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Introduction

Human body is an extraordinary machine. He is extraordinary because he

is provided with a consciousness. This consciousness allows him to realize that

he is a machine able to move in the world thanks to its own gesticulation. Yet

this consciousness does not allow him to get a direct insight into the underlaying

mechanisms. Indeed, human consciousness is raised through the flow of actions.

And those actions do not occur inside the motor space, at the muscles level, but

rather in the physical space, the space where human movements happen. For

instance, choreographers do not talk to muscles of dancers. But they talk to

dancers about the movements to perform inside the physical space. And dancers

play these movements with their own feeling, without controlling individually each

muscle. The same applies for locomotion. Usually, humans walk just as they

breathe, in an unconscious fashion. Which machinery is at the origin of this

unconscious orchestration in human locomotion? This question remains an enigma.

Some answers and interpretations have already been suggested by various scientific

communities like biomechanics, physiology, neurosciences, medicine, etc. This thesis

contributes to this endeavor by proposing a study framework and by highlighting a

particular coordination which occurs during walking.

Unlike choreographers, roboticists directly talk to the actuators of robots. They

can individually control each of their actuators. Hence, they have a direct influence

on the motions of limbs, which leads to the whole displacement of robots. Yet, these

actuators must not be controlled separately but jointly, in order to produce the right

orchestration allowing these displacements. Several frameworks have been proposed

to achieve this coordination. But they remain limited to particular environments. A

common wish is expressed inside the robotics community to enable legged robots to

move in autonomous manner inside rough and heterogeneous locations. This thesis

provides an initial response to this wish by introducing an original and versatile

framework for multi-contact locomotion of legged robots.





Chapter 1

Anthropomorphic locomotion
Contents

1.1 Basic principles of anthropomorphic locomotion 5
1.2 Study of human locomotion 11
1.3 Anthropomorphic robots locomotion 15
1.4 Thesis overview 17
1.5 Associated publications and softwares 18

M
oving by its own is the essence of living beings. Locomotion is the faculty

for animals or mechanical systems to move from one place to another. It is

the main characteristic which differentiates the animal reign from the vegetal one.

Animals have the ability to move freely while plants are condemned to fixity by their

roots. On earth, three different media are the substrates for locomotion: aquatic,

terrestrial and aerial environments illustrated in Fig. 1.1. For each medium, nature

through evolution has given birth to various morphologies adapted to the physical

properties of the medium. In air for instance, evolution has resulted in wings to

allow birds to support their weight and then flight. On land, legged morphologies

exhibit a remarkable ease to cross gaps, run on uneven surfaces or just walk on a

wide variety of textured terrains (sandy beach, grassland, steep ground, etc). This

great ease to move might explain in some sense why robotics engineers have been

aspiring to build legged machines for decades to overcome the intrinsic limitations

of wheeled machines.

1.1 Basic principles of anthropomorphic locomotion

In this thesis, we focus on a particular type of legged locomotion called

anthropomorphic locomotion. It corresponds to the locomotion of systems having

a human-like morphology. Thereon, human and humanoid locomotions are

the two main instances of anthropomorphic locomotion. In what follows, we

introduce the main vocabulary and principles commonly employed in the context

of anthropomorphic locomotion. All the concepts detailed below are familiar to

everyone because they translate in words the way he or she - as human beings -

behaves everyday.

1.1.1 The three spaces of movement

Human beings and humanoid robots share the same ambient space, where physical

laws govern the motion of bodies. We refer the ambient space as the physical space.

It is the space where all the actions occur. For instance, when a human holds a

hammer to nail, the action of nailing takes place in the physical space.
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(a) Bee in flight (b) Cheetah running (c) Sea turtle swimming

Figure 1.1: The three media on earth. Each medium has its own physical
properties which influence the evolution of the species living in it.

In order to hold the hammer or to nail, the articulations of the arm and the

shoulder are either stiffened or put in movement thanks to skeletal muscles. Skeletal

muscles are soft tissues, linking two consecutive bones together and producing force

and motion as a result of their contraction. Fig. 1.2 shows the muscle structure of

humans in the anatomic position. In the context of humanoid robots, biological

muscles are replaced by actuators (electrical motors, hydraulic pistons, etc). Both

muscles and actuators belong to the so-called motor space. It is the space of control,

where the central nervous system or computers make specific orders for the purpose

of animating the poly-articulated structure.

Finally, in order to precisely put the head of the hammer onto the nail, humans

must be aware of the precise location of the nail with respect to themselves. This

precise location is provided by exteroceptive sensory receptors which convey stimuli

towards the central nervous systems. All these receptors provide information about

the outside world and form what are called exteroception or exteroceptive senses:

vision, audition, taste, olfaction and touch, including equilibrioception through the

vestibular system. In addition to the exteroception, the human body is provided

by proprioceptors which supplies internal state information: stretch in the muscles,

lengthening of ligaments, etc. Proprioceptors constitute the proprioception. All

those aforementioned stimuli project into the so-called sensorial space. For their

part, humanoid robots are not yet equipped with biological but electromechanic

sensors: force sensors, tactile cells, cameras, accelerometers for the exteroception

and encoders, load cells for the proprioception, just to name a few.

1.1.2 Posture and placement

As anthropomorphic systems, humans and humanoid robots share a common

morphology: both of them are roughly equipped with two arms, two legs, one torso

and one head. Although similar in terms of morphology, human body owns much

more degrees of freedom than current humanoid robots. One counts around 360

articulations in the human body against more or less 30 joints for most humanoids.

All those degrees of freedom define the posture, namely the shape of the body.

Yet, the postural information is not sufficient to describe the location of the

body in the physical space. The missing information corresponds to the notion
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Figure 1.2: Unveiled human body. Illustration of the main skeletal muscles
constitutive of the human body in the anatomical reference posture. Around 600
muscles put in motion the various articulations composing the human skeleton.
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Figure 1.3: Human postures. Four different postural configurations: arched back,
lean forward, straight and lean backward.

of placement. A placement characterizes the position and the orientation of a

particular corporal segment, like the head, the chest or the waist for instance. The

combination of posture and placement variables is then sufficient to solely describe

the individual segment locations inside the physical space.

1.1.3 Actuation and under-actuation

As mentioned earlier, the human posture is put in movement by muscles. In total,

there are over 600 muscles to animate the posture. In some sense the human body

can be considered as an over-actuated system: there are more actuators than degrees

of freedom to control.

In contrast, there is no actuator or organ to directly operate the placement

quantity. The same applies for biking for instance. The rider can move forward

thanks to the pedal and turn with the handlebar. But it is impossible for he or she

to directly achieve a lateral movement. The biker has to make some maneuvers by

combining the effect of the pedal with the change in the direction. For this reason,

anthropomorphic bodies and bicycles are also known as under-actuated systems.

1.1.4 Physics of anthropomorphic locomotion

Anthropomorphic locomotion is first and foremost a dialogue with gravity. Human

skeleton continuously experiences gravity, with an influence of variable strength
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which depends on the context. For instance, body suffers more from the effect

of gravity when it travels a rolling countryside rather than when it walks on a

flat ground. Gravity acts on every single segment composing the body. Its effect

depends directly on the shape and the mass distribution of segments.

The necessity of contact interaction A remaining question is how do humans

control their placement? How do they transform their inter-limb motions into

displacement? The answer lies in the physical interaction between the human body’s

extremities and the environment. For instance, when feet touch the ground, they

produce a deformation of the ground structure at the atomic scale. This atomic

structure withstands the pressure developed by the feet. As a consequence, feet stick

to the atomic structure and it produces in return an equal and opposite reaction

which operates on the body placement. This physical interaction acts directly on

the linear and angular momenta, allowing a displacement of the center of mass.

The notion of centroidal dynamics The shape and the mass distribution of

segments together with the posture define entirely the center of mass of the body.

It is also known as the center of gravity, namely a virtual point where the action of

gravity is condensed. It is a geometric quantity.

Motions of body segments through the variations of posture affect the linear and
angular momenta of the limbs. They relate the quantity of motion in translation

and rotation of the segments, i.e. in some ways the kinetic energy involved in the

motion.

However the anthropomorphic body can be reduced to a single point-mass

model defined by the combination of all segments linear and angular momenta.

The position of the reduced system then coincides with the body center of mass

position. This reduction is called centroidal dynamics model. The dynamics of this

point-mass system is only governed by the contact interaction with the ground.

In other words, the forces exerted by the muscles indirectly affect the centroidal

dynamics through contacts.

In this thesis, we highlight the leading role played by the centroidal dynamics

in human locomotion, but also for the generation of locomotor trajectories for

humanoid robots.

1.1.5 Equilibrium in locomotion

Equilibrium is the fact to maintain balance, or in other terms, the fact to avoid

any unexpected fall. Many scenarios can lead to fall: a bad coordination of

segmental motions, an unexpected contact, etc. Equilibrium is a pre-requisite

to accomplish other skills, like reaching movements or locomotion. For all these

reasons, equilibrium plays a central role in the understanding and the generation

of anthropomorphic locomotion.
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Figure 1.4: Vestibular apparatus. Tomography 3D of the vestibular system.
The yellow parts are the three semicircular canals in charge of sensing rotational
movements. Otolithic organs are located at the base of the semicircular canal
system. They sense the linear accelerations of the head.

Senses of equilibrium Multiple sensorial inputs contribute to the sense of

equilibrium: visual inputs, vestibular inputs as well as some postural information

provided by mechanoreceptors. Among all those receptors, the vestibular system

has an important function. Indeed, it is the only sense which has no dedicated

area in the brain, unlike vision or audition. But the vestibular afferents are directly

processed by other cortical area devoted to other senses like vision or proprioception.

This leads for example to the vestibulo-ocular reflex, where eyes move according to

the afferent signals from vestibular apparatus. It allows to stabilize images on the

retina and it simplifies the data process for visual interpretation.

Vestibular apparatus The vestibular system, depicted in Fig. 1.4, is a

component of the the inner ear which is located just after the auditory canal. It is

composed of two main parts. The first one is composed of three semicircular canals

(yellow part in Fig. 1.4). They detect rotational movements of the head. At the

base of the semicircular canal system are the otolithic organs. They sense the linear

accelerations of the head.

1.1.6 A first definition of anthropomorphic locomotion

From the previous statements and observations, we can establish a first definition

of anthropomorphic locomotion. Anthropomorphic locomotion is the faculty for a

system to modify its placement, i.e. to perform a displacement, by the motion of

body segments together with the contact interaction of the limb extremities with

the environment. To produce the right contact reactions that keeps from falling,

the body segments must be actuated with a particular orchestration, driven by the

nervous system under the influence of sensorial stimuli.

1.1.7 Walking as a particular mode of locomotion

Among all modes of locomotion (running, climbing, crawling, etc.), walking is the

most familiar to us. It is one of the first modes that we experimented during infancy
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Figure 1.5: Example of nominal walk. Two women walking normally on paving
stones.

Figure 1.6: Two examples of disequilibrium. The woman as well as the boy
start to walk normally and then must watch their steps in order to avoid falling.

after crawling. It also the mode we use most of the time. However, we do not walk

all the time with the same gait, with the same pattern. We may distinguish between

two types of walking. The walk where humans have to look at their steps when

the ground is too uneven. And the thoughtless walking, that is when humans walk

without thinking about it, i.e. without looking where they have to place their feet.

It is a reflexed-base walk. This two types of walking are illustrated in Fig. 1.5 and

Fig. 1.6.

For both types, walking is defined by the succession of single and double support

phases. During the single support phase, the stance leg carry all the body weight

while the other leg swings forward from the hip. Then the swing foot hits the ground

with the heel, that marks the beginning of the double support phase. During a cycle,

the stance foot describes a rolling motion from the heel through the toe.

1.2 Study of human locomotion

The orchestration at the origin of human locomotion remains largely a mystery.

Exploring this orchestration is a multidisciplinary topic of research involving for

decades many scientific disciplines as neurosciences, physiology, biomechanics,

medicine and of course robotics. Despite the complexity of the locomotion
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Figure 1.7: Chronophotography of human motions. Superimposition of
several photographies of a man walking and running, late 19th century.

process, technical progresses have allowed some important breakthroughs in its

understanding. Among these breakthroughs, there are electromyography to

measure electrical muscle activities, electroneurography and microneurography to

record nerve impulses but also techniques as motion capture systems, to analyze the

global motion of human body. In the following, we only consider human locomotion

through the prism of biomechanics. Biomechanics studies mechanical properties of

biological systems. It is an old scientific discipline with a long history.

1.2.1 A brief history of technical progresses in biomechanics

The first scientific studies on human mechanics date back to Renaissance period. It

was at this time that mechanics appeared as a scientific discipline at the instigation

of Galilee. The first book describing the mechanical organization of the human

body, in other words human biomechanics, was written by Giovanni Alfonso Borelli

in 1680 and entitled De motu animalium (Movement of Animals). In his book,

Borelli compared the human body to a machine composed of levers and strings,

representing bones and muscles respectively, similar to a marionette.

It was not until the beginning of 19th century that the first experimental studies

on human locomotion appeared thanks to Wilhelm and Eduard Weber [Weber and

Weber, 1836]. They measured some of the main features of human walking: step

length and pattern frequency as well as a rough estimate of the center of mass

position in standing position.

Yet, the study of human locomotion increased thanks to technical evolutions.

The first technological step forward was achieved by Eadweard Muybridge with

the invention of chronophotography in 1878. This technique consists in a
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superimposition of several photographies in order to temporally decompose motions.

Fig. 1.7 depicts two examples of chronophotography. In some sense, it was the first

motion capture system.

The first electromyography was achieved in the twenties by

Wachholder [Sternad, 2002]. He was investigating the coordination of muscular

activities during walking. In his studies, he precisely found out which muscles are

involved in the processus of walking.

Last, the first force plate was introduced by Elftman Herbert in 1938 [Elftman,

1938]. It consisted in a platform suspended by four springs. The compression of

the springs allow to estimate the forces acting on the platform. All modern plates

follow the same design principles.

All these historical notes allow us to better understand how human locomotion

experiments were influenced by technical advancements. A wider overview on the

history of human locomotion studies is addressed in Latash and Zatsiorsky [2001].

Today, most of modern biomechanics laboratories are equipped with a motion

capture system, one or several force plates, electromyographic sensors, wearable

inertial measurement units, etc. Nevertheless, measurements coming from these

sensors are not usable in their raw states and must be processed first.

1.2.2 From measurements to estimation

Biomechanics sensors provide raw measurements: force and torque signals from the

force plates, 3d positions of reflective markers from the motion captures, muscular

activities from electromyography sensors, etc. All those measurements also convey

noise of various levels depending on the technology employed and the positioning

of sensors. For instance, 3d positions of reflective markers are related both to the

movement of the supporting segment, but also to the intermediate skin movement,

leading to unwanted artifacts. In addition, measures of marker positions through

visual devices adjoin extra uncertainties. Ideally, one’s would like to only keep

the interesting part of signals and remove the components due to artifacts. Yet

it is hard to guess what is the contribution of noises in raw measurements. To

overcome this issue, researchers in biomechanics tend to reduce input noise levels

by using standard methods from signal processing, like low or high pass filtering, etc.

However, there is no guaranty that noise is located in a precise spectral bandwidth

or that useful information will not be affected by filtering.

Another important issue concerns the observability properties of the physical

quantities from measurements. In other terms, is it possible to entirely reconstruct

all informations from the given measurements? If we refer to the classic textbook

of biomechanics methodologies [Winter, 2009, Robertson et al., 2013], this issue

is under-estimated inside this community. On the contrary, it is a crucial

topic for roboticists to allow the feedback control of complex robots from sensor

measurements. If a physical quantity is not observable, that means it is impossible

to retrieve its values from any measurement. Then, any conclusion dealing with

non-observable quantities is dubious.
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Figure 1.8: An example of movement coordination. Chronophotography of
Eadweard Muybridge throwing a disk, 1893.

Nevertheless, observability conditions are not sufficient. The practical

introduction of estimators is essential to ensure the complete reconstruction of

observable quantities. There exists a wide range of estimators. They usually merge

various signals in order to reconstruct desired quantities. They allow the estimation

of bias, the reject of noises, etc. Biomechanics methodologies do not yet include

such tool to increase likelihood of data extracted from measurements.

One of the contribution of this thesis is to establish the observability conditions

of the center of mass position, i.e. we exactly define what are the components

of the center of mass position which can be estimated using standard protocols

of biomechanics. In addition to that, we introduce a new estimator based on

complementary filtering to reconstruct this position of the center of mass. The

originality of this estimator is to merge common measurements (force plate signals,

motion capture data) according to their frequency resolutions. This estimator is

also granted to provide the entirety of the signal by construction.

1.2.3 Orchestration of human locomotion

As mentioned earlier, human locomotion is a complex process involving hundreds

degrees of freedom as well as hundreds muscles. Encompassing all the small

details of this process certainly goes beyond scientific understanding. In spite

of this complexity, it is still possible to observe either muscles coordinations or

limb coordinations when achieving some tasks [Flash and Hogan, 1985]. For

instance, Fig. 1.8 illustrates the throw of disk by Eadweard Muybridge. On this

chronophotography, we observe that his right hand is forward while his right leg

and left hand are positioned backward. This corresponds to a coordination of the

upper and lower limbs to ensure the balance of the body.

In the context of locomotion, several orchestration principles have already been

observed. It has been shown in Barliya et al. [2009] that the elevation angles of the

lower limb segments lie in a plane during walking. In Pozzo et al. [1990], the authors
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(a) Atlas
Boston Dynamics

(b) HRP-2
Kawada Industries

(c) TORO
Deutsches Zentrum für Luft-

und Raumfahrt

Figure 1.9: Humanoid robots. Illustration of some remarkable humanoid robots.

highlight the stabilization of the head orientation during locomotion. In Herr and

Popovic [2008], the cancellation of the angular momentum quantity during walking

is brought out.

