak in current while introducing γ

can decrease this dangerous peak. Another remarkable point is that the joint produces
negative current directly after leaving singularity. In these short moments, the robot
transfers weight to the knee and loses potential energy.

and tested traditional IK algorithms, aiming at performing balance with stretched legs.
Thanks to flexible damped least-squares formulations, these algorithms were numerically
robust in singular positions and could handle to some extent, the safety criteria when
reaching joint limits. However, due to the integrative nature, they largely fail in arbitrary

283



Appendix B. Inverse Kinematics
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Figure B.7 – Demonstration of lateral and twisting motions on the real robot with A)
stretched and B) crouched knees. C) One can observe that crouched postures consume
much more power on average. Here, the consumptions of electronics (about 108W) and
quiet stretched-leg stance (about 10W) are subtracted.

symmetric and asymmetric tasks where rapid escape from singularity plays an important
role in tracking. These algorithms often freeze or even lead to falling in such scenarios.
Besides, in the literature, most of the straight-knee walking algorithms use preplanned
trajectories which limit the generality of the IK block for arbitrary balancing tasks.

We formulated nonlinear optimizations instead to remove the time integration and
introduced constraints to handle safety criteria. The idea of using damped least-squares,
boundaries, and nonlinear optimizations is adapted from literature. The novelty of this
work, however, lies in combining them together and incorporating the knowledge of
task derivatives to improve the behavior, especially when coming out of singularities.
This is the key feature to handle arbitrary balancing tasks where each knee might go to
singularity and come out at different times (refer to the accompanying video). To the
extent of our knowledge, no other IK method combines position and velocity variables
together and mix them with inequality constraints.
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B.4. Discussion

All IK methods were compared extensively over tasks of different nature. Control-
related difficulties faced with singularities are not limited to numerical stability. We
showed that the two proposed IK algorithms have superior performance in approaching
singularities and coming out of them as well. IK5 is generally faster than IK4, but
behaves similarly. Over asymmetric tasks however, it requires same computation times
and shows more sensitivity to the number of iterations. Therefore, IK4 outperforms
all other algorithms, even with a fewer number of iterations. We also showed that
for our nonlinear formulation, handling the typical 18 DoF of a balancing humanoid
is computationally affordable (about 2 milliseconds). We consider implementation
improvements and extension to more DoF for future works.

An interesting secondary result was also presented, comparing the power consumption
of stretched and crouched balancing tasks. The steep rise of power motivates application
of our proposed IK algorithm as a low-level block that robustly transforms arbitrary
Cartesian tasks to joint-space motions. Such block can improve power consumption and
mechanical durability of humanoid hardware. In future, we are going to use the ideas we
developed here in our ID formulation of chapter 3 to provide a general framework that
handles geometrical and dynamical limitations while tolerating difficulties of singular
postures.

285





C 3LP Symbolic Equations

The parametric matrices C describing 3LP dynamics in single and double support phases
are found by Maple. These matrices are sparse and have duplicate elements, since the
sagittal and lateral dynamics are similar. In this appendix, we provide symbolic equations
for the case where the limb inertias Ii and torso and slope angles (θ and φ) are zero. With
those variables, 3LP equations are much more complicated. Define auxiliary parameters:

u = h3 + h1

v = h2 − h1

c1 = m1uh1 + m2v2

c2 = m1uh1 + 2m2v2

c3 = −m1h1 + m2v − m2h1

c4 = (−1 +
2t

Tds
)h1 + v (C.1)

The matrices in (6.10) take the form:

Css
X =

g

c1







(− c2

h2
+ m2v)I m1h1(v+u)

h2
I vc3
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I
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s =
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(C.2)
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Appendix C. 3LP Symbolic Equations

The matrices in (6.22) are found as:

Cds
X = gh1m1

c2







0 0 0
(−1 + t

Tds
)I I − t

Tds
I

0 0 0







+gm2

c2







0 0 0
c4I −2vI c4I

0 0 0







Cds
U = h1
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0 0
0 I

0 0







Cds
V = (1 − t

Tds
) Cds

U

Cds
W = h1

c2







0 0
uI −I

0 0







Cds
s = 0 (C.3)

where I ∈ R
2×2 is identity matrix and J = [0 1]T . The closed form transition matrices in

(6.12) and (6.23) are then calculated symbolically based on these matrices. Altogether,
offline calculations require about 3.7k FLOPS in a maple-optimized code which take few
microseconds on an average core-i5 computer if implemented in C++. The results are
constant matrices in (6.13) and (6.13) which can be used online with a much faster speed.