In this thesis, we highlight another orchestration principle based on the position

of the center of mass. Studies on the center of mass trajectory during walking are

numerous inside the biomechanics community [Farley and Ferris, 1998, Orendurff

et al., 2004, Lee and Farley, 1998]. But none of them has clarified the geometric

nature of this trajectory. We experimentally show that the center of mass trajectory

follows a cycloidal trajectory in the sagittal plane during nominal walk. We also

expose that the parameters of the cycloidal pattern are only affected by the size of

the body. All these results are based upon acquisition of walking motions on several

subjects.

1.3 Anthropomorphic robots locomotion

The shape of anthropomorphic robots are largely inspired from human beings. But

it is essentially the only feature that they have in common. Indeed, their actuation

systems completely differ from the musculoskeletal architectures of humans. They

are also equipped with few sensors in comparison with human beings. There is

still no biologically-inspired humanoids even if some progresses are made to create

artificial muscles [Simaite et al., 2016]. Current humanoids are simply machines

equipped with two arms and two legs, provided with actuators, electromechanical

sensors and computers. Each movement of these machines is generated by dedicated

algorithms. For instance, the algorithm devoted to the drilling task is different from

the algorithm in charge of locomotion tasks. Even for locomotion tasks, walking or

climbing stairs are not generated by the same algorithm. In fact, there is still no

unique formulation to tackle the locomotion problem globally.
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(a) Mike
Delft University

(b) Cornell ranger
Cornell University

Figure 1.10: Passivity-based walkers. Illustration of some popular
passivity-based walkers.

1.3.1 Humanoid robots and passivity-based walkers

Among anthropomorphic robots, the robotics community tends to make a strict

distinction between humanoid robots Fig. 1.9 and passivity-based walkers Fig. 1.10

. On one side, passive walkers are rather simple machines, whose aim is to reach

similar performances than humans for walking in terms of energy consumption.

They are only equipped with few and quite limited actuators. On the other side,

humanoid robots are versatile and fully actuated machines whose goals are not only

to move but also to operate on various contexts. Fig. 1.9 and Fig. 1.10 show a sample

of humanoid robots and passivity-based walkers, that are among the most dominant

experimental platforms developed for research purposes. Robotics engineers tend to

create distinct algorithms to operate on those two classes of robots, and especially

in the context of locomotion. But these two classes of robots are governed by the

similar dynamical equations of motion. Then it seems possible to set up a unified

formulation at least for locomotion.

In recent works, we have introduced a unified framework for simultaneous design

and control of anthropomorphic robots [Saurel et al., 2016, Buondonno et al., 2017].

It allows to compute the best robot architecture (mass distribution, segment lengths,

etc) as well as the parameters of the actuators and their commands in order to

achieve cyclic motions while minimizing energy consumption. It is a first step

towards the co-design of humanoid robots and passivity-based walkers.

1.3.2 Controlling locomotion of humanoid robots

Ensuring locomotion of humanoid robots is a quite challenging aim that has been

motivating roboticists for decades. One of the major challenges is the balance

control of humanoid robots while they move. To ensure this balance, the limbs

of humanoids must be coordinated to produce adequate contact forces in order to
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avoid slippage or any unexpected contact breaking. To meet this purpose, two

broad views have emerged.

The first view considers the complete dynamics of the system as a whole.

This means that each degree of freedom is individually controlled to participate

to the whole-body orchestration. Several mathematical frameworks can be used to

meet this behavior: numerical optimal control [Tassa et al., 2012, Mombaur, 2001,

Lengagne et al., 2013], hybrid zero dynamics [Westervelt et al., 2007], just to name

a few. Yet, whole-body formulations lead to high-dimensional problems and then

require intensive computations, out of scope of modern computers.

The second view is based on a decoupling strategy which consists in first

dealing with a low dimensional problem based on a reduced template models

(e.g. the linear inverted pendulum) and then compute a whole-body control that

follows this reduced dynamics. The most popular example of such strategy is the

cart-table model introduced by Kajita et al. [2003]. Nevertheless, most of existing

template models are based on some restrictive hypotheses that limit their range of

applications. In In addition, reduced models are generally not able to cope with

the constraints of the robot complete model as torque bounds or kinematics limits

for instance.

In this thesis, we introduce an original formulation able to quickly compute

multi-contact locomotion trajectories for any legged robot on arbitrary terrains.

This formulation relies on a generic template model based on the centroidal

dynamics. This dynamics is exact and our formulation is thus not limited by

arbitrary assumption. It then leads to generic locomotion on any environment: flat

floor, rough terrain, stair with and without handrails, and by extension, standing

up, sitting down, running, jumping, etc. We also introduce a generic procedure to

handle feasibility constraints due to the robot whole body as occupation measures,

and a systematic way to approximate them using off-line learning in simulation.

We illustrate the effectiveness and the versatility of the approach on two humanoid

robots with several multi-contact scenarios both in reality and in simulation.

1.4 Thesis overview

Rational

In this thesis, we argue that the centroidal dynamics, as a reduction of the full

physical system, is a keystone of anthropomorphic locomotion. It is a necessary

key to study the orchestration of human locomotion in the context of biomechanics

studies. This centroidal dynamics is also the necessary and sufficient dynamics to

synthesize the locomotion of humanoid robots in heterogeneous environments.

Thesis organization

This thesis is composed of three main contributions. Two of three contributions

are already published in international journals and one is partially published in
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conferences and it is still under the review process. To keep the developments clear

and let each contribution independent from the rest of the manuscript, we decided

to present the related publications in their original versions.

Chapter organization

This manuscript is organized as follows. In a first time, we establish in Chapter 2
the observability conditions of the center of mass position. These observably

conditions allow us to introduce an estimator of the center of mass position

dedicated to anthropomorphic locomotion.

Based on this estimator, we experimentally show in Chapter 3 that the center

of mass follows a cycloidal pattern in the sagittal plane during nominal walk. We

also demonstrate that the cycloidal parameters is only affected by the size of the

subjects.

In Chapter 4, we present our original formulation for the multi-contact

locomotion of legged robots based on the centroidal dynamics associated to

occupation measures to reflect whole-body constraints.

Finally, the conclusive Chapter 5 draws global perspectives and gives a personal

view on future impacting research directions.

1.5 Associated publications and softwares

This thesis has led to several publications, all of them dealing with the locomotion

of anthropomorphic systems.

Journal articles

♣ Justin Carpentier, Mehdi Benallegue, Nicolas Mansard, and Jean-Paul

Laumond. Center of Mass Estimation for Polyarticulated System in

Contact — A Spectral Approach. IEEE Transactions on Robotics (TRO),
2016a;

♣ Jean-Paul Laumond, Mehdi Benallegue, Justin Carpentier, and Alain

Berthoz. The Yoyo-Man. International Journal of Robotics Research (IJRR),
2017;

♣ Justin Carpentier, Mehdi Benallegue, and Jean-Paul Laumond. On the

centre of mass motion in human walking. International Journal of Automation
and Computing, 2017a.

Conference articles

♣ Olivier Stasse, Thomas Flayols, Rohan Budhiraja, Kevin Giraud-Esclasse,

Justin Carpentier, Andrea Del Prete, Philippe Souères, Nicolas Mansard,

Florent Lamiraux, Jean-Paul Laumond, et al. Talos: A new humanoid research
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platform targeted for industrial applications. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2017;

♣ Gabriele Buondonno, Justin Carpentier, Guilhem Saurel, Nicolas Mansard,

Alessandro De Luca, and Jean-Paul Laumond. Optimal design of compliant

walkers. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017.

♣ Justin Carpentier, Rohan Budhiraja, and Nicolas Mansard. Learning

feasibility constraints for multi-contact locomotion of legged robots. In

Robotics: Science and System (RSS), 2017b;

♣ Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse, and

Nicolas Mansard. A versatile and efficient pattern generator for generalized

legged locomotion. In IEEE International Conference on Robotics and
Automation (ICRA), 2016b;

♣ Maximilien Naveau, Justin Carpentier, Sébastien Barthelemy, Olivier

Stasse, and Philippe Souères. METAPOD—Template META-programming

applied to dynamics: CoP-CoM trajectories filtering. In IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2014;

♣ Jean-Paul Laumond, Mehdi Benallegue, Justin Carpentier, and Alain

Berthoz. The yoyo-man. In 17th International Symposium on Robotics
Research (ISRR), 2015;

♣ Guilhem Saurel, Justin Carpentier, Nicolas Mansard, and Jean-Paul

Laumond. A simulation framework for simultaneous design and control

of passivity based walkers. In 2016 IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR),
2016;

♣ Justin Carpentier, Mehdi Benallegue, Nicolas Mansard, and Jean-Paul

Laumond. A kinematics-dynamics based estimator of the center of mass

position for anthropomorphic system – a complementary filtering approach.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids),
2015a;

♣ Justin Carpentier, Andrea Del Prete, Nicolas Mansard, and Jean-Paul

Laumond. An analytical model of rolling contact and its application to

the modeling of bipedal locomotion. In IMA Conference on Mathematics
of Robotics, 2015b.

Submitted article

♣ Justin Carpentier and Nicolas Mansard. Multi-contact locomotion of

legged robots. Technical report, LAAS-CNRS, 2017. Submitted to IEEE

Transactions on Robotics (TRO) (May 2017);
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Softwares

This thesis has also led to the development of Pinocchio1 [Carpentier et al.,

2015–2017], a C++ library for efficient computations of forward and inverse

dynamics of poly-articulated systems. This library is a trade off between

HuManS [Wieber et al., 2006] for efficient computations and RBDL [Felis, 2017]

for its simplicity and versatility to use. This novel library is now at the hearth

of many software frameworks developed by the Gepetto team like the Stack of

Tasks [Mansard et al., 2009] and the Humanoid Path Planner [Mirabel et al., 2016].

1https://github.com/stack-of-tasks/pinocchio

https://github.com/stack-of-tasks/pinocchio
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T
his chapter discusses the problem of estimating the position of the center of

mass for poly-articulated systems (e.g. humanoid robots or human body),

which make contact with their environment. The measurements we consider are the

interaction forces (typically coming from ankle force sensors or force plates) and the

kinematic reconstruction (e.g. mass positions) estimated from a dynamical model

of the system together with the information provided by encoders or motion capture

systems. We first study the observability of the center-of-mass position using these

measurements. We show that the accuracy domain of each measurement can be

easily described through a spectral analysis. We then introduce an original approach

based on complementary filter theory to efficiently merge these input measurements

and obtain an accurate estimation of the center-of-mass position. This approach is

extensively validated in simulations by using a model of a humanoid robot. These

simulations confirm the spectral analysis of the signal errors. In particular, we show

that the complementary filter offers a lower average reconstruction error than the

classical Kalman filter.

2.1 Motivation

The communities of biomechanics and humanoid robotics share a common interest

in the estimation of center of mass (CoM) position. From a biomechanics

perspective, it concerns the CoM position of the human body which depends on
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Figure 2.1: Scheme of the merging processus. The problem of merging
measurements for CoM reconstruction in the presence of noises and modelling
errors.

a very large number of parameters, including soft tissues shapes and densities.

These parameters are classically reduced to articular angles coupled to a mass

distribution model considering perfectly rigid limbs [De Leva, 1996]. Nevertheless,

the CoM of humans is at the heart of classic biomechanical studies of equilibrium

and locomotion [Farley and Ferris, 1998]. Indeed, CoM trajectories constitute a

synthetic, mechanically and geometrically relevant motion descriptor [Laumond

et al., 2017], and its dynamics carries also information about the contact forces

necessary to compensate for gravity and ensure locomotion. The more accurate is

the reconstruction of the CoM trajectory, the more precise will be the extraction of

features and phenomena from studied motions.

In robotics, the CoM of a humanoid robot depends on the configuration of the

robot and the dynamical model. Although the modeling error is much lower for

humanoid robots than for humans, they are usually extracted from CAD data and

may contain discrepancies with the final robot. Furthermore the ageing of the robot

in addition to material updates and repairs lead the robot inertial parameters to

drift from the initial model, and may require a new calibration process [Ayusawa

et al., 2008]. Despite that, the CoM is the main control variable for walking motion

generation. For instance, this control aims for example to ensure displacement in

space while respecting balance criteria often related to interaction forces [Kajita

et al., 2003]. The modeling errors inducing a misestimation of the CoM position

may then endanger the balance of humanoid robots [Benallegue and Lamiraux,

2015].

There are two kinds of sensors that provide data about the position of center

of mass. The first one is the reconstruction of the multi-body kinematics using

any motion capture technique (optical, IMUs, etc.). The technique requires also

the dynamical model representing the inertial parameters of the system. This
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approach suffers from modeling errors and provides usually biased estimations. The

second kind of sensors measures contact forces and moments with the environment.

The forces provide CoM accelerations. The moments are more closely related to

the position of the CoM, through a straight line in the space named the central

axis of the contact wrench. However this axis is not exactly passing through

the center of mass because of the possible variation of angular momentum due

to gesticulation [Wieber, 2006a]. Moreover the position of the CoM along this

axis cannot always be known precisely. In addition, all these signals suffer from

measurement noise reducing the estimation quality.

Let us now suppose that we have these three input signals extracted from

the two aforementioned kind of sensors. The first signal is the biased kinematics

reconstruction. The second one is the acceleration provided by force measurement.

And the third signal is the central axis provided by both force and moment

measures. The first contribution is to study the properties of observability provided

by these signals. Then we describe one important property that characterizes these

signals: they have different spectral distributions of errors and noises. This means

that for a given frequency range of the CoM trajectory, there is one input signal

providing a better estimation than the two others. We finally develop a complete

method for multi-sensor data fusion to merge all these signals into one estimator

(see Fig. 2.1).

We propose to use data fusion based on complementary filtering.

Complementary filtering is a common technique which consists of merging input

signals that suffer from errors that lie in different bandwidths into one output signal.

Furthermore, it is a simple and real-time method that provides non-phase-shifted

estimation of the CoM position with reduced bias and noise.

In Section 4.2 we describe the dynamical system providing the relations between

the available signals and the CoM trajectory. Section 2.3 analyses the observability

conditions of the center of mass position. In Section 2.4 we develop our linear

complementary filter for the three signals. In Section 2.5 we show how our method

behaves against noisy measurements in a simulated environment where the ground

truth is immediately accessible and we compare the performances to the estimation

by a Kalman filter fusion. In Section 2.6, two scenarios of application of our method

on real signals are depicted. And in Section 2.7, we compare our method to related

works.

2.2 Dynamic equations of under-actuated
poly-articulated systems

In this section, we briefly recall the equations of the dynamics of a free-floating

system with a poly-articulated structure like a humanoid robot or the human

body. The main idea is to make the link between the measured quantities (i.e.

the estimates of the position of the CoM, the central axis of the contact wrench,

and the forces) and the under-actuated dynamics, namely the dynamics reduced
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around the CoM.

2.2.1 The under-actuated dynamics

We first consider the Lagrangian dynamics of a n degrees of freedom free-floating

based system which makes N contacts with the surrounding environment. We name

q ∈ Q def
= SE(3) × R

n the configuration vector of the system and q̇, q̈ its first and

second time derivatives. The Lagrangian dynamics reads:

H(q)q̈ + b(q, q̇) = g(q) + S⊤τ +
∑

i

J⊤
i (q)φi, (2.1)

where H stands for the mass matrix, b for the centrifugal and Coriolis effects, g

for the action of the gravity field. S is a selection matrix which distributes the

torque τ over the joints space, Ji is the jacobian of the contact point i and φi is the

vectorial representation of the unilateral contact wrenches [Brogliato, 2012] acting

on the robot and it is composed of a linear fi and angular νi components.

This dynamical equation can be split into two parts: the under-actuated

dynamics, i.e the dynamics of the free-floating base (denoted by u) and the dynamics

of the actuated segments (denoted by a):

[

Mu

Ma

]

q̈ +

[

bu

ba

]

=

[

gu

ga

]

+

[

06

τ

]

+
∑

i

[

Ji,u Ji,a

]⊤
φi (2.2)

The first row of (2.2) is the so-called Newton-Euler equation of a moving body,

having a mass m, a position c relative to the inertial frame, a linear and angular

momenta denoted by p and Lc respectively. The point c is nothing more than the

center of mass of the whole anthropomorphic system.

In a more classic way, this under-actuated dynamics can be rewritten as:

ṗ =
∑

i

fi − mg (2.3)

L̇c =
∑

i

(pi − c) × fi + νi, (2.4)

where × denotes the cross product operator, pi is the position of the contact point

i relative to the inertial frame and g is the gravity field. It corresponds to the

evolution equation of the centroidal dynamics. In order to simplify the notations,

we set down:

φc =

[

fc

νc

]

def
=

[ ∑

i fi
∑

i pi × fi + νi

]

, (2.5)

the resulting wrench of contact forces and moments expressed at the center O of

the inertial frame. Finally, knowing that p
def
= mċ and injecting (2.3) into (2.4)

leads to:

mc × (c̈ + g) + L̇c = νc (2.6)
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2.2.2 The zero-moment point

We make the hypothesis that all contact points lie on the same plane. Without

any loss of generality, we assume this plane corresponds to the flat ground with

normal vector n, aligned with the gravity field g. The ZMP (also known as the

center of pressure [Sardain and Bessonnet, 2004]), is then defined as the point on

the contact plane where the moment component of the resulting wrench is aligned

with the normal axis of the plane. The equation of the ZMP (denoted z) is then

given by:

zx,y =







−νy
c

f z
c

νx
c

f z
c







and zz = 0 (2.7)

We can now inject the two first rows of (2.6) into (2.7), which leads to the

expression of the ZMP position as a function of c and Lc and their time derivatives:

zx,y = cx,y − cz

c̈z + gz
c̈x,y +

1

m(c̈z + gz)

[

−L̇
y
c

L̇
x
c

]

(2.8)

Numerous works in humanoid robotics use the ZMP as a criterion for balance

on flat ground. Indeed, as long as the ZMP remains strictly inside the convex hull

of the support polygon, support feet do not tip around their edge and the contact is

firmly maintained on the ground [Wieber, 2002]. Therefore, the control of the ZMP

position allows the generation of locomotion trajectories which ensure the balance

of humanoid robots.