288



D DLQR for Constrained Systems

For a discrete constrained system of:

X[k + 1] = AX[k] + BU [k]

CX[k + 1] = 0 (D.1)

which has a set-point solution X̄[k] and Ū [k], the error system is defined as:

E[k + 1] = AE[k] + BΔU [k]

CE[k + 1] = 0 (D.2)

where E[k] = X[k] − X̄[k]. Here, regardless of the control strategy, the constraint
represented by C should always be satisfied. Consider A ∈ R

N×N and B ∈ R
N×M and

C ∈ R
P ×N . The DLQR optimization problem for this system is:

min
E[k],∆U [k]

�

∞
k=0 E[k]T QE[k] + ΔU [k]T RΔU [k]

s.t.

�

E[k + 1] = AE[k] + BΔU [k]
CE[k + 1] = 0

k ≥ 0 (D.3)

Assume we find a matrix C̃ ∈ R
(N−P )×N that forms a complete basis with C. In other

words, the matrix S defined by:

S =

�

C̃

C

�

(D.4)

has a full rank. Now, we define a new variable Z[k] = SE[k] which will produce the
following new DLQR problem:

min
Z[k],∆U [k]

�

∞
k=0 Z[k]T Q̃Z[k] + ΔU [k]T R̃ΔU [k]

s.t.

�

Z[k + 1] = ÃE[k] + B̃ΔU [k]
C̃Z[k + 1] = 0

k ≥ 0 (D.5)
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where:

Q̃ = S−T QS−1, R̃ = R

Ã = SAS−1, B̃ = SB, C̃ = CS−1 (D.6)

Note that:

Z[k] = SE[k] =

�

C̃E[k]
CE[k]

�

=

�

Y [k]
0

�

(D.7)

where Y [k] ∈ R
N−P is reduced to exclude the constraint. Assuming P < N , a full

rank C and M >= P , we can find P independent components of ΔU [k] and rewrite
the constraint in terms of these components. Without loss of generality, assume these
components are the last P components of ΔU [k], referred to as ΔW [k] hereafter:

ΔU [k] =

�

ΔV [k]
ΔW [k]

�

(D.8)

where ΔV [k] ∈ R
M−P and ΔW [k] ∈ R

P . Consider we decompose matrices Q̃ and R̃ as
follows:

Q̃ =

�

Q̃vv Q̃vw

Q̃wv Q̃ww

�

, R̃ =

�

R̃vv R̃vw

R̃wv R̃ww

�

(D.9)

where the last lower right corner of size P × P is taken out with an index ww. Likewise,
system matrices Ã and B̃ can be decomposed to:

�

Y [k + 1]
0

�

=

�

Ãvv Ãvw

Ãwv Ãww

� �

Y [k]
0

�

+

�

B̃vv B̃vw

B̃wv B̃ww

� �

ΔV [k]
ΔW [k]

�

(D.10)

With such decomposition, we can take ΔW [k] out of (D.10) from the last P rows:

ΔW [k] = G̃Y [k] + H̃ΔV [k]

G̃ = −(B̃ww)−1Ãwv

H̃ = −(B̃ww)−1B̃wv (D.11)

and:

Y [k + 1] = ĀY [k] + B̄ΔV [k]

Ā = Ãvv + B̃vwG̃

B̄ = B̃vv + B̃vwH̃ (D.12)
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Now, given that we have resolved the constraint, we can form an equivalent DLQR design
in terms of Y [k] and ΔV [k] by replacing ΔW [k] in all terms:

min
Y [k],∆V [k]