Most of ZMP-based controllers make the simplification of considering negligible

variations of angular momentum around the CoM (L̇c ≈ 0). This makes the CoM

lie on the straight line that passes through ZMP and follows the direction of contact

force vector fc. We name this line the ZMP axis.

In addition, most walking pattern generators for robots consider also that height

of the CoM is constant. This simplification is named cart-table model [Kajita et al.,

2003]. In this sense we obtain the linearized version of the ZMP:

zx,y = cx,y − cz

gz
c̈x,y, (2.9)

which is linear in both variables cx,y and c̈x,y.

2.2.3 The central axis of the contact wrench

The notion of the central axis of the contact wrench has been extensively used in

robotics, either to justify the concept of zero-moment point [Sardain and Bessonnet,

2004] or to extend this concept for multi-contacts scenarios as depicted in Hirukawa

et al. [2006], Takao et al. [2003] or more recently in Caron et al. [2015]. In the

following, we recall the notion of central axis and use it as a descriptor of movement.
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Definition 1. The central axis Wc of the contact wrench φc is defined as the set
of points where the torque of the wrench νc is aligned with the resulting force fc.
Relatively to the inertial frame center in O, this axis is uniquely defined by:

Wc =

{

P ∈ E
3,

−−→
OP =

fc × νc

fc · fc
+ λnc, λ ∈ R

}

, (2.10)

where · denotes the dot product operator, E
3 is the euclidian space centered in O

and nc is the direction cosine of fc.

For each point P of this axis, the value of the torque νP is equal to (νc · nc) nc.

We may also interpret the central axis as the set of points where the moment has

a minimal norm of value νc · nc. This trait is due to the orthogonality property of

the cross product operator and to the equiprojectivity property of the wrench field.

Approximation of the CoM position

As in the case of the ZMP, if we neglect the variation of angular momentum around

the center of mass (say L̇c ≈ 0) and we inject (2.3) into (2.6), we obtain:

c × fc ≈ νc (2.11)

In other words, this approximation means that fc and νc are orthogonal, which also

means that the torque around the center of mass is also null. Hence, by definition

of the central axis of the contact wrench, the center of mass belongs to Wc.

We now introduce an other point cp which is the orthogonal projection of c onto

the central axis Wc. The expression of cp is then given by:

cp =
fc × νc

fc · fc
+ (c · nc)nc (2.12)

The projection cp is nothing more than a good approximation of c as soon as

the variations of angular momentum around the center of mass become negligible

relatively to νc.

2.2.4 The zero-moment point versus the projection on central axis
of contact wrench

Fig. 2.2 illustrates the difference between the zero-moment point and the central

axis of the contact wrench.

We can also mention the following property linking the central axis of the wrench

contact to the zero-moment point concept:

Theorem 1. (i) The ZMP axis and the central axis Wc coincide if and only if (ii-a)
the direction cosine of the contact force vector is equal to n or (ii-b) the contact
torque vector is orthogonal to the contact forces, i.e. νc · nc = 0.
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   wrench
  central
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  Force  Force
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Figure 2.2: Illustration of various notations. A graphic representation of the
comparison between the central axis of the contact wrench and the ZMP. The ZMP
part is depicted in red and shows the approximation made by the cart table model.
The line joining the ZMP to the CoM of the cart-table model is parallel to the
contact force vector. The central axis part is shown in blue. It is the line of
minimal moment norm, also parallel to the contact force vector.

Proof. First of all, we know from the definition of the ZMP that τZMP is of the

following form:

τZMP = α n (2.13)

with α ∈ R.

The two axes matches (i) if the torque around the ZMP is the same as the torque

along the central axis, which can be written as:

τZMP = (νc · nc)nc (2.14)

Both expressions (2.14) and (2.13) match if either n = nc (ii-a) leading to α = νc·nc

or n and nc are not parallel, inducing νc · nc = 0 (ii-b) and α = 0. The converse

is straightforward.

2.3 Observability conditions of center of mass position

We aim at observing the trajectory of the center of mass online using the available

measurements. We consider that the position of the CoM together with its second

order derivatives can be set as a dynamical system of the form:

ẋ = Ax + Bu, (2.15)



28 Chapter 2. About the center of mass estimation

where x = (c, ċ, c̈) is the state vector, u ∈ R
3 is the jerk (third time derivative) of

the center of mass, and the matrices A and B defined as following:

A =






0 I 0

0 0 I

0 0 0




 and B =






0

0

I




 , (2.16)

where each 0 and I is 3 × 3 zero and identity matrices respectively.

In this section, we study the observability of the center of mass position given the

signals we described earlier. First, we consider the variations of angular momentum

around the CoM are negligible. In this context, we show that when we have the force

and moment measurements only, the center of mass position is not generally fully

observable, but only the components orthogonal to the contact forces vector. We

show then that the reconstruction of the CoM does not improve the observability

but enables one to bound the estimation error along forces vector. We discuss then

the conditions and domains of validity of the assumption of negligible variation of

angular momentum around CoM, introducing the spectral approach that we propose

in the following section.

2.3.1 Observability with force/moment signals

Eq. (2.5) provides the expression of force and moment measurements. By

considering the variations of the angular momentum L̇c negligible we can rewrite

this signal as:
[

y1

y2

]

def
= h(x) =

[

m (c̈ + g)

m c × (c̈ + g)

]

(2.17)

We first see that the moments measurement y2 is nonlinear with regard to the state

vector. This is due to the bilinear property of the cross product.

It appears clearly that the measurement is invariant for CoM position

modifications along the contact force vector fc, i.e. ∀λ ∈ R:

h






c + λfc

ċ

c̈




 =

[

m (c̈ + g)

m (c + λ(c̈ + g)) × (c̈ + g)

]

= h






c

ċ

c̈




 (2.18)

This implies that for certain trajectories, for example when fc is constant

(u = 0), the state is indistinguishable along one axis, which assesses the

non-observability of the full CoM position in that case. Particularly, this situation

happens when the poly-articulated system is static with fc = mg. Moreover, this

non-observability property remains even when L̇c is non-negligible.

Of course, this indistinguishability problem does not appear for all possible

CoM trajectories. Indeed there exist theoretically some inputs u which guarantee

the distinguishability of all the state space. However, first, we have no control

on the input u which drives the motion we observe. Second, for the majority of

humans and robots motions the most important part of contact forces tend to be
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used to compensate the gravity. This means the forces are mostly vertical during

at all times. This leads us to conclude that it is unlikely that any estimation of

the altitude cz based on these measurements will reach high precision compared to

other components, except for very dynamic motions. This theoretical assertion is

validated in Section 2.5.

In order to assess the observability of other axes, let’s consider the worst case

u = 0 and study it in detail using the observability matrix. This matrix allows

to study the ability to reconstruct the state with a finite number of assumed ideal

measurements. Its rank allows to study the local observability of the system. It is

obtained by successive Lie derivatives of h by the vector field generated by matrix

A [Hermann and Krener, 1977]:

M =










0 0 mI

−m[c̈ + g]× 0 m[c]×
0 0 0

0 −m[c̈ + g]× m[ċ]×
0 0 0

0 0 −m[g]×










(2.19)

where [·]× is the skew symmetric matrix operator associated to the cross product

action. The rank of this matrix M is 7 for all states such that c̈ + g 6= 0. More

importantly, we can see that the components of the CoM position and velocities

which lie in the span space of [c̈ + g]× are observable. In other words, the axes

of c and ċ which are orthogonal to the contact force vector m(c̈ + g) are always

observable.

The equality c̈+g = 0 corresponds to the case of free falling of the CoM, the force

measurement is null and unsurprisingly only the CoM acceleration is observable.

This situation happens in particular during jumps and flight phases of running.

We conclude from this observability analysis that CoM estimations based on

the force and moment measurements alone may obtain precise results in horizontal
position within the limitations of the assumption that L̇c = 0. Regarding CoM

height, the observation is likely to drift from the real value, especially with the

double integration of a noisy force signal. This leads us to introduce the other

measurement of the CoM position, which is the geometry-based reconstruction.

2.3.2 Geometry-based CoM reconstruction

A poly-articulated system with rigid limbs evolves in the configuration space Q.

And the current CoM position depends only on the current configuration. In fact,

if we have an accurate model of the kinematic tree and mass distribution of the

multi-body system, the configuration q is sufficient to rebuild the CoM position. In

this context, the observability of the CoM position is complete, and the estimation

rather easy. This is why the vast majority of robots just use this method not only

for reconstruction but also for planning and closed-loop control of CoM trajectories.

However this reconstruction relies entirely on the accuracy of the dynamic

model. In particular this means that for humans, it requires either to use
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anthropomorphic tables with important modeling errors [De Leva, 1996] or

to estimate inertial parameters using relatively long and tedious identification

techniques [Venture and Gautier, 2013]. Robots also suffer from a drift between

the initial model and the actual multi-body system due to ageing, maintenance

and upgrades which may require also inertial identification [Ayusawa et al., 2008].

These considerations lead to write this CoM position measurement as:

y0 = c + b, (2.20)

where b ∈ R
3 represents biases due to modeling error. The value of b depends

nonlinearly on the joint configuration with an unknown function. So we have

no choice but considering that it evolves following its own unknown dynamics.

Therefore we have to concatenate the vector b to the state vector x.

Nevertheless, most studied motions for robots and humans evolve in a small

subset of the configuration space. For example during walking, a human remains

upright with legs and arms broadly to the bottom. In this case, we may consider

that the bias b is relatively constant. This assumption gives us the new state

dynamics:
˙̄x = Āx̄ + B̄u, (2.21)

where x̄ = (x, b) is the augmented state vector, Ā and B̄ are matrices of appropriate

dimensions defined as following:

Ā =

[

A 0

0 0

]

and B̄ =

[

B

0

]

, (2.22)

The first thing we see is that the response of this dynamical system is still

invariant to any modifications of the CoM position along fc. Specifically, the vector

((c + λfc), ċ, c̈, (b − λfc)) is not distinguishable from x̄ when u = 0.

To see more clearly what modifications to observability this addition provides,

let’s study the observability matrix for the case u = 0 provided by this model (with

removed zero lines):

M̄ =












0 0 mI 0

−m[c̈ + g]× 0 m[c]× 0

I 0 0 I

0 −m[c̈ + g]× m[ċ]× 0

0 I 0 0

0 0 −m[g]× 0

0 0 I 0












(2.23)

The rank of the matrix is 11 if c̈ + g 6= 0 for a 12 dimensional state. Indeed,

this new model does obviously not enable the CoM position to be fully observable,

but it provides full observability of the velocity ċ. This improvement is due to the

assumption of a constant b. That means that even if biased, the geometry-based

estimation of the CoM remains relatively a reliable measurement for velocity

estimations.
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Of course another guarantee can be provided if we assume that the bias is

bounded ‖b‖ < bmax, where ‖.‖ is any real norm and bmax is a positive scalar, which

implies that we can build an estimation with less than bmax error by ignoring the

biases.

It is worth to note that [Rotella et al., 2015] have recently made a similar but less

thorough observability study. They have also showed the non-observability of the

full CoM position biases in the case of static robot. However, they didn’t emphasize

on the axis of non-observability, and they didn’t discuss the observability and its

properties for dynamical motions.

All this observability study until now does not take into account multiple sources

of error. Indeed, the estimation also relies on the actual rigidity of multi-body

limbs and the precision of the configuration estimation. For example, concerning

the estimation of the joint angles, if robots have usually precise and reliable joint

encoders, no technique is currently available to obtain such precise joint angles for

humans, due to the presence of soft tissues and to the motion capture technique.

Furthermore, the sensors themselves may generate errors due to measurement noises

and disturbances. Finally, the force and moment measurements were studied with

the hypothesis that variations of angular momentum around the CoM are negligible.

We see next in which context these assumptions are valid and which part of each

signal is the most trustable.

2.3.3 Validity of hypotheses, the spectral viewpoint

The variation of angular momentum around the center of mass L̇c is due to

gesticulation. It is a non-holonomic phenomenon which depends on the joint

configuration, velocity and acceleration [Wieber, 2006a]. In general the motions of

humans and robots have relatively low L̇c compared to the moment due to contact

forces c × fc, especially in the case of locomotion where the CoM moves away

from the origin. However, this gesticulation can be sufficient to deviate the CoM

position from the central axis of the contact wrench by up to several centimeters.

This imprecision can be tackled by two methods. The first one uses the estimation

of L̇c and subtract it from the contact torque τc. The only way to do it is by using

the dynamic model of the poly-articulated system and applying forward dynamics,

which leads to errors due to modeling and double derivation of joint angles. We

suggest here to resort to a second easier method that allows to avoid errors related

to L̇c. The solution is to only consider the frequency bandwidth where there is

few gesticulation and therefore negligible L̇c: the low frequency range, below the

fundamental frequencies of the studied motion. Indeed, for periodic motions such

as walking, this frequency range contains almost no gesticulation. If the motion

is not periodic, it requires very wide joint trajectories to make L̇c significant for

these frequencies, which is implausible in general. Therefore, the moments signal

reduced to this frequency domain provides important low-bias estimations of the

CoM position, especially when there are slow and large CoM displacements like for

locomotion.
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Figure 2.3: Illustration of the intuition on spectral distribution. A sketch
representation of the spectral distribution of errors that would emerge from the
naive reconstruction of CoM trajectory if we use only one signal (Geometry, Forces
and projection of the CoM from Geometry onto the Contact Wrench Central Axis).
The signal with the lowest error is then selected at each frequency bandwidth to
constitute minimal-error fusion of these signals.

Regarding the forward kinematics (geometry-based) estimation, it is subject to

biases which fill the lowest frequency ranges. These frequencies have to be removed

from this signal. Nevertheless we have seen that this measurement may provide

reliable estimation of the CoM velocity. Velocities can be seen as amplifications of

higher frequencies of CoM trajectory. Therefore there should be a frequency range

of the trajectory which can be efficiently reconstructed using this signal. However,

since many kinematic reconstructions carry high frequency noises, such as motion

capture system, the use of geometry based estimations of the CoM should not be

extended to too high frequencies.

Finally, the contact forces provide direct measurements of the acceleration of

the CoM. A double integration of this signal leads usually to a diverging quadratic

drift. This drift lies in low and middle frequencies, but the sensor is much more

sound in the high frequency ranges which are amplified in the accelerations.

To summarize, we propose to merge in one signal, the low frequencies of

moments, the middle frequencies of forward kinematics and the high frequencies

of an acceleration-based CoM reconstruction. By low frequencies we mean below

the fundamental frequency of the motion (e.g half of the stepping frequency in

the case of walking). By high frequencies we mean the frequencies higher than

the measurement noise affecting the kinematic measurement of CoM. The middle

frequency range lie between the low and the high ones. Similar reasoning concerning

these measurements can be found in [Schepers et al., 2009, Maus et al., 2011, Masuya

and Sugihara, 2015]. All these considerations are summarized and schematized in

Figure 2.3.

The sensors are often subject to errors partly due to electronic noise and
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sampling. These errors usually lie in higher frequencies than the desired signals.

Standard filtering techniques enable one to get rid of the high frequency noises, but

if they are applied online they introduce phase shift and delays in the signal. In the

next section, we suggest a complementary filtering solution which allows to perform

online the desired distribution of the frequency domains on different signals and to

avoid high frequency sensor noise without getting theoretically any phase shift.

2.4 The Linear Complementary Filter

The complementary filter [Higgins, 1975] is well known in the field of aerial robotics

[Euston et al., 2008], for example to estimate the attitude of a quad-rotor system

by combining the gyroscopic and accelerometer measurements. Unlike the Kalman

filter [Kalman, 1960] which makes no distinction between the contributions of

each measurement in the frequency domain, the complementary filter exploits

the influence and the accuracy of each input signal in their respective frequency

domain and reconstructs the integrality of the signal by a combination of filtered

measurements. All along this section, we exploit the following definition:

Definition 2 (Linear Complementary Filter). We say that the transfer function Y

is the linear complementary filter of the transfer function X if and only if X(s) +

Y (s) = 1 for any s ∈ C, s being the Laplace variable.

One important characteristic of this filtering technique is the zero-phase shift,

which means no estimation latency. This is due to the complementarity of the

filters (X(s) + Y (s) = 1). In this way, if the measurements are perfect (without

any error), the output of the filter would be the exact value of the input signal,

regardless of the properties of the filters X and Y such as order, cutoff frequencies

and even non-linearity. Therefore, with noisy signals, the only difference between

the output and the input signals are only due to the measurement errors and noises

which create deviations but usually do not generate phase shift or latency as such.

Of course, it is in practice a bit more complicated to obtain these good

theoretical properties. Some of the errors can dependent on time or state. One

example is the assumption that the angular momentum around the center of mass

L̇c is null. These signals may generate what can be perceived as a phase shift.

Nevertheless, these errors are exactly what our frequency-based approach seeks to

cancel.

In the following, we gradually design the complementary filters of the CoM

position. We designate by s the Laplace variable acting in the frequency domain.

The Laplace Transform of a temporal signal g(t), t being the time variable, is

written G(s) and sG(s) corresponds to the Laplace Transform of its time derivative

ġ(t).
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Figure 2.4: Diagram of the CoM complementary filter for the three input signals.

2.4.1 The input signals

In Section 2.3.3, we discussed the validity domain regarding to each input

measurement with a spectral viewpoint. We have three different signals conveying

information related to the CoM:

• (i) The first signal is the geometry-based reconstruction of the CoM c̃. It

suffers mainly from biases due to modeling errors of mass distribution. It

is also subject to the high frequency sensor noise due to motion capture

technology or the measurement of the angular position of the joints. The

error between this signal and the real position of the CoM lies then in low

and high frequency domains.

• (ii) The second signal is the CoM acceleration ˜̈c extracted from force

measurements. The sensor noise also contaminates this signal. The double

integration of this signal reduces the high frequency error but generates

quadratic drift, visible in low and medium frequencies.

• (iii) The third signal provides the data carried by the central axis of the

contact wrench. But since the force and moments signals alone do not allow

to deduce the CoM position on this line we take the orthogonal projection c̃p

of the geometrical CoM c̃ coming from the first measurement onto the central

axis. It contains high frequency sensor noise, but also carries error due to the

hypothesis about the weak variation of the angular momentum around the

center of mass (eq. 2.11). This assumption is particularly acceptable in the

low frequency domain, specifically below natural locomotion rhythm.

The complementary filter diagram related to these measurements is shown in

Figure 2.4, where the Hi (with i = 1, 2 or 3) correspond to the linear filter associated

to the three aforementioned items.

2.4.2 The design of complementary filters

In the previous paragraph, we established that the forces measurement is mainly

affected by a low and medium frequencies noise. Therefore, s2H2 must be made of
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Bode diagram of H1 Bode diagram of H2 Bode diagram of H3

A band pass filter A low pass filter A low pass filter

Figure 2.5: Bode diagrams of the three designed filters H1, H2 and H3, with f1 = 4
Hz and f2 = 0.4 Hz.

a high-pass filter1. We can now set:

s2H2(s) =
(sτ1)2

(1 + sτ1)2
, (2.24)

with τ1
def
= 1

2πf1
the time constant and f1 the cut-off frequency of the high-pass

filter. Therefore the transfer function (2.24) is equivalent to:

H2(s) =
τ1

2

(1 + sτ1)2
(2.25)

and H2 corresponds to second order low-pass filter of cutting frequency f1. At this

stage, it is worth mentioning that s2H2 must be at least a second order high-pass

filter to get the transfer function H2 stable, i.e. all its poles have a strictly negative

real part.

Previously, we also established that the third signal is mainly valid in a low

frequency domain, forcing H3 to be a low-pass filter too. The expression of H3 is

then given by:

H3(s) =
1

(1 + sτ2)2
, (2.26)

with τ2
def
= 1

2πf2
the time constant and f2 the cut-off frequency of the low-pass filter.

Accordingly, H1 can be directly computed as the complement of both s2H2 and

H3 filters, i.e. H1
def
= 1 − s2H2 − H3. So H1 is of the following form:

H1(s) = 1 − (sτ1)2

(1 + sτ1)2
− 1

(1 + sτ2)2
, (2.27)

Figure 2.5 illustrates the bode diagrams of the designed filters H1, H2 and H3.

We can remark that H1 acts as a bandpass filter in a bandwidth around [f2; f1].

1the s
2 term before H2 comes directly from the fact that s

2C(s) is the Laplace Transform of c̈.
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The bandpass filter characteristics of H1 may be also deduced from an asymptotic

study of the transfer function (2.27).

2.5 Validation Study

In this section, we apply the complementary filter developed in Section 2.4 to

the case of a simulated humanoid robot walking in straight line. The simulation

framework allows: (i) to obtain ground truth measurements, that will be used for

the evaluation of the performances of the complementary filter and (ii) to generate

noisy model and measurements which will serve as inputs of the filter. We also

compare the performance of the designed complementary filter to a more classic

Kalman filtering approach, which uses the same kind of measures while assuming

that those sensor measures are disturbed by a white noise.

2.5.1 Generation of noisy data

Motion generation

We use standard techniques in humanoid robotics to generate the motion of the

robot. We first plan a CoM trajectory according to the given foot placements and

ZMP reference trajectory [Kajita et al., 2003]. Then we generate a whole body

trajectory using a second-order generalized inverse kinematics [Saab et al., 2013];

the following tasks where combined using a strict hierarchy: the feet positions (first

priority), the CoM trajectory and a fixed orientation of the pelvis (second priority)

and finally a posture task to avoid the drift of actuated joints (third and lowest

priority).

Generation of noisy measurements

The second-order kinematics produces a control based on the second derivative of

q, from which we obtain by integration q̇ and q.

These three quantities injected in the right hand side of the non-actuated part of

the dynamical equation (2.2) give us the resulting wrench φc of contact forces (2.5).

The linear and angular part of the measurement of φc are then perturbed by

a Gaussian colored noise in the high frequency domain with standard deviation

σlinear = 10 N and σangular = 10 Nm, leading to a noisy measurements φ̃c.

The measurement of the configuration vector q is disturbed by another Gaussian

colored noise in the high frequency domain too, with a standard deviation

σconfiguration = 0.05π. This noise replicates the effects of errors due to motion

capture techniques.

In addition, we generate an error in terms of the dynamical model. We add

a Gaussian perturbation to the mass distribution of the body and position of the

CoM of each robot link. We make the hypothesis that we know the mass and CoM

position of each limb with a precision of 20%. This process aims at generating

modeling error for a humanoid robot or for humans due to anthropometric tables.
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Both the new dynamical model and the noisy measurement of q enable the

generation of the geometry-based CoM measurement c̃.

From φ̃c combined with the geometry-based CoM and both injected in

Eq. (2.12), we obtain the perturbed CoM projection onto the central axis of the

contact wrench c̃p.

Identification of the mass of the anthropomorphic system

The total mass of the system is directly measurable. It suffices to exploit the forces

measurement in static equilibrium (half-sitting position for a humanoid robot or

standing rest position for humans), and, by taking the average value of the vertical

forces divided by the gravity value, we obtain a good estimate of the total mass.

2.5.2 Spectral analysis of measurement errors

Before going further and applying filtering methods to our simulated motion, we

first assess our assumptions on the frequency bandwidth where the reliability of

each measurement holds. To do so, we study the Fourier Transform of the error

between the noisy signals and ground-truth values.

Fig. 2.6 shows the Fourier transform of the errors. The simplest spectral

distribution is the error of the force measurement ˜̈c at the middle of the figure.

It is simply the Fourier transform of the noise we added initially, which lies in

high frequencies that are partly canceled by our H2 low-pass filter. At the top of

the figure we see the error of geometry-based estimation of the center of mass. As

expected, the error mainly lies in low and high frequencies. The medium frequencies

bandwidth shows a very clean estimation of the CoM position. This result is not

straightforward from the simulated noises, since the kinematic model was initially

wrong. The bottom part of the figure shows the spectral distribution of the error

between the projection of the geometry-based CoM estimation onto the noisy central

axis of the contact wrench and the real CoM. We see clearly that this measurement

is reliable only in a low frequency domain and grows very fast with increasing

frequencies. This error is due to the wrong assumption that L̇c = 0, which is

completely independent from the artificially added noise. This is why we fixed

the cut-off frequency at 0.4 Hz. These key points are the most important features

motivating our approach, beyond the high frequency errors added to the signals, but

this analysis has shown that we are able to separate the errors of different nature

in the frequency domain, even though they were mixed together. We can state that

these figures confirm clearly the hypotheses of Fig. 2.3.

2.5.3 Description of the Kalman filter

In this part, we describe the implementation of the discrete-time Kalman Filter

(KF) allowing to evaluate the performances of the suggested sensor data fusion

technique.
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Figure 2.6: FFT of the error of each signal. In the top, the transform of the error
between the real CoM position c and geometry-based estimation c̃. In the middle,
the error between the second CoM time-derivative c̈ and its estimation using force
measurement ˜̈c. In the bottom, the FFT of the error between the projection of the
geometry-based CoM onto the central axis of the contact wrench Eq. (2.12) and the
real CoM. For the three graphs, the x dimension is represented with solid red line,
the y dimension with dotted green line and z dimension with dashed blue line.
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Dynamical model for Kalman filter

The dynamics of the filter is the discretized version of Eq. (2.15), with the

assumption of a white Gaussian noise on the jerk components. This discrete

dynamics is then given by:

xk+1 = Adxk + Bd ωk, (2.28)

with xk
def
= (ck, ċk, c̈k) is the state vector, Ad is the state transition matrix and

Bd applies the effect of the noise ωk on the state components. Both are defined as

following:

Ad =






0 dtI dt2

2 I

0 0 dtI

0 0 0




 and Bd =






dt3

6 I
dt2

2 I

dtI




 (2.29)

with dt the discretization time step. The noise on the jerk follows a white Gaussian

distribution given by ωk ∼ N (0, Q), Q corresponds to the covariance matrix.

The measurement vector yk corresponds to the three input signals of Sec.2.4.1.,

i.e. yk
def
= (c̃k, ˜̈ck, c̃

p
k). The measurement equation then corresponds to:

yk = Cdxk + µk, (2.30)

where Cd has the following form:

Cd =






I 0 0

0 0 I

I 0 0




 (2.31)

and µk is the measurement noise following a white Gaussian distribution of the

form µk ∼ N (0, R), with R the covariance matrix.

The KF algorithm is finally composed of the recursive two classic steps

corresponding to the prediction and the update phases.

Covariance matrices

R is diagonal. On the diagonal are the values of variances used for the generation

of noisy data in Sec.2.5.1.

We choose Q = σ2
jerkI, with σjerk = 1. Such a value allows the Kalman filter

trusts more the measurements than the prediction, which is unstable due to the

drift in the triple integration process.

2.5.4 Estimation and comparison with Kalman filter

Kalman filtering is often assumed to be mathematically equivalent to a

complementary filter. This assumption is sometimes inappropriately attributed

to Higgins [Higgins, 1975]. Indeed, Higgins shows an example where the filters

are equivalent, because the Kalman filter can naturally take into account the good
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Figure 2.7: On top, the reconstructed trajectory thanks to the complementary filter.
On the middle, the two successive plots show the contribution of every signal to the
reconstruction of CoM trajectory along the x and z axis respectively, together with
the sum of the signals. On bottom, error between the ground truth measure of the
CoM position and its reconstruction with the Kalman filter and the complementary
filter.
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frequencies of each signal. This is true in this specific case because one of the

measurements gives the value of a variable while the other corresponds to its time

derivative. This relation in the nature of the measurements, together with the time

relationship between them, create a nice spectral behavior of Kalman filter.

When this condition is not met, the equivalence is not guaranteed. This is what

happens in our case, the signals c̃ and c̃p are of the same nature but have different

noise “colorations”, which makes a classic Kalman filter take a weighted average

between them instead of splitting and merging them in the frequency domain.

To show this feature, the three measurements of the walking trajectory were fed

to our complementary filter and to the presented Kalman filter. The estimation of

the complementary filter compared with real values is shown on the top of Fig. 2.7.

We see that the tracking in x and y axes is accurate. However, the tracking in

z is subject to bias. This is due to the estimation error of the first signal along

the central axis. On the middle, we see a detailed description of the reconstructed

trajectory along x and z axis where every output signal is displayed separately

together with their sum. On the bottom, the estimation error is displayed for the

complementary filter and Kalman filter along the three axes. We see that the error

of our complementary filter is always inferior or equivalent to the Kalman filter. We

also see that the signal of the complementary filter contains more high frequency

noises, that is partly due to our choice to take the lowest possible orders for the

band-pass filters to keep the simplest possible formulation. We believe that more

sophisticated filters can get reduce significantly these artifacts without introducing

phase shift. This phenomenon is also due to the fact that there is certainly a small

frequency bandwidth where we have no perfectly clean signal. This may be tackled

by applying model-based filtering to the estimation, which can also enable one to

avoid phase-shift, but may be subject to modeling errors.

On the other hand, if we want to take into account the color of the noise in the

Kalman filter, we could apply pre-filtering of the measurement signals. However,

if we filter the signals naively before feeding them to a Kalman filter, we will have

latency due to phase shift. Furthermore, all our complementary filtering approach

is already as simple as the suggested pre-filtering of the signals.

In fact, in order to properly take this coloration into account we need to increase

the state vector with other variables which would create artificially a nonzero

autocorrelation for the sensor noise. Then the filter could be non-trivially made

equivalent to the complementary filter.

Of course, Kalman filter has in general multiple advantages over complementary

filtering, including the ability to make a prediction model, the adaptability to

varying noise parameters, and the easy extension to nonlinear cases. However,

none of these advantages is relevant for the case we consider here.

In the next section we see how the proposed method behaves against real

measurements coming from experimental setting involving human motion.
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Figure 2.8: CoM position reconstruction for natural walking (red for x, green for
y and blue for z). On the left, the reconstructed CoM in plain line and the CoM
coming from geometry in dotted line. On the right, the force measurement during
a short period.

2.6 Applications

The method describes in the two former Sections 2.4 and 2.5 is directly applicable

to robots, as soon as they are equipped with force/torque sensors at contacts.

However, the problem of estimating accurately the position of the center of mass

for humans represents a more difficult challenge than for robots, because there is no

easy access to a fine dynamical model and no precise method to reconstruct joint

trajectories. Therefore, in this section, we show two applications of the proposed

method on human motions: steady walking and running on a treadmill.

2.6.1 Walking

A 26 years old healthy male of 1.80 m height and 64 kg weight was asked to walk on

a force platform in the most natural way. The subject was wearing optical markers

recorded using VICON motion capture system and following the marker placement

suggested by the International Society of Biomechanics [Wu et al., 2002, 2005]. A

CoM trajectory was then reconstructed using an anthropometric table providing

inertial parameters [Dumas et al., 2007]. The central axis was computed from force

and moment measurement and our sensor data fusion technique was applied. The



2.6. Applications 43

Figure 2.9: CoM reconstruction for running on a treadmill (red for x, green for y and
blue for z). On the left, the reconstructed CoM in plain line and the CoM coming
from geometry in dotted line. On the right, one second of force measurement

results are displayed on Fig. 2.8.

We see that the estimation of the CoM position provided by our method

is slightly different from the trajectory obtained by the geometry, especially in

horizontal position. Since we have no ground truth value, we cannot show that our

estimation is more accurate, but this difference could be a correction of biases due

to errors of the anthropometric table, similarly to what happens for our simulated

model of the previous section.

2.6.2 Running on a treadmill

A healthy male of 1.72 m height and 71 kg weight was asked to run on a treadmill

at a constant speed of 16 km/h (about 4.4 m/s). The treadmill was located on

a force platform and the subject was wearing also optical markers for VICON

motion capture system, using the same marker placement as in Section 2.6.1. The

experimental setting is described in [Villeger et al., 2014]. The geometry-based

CoM trajectory was generated using the same anthropometric table. The same

reconstruction process was executed on the recorded signals.

Fig. 2.9 illustrates the results. The motion is much more dynamic than walking,

as we see in the force measurement on the bottom. Here, a special care has to be

considered for the flight phases. Since the central axis is not defined in this case,
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the projection c̃p of the geometry-based reconstruction c̃ was set to c̃p = c̃ itself

when contact force norm is below a threshold of 100 N. This does not jeopardize

our method since only the frequencies under 0.4 Hz were considered for this signal.

We see that there is a difference of few centimeters for each dimension between the

geometric reconstruction and the estimation of our sensor data fusion. Similarly to

the case of walking, there is no ground truth value for the center of mass. However,

since the difference converges after 1.5 s to a value and seems stable for several

seconds after, our explanation is that our method succeeded to correct a bias due

to anthropometric table.

2.6.3 On the possible limitations

Our method is designed to work online as well as offline. However, even for offline

uses, the beginning of the trajectory may have poor estimations. This happens

because the filters internal state need some time for convergence to their steady

values. For example, this is the case when the filters state are initialized to zero

and the CoM trajectory starts far from the origin. Working in relative coordinates

may solve the issue for initializing the position but this will not fix the case of

non-zero initial CoM velocities.

To solve this issue, we first note that the same theoretical guarantees are

provided by our technique for time-reversed signals. Indeed, all the equations of

dynamics on which our approach relies are time-symmetric. However, if the initial

state is not good, the time-forward and the time-backward estimations will be very

different. Therefore, a possible approach to obtain a relevant initial state is to

minimize the difference between these two signals. This can be achieved similarly

to the optimization process presented by Gustafsson [1996]. Finally, an average

between the forward and the backward estimations could increase the precision of

the approach which becomes a symmetric non-causal filter.

On another hand, the estimation quality relies on some assumptions on the

measurement environment. For example an error in the estimation could arise when

the force and moment sensors are themselves biased. But in order to have a large

magnitude of discrepancy, the sensors require an important bias, and high-end force

platforms are usually reliable and their calibration is relatively an easy process.

There could be also the problem of slipping contacts when the force sensors

are located in the feet. If there is no external localization system such as optical

motion capture system, the estimated position of the CoM may drift from the real

one. This drift occurs as the CoM position becomes non-observable, and no other

approach could solve this issue.

We explore in the following section how former studies considered the sensors

fusion for CoM estimation in humanoid robotics and biomechanics communities.
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2.7 Related works

Our CoM estimation approach is part of an active topic both in research on

human motion and in humanoid robotics [Cotton et al., 2009]. For humanoids, the

corrections on the CoM provided by forward kinematics is achieved mainly using

various measurement systems [Fallon et al., 2014] including force sensors [Stephens,

2011, Xinjilefu and Atkeson, 2012]. These solutions use mostly Kalman filtering

techniques which is agnostic of the frequency domains of each signal. On the other

hand, the CoM reconstruction has a longer history in the field of biomechanics [Eng

and Winter, 1993]. Moreover, since few decades, force platforms were already

considered for CoM position estimation [Shimba, 1984], but most of the methods

did not consider the fusion of force sensors with direct kinematics reconstruction of

the CoM [Caron et al., 1997, Barbier et al., 2003].

We have recently presented a contribution to this field using complementary

filtering of the ZMP, the kinematics and the forces [Carpentier et al., 2015a]. The

position of the ZMP is linear with regard to the dynamics of the CoM only when

the CoM has constant height. Therefore, we had to make this assumption which

increased estimation errors. Furthermore the ZMP-CoM dynamics has an unstable

mode which required a specific cancellation. Therefore, this approach proved more

complex and less precise than the solution we present here.

Beside this, to our best knowledge, the closest published work to our method

is the technique by citemaus2011combining. The kinematic CoM estimation was

derived and the forces were integrated to obtain two signals of the velocity of

the center of mass. These signals were merged using frequency-based weighting

function. These two filters were then complementary each to other in terms of

Fourier transform, which makes them non-linear because the weighting function

could be arbitrary (in the paper they suggest a sigmoid function). Since it uses

Fourier transform, the method could only run offline, or at least with important

delay. Furthermore the final step of their process is the integration of the

reconstructed velocity and it is an unstable process which we believe can lead

to arbitrary drift from the real position of the CoM. Instead, our method works

online as well as offline and for arbitrary durations thanks to the stability of all our

filters. In another work, Schepers et al. [2009] developed similar approach as Maus

et al, but with ZMP and force measurements. In addition to theoretical guarantees

and integration stability issues, this method assumed zero CoM accelerations when

using the ZMP, which increases again the approximation errors.