�

∞
k=0

Y [k]T Q̄Y [k] + ΔV [k]T R̄ΔV [k] + 2Y [k]T N̄ΔV [k]

s.t. Y [k + 1] = ĀY [k] + B̄ΔV [k] k ≥ 0 (D.13)

which has a standard DLQR format without constraint. The new cost matrices in (D.13)
are defined as:

Q̄ = Q̃vv + G̃T R̃wwG̃

R̄ = R̃vv + H̃T R̃wwH̃ + R̃vwH̃ + H̃T R̃wv

N̄ = G̃T (R̃wwH̃ + R̃wwT H̃T + R̃vwT + R̃wv) (D.14)

We call the optimal DLQR gain matrix for (D.13) K̄ which acts on Y [k] = C̃E[k] and
produces ΔV [k]. The other part of system input ΔW [k] can be calculated by (D.11).
Overall, the system input is:

ΔU [k] =

�

−K̄

G̃ − H̃K̄

�

C̃E[k] (D.15)

which optimally satisfies the constraint and initial DLQR problem in (D.3).
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E Time-Projection for Constrained

Systems

Time-projection controller for a constrained system is derived very similarly to a normal
system. Consider all formulations and decompositions of Appendix A. The instantaneous
error e(t) = x(t) − x̄(t) in a constrained system would evolve until the next control time
by:

Êt[k + 1] = A(τ)e(t) + B(τ)δÛt[k] (E.1)

where τ = (k + 1)T − t and the constraint applies CÊt[k + 1] = 0. Here we assume a
constant input δÛt[k] applied to the system which yields to a predicted error Êt[k + 1].
Remember the hat notation is used to emphasize that these predicted quantities are
just calculated at time t and they are not real system variables. Imagine we define
z(t) = Se(t), Ãt = SA(τ)S−1, B̃t = SB(τ) and perform a decomposition similar to
(D.10):

Ẑt[k + 1] = Ãtz(t) + B̃tδÛt[k]
�

Ŷt[k + 1]
0

�

=

�

Ãv
t

Ãw
t

�

z(t) +

�

B̃vv
t B̃vw

t

B̃wv
t B̃ww

t

� �

δV̂t[k]
δŴt[k]

�

(E.2)

which describes system evolution from time t to (k + 1)T whereas the constraint in (D.5)
describes same evolution from kT to (k + 1)T . Here the subscript t indicates dependency
on t. Note that the last P elements of z(t) might not be zero in kT < t < (k + 1)T , but
the constraint implies that these last P elements have to be zero at time instances kT

and (k + 1)T . Similar to (D.11), we can take δŴ [k] out of the last P equations:

δŴt[k] = G̃tz(t) + H̃tδV̂t[k]

G̃t = −(B̃ww
t )−1Ãw

t

H̃t = −(B̃ww
t )−1B̃wv

t (E.3)

293



Appendix E. Time-Projection for Constrained Systems

and new system matrices would be defined as:

Ŷt[k + 1] = Ātz(t) + B̄tδV̂t[k]

Āt = Ãv
t + B̃vw

t G̃t

B̄t = B̃vv
t + B̃vw

t H̃t (E.4)

Note that in (D.12) and (E.4), the constraint is resolved. In other words, system matrices
are adjusted such that they account for the effect of W inputs which aim at satisfying the
constraint. Now, we can consider time-projection for this free system as follows. Imagine
an initial reduced state Ŷt[k] evolves in time by δV̂t[k] according to (D.12) and yields
to Ŷt[k + 1]. Similarly, the current error z(t) evolves in time by δV̂t[k] and yields to the
same Ŷt[k + 1] according to (E.4). Now, the system of equations in (7.10) can be applied
here as well:







Ā B̄ − B̄t ·

K I ·

· −H̃t I













Ŷt[k]
δV̂t[k]
δŴt[k]






=







Āt

0
G̃t






Se(t) (E.5)

where the solution defines δu(t) = δÛt[k] to be applied at time instance t.
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F Time-Projection Stability Proof

Consider a simple system of:

ẋ(t) = x(t) + u(t) + w(t) (F.1)

where u(t) is the control input and w(t) is disturbance. Consider a control period T and
steady-state solutions x̄ = 0 and ū = 0. The closed-form evolution of this system could
be written as:

X[k + 1] = eT X[k] + (eT − 1)U [k] (F.2)

assuming a constant U [k] applied to the system. Now, imagine we use a discrete controller
at time instances kT to adjust the constant input with a law of:

U [k] = −ΓX[k] (F.3)

The stability of closed-loop system suggests that:

|eT − Γ(eT − 1)| < 1 (F.4)

which puts boundaries on Γ:

1 < Γ <
eT + 1
eT − 1

(F.5)

For this system, the DLQR controller satisfies this criteria. The time-projection controller
takes a state x(t), maps it to the previous time-sample kT and finds the control input
based on the discrete controller Γ. Without loss of generality, assume t is between the
first two time-samples (kT < t < (k + 1)T ) and:

x(t) = etX̂t[k] + (et − 1)δÛt[k]

δÛt[k] = −ΓX̂t[k] (F.6)

where X̂t[k] is a possible predicted initial state that can lead the current measurement
x(t). The two laws of (F.6) and system equations (F.1) result in the following closed-loop
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Appendix F. Time-Projection Stability Proof

system:

x(t) = et(−δÛt[k]
Γ

) + (et − 1)δÛt[k]

ẋ(t) = (1 +
1

− et

Γ
+ et − 1

)x(t) (F.7)

which is found by resolving X̂t[k] in (F.6) and plugging u(t) = δÛt[k] in (F.1). In order
to produce finite feedbacks, the denominator in (F.7) should not have a zero in 0 < t < T .
In other words, the root of denominator t0 should be outside [0, T ].

−et0

Γ
+ et0 − 1 = 0 → t0 = ln(

1
1 − 1

Γ

) (F.8)

This leads to the following two conditions:







ln( 1
1−

1
Γ

) < 0 → 1
1−

1
Γ

< 1 → Γ < 0

ln( 1
1−

1
Γ

) > T → 1
1−

1
Γ

> eT → Γ < eT

eT −1

(F.9)

This will further tighten the boundaries of (F.5) to:

1 < Γ <
eT

eT − 1
(F.10)

Note that DLQR design does not necessarily satisfy this criteria, unless proper state
and input cost matrices are chosen in the objective. Consider the lyapunov function
V (t) = 1

2x(t)2 whose derivative is:

V̇ (t) = x(t)ẋ(t) = �(t)x(t)2 (F.11)

where:

�(t) = 1 +
1

− et

Γ
+ et − 1

(F.12)

It is obvious that �(t) is monotonically decreasing, because Γ > 1 and thus:

�̇(t) =
et( 1

Γ
− 1)

(− et

Γ
+ et − 1)2

< 0 (F.13)

Since �(0) = 1 − Γ < 0, one can conclude that:

V̇ (t) = �(t)x(t)2 < �(0)x(t)2 (F.14)

which proves that V (t) is decreasing and the system is stable with any choice of Γ in
(F.10). In order to compare the LQR and time-projection controllers with a simple
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Figure F.1 – One degree-of-freedom system with continuous, DLQR and time-projection
controllers.

continuous controller of u(t) = −γx(t), we find the discrete feedback gain Γ by converting
closed-loop eigen-values. The discrete eigen-value (Λ) of (F.4) is converted to a continuous
eigen-value (λ) by a logarithm operation:

Λ = eT − Γ(eT − 1) = eλT (F.15)

Given that λ = 1 − γ, we can λ as:

γ = − ln(eT − Γ(eT − 1))/T + 1 (F.16)

This let us compare the three types of controller on a fair basis. Consider we select T = 1,
Q = 1 and R = 1 for DLQR design which yields Γ � 1.43 and it satisfies (F.10). The
equivalent continuous gain for this system would be γ � 2.37. Figure F.1 demonstrates
how an inter-sample disturbance could be rejected by these controllers. The DLQR
controller overshoots, simply because of a late response which only starts at time t = 2.
The continuous controller γ smoothly damps the disturbance while the time-projection
controller performs damping in multiple steps with the same rate as the continuous
controller. One can imagine that with decreasing T , the time-projection controller will
converge to the continuous controller.
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