From a robotics point-of-view, it is interesting to cite the work by Masuya and

Sugihara [2015] where the moments, the kinematics and the forces were also merged.

However, this signals where pre-filtered before feeding them to the Kalman filter,

the drawbacks of this approach are discussed in Section 2.5.4. They require also

velocity measurement of the CoM which is difficult to obtain, especially for humans.

Another interesting work was recently presented by Rotella et al. [2015], where

Kalman filtering technique is used to correct the estimation of CoM and momenta

using contact wrenches. However, they assume to know the angular momentum
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around the center of mass which may be difficult for humans. Also, they have no

spectral handling of these signals and then may not exploit the error frequency

properties.

Another possible solution to the problem of tracking the center of mass

trajectory is the offline calibration of the inertial parameters of humans [Venture

and Gautier, 2013] or robots [Ayusawa et al., 2008] in terms of mass distribution

and inertia matrices. These methods can not only increase the precision of the

dynamical models but when achieved they can also allow to estimate online more

precisely the linear and angular momenta using only kinematic data. However,

the calibration requires a time-consuming process during which the user, human or

robot is asked to perform wide, various and dynamic motions. This is not always

possible, for example in the case of human patients with motor impairments, for

which not only the motion is reduced, but also the anthropometric tables badly

describe the dynamical parameters.

2.8 Conclusion and perspectives

We have seen through this chapter the analysis and the comparison of the

observability provided by all sensing devices to reconstruct the center of mass

trajectory for both humans and robots. These sensors can be classified into three

categories: the CoM reconstruction provided by the geometrical reconstruction

together with a model of the mass distribution; the forces which give the CoM

accelerations; and the moments provide an approximation of the CoM position. We

have established the conditions wherein we can trust every signal the most. The

key idea is to consider that these measurements carry noises and errors, but with

separated but complementary frequency bandwidths for each signal.

Afterwards, we have shown the design and the implementation of an estimator

of the CoM position for humans and robots based on multi-sensor data fusion.

Our choice was to use a complementary filtering technique to merge these signals,

specifically because of its particular suitability to merge different bandwidths of

signals.

The simulation results show that the complementary filter successfully get rid

of estimation errors by removing their appropriate frequency bandwidths, whereas

Kalman filtering technique could not reject fully these errors.

It is worth to note that this method is not reduced only to the case of walking

motions. The considerations that are the basis of our approach are valid for any

kind of trajectory, even for non-planar contacts, as soon as we have all the required

measurements. The only detail that has to be taken into account and possibly

modified is the frequency range of the error of each signal.

Finally, one limitation to our approach is to neglect the variations of angular

momentum around the center of mass. These variations depend on the gesticulation

of the system and they introduce errors in the estimation provided by sensors of

contact force and moment. We believe that the precision of our method would be
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improved if this parameter is explicitly taken into consideration.

In the next chapter, we make use of this estimator to obtain a precise

reconstruction of the CoM trajectory of human subjects while walking. We use

this reconstruction to derive an analytical model of the CoM pattern, which

experimentally exhibit excellent correlation scores.
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T
he center of mass is a key descriptor in the understanding and the analysis

of bipedal locomotion. Some approaches are based on the premise that

humans minimize the CoM vertical displacement. Other approaches express walking

dynamics through the inverted pendulum model. Such approaches are contradictory

in that they lead to two conflicting patterns to express the CoM motion: straight

line segments for the first approaches and arcs of a circle for the second ones.

In this chapter, we show that CoM motion is a trade-off between both patterns.

Specifically CoM follows a "curtate cycloid", which is the curve described by a

point rigidly attached to a wheel rolling on a flat surface. We demonstrate that all

the three parameters defining a curtate cycloid only depend on the height of the

subjects.

3.1 Motivation

Walking is by far a complex process. This complexity remains a challenge for

many disciplines in life sciences (biomechanics, neurophysiology, medicine, physical

therapy) and recently for computer engineering and robotics with the emergence

of humanoid robots. Most research approaches explore complexity reduction

principles. For example, six major determinants of gait have been identified [Inman

et al., 1953, Della Croce et al., 2001] as critical features to address walking

kinematics. The introduction of gait determinants have been mainly motivated by

the minimization of CoM vertical displacement. On the other hand, a popular model

to model walking dynamics is the inverted pendulum [Cavagna and Margaria, 1966].

Inverted pendulum gives a rough approximation of the motion of the walker center of

mass (CoM) via a sequence of arcs of a circle. The geometry of CoM motion induced

by both perspectives are incompatible: minimizing the CoM vertical displacement
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Figure 3.1: Illustration of the CoM trajectory in the sagittal plane during
human walking. The CoM trajectory has a cycloidal pattern, described by a
point on a wheel rolling at constant velocity on a flat surface.

tends to a straight line motion, which is not converging towards a motion made of a

sequence of arcs of a circle. The contradiction of both theories is deeply explored in

Kuo [2007]. It is shown that both underlying premises are limited and it is proposed

to focus on mechanical work rather than the kinematics or forces of gait.

Nevertheless, in any case, the estimation of CoM motion plays a central role

in the study of human walking. It represents a descriptor of motion relevant in

both kinematic and dynamic point of view and may allow validating or invalidating

theories of human walking. However, reconstructing the position of CoM is not a

straightforward process, since it is not rigidly linked to any limb of the body. For

instance, in Whittle [1997], it is shown that CoM moves differently from the motion

of the pelvis. The importance of stance-limb behavior in determining the trajectory

of CoM during walking and running is explored in Lee and Farley [1998]. The path

followed by CoM when walking on a treadmill has an upward concave figure-of-eight

shape which is described in Tesio et al. [2010].

CoM position and motion estimation are addressed by modern techniques of

motion capture. The human body CoM depends on various parameters, which

are classically reduced to articular angles and limb mass distribution. Body

segments are considered as rigid bodies. In vision-based motion capture, body

segments are equipped with markers. Their 3D positions are captured by vision.

Articular angles are deduced from the position of body parts [Wu et al., 2002, 2005].

CoM is then computed from standard anthropomorphic mass distribution of body

parts [De Leva, 1996]. A second popular approach is to estimate CoM position

and motion directly from force platforms [Shimba, 1984, Caron et al., 1997, Barbier

et al., 2003]. Such platforms measure the interaction forces and moments of the

body with the environment. Forces are at the origin of the CoM accelerations while

moments are related to CoM position by the mean of the so-called central axis of

the contact wrench Latash and Zatsiorsky [2015].
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Figure 3.2: Capture of the experiment room during the acquisition session. A male
subject was instructed to walk barefoot in straight line at his comfort walking speed
on two force platforms. Two force plates are firmly embedded in the floor and allows
the reconstruction of the segmentation of the walking pattern.

It remains that both kinematics-based and dynamics-based approaches of CoM

estimation are subject to a lot of inaccuracy sources. In Chapter 2 we established

the observability conditions of the center of mass position using motion capture and

force platforms. We showed that the accuracy domain of each measurement can be

easily described through a spectral analysis. We then introduced a new approach

based on complementary filtering to estimate the CoM position with increased

accuracy.

Based on this new CoM estimation algorithm, the present study explores the

geometric shape of the CoM path when walking. It is shown that CoM follows

a “curtate cycloid” in the sagittal plane, generated by a virtual wheel whose

parameters constitute original invariants of bipedal walking and illustrated on

Fig. 3.1.

3.2 Material and methods

3.2.1 Participants

Twelve healthy male (age: 24.2 ± 2.3 yr, height: 1.74 ± 0.04 m, mass: 71.0 ± 8.9

kg) and four female (age: 24.3 ± 3.3 yr, height: 1.71 ± 0.04 m, mass: 53.4 ± 8.9

kg) subjects volunteered for this investigation. The experiments were conducted

in accordance with the standards of the Declaration of Helsinki (revision 2013),

with formal approval of the ethics evaluation by the ethic committee of INSERM

(IRB00003888, Opinion number 13-124) of the National Institute of Health and

Medical Research, INSERM, Paris, France (IORG0003254, FWA00005831).

3.2.2 Data acquisition

The experiment room (dimension 6 × 20 m) was equipped with 12 infrared cameras

sampling at 200 Hz (Vicon, Oxford Metrics, Oxford, UK) and recording 43 reflective
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markers placed on the whole body of the (see Fig. 3.2). Markers set is based on Wu

recommendations and approved by the International Society of Biomechanics [Wu

et al., 2002, 2005]. Two force plates (AMTI, Watertown, MA, USA) embedded into

the floor were used to record ground reaction forces and ground reaction moments

at 1000 Hz.

3.2.3 Experimental protocol

Participants were instructed to walk barefoot in straight line at their normal walking

speed (see Fig. 3.2). The walking distance was about 8 ± 1 m. At 4 m from the

starting point, the subjects had to walk on the two consecutive force platforms.

For each subject, 10 valid trials were recorded. A trial was considered valid as

soon as the stance foot was completely located on the force plates, allowing the full

measurement of the external forces and wrenches.

3.2.4 Center of mass reconstruction

To fully reconstruct the center of mass position, we used the accurate estimator

presented in Chapter 2. Improving CoM reconstruction methods currently used in

Biomechanics [Shimba, 1984, Gard et al., 2004], this approach efficiently merges

three different inputs: the external forces, external wrenches and the center of mass

position computed from the marker positions and anthropomorphic tables [Dumas

et al., 2007]. All those signals carry noises and errors, but with different frequency

bandwidths for each signal. Those measurements are then merged together

according to their respective bandwidth accuracy thanks to a complementary

filtering approach. As output, we obtained an estimation of the center of mass

position which tends to be free of bias compared to previous measurement methods.

This produces a more accurate estimate of the real CoM position, which is also

consistent with respect to the external forces. This method offers the ability to

both operate in online and off-line mode, thanks to optimization and averaging of

forward and backward passes, resulting in a zero-delay output signal. We used this

second mode to estimate the CoM trajectory.

3.2.5 The curtate cycloid

A cycloid is a curve corresponding to the path followed by a point c attached to the

radius of a wheel rolling without slipping on a plane surface. This curve is defined

in the sagittal plane by the parametric cartesian equation:

x = Rθ − r sin (θ) (3.1)

z = z0 − r cos (θ) (3.2)

where θ is the angle between the radius of the wheel and the vertical direction, R

is the radius of the wheel, r is the distance of the point c to the wheel center and

z0 is the altitude of the wheel center. x and z are the coordinates of c regarding
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Figure 3.3: Illustration of the three types of cycloid. From top to bottom: normal
cycloid, curtate cycloid and prolate cycloid. The last plot corresponds to the CoM
trajectory in the sagittal plane. Its shape is very similar to the curtate cycloid.

the forward and vertical spatial axis. All in all, the cycloid is described by a set of

3 parameters denoted by p =
[

R, r, z0

]

and one variable θ which evolves according

to time. The first time derivative of the trajectory θ corresponds to the angular

velocity ω of the cycloid. We may distinguish three cases which are illustrated by

the Fig. 3.3. In the following, we are interested by the curtate cycloid. This curve

has the property of being cyclic and asymmetric, similar to CoM trajectories for

which the convex lower part of the cycle is longer than the concave higher part.

3.2.6 Segmentation of the gait

The use of two synchronized force plates enables us to efficiently and precisely

segment the walking motion into single and double support phases.

3.2.7 Fitting protocol

The fitting process is based on numerical optimization. It is set up as a nonlinear

least-square problem, where we try to minimize the distance between the CoM

trajectory (the measurement) and the cycloidal model composed of three parameters

p =
[

R, r, z0

]

and one variable θ which evolves according to time. The fitting
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(a) Segmentation of the gait into single and double support
phases. The two force plates allows an efficient detection of

initial and final contact instant of the gait.

(b) Illustration of the variability of the CoM on the vertical
direction during one single step. The solid curves represent the
estimated trajectory of the CoM according to the percentage of

the gait cycle and the dashed curve is the mean of all those
trajectories.

Figure 3.4: Illustrations of the segmentation of the gait (3.4(a)) and of the variability
of the CoM during one single step (3.4(b)).

problem is written as:

min
p,θ

N∑

k=1

‖yk
mes − fmodel(θ

k, p)‖2
2 (3.3)

where fmodel corresponds to the parametric models exposed in Eq. (3.2) and yk
mes

is the kth sample measurement of the CoM trajectory in the sagittal plane.

This problem is efficiently solved with standard nonlinear least-square solvers. In

this study we use the function lsqnonlin provided with MATLAB, The MathWorks,

Inc., Natick, Massachusetts, United States.

Even though the natural walking is considered as a cyclic process, both

the amplitude of the CoM trajectory and the cycle duration vary slightly even

between two consecutive steps. To overcome those natural fluctuations, the data

concerning each subject is made of a collection of ten single steps. The standard

intra-subject deviation is presented in Fig. 3.4(b). Therefore, to overcome those

natural fluctuations, we chose to operate the fitting procedure only for one step

composed of a single support and double support phases. This choice allows to reach

precisions finer than the intra-subject variability, and even to study this variability

in terms of few parameters as we present later on. In the following, we call this

interval on which the optimization operates the fitting interval.

From the optimization result, we finally fit a polynomial of degree 1 to the
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(a) Center of mass trajectory fitted with the proposed model.
The fitting closely follows the CoM trajectory and reproduces

its asymmetry. Notice that, for a better reading, the axis
coordinates are rescaled.

(b) Reconstruction error between the CoM trajectory and its
fitting with the proposed model. Over the whole cycle, the
reconstruction error remains below 1.5mm and it is mainly

contained in the vertical direction.

Figure 3.5: Illustration of the reconstruction of the center of mass trajectory (3.5(a))
and its reconstruction error (3.5(b)) during one stride.
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Figure 3.6: Mean and standard deviation of the reconstruction error for each
subject. The mean reconstruction for all the subjects remains below 3.5mm with a
maximal standard deviation of 1.5mm.

trajectory θ according to time. The monomial of degree 1 finally corresponds to the

angular velocity ω of the wheel. With this model, the equation θ is then given by:

θ(t) = θ0 + ωt (3.4)

3.3 Results

This section is organized as follows: we first present the results of the fitting process,

we then expose the correlations between the fitting parameters and the height of

the subjects. We conclude this section by showing the extraction of the temporal

segmentation from the data of this model.

3.3.1 Fitting of the model

Hereinafter, we start by presenting the example of the fitting of one subject.

Subsequently, we show statistical data about the quality of the reconstruction of all

the subjects.

Fig. 3.5(a) shows both the result of the fitting for one fitting interval which

corresponds to a full step composed of one single support and one double support.

We see that the fitting is able to closely follow the trajectory of the CoM and to

reproduce its asymmetry.

The error between the reconstructed CoM and the fitted trajectory is displayed

in Fig. 3.5(b) on the forward and vertical motion axes. We can observe that the

fitting error is lower than 1.5mm on the entire duration of the cycle.

This level of fitting quality does not vary a lot among subjects. Fig. 3.6 shows

the mean and the standard deviation of the reconstruction error for all subjects. In

general, the mean reconstruction is less 3.5mm with maximal standard deviations

of 1mm. At this stage, it is worth to notice that for numerous subjects the mean

error is less than 1mm with very low standard deviation, less than 0.5mm.

This fitting quality allows to study human walking trajectories with a reduced
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R
r

Figure 3.7: On left, the scheme of the wheel with the notations of the model: R

is the radius of the wheel while r is the distance of the point to the wheel center.
On right, a scatter plot showing the evolution of the mean radius parameters R

and r according to the subject’s sizes. The standard deviation of the parameters
is low (below 5mm) for all the subjects. It appears that these two parameters are
correlated to size of the subjects.

number of parameters. One example is presented hereafter where we study the

correlations that lie between the trajectory parameters and the height of the

subjects.

3.3.2 Link between model parameters and the subject’s height

From one step to another, the found fitting parameters are different due to the

variability of the gait cycle. Nevertheless, the variation of these parameters is very

small and may even be characteristic of each subject. But to properly support this

claim, a higher number of subjects is necessary.

The following results study how these parameters correlate with the height of

the subjects. Fig. 3.7 highlights the linear correlation between the radius parameters

R and r of the cycloid and the height of the subjects. For both correlations, the

computed p-value is lower than 0.01 and the coefficient of correlations is 0.67 and

0.61 respectively.

Fig. 3.8 shows the evolution of the mean value of the parameter z0 (the height

of the wheel) according to the height of the subjects. Unsurprisingly, a strong

correlation is observed with p ≤ 0.001 and a correlation coefficient with value 0.87.

Finally, Fig. 3.9(a) highlights the good affine approximation of the wheel angle

θ according to time. For its part, Fig. 3.9(b) shows the mean and the standard

deviation of the angular velocity of the cycloid according to the subject heights.

It highlights the weak correlation (p ≥ 0.83) between the angular velocity of the

cycloid and the size of the subjects.



58 Chapter 3. On the centre of mass motion in human walking

Figure 3.8: Evolution of the mean altitude z0 according to the subject’s size. The
standard deviation of this parameter for each subject is very weak (below 2mm).
Furthermore, the altitude is strongly correlated to the size of the subjects p ≤ 0.001
with a correlation coefficient of 0.87.

3.3.3 The segmentation is embedded in the model

The gait cycle has a natural segmentation due to the transitions between single

and double support phases, and the extraction of this segmentation is relatively

easy for the case of our model. The curtate cycloid has a specific shape with one

minimum and two crossing points with the horizontal axis during one period. If we

look at the two time instants where the cycloid crosses the horizontal axis at level

z0, they approximatively match the time of start and end of the double support

phase respectively. this observation is assessed by Fig. 3.10 which shows the mean

prediction error of the start and end time instants of the double support phases for

all the subjects. We can observe that in average the two instants are well captured

by the model.

3.4 Discussions

Our study shows that the center of mass of a walker follows the trajectory of a point

attached to a virtual wheel moving on a horizontal plane at a constant velocity.

3.4.1 Accuracy of the model

The most important feature of our model is that the level of error in the vertical

motion shown in Fig. 3.6 is one order of magnitude less than the existing models in

the literature [Hayot et al., 2016, Zijlstra and Hof, 1997, Sakka et al., 2010], which

overestimate the vertical position by up to 2cm.

In fact, our model fits the reconstructed trajectories with a higher precision than

the accuracy of the measurement systems which is around 2mm with classic and

accurate motion capture systems [Winter, 2009]. In other words, it is not possible

to go beyond this quality of fitting for this state-of-the-art measurement system.

Moreover, even using force and moment sensors, the observability conditions of the
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(a) Evolution of θ according to time and the corresponding
linear fitting. It follows that θ can be well approximated by an

affine function of time represented by Eq. (3.4).

(b) Variation of the mean angular velocity ω of the cycloid
according to the subjects’ size.

Figure 3.9: Results of the fitting of θ with an affine approximation (3.9(a)) and
evolution of the mean angular velocity regarding to the subject height (3.9(b)).

center of mass are very weak along the direction of the contact forces as shown in

Chapter 2, which leads mostly to CoM height misestimation.

3.4.2 An intuitive model with few parameters

Only three parameters are necessary to describe all the CoM trajectory with our

model. This can to be compared to the other models in the literature [Hayot et al.,

2016], where the models are composed of pendulum and inverted pendulum, but

they necessarily need more parameters, for instance the location of the pendulum

pivot points.

It is worth to emphasize that the few number of the parameters of our model

keeps a simple intuitive geometrical interpretation, in contrast with possible purely

numeric parametrization such as Fourier transforms or other approaches based on

moments or frequency-domain representations [Minetti et al., 2011].

3.4.3 A stable descriptor and reliable predictor

Our model allows to study both a single step and an average steady gait. Indeed,

the parameters can be identified from one single step, and our experimental results

show that these parameters have relatively low variability regarding the variability
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Figure 3.10: Bar graph of the prediction error of the time instants of start and
end of the double support phases. In average, the two instants defining the double
support are well captured by the model with only few milliseconds of errors.

of the gait: every subject samples their parameters following a tight probability

distribution which spans a space comparable to the variability of the gait itself.

Therefore, this also turns our model into a reliable predictor for the motion of the

center of mass, given this distribution.

3.4.4 A segmentation-free model

To the best of our knowledge, our model is the first time-domain model which is

free of segmentation. In other words, the curtate cycloid is a single curve. It is not

composed of various patterns defined on multiple intervals. The model does not

require any distinction between single and double support phases. 1

More than that, the model contains the segmentation of the locomotion. Indeed,

the minima of the cycloidal trajectory and its crossing with the wheel axis define

together the beginning and the end of the double support.

This gives an interesting echo to the observation made by Sternad and Schaal

[1999] that "Segmentation of endpoint trajectories does not imply segmented

control". This suggests that a possible continuous control of the CoM position

can be achieved using this kind of models.

3.4.5 A useful model for walking gait analysis

The 3-dimensional space defining the curtate cycloids allows to study walking gait

in a simple way. The correlations between these parameters and the height of the

subjects are easy to capture. It is then possible to make use of this model to study

other features such as the effect of sensory-motor impairments on walking motion

generation.

Finally, one striking feature of our model is that it creates also naturally another

moving reference frame which is the center of the virtual wheel. In this reference

frame the CoM produces orbiting trajectories at a constant distance from the origin,

1The rolling of an egg on a table has already been considered as model to explain the shape of
the center of mass trajectory during walking [Nigg et al., 2000]. To the best of author’s knowledge,
no results have confirmed yet this hypothesis on a population of individuals.
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Figure 3.11: The Yoyo-Man model opens promising research routes to continue
exploring the computational foundations of human and humanoid walking. Most
existing walking controllers for humanoid robots consider a bottom-up approach
based on the control of the so-called Zero Moment Point (ZMP) [Vukobratović and
Borovac, 2004, Kajita et al., 2003]. With the Yoyo-Man model, we suggest new
plausible walking bottom-up control schemes that benefit from the knowledge of
the Centre of Mass motion.

which hovers in the space at constant height and low-varying velocity. The center of

the wheel produces then smooth and regular locomotor trajectories, easy to exploit

to study broader properties of walking motion generation.

3.4.6 Limitations of the model

While our model fits well with a population of 16 people, it is only applicable in

the context of nominal walk. It has already been observed in the literature [Lee

and Farley, 1998] that during running, the CoM follows a different shape than

the one proposed. An interesting study would consist of studying the existence of

similar geometric model in the context of running motions. This would lead to

another analytic study on the switching transition between walking and running

which remains an open question.

3.5 Conclusion and perspectives

In this chapter, we have observed the existence of a common pattern among humans

when they walk in a nominal way. This pattern corresponds to a curtate cycloid

whom parameters only depend on the size of subjects. This observation has been

made possible by the application of the estimators presented in Chapter 2.

From this pattern, it would be then possible to retrieve the cost function which

gives rise to it using inverse optimal control techniques [Pauwels et al., 2014,

Mombaur et al., 2010, Chittaro et al., 2013]. Another interesting point would be to

observe the existence of patterns for the angular part of the centroidal dynamics.
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This study would need an additional observer of the angular momentum quantity,

extending the work presented in Chapter 2.

The main intuition at the end of this chapter is that, despite its complexity,

anthropomorphic locomotion boils down to the generation of walking patterns of

the center of mass and the angular momentum of the system. This is true when

observing humans walking, and also for generating the walk of humanoid and other

legged robots. In the next chapter, we will continue this intuition and propose a

method to generate such patterns, on which basis efficient whole-body locomotion

movements can be achieved with real humanoid robots.



Chapter 4

Multi-contact locomotion of
legged robots

Contents
4.1 Motivation 63
4.2 Generic optimal control formulation 66
4.3 Learning feasibility constraints of the centroidal problem 71
4.4 Centroidal Wrench Cone Approximation 78
4.5 Final formulation of the optimal control problem 84
4.6 Experimental results 86
4.7 Related works 91
4.8 Conclusion and perspectives 93

L
ocomotion of legged robots on arbitrary terrain using multiple contacts is yet

an open problem. To tackle it, a common approach is to rely on reduced

template models (e.g. the linear inverted pendulum). However, most of existing

template models are based on some restrictive hypotheses that limit their range

of applications. Moreover, reduced models are generally not able to cope with

the constraints of the robot complete model, like the kinematic limits. In this

chapter, we propose a complete solution relying on a generic template model,

based on the centroidal dynamics, able to quickly compute multi-contact locomotion

trajectories for any legged robot on arbitrary terrains. The template model relies

on exact dynamics and is thus not limited by arbitrary assumption. We also

propose a generic procedure to handle feasibility constraints due to the robot

whole body as occupation measures, and a systematic way to approximate them

using off-line learning in simulation. An efficient solver is finally obtained by

introducing an original second-order approximation of the centroidal wrench cone.

The effectiveness and the versatility of the approach is demonstrated in several

multi-contact scenarios with two humanoid robots both in reality and in simulation.

4.1 Motivation

As explain earlier, the locomotion of a robot is the consequence of the interaction

forces created at each contact point. These contact forces are constrained to remain

inside the so-called friction cones which then avoids slippage and falls (see Fig. 4.1).

Maintaining these forces deep inside the cones is one of the main tasks of the
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Figure 4.1: Illustration of HRP-2 robot and TALOS robot making contacts with
their environment. The green “ice-cream” cones are dispatched on the 4 vertices of
the feet, symbolizing the friction cones with friction coefficient of value 0.3.

locomotion pattern generator (LPG).

In its generic form, a LPG deals with a high-dimensional and complex

optimal control problem (OCP), seeking both for the sequence of contacts and

the whole-body trajectory while ensuring the feasibility of the contact constraints.

This generic formulation of the locomotion problem is currently intractable by

modern computers at sufficient control rate (e.g. 10Hz or more). To tackle the

computational complexity, many strategies have been proposed in the literature.

Most of them are based upon reduced models: instead of working with the full

dynamics, only a subpart is considered, covering the essential properties of the

whole dynamics.

4.1.1 Reduced models

In the context of bipedal locomotion, the most famous reduced model is the linear

inverted pendulum model (LIPM) [Kajita et al., 2001]. The locomotion is then

reduced to the problem of finding a trajectory for the reduced model which will

in turn drive the whole-body system. Starting with Kajita et al. [2003], various

optimal control formulations have been proposed by the community, to either tackle

the robustness problem [Wieber, 2006b], include viability conditions [Sherikov et al.,

2014], allow altitude variations of the center of mass (CoM) [Brasseur et al., 2015],

or also include foot placements as parameters of the problem [Herdt et al., 2010b].

However, LIPM-based methods are restricted to basic environments and cannot

deal with more complex scenarios as non-coplanar contact cases, climbing stairs

using handrail, etc. Considering non-coplanar contacts invalidates the nice

linearization leading to the LIPM model. A first approach to handle the non-linear

dynamics was proposed in Hirukawa et al. [2006], however it requires technical and

dedicated developments based on limiting assumptions (e.g. prior knowledge of
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the force distribution). In quite another vein, it has been proposed to simplify

the whole-body optimization problem by e.g. assuming unconstrained torque

capabilities [Dai et al., 2014]. Both approaches indeed boil down to optimizing

the so-called centroidal dynamics [Orin et al., 2013] as a reduced model. Direct

resolution of the underlying optimal control problem is then possible [Kudruss

et al., 2015], resulting in real-time performances. Other contributions have

also been suggested that exhibit approximate dynamics (with possibly bounded

approximations) leading to convex optimization problems, thus ensuring global

optimality [Herzog et al., 2015, Dai and Tedrake, 2016, Brasseur et al., 2015]. In

most cases, the footstep sequence is assumed given, although some solvers are also

able to discover it while optimizing the centroidal dynamics [Mordatch et al., 2012,

Deits and Tedrake, 2014], at the cost of heavier computational times.

4.1.2 Feasibility constraints

The reduced model (either LIPM or centroidal) is subject to feasibility constraints

implied by the whole body (e.g. kinematic or torque limits, footstep length). For

instance, the CoM trajectory must be achievable (e.g. stay in the robot workspace)

by the whole-body kinematics. Such constraints are difficult to express as solely

function of the reduced model. These constraints can be tackle explicitly, by adding

the corresponding whole-body variable in the optimization scheme [Mordatch et al.,

2012, Dai et al., 2014]. However, this direct representation is also the most expensive

in terms of computation.

Such constraints can also be represented at the level of the reduced model

by using so-called proxy constraints [Zaytsev, 2015]. In most previous works,

proxy constraints are defined by some rough approximations [Dai and Tedrake,

2016, Caron et al., 2016, Ponton et al., 2016] (box constraints, elliptic bounds,

etc) leading to a certain conservatism when they are not simply ignored in many

formulations [Audren et al., 2014, Perrin et al., 2015]. For example, footstep limits

have been encoded using hyper-planes based on a dataset of robot success and

failure inside a dynamic simulator [Perrin et al., 2012]. Similar constraints can be

obtained by training a neural network [Orthey and Stasse, 2013]. In [Zaytsev, 2015],

bounds of the capturability regions are obtained by extensive computations of the

viability set of reduced models.

An important constraint limits the motion of the CoM reflecting the kinematics

bounds of the whole-body. It is also necessary to consider the constraints related

to the contact forces [Wieber, 2002] which must lie inside the friction cones, the

capacity of robots to generate sufficient variations of angular momentum, etc. The

common issues lies in the fact that it is hard to find analytic formulas to represent

and express these constraints.
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4.1.3 Outline of the chapter

In this chapter, we introduce a complete formulation of LPG able to cope with

multiple non flat contact, footstep timings and whole-body “proxy" constraints,

with a generic and versatile approach, tractable at robot control rate (from 20 to

100Hz). Our solution is based on a generic optimal control formulation presented in

Section 4.2 which computes the centroidal dynamics trajectory according to a given

sequence of contacts while enforcing two sets of constraints. On the one hand, the

feasibility with respect to the whole-body constraints is tackled using a systematic

approach introducing occupation measure inside the optimal control formulation.

We then propose a complete solution to learn the occupancy measure offline, by

sampling the robot motion capabilities in simulation (see Section 4.3). On the other

hand, the feasibility of the contact model (friction cone constraints) is handled either

by directly working with the contact forces or with the centroidal wrench. For that

aim, we leverage on the double cone description [Fukuda and Prodon, 1996, Escande

et al., 2006] and provide an efficient and original quadratic approximation of the

centroidal wrench cone (see Section 4.4). Both contact and proxy constraints are

solved in near real-time inside the proposed optimal control formulation presented in

Section 4.5. A complete experimental analysis is proposed, exhibiting the versatility

and the efficiency of the approach, based on various locomotion scenarios with

the new robot TALOS [Stasse et al., 2017] in simulation and in reality with the

humanoid robot HRP2. Finally, in Section 4.7 we compare our method to related

works.

4.1.4 Contribution

The main contribution is to propose the first complete formulation of a LPG able

to generate realistic trajectories for multi-contact locomotion in near real time. It

relies on four technical contributions:

(i) the clean formulation of the OCP;

(ii) an efficient approach to handle proxy constraints as occupation measure;

(iii) an original and efficient quadratic approximation of the centroidal wrench

cone;

(iv) the proposition to rely on multiple-shooting for computing the OCP solution.

4.2 Generic optimal control formulation

In this section, we briefly recall the fundamental equations which drive the dynamic

of a poly-articulated system in contact. We then introduce a generic OCP

formulation for multi-contact locomotion of legged systems. For that purpose,

we first recall how the whole-body dynamics can be reduced to the centroidal

dynamics under a simple assumption. We also demonstrate how the centroidal
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dynamics can be driven with two different controls leading to two OCP formulations

with complementary properties. We conclude this section by highlighting how

most LPGs in the literature are sub-cases of this generic OCP. Although this

section contains known materials, we believe that both the clean formulation of

the dynamics decoupling and the development of a generic formulation for the

multi-contact problem are a contribution. They are indeed prerequisites to the

introduction of proxy constraints and centroidal cone approximations in the next

sections.

4.2.1 Contact model

The interaction between a robot and its environment is defined through a set of

contact points {pk ∈ R
3, k = 1, ..., K}. For instance, for a humanoid robot equipped

with rectangular feet, the contact points correspond to the four vertices of the

rectangular shape. At each contact point pk is defined a contact force fk. In the

case of unilateral contacts, fk must lie inside a 3-dimensional friction cone K3
k (also

denoted quadratic “ice-cream” cone) characterized by a positive friction coefficient

µk. Fig. 4.1 depicts a humanoid robot making contact with its environment.

In this work, we only consider rigid contact interaction which is a reasonable

assumption for most modern multiped robots which are mostly equipped with rigid

soles.

A contact phase is defined by a constant set of contact points. In the context of

bipedal walking, two examples of contact phases are the single and double support

phases. As soon as a creation or a rupture of contact point occurs, the contact

set is modified, defining a new contact phase. The concatenation of contact phases

describes what we name a contact sequence, inside which all the contact phases have

their own duration.

The computation of such contact sequences in arbitrary environment is

computationally challenging. Since Bretl [2006], efficient algorithms have been

proposed by the motion planning community either to plan only for footed

robot [Chestnutt et al., 2003, Deits and Tedrake, 2014] or more generically for

any kind of multiped robots [Escande et al., 2006, Tonneau et al., 2015]. In our

current approach, we use the open source and efficient implementation of [Tonneau

et al., 2015] proposed in [Mirabel et al., 2016] to compute in real time a feasible

contact sequence inside complex environments.

4.2.2 Whole-body dynamics and centroidal dynamics

A legged robot is by nature a free-floating-base system composed of 6 + n degrees

of freedom (DoF). Its dynamics is governed by 6 + n equations of motion, which

links the joint configuration q and its time derivatives q̇, q̈ to the torque actuation

τa and the contact forces fk:
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Ha

]

q̈ +

[

bu

ba

]

=

[

gu

ga

]

+

[

06

τa

]

+
K∑

k=1

[

J⊤
k,u

J⊤
k,a

]

fk (4.1)
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where subscripts u and a stands for the under-actuated and the actuated parts

respectively, H is the generalized mass matrix, b covers the centrifugal and Coriolis

effects, g is generalized gravity vector and Jk is the Jacobian of contact k.

On one side, the 6 first rows of (4.1) corresponds to the under-actuated dynamics

of the robot, also called the centroidal dynamics [Orin et al., 2013]. This centroidal

dynamics coincides with the Newton-Euler equations of motion which links the

variation of the linear momentum and the angular momentum of the whole system

expressed around its CoM to the contact forces. Denoting by h
def
= mċ the linear

momentum (m being the total mass of the robot and c the CoM position), and Lc

the angular momentum, the 6 first rows of (4.1) can be simply written as:

ḣ =
∑K

k=1 fk + mg (4.2a)

L̇c =
∑K

k=1(pk − c) × fk, (4.2b)

where g
def
= (0, 0, −9.81) is the gravity vector and × denotes the cross product

operator.

On the other side, the n last rows of (4.1) are the classic Lagrange dynamics of

a robot manipulator in contact.

4.2.3 Hierarchical decoupling between centroidal and manipulator
dynamics

From a phenomenological point of view, (4.1) reads as follows: when supplying a

certain amount of joint torque τa, the environment reacts by producing the contact

forces fk. Those very same forces act on the centroidal dynamics to enable the

robot to move inside the environment.

Under the mild assumption that the system can produce sufficient torque

(which current high-performance legged robots usually have), the centroidal and

manipulator dynamics can be decoupled one from the other. The locomotion

problem can then be split into two consecutive stages. In a first stage, it is sufficient

to find the force trajectories which drive the centroidal dynamics. In a second

stage, the required joint torque trajectory can be retrieve throw the manipulator

trajectory, knowing the centroidal trajectory and under the hypothesis of non sliding

contacts. In other words, the torque may be seen as a slack variable1.

To ensure the effective decoupling, two additional restrictions must be respected

by the first stage:

1. in case of unilateral contacts, the corresponding forces must belong to the

friction cone;

2. the centroidal dynamics may be feasible by the system in terms of kinematics;

1Torque bounds can later be treated as a proxy constraint following the approach that we
introduce in Sec. 4.3
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The first constraint stems directly from the contact model introduced in Sec. 4.2.1.

The second constraint comes from the fact that the centroidal dynamics is linked

to the joint configuration and its derivatives throw the centroidal mapping:

[

h

Lc

]

= Ag (q) q̇, (4.3)

with Ag the so-called centroidal momentum matrix (CMM) [Orin et al., 2013].

Below, we reduce the whole-body dynamics to its centroidal dynamics.

4.2.4 State and control of the centroidal dynamics

Substituting h by its value mċ, (4.2) can be rewritten as:

m(c̈ − g) =
∑K

k=1 fk (4.4a)

L̇c + mc × (c̈ − g) =
∑K

k=1 pk × fk (4.4b)

Eq. (4.4) defines an affine dynamical system with the state vector x
def
= (c, ċ, Lc)

and the control vector uf
def
= (fk, k = 1, . . . , K) with fk ∈ K3

k. One drawback of this

formulation is that the control input grows linearly with the number of contacts.

To overcome that, one can write (4.4) by condensing all the forces and torques with

a single control input uc
def
= (fc, τc) such that the centroidal dynamics reads:

m(c̈ − g) = fc (4.5a)

L̇c = τc − c × fc (4.5b)

with fc
def
=

∑K
k=1 fk and τc

def
=

∑K
k=1 pk × fk, uc being the gravito-inertial wrench

exerted by the environment on the robot and expressed in the world frame. The

constraints on the individual contact cone is then reduced to the 6 dimensional

constraint:

(fc, τc) ∈ K6
c , (4.6)

where

K6
c

def
= ⊕K

k=1K3
k =

{
∑K

k=1 (fk, pk × fk) , fk ∈ K3
k

}

(4.7)

being the Minkowski sum of the contact cones translated by the contact point

positions. This cone is named the centroidal wrench cone (CWC) [Hirukawa et al.,

2006].

At this stage, several observations come:

(i) K3
k contact cones have analytic description as Lorentz (“ice-cream”)

cone [Boyd and Vandenberghe, 2004] while there is no explicit formula for

the Minkowski sum K6
c of Lorentz cones;

(ii) K6
c explicitly depends on the contact point positions pk but it is independent

from the CoM position c;
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(iii) Eq. (4.4) is a dynamical system whom control input grows linearly with the

number of contacts while (4.5) has a fixed size control vector;

(iv) there is a forward map to pass from (4.4) to (4.5). The reverse is not true:

in case of multiple contacts, we cannot uniquely retrieve the contact forces

resulting in a given contact wrench vector. Then, one has to rely on some

heuristics to strip away the ambiguity on the force distribution as in Righetti

et al. [2013].

4.2.5 Generic optimal control formulation

From 4.2.4, it appears that the centroidal dynamics can be driven either by the

force input uf or by the centroidal input uc. In both cases, the dynamics can be

written as an affine dynamical system equation:

ẋ = f(x, u) = Fxx + Fu(x)u (4.8)

where Fx and Fu(x) are two matrices easily deduced from (4.4) or (4.5) and u

indifferently represents uf or uc and must belong to the corresponding set denoted

by K.

We are now able to describe the generic problem of locomotion which can merely

be stated as follows:

From a given contact sequence and an initial centroidal state, find a
feasible centroidal trajectory, satisfying the Newton-Euler equations, the contact
constraints and leading to a viable state.

This problem can be directly transcribed as an optimal control problem with path

and terminal constraints:

min
x,u,(∆ts)

S∑

s=1

∫ ts+∆ts

ts

ℓs(x, u) dt (4.9a)

s.t. ∀t ẋ = f(x, u) (4.9b)

∀t u ∈ K (4.9c)

∀t ∃ (q, q̇, q̈) s.t. x, ẋ is feasible (4.9d)

x(0) = x0 (4.9e)

x(T ) ∈ X∗ (4.9f)

where s is the index of the contact phase, x and u are the state and control

trajectories2, ts is the start time of the contact phase s with t1 = 0 and ts+1 =

ts + ∆ts. Constraints (4.9b) and (4.9c) enforce consistent dynamics with respect

to the contact model. Eq. (4.9d) is the constraint enforcing the feasibility of the

centroidal dynamics with respect to the whole-body problem: it handles kinematics

limits, bounds on the angular momentum quantity, etc. We will show in Section 4.3

2in all this chapter, trajectories are denoted as underline variables.



4.3. Learning feasibility constraints of the centroidal problem 71

how it can be handled with proxy constraints in an automatic way. Constraint

(4.9e) constrains the trajectory to start with a given state (typically estimated by

the sensor of the real robot) while (4.9f) enforces a viable terminal state Wieber

[2008]. Finally, ℓs is the cost function typically decoupled in ℓx(x) + ℓu(u) whose

parameters may vary according to the phase. ℓx is generally used to smooth the

state trajectory while ℓu tends regularize the control. The resulting control is stable

as soon as ℓx involves the L-2 norm of one of the time derivatives of c [Wieber, 2008].

4.2.6 From generic formulation to its implementation

OCP (4.9) corresponds to a generic formulation of the problem, but contains

several terms that are difficult, complex or impossible to make explicit: whole

body constraints, angular momentum set, viability set. The stake is now twofold:

we need to decide (i) how to represent these functions and (ii) how to solve the

OCP.

(i) Representing the constraint functions implies a trade off between accuracy

of the model and efficiency of the resolution. In the following sections, we propose

original contributions to formulate approximate proxy constraints representing the

whole-body limits with a generic offline learning approach (Sec. 4.3). We also

propose an efficient approximation of the contact constraints then allowing the

formulation of the OCP with the reduce variable uc (Sec. 4.4). Both constraints

could be used in any OCP, for example directly applying to [Lengagne et al., 2013,

Audren et al., 2014, Kudruss et al., 2015, Carpentier et al., 2016b, Herzog et al.,

2016].

(ii) We then propose to solve the resulting OCP using a multiple shooting solver,

then enabling efficient and reliable implementation on the robot (Sec. 4.5).

4.3 Learning feasibility constraints of the centroidal
problem

In this section, we first present a mathematical coding of the feasibility constraints

as probability measures. We discuss the interest of this representation with

respect to more-classical set-membership and show how it can be used to efficiently

implement (4.9d) in the OCP. We then present a complete solution to efficiently

approximate the CoM feasibility. Handling this sole constraint first is a proper

way of validating our proxy formulation. It is also interesting in practice, as the

feasibility of the CoM is the most limiting constraint. Generalization to velocity

and acceleration of the CoM with respect to joint velocity and acceleration limits

would be straight-forward. Extension to the construction of the proxy on the torque

limits is left as a perspective. Finally, we conclude this section by validating our

learning process on the HRP-2 robot.
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4.3.1 Handling feasibility constraints

4.3.1.1 Mathematical representation of feasibility constraints

Our objective is to efficiently implement the feasibility constraint (4.9d) in our

OCP. This constraint explicitly depends on the robot configuration, which is not

a variable of the centroidal OCP. A straight-forward implementation is to add the

robot configuration in the variables of the OCP Dai et al. [2014]. However, this

would surely lead the OCP to optimize the whole-body trajectory in order to handle

all the robot constraints, which is yet not tractable especially if targeting real-time

performances. We rather believe that it is possible to represent this constraint by

an equivalent “proxy” constraint not dependent on the robot configuration.

Various ways to encode proxy constraints have been proposed in the literature.

Most of them rely on set-membership. Denoting by γ the centroidal projection

function:

γ : (q, q̇, q̈) → (x, ẋ) = γ(q, q̇, q̈)

the proxy can be written as the constraint to have the state variables in the range

space of γ. Set-membership proxies are used for instance in Herdt et al. [2010b],

Deits and Tedrake [2014] to encode maximal step size in biped walking, or in Dai and

Tedrake [2016] to bound the CoM position by simple geometric shape. In all these

cases, the set boundaries are represented by very simple mathematical structures

(typically linear inequalities) in order not to burden the OCP solver. Remarkably,

there are few papers about the automatic synthesis of the set boundaries Perrin

et al. [2012], Orthey and Stasse [2013], Zaytsev [2015].

Despite its popularity, the set-membership representation has important

drawbacks. First, it is often difficult to handle by the OCP solver, in particular

when the feasible set is not convex. The boundary, which is a singular mathematical

object, is also complex to describe or numerically approximate. Finally, the OCP

solver often tends to saturate the set boundary, where the inverse kinematics γ−1

is likely to fail. Consequently, the set is often arbitrarily reduced to improve the

robustness of the whole-body solution.

4.3.1.2 Proxy as occupancy measure

In this paper, we rather state that the proxy is best represented by the notion of

occupation measure over x, ẋ Pitman [1977], Lasserre et al. [2008]. In its generic

form, given a set A ⊂ R
n, a time interval I ⊂ R and a trajectory s : I → R

n, the

occupation measure µ of the trajectory s on A is defined as:

µ(A)
def
=

∫

I
✶A(s(t))dt (4.10)

with ✶A(.) the indicator function of the set A. It gives the duration spent in the

set A on the interval I by the trajectory s.

Now, consider a state trajectory x. With (4.9d), we want to maximize the
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likelihood that the inverse-kinematics solver converges on a trajectory q such that

x is the image of q by γ. For that purpose, it is desirable that to any state x

corresponds as many robot configurations as possible, so that the inverse kinematics

is likely to converge to a solution q meeting continuity constraints.

We defined the centroidal occupation measure as the image of the uniform

distribution in configuration space through the centroidal projection γ:

µo(x̃)
def
=

∫

q̃ s.t. γ(q̃)=x̃
dq̃ =

∫

Q
✶γ(q̃)=x̃dµQ

where x̃
def
= (x, ẋ), q̃

def
= (q, q̇, q̈), Q is the whole-body motion range and µQ is the

uniform distribution on Q.

Measure µo has several properties of the set-membership representation. First,

the support of µo is equal to the feasibility set, which means that µo contains at least

as much information as the set boundaries. It indeed contains more information,

as for example the level sets of µo can be used as boundaries of the inner of the

feasibility set, used to improve the robustness.

In practice, it is desirable that OCP (4.9) promotes centroidal states x̃ where

µo is the highest. First, it makes it easier to then compute a corresponding

configuration q̃. Second, the configuration is well inside the kinematic feasibility

set, where redundancy will help the robot to handle disturbances.

Finally, the measure also eases the life of the OCP solver, compared to handling

directly the feasibility set membership, as explained next.

4.3.1.3 Maximizing the occupancy measure

Before deriving an effective solution to represent µo for the specific case of the

kinematic feasibility, we quickly show how µo can be integrated in the OCP (4.9).

In practice, the measure can be normalized and represented by the corresponding

probability density function (PDF), denoted by p(x, ẋ). It is then possible

to directly exploit the measure to represent the set-membership constraint (by

imposing the integral of the measure to be positive on any small neighbourhood

around the trajectory). In addition, we could use the PDF to directly optimize the

robustness, either by optimizing over a level set of the PDF, or by maximizing the

neighbourhood around the trajectory where the measure is nonzero.

However, adding a PDF as a constraint of an OCP is not straightforward.

Therefore, we propose to remove the hard constraint (4.9d) and penalize the OCP

cost with the log-PDF. The new cost formulation ℓ̃s is the composition of two terms:

the previous cost function ℓs which regularize the dynamics, plus the log-PDF of

the feasibility constraints, leading to:

ℓ̃s(x, u) =

regularization term
︷ ︸︸ ︷

ℓs(x, u) −
feasibility constraint

︷ ︸︸ ︷

log(p(x, ẋ)) (4.11)

In practice, the logarithm prevents the solver from selecting non-feasible states
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x and controls u through the dynamics equation ẋ = f(x, u). Constraints (4.9d)

is always satisfied. It also penalizes non-robust behavior where no redundancy

q is available, and avoids saturation of the hard constraint. Finally, the OCP

solver is gently pushed away from the constraint, instead of searching for a solution

living on the boundaries, which greatly improves its efficiency. Furthermore, it is

unlikely that the OCP solver is trapped in local minima of µo, as it manipulates

a full trajectory x and not a single state x. Experimentally, we observed that

our OCP solver robustly computes a good local minimum when optimizing over

a cost penalizing the log-PDF, while it is unlikely to converge to a solution when

optimizing over set-membership.

4.3.2 Learning the CoM reachability proxy

We now present a complete solution to efficiently approximate the CoM feasibility,

i.e. for any time t, there exists a joint configuration q(t) such that (i) the contact

placements are respected and (ii) the CoM of the poly-articulated system matches

c(t).

4.3.2.1 Probabilistic model

The geometric condition can be stated as the conditional probability of the CoM to

be at the position c given the current set of K contact points {pk ∈ R
3, k = 1...K}.

This probability is denoted by p(c|pk, k = 1...K). It lives in the high dimensionality

domain R
3(K+1) and it is hard to compute in general.

The probability domain can be exactly reduced by gathering together the

contact points belonging to the same rigid end-effector (e.g., the 4 vertices of the

humanoid foot belongs to the same end-effector). We denote by Mi = (Ri, pi) ∈
SE(3) the placement (position and orientation) of the contact body i. The

conditional probability is then reduced to p(c|Mi, i = 1...Kc) where Kc is the

number of end-effectors in contact.

We now assume that variables Mi are all independent. This assumption is

clearly abusive, however is a reasonable approximation under knowledge of c. It is

later discussed. Under this assumption, the conditional probability reads:

p(c|Mi, i = 1...Kc) ∝
Kc∏

i=1

pi(c) (4.12)

where pi(c) stands for p(c|Mi) and ∝ stands for “is proportional to”. pi(c) is nothing

more than the probability distribution of the CoM to be at position c w.r.t the frame

defined by Mi.

The assumption of independence of the Mi is commonly employed inside the

machine-learning community as a trick to make the problem numerically tractable.

In this particular case, it simplifies a lot the learning process: instead of working in

a high dimensional space, the problem is restricted to a subset of R3. In addition,

the independence of end-effector placements plays the role of an upper-bound for



4.3. Learning feasibility constraints of the centroidal problem 75

the real probability: if a CoM is not feasible for at least one of the end-effectors (i.e.

one of the pi(c) is equal to 0), then the joint probability is also zero. The converse

is not true. We empirically show in next section that this approximation, although

intuitively rough, is quite reasonable in practice and leads to good experimental

results.

4.3.2.2 Kernel density estimation by CoM sampling

There is in general no closed form to encode pi(c) for a particular legged robot.

Nevertheless, this conditional probability can be easily approximated by extensive

sampling of the CoM position expressed in the end-effector frames.

Sampling Nsamples of the CoM position expressed in the frame Mi does not raise

particular difficulties. For each sample, a configuration qa of the actuated joints

is randomly sampled and the CoM position is computed (expressed in placement

frame) by forward kinematics. The sample is rejected if joint limits or self collision

are violated.

The probability distribution can be approximation from the cloud of CoM points

by the kernel density estimators (KDE) Parzen [1962]. KDE are in some sense the

analogues of histograms but for continuous domains: for each point of the data

set, it associates one kernel centered on the point and all kernels share the same

parameters. In the present work, we use isotropic Gaussian kernel.

4.3.2.3 Reduction of dimension

One drawback of the KDE representation is its computational complexity:

evaluating the exponential function contained in the Gaussian kernel takes around

10 ns on modern CPU. So, roughly speaking, evaluating the PDF of the KDE takes

approximately 10.Nsamples ns which becomes rapidly a bottleneck when the number

of points is huge (Nsamples greater than 100 points).

We propose to then approximate the KDE by a Gaussian mixture model

(GMM) Bishop [2006]. GMMs are particularly suited to approximate a PDF with

only few Gaussians in the mixture. The GMMs are learned for each end-effector

from the corresponding cloud of samples by means of the expectation-maximization

(EM) algorithm Dempster et al. [1977].

The quality of the GMM approximation can be estimated using the

Kullback-Leibler (KL) divergence between the KDE (ground-truth) and the learned

GMM (approximation) using the Monte Carlo estimator proposed in Hershey and

Olsen [2007]. Depending on the number of Gaussians in the mixture, the divergence

can reveal under or over fitting effects. The optimal number of Gaussians is easily

selected for each end effector by dichotomy, as exemplified in next section.

4.3.2.4 Summary of the learning procedure

In summary, for each end effector, Nsamples configurations are sampled and the

corresponding CoM is computed in the end-effector frame. The resulting KDE
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is approximated by fitting a GMM using EM. Finally, the probability of CoM

occupancy is approximated as the product of pi(c), for i the end effectors in contact

with the environment. The OCP cost function is then given by:

ℓ̃s(x, u) = ℓs(x, u) −
Kc∑

i=1

log(pi(c)) (4.13)

4.3.3 Empirical validation of the CoM proxy

We first validate the proposed approximation of the CoM proxy using the model

of the HRP-2 robot. This unit testing will be completed by integration test in the

complete LPG in the last section of the paper. For that purpose, with illustrate the

learning procedure and then validate the independence assumption.

4.3.3.1 Illustration of the learning procedure

We only expose for space reasons the learning of the accessibility space of the CoM

w.r.t. the right foot (RF). A similar study can be conducted on the three other

end-effectors.

The learning process is made from a set of 20000 points sampled uniformly in

the configuration space. The KDE of this set is represented on the first row of

Fig. 4.2. The first observation is that the PDF of the RF is not convex and follows

a kind of banana distribution on the X-Z sagittal plane. In other words, this means

that the distribution cannot be approximated by a single normal distribution but

must be composed of several ones. The second row of Fig. 4.2 represents the colour

map of the GMM used inside the OCP. At this stage, it is important to notice that

the approximation with GMMs does not fit perfectly the maximal values of the

real distribution. However, this approximation is conservative with respect to the

support and the level sets of the original distribution.

Fig. 4.3 highlights the experimental procedure suggested in Sec. 4.3.2.3 and

shows the evolution of the KL-divergence with respect to the size of the GMMs.

For the right and left feet, the KL-divergence stagnates from 7 kernels in the

mixture. In other words, it is sufficient to takes a GMM of size 7 to represent

the CoM distribution in the foot frames. For the right and left grippers, it is a

little bit different. The KL-divergence first decreases and then increases from 14

kernels. This behaviour can be explained by the fact that the EM algorithm does

not optimize the KL divergence but the likelihood of observation (expectation). We

chose to represent the CoM distribution w.r.t. the grippers with a GMM of size 14.

A similar study has been done on the TALOS humanoid robot, which is bigger

and taller than HRP-2 and has different leg and arm kinematics. The distributions

for the right foot of TALOS is depicted in Fig. 4.4.
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Y-Z projection X-Z projection X-Y projection

Figure 4.2: Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of HRP-2, projected along the three axis X,Y,Z. The first
row corresponds to the ground truth distribution estimated through KDE (20000
points). Next rows depict the learned GMM with respectively 5, 7 and 13 kernels
in the mixture.

Figure 4.3: Evolution of the KL divergence between the KDE distribution and
GMMs of different sizes for the four end-effectors of the HRP-2 robot.
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Y-Z projection X-Z projection X-Y projection

Figure 4.4: Illustration of the probability density distribution of the CoM w.r.t.
the right foot frame of TALOS, projected along the three axis X,Y,Z. The first
row corresponds to the ground truth distribution estimated through KDE (20000
points). The second row depicts the learned GMM with 4 Gaussian kernels in the
mixture. The axes have the same scale than in Fig 4.2.

4.3.3.2 Validation of the independence assumption

In Sec. 4.3.2.1, we make the hypothesis of independences between the end effectors

in order to simplify the learning process. We check here this assumption empirically

for 2, 3 and 4 contacts.

For that purpose, we use an analytical inverse-kinematics solver to uniformly

sample configurations with respect to end-effector placements. These samples give

a ground truth estimation of the constrained CoM distribution, which is then

compared to the estimate (4.12).

Fig. 4.5 shows the results of this validation protocol for phases with two, three

and four contacts. First, the CoM reachability volume decreases with the number

of contacts for both real and approximated distributions, which is expected: with

more contacts, less degrees of freedom are available to freely move the CoM. Second,

it appears that in all scenarios, our approximations of the CoM distributions cover

a larger region than the real distributions. However, this is not a limitation as our

optimal control formulation tends to move the CoM toward the highest probability

regions which coincide with the real distributions.

4.4 Centroidal Wrench Cone Approximation

As mentioned in Section 4.2.4, the linear and angular momentum variations must

lies in the CWC, which is defined by (4.7) as the Minkowski sum of Lorentz

cones. In general, there is no analytically formulation of such Minkowski sum.
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Figure 4.5: Checking of the CoM independence hypothesis for various scenarios.
(Left) contact configurations and (right) corresponding level sets of the CoM
occupancy measures, with ground truth in solid lines and approximations in dashed
lines. On the first row, the robot makes two contacts with the stairs while on the
second one, the robot is also handling the handrail. On the last row, the robot is
making 4 contacts.

As classical approximations of the CWC involves many linear inequalities that are

hardly tractable by the OCP, we propose here a more efficient approximation by a

single quadratic inequality.

4.4.1 State of the art

A first attempt has been proposed to compute analytically the supporting area in

the context of static equilibrium from Lorentz contact cones [Or and Rimon, 2017].

Nevertheless, this method is limited to very specific cases called “tame stances”. To

handle any scenario, it has been suggested to compute a linear version of the CWC

by replacing contact cones with their linear approximations [Qiu et al., 2011]. The

set-membership constraint (4.6) is then reduced to a set of linear inequalities thanks

to the double-description property of linear cones [Fukuda and Prodon, 1996].

Most of current approaches now rely on the double-description of the

CWC [Fukuda and Prodon, 1996]. Yet, the calculus of the double-description

is numerically unstable for 3 contacts and more [Caron and Kheddar, 2016]. In

addition, the implicit description leads to high number of inequalities (about 50

inequalities with 2 contacts, more than 100 with 3 contacts) which depends on the
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(a) Estimate of the plane direction n from the collection of rays
contained in K6

c
. Outer ellipsoid E estimated from the convex-hull

C(n, β) obtained from the ray projection onto the plane P (n, β).

(b) Computation of the
antipodal points from the

ellipsoid E5.

(c) Estimation of the outer
cone direction from the
collection of antipodal

points.

(d) Computation of the
minimal conic from the

projection of rays onto the
plane P (d0, 1).

Figure 4.6: Illustration of the procedure to build the outer approximation of the
CWC from the collection of rays coming from the linearization of the contact cones.

contact placements, thereby increasing the dimensionality of the global problem.

On the contrary, we propose a conic approximation composed of a single

quadratic inequality, no matter the number of contacts is. This approximation is

composed of an outer approximation of the CWC which enables us to obtain a robust

inner approximation. We first detail a systematic procedure to compute an outer

(optimistic) approximation of the CWC with a Lorentz cone. This approximation

is possible under a mild assumption on the contact point positions. Based on this

outer approximation, we then easily deduce an inner Lorentz cone of the CWC

using theoretical properties of the CWC. This inner (conservative) approximation

is then used in (4.9) as conic constraint on the control uc.

4.4.2 Outer approximation

To keep the description of the method simple, we directly work in the 6-dimension

space R
6 (all the developments apply in any dimension larger than 3). In its generic
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form, a Lorentz cone is classically defined as:

K6 def
=

{

y = (τ , η) ∈ R
6, ‖τ‖2 ≤ η

}

(4.14)

For example, for the 3D Coulomb cone described in Section 4.2.1, the component τ

corresponds to the tangential forces and the η variable is the normal force scaled by

the friction coefficient. With a more geometric view, K6 can rather be represented by

a hyper-plane Π intersecting the cone (the so-called conic section) and a 5-dimension

ellipsoid E5 in this hyper-plane:

K6 =
{

y ∈ R
6, PΠ(y) ∈ E5

}

(4.15)

with PΠ(y) the normal projection of y in Π. The conic section Π is easily

represented by its normal direction d. The projection is then PΠ(y) = y − (y⊤d)d.

The ellipsoid E5 can be represented by its center b ∈ Π and a symmetric definite

positive (SDP) matrix Q (E5 is the spectral ellipsoid of Q):

K6 =
{

y ∈ R
6, ‖y − (y⊤d)d − b‖Q ≤ y⊤d

}

(4.16)

Several triplets (d, b, Q) can be chosen to represent the same cone K6. Among

all triplets, the specific case where b is null (i.e. E5 is centered on the normal

direction d) also corresponds to the spectral radius of Q being minimal. Finally, we

can equivalently work with Q being a 5-matrix, or a 6-matrix with arbitrary-given

norm.

Our goal is to find the best outer Lorentz approximation K6
o of the CWC K6

c

using the generic form (4.16), i.e. to find the direction d and SDP matrix Q such

that K6
c ⊂ K6

o and K6
o is minimal (the center b being null at the optimum). This is

equivalent to minimize the spectral radius of Q so that a sufficiently-large family

of rays of K6
c are inside the resulting outer approximation. This statement can be

translated into the following optimization problem:

min
Q�0,d∈R6

det(Q) (4.17a)

s.t. λi ∈ K6
o(Q, d), i = 1, ..., Ñ (4.17b)

‖d‖ = 1 (4.17c)

d⊤Qd = 1 (4.17d)

where (λi)i=1..N is a family of rays of K6
c (typically obtained by concatenation

of regular rays of the 3D contact cones K3
k)3. The cost (4.17a) induces the

minimization of the area of the section, with (4.17d) required to avoid trivial

solutions. Constraint (4.17c) enforces the unitary norm of the direction vector.

Constraint (4.17b) means that all the rays must belong to the Lorentz cone K6
o

3This family of rays span a linear approximation of K
6
c which is typically handled by the

double-description approach [Qiu et al., 2011].
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parametrized by Qo and do. In practice, we take the same number of rays than

what is typically used to compute a linear approximation of the CWC by double

description [Qiu et al., 2011] (i.e. 4 rays per contact cone). Here we have the

advantage that the complexity of problem (4.17) typically scales linearly with the

number of rays while it induces a combinatorial when using the double description.

Nevertheless, (4.17) is hard to solve in its own. To simplify its resolution, we

propose to better use its geomertric structure and rely on a dedicated alternate

descent strategy which iteratively and idependently optimize the plan and the

ellipsoid. The procedure is summarized in Fig. 4.6: (i) we first find a suboptimal

direction d, (ii) then a suboptimal (noncentered) ellipsoid E5 = (Q, b); (iii) this

ellipsoid is used to compute the optimal direction d where the ellipsoid would be

centered; (iv) the optimal ellipsoid is then obtained by optimizing the sole matrix

Q.

(i) Chosing a initial direction d: We can chose the normal direction n by only

considering the family of rays (λi) (if the family is large enough, which is the

same hypothesis –implicitly– done with the double-description approach, and is

always true in practice). Each ray λi defines a half-space (the linearized cone is the

intersection of all the half-spaces). Clearly, if the normal direction is not in this

half-space, the normal hyper-plane Π will not properly intersect the cone (i.e. the

intersection of K6
c and Π is not an ellipsoid) [Tian et al., 2016]. We then search d as

close as possible to the mean of the family of rays, while respecting this constraint.

It can be computed with the following quadratic program (QP):

min
d ∈R6

1

2

∑

i

‖d − λi‖2
2 (4.18a)

s.t. Λ⊤d > 0 (4.18b)

where Λ is the matrix where columns are the rays λk (see Fig. 4.6(a)).

(ii) Computing an outer ellipsoid on the plane: Any hyper-plane Π
def
= { x ∈

R
6, n⊤x = β} with β > 0 can be considered (we typically take β = 1). The

intersection of the rays (λi)i with Π defines a family of points (pi)
def
=

(

β λi

n⊤λ

)

i
in Π.

The convex hull of (pi) is the intersection of the linear inner approximation with Π.

We search E5 as the minimum-volume ellipsoid that encloses the set of points (pi)i,

also called the Löwner-John ellipsoid [Boyd and Vandenberghe, 2004], represented

by its center b and spectral matrix Q. The pair of parameters is obtained by the

following second-order conic program (SOCP):

min
b∈R5,Q∈R5×5

det Q (4.19a)

s.t. Q � 0 (4.19b)

∀i = 1..N, ‖ Qpi − b‖ ≤ 1 (4.19c)

(iii) Choosing the optimal direction: As previously explained, the minimal outer

approximation is found when the ellipsoid E5 is centered on direction d. We can
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directly obtained the optimal direction by considering the antipodal points of the

initial ellipsoid E5 (the oppositve points on the ellipsoid corresponding to Eigen

directions of Q). Consider the bisecting planes Bi defined from antipodal points

(i = 1..5, see Fig. 4.6(c)), i.e. Bi is the hyper-plane containing the center of the

cone and for which the pair of antipodal points are reflections. Then the optimal

direction d∗ is defined by the intersections of the 5 hyper-planes Bi.

(iv) Computing the optimal ellipsoid: Finally, the minimal section is computed

with the same SOCP (4.19). We first define the intersecting plane ⋄ with normal

d∗ and level value β = 1. Then, we project the rays onto this plane and compute

the minimal ellipsoid E∗ defined by Q∗ and b = 0 enclosing those projected points

by imposing its center to be zero in the plane frame (see Fig. 4.6(d)).

4.4.3 Inner approximation

An inner ellipsoid can be directly obtained for the minimal outer ellipsoid with the

guaranty to be strictly inside the convex-hull. For that, it is sufficient to divide

the ellipsoid by 5 (the hyper-plane dimension). In addition, if the convex-hull is

symmetric with respect to the center of the ellipsoid, it can be simply reduced by a

factor
√

5 [Boyd and Vandenberghe, 2004]. Using this property, we obtain an inner

approximation of K6
c , denoted K6

i and having the same direction than K6
o.

The proposed approximation is guaranty to strictly lie inside the CWC by

construction. While it may lead to a certain conservatism –less centroidal wrench

variations are allowed– the proposed approximation can also be used in the context

of robust control where the contact forces must be sufficiently inside the contact

cones to avoid contact slippage. In practice, the reduction factor α can be chosen

in the interval [1
5 ; 1√

5
]. Using the lower bound leads to theoretical guaranty, while

choosing a greater value allows to exploit geometric properties of the contact set,

like symmetries. Theoretically, the factor α can be adjusted on the flight by a

quick dichotomy in the range [1
5 ; 1√

5
]. In practice, we will see in the following that

choosing an arbitrary fixed α leads to effective results on the real robot.

4.4.4 Validation of the centroidal cone approximation

We now empirically validate this inner approximation with respect to both the

real CWC and the linearized version of the CWC on the scenarios already used in

Sec. 4.3.3.2. Given a contact configuration of the robot (i.e. contact placements

and COM position), we uniformly sample values of the centroidal wrench and

check whether they are in the true CWC cone, in its linear approximation and in

either α-approximation of the CWC. The resulting sampling live in a 6-dimension

manifold. For visualization purpose, we plot a 2D cross-section of the cones. Fig. 4.7

shows the cross-section corresponding to L̇c = 0 and c̈z = 0 (i.e. corresponding to

the LIPM dynamics), in the case of 2,3 and 4 contacts.

As theoretically expected, the outer (α = 1) approximation contains the true

CWC. The linear approximation is inside the true CWC and closely matches it
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Figure 4.7: Illustration of the contact wrench approximations for scenarios of
Fig. 4.5. The exact CWC and its linear approximation closely matches. The outer
approximation is obtained with α = 1, and the inner approximation with α = 0.2.
The approximation α = 0.3 is an efficient trade off.

(to the cost of high computation costs when solving the resulting OCP). A fair

but nonconservative approximation is obtained for α = 0.5 while α = 0.3 is in the

CWC but is conservative. In practice during the experiment with the robot, we used

α = 0.3. The resulting cone indeed corresponds to the inside of CWC where it is

the most desirable to select the forces achieved in the context of legged locomotion.

For the 4 contacts scenario we can observe that the approximation α = 0.5 is also

contained in the real CWC because of the symmetries in the contact placements.

However, we did not find useful in practice to adjust α in order to take advantage

of the larger volume. Note that the outer approximation in general does not touch

the true cone when plot in an arbitrary 2D section (while it does in the 6D space).

A side result is obtained from comparing the cone resulting of 2 contacts to

the cone resulting of 3 contacts. The CWC remarkably grows with the addition

of a new contact. This goes in favor of multi-contact locomotion: adding contacts

enable the robot to increase its dynamics capabilities while constraining more its

kinematics.

4.5 Final formulation of the optimal control problem

In this section, we formulate the tailored optimal control used in the experimental

section. It is based on the generic OCP (4.9) and uses the results of Sec. 4.3 for the

CoM proxy and of Sec. 4.4 for the constraints on the control vector. In addition to

that, we propose an effective way to solve it in order to reach real time computations.
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4.5.1 Tailored optimal control problem

Based on previous sections, the OCP (4.9) is finally implemented under the following

from :

min
x,u,(∆ts)

S∑

s=1

∫ ts+∆ts

ts

ℓs(x, u) − ∑

i log(pi(x)) dt (4.20a)

s.t. ∀t ẋ = f(x, u) (4.20b)

∀t u ∈ K (4.20c)

x(0) = x0 (4.20d)

x(T ) = (cf , 0, 0) , ẋ(T ) = 0 (4.20e)

where the feasibility constraints (4.9d) is replaced by the additional log likelihood

sum in the cost function, as explained in Sec. 4.3. The control variable u can be

either uf (the contact forces with the ice-cream cone constraints for (4.20c)) or as

uc (centroidal wrench with approximate quadratic CWC for (4.20c), as explained

in Sec. 4.4). We discuss this choice in the result section. We reduce the terminal

viability constraints (4.9f) to the constraint of the robot to be at rest at the end of

the motion (4.20e). Here, the i-th mixture of Gaussians pi(c) has been replaced by

pi(x) to be generic. And the cost function is given by:

ℓs(x, u) = wc̈‖c̈‖2
2 + wL̇c

‖L̇c‖2
2

For all the experiments and robots presented in the next section, we use the same

weighting in the cost function: wc̈ = wL̇c

= 10. This weighting allows us to balance

between the contribution of the log-PDF terms and the regularizations of the

dynamic variables ensuring a smooth state trajectory.

4.5.2 Efficient resolution: the multiple shooting approach

Problem (4.9) and (4.20) consider optimization variables x and u of infinite

dimension and cannot be directly handled by a computer. Addressing these nominal

problems requires the use of indirect methods like the Pontryagin’s maximum

principle or the Hamilton-Jacobi-Bellman principles, in order to reformulate

the optimization problem as an integration problem of an augmented system.

Unfortunately, these indirect approaches cannot handle (4.20) due to the bilinear

constraint (4.20c). In addition, it is hard to guess a correct initial value of the adjoint

systems. Alternatively, “direct” approaches turn the initial infinite-dimensional

problem into a finite-dimensional one by constraining the control or the state

trajectories to live in an arbitrary basis function.

Various details of implementation should be considered to obtain an efficient

resolution. The most important in our opinion is the way the pair (x, u) is

handled. On the first hand, collocation [Qiu et al., 2011, Mordatch et al., 2012]

explicitly represents both the state and the control variables. The collocation
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method then tends to match them at the collocation nodes. On the other hand,

single shooting [Tassa et al., 2012, Perrin et al., 2015] only explicits the control

trajectory while the state is obtained by integration. In between, multiple shooting

makes explicit the control trajectory along with some few state variables at given

shooting nodes [Diehl et al., 2006]. The multiple-shooting intervals are then made

independent one from each other. Then state and control continuation are enforced

at the shooting nodes.

Both collocation and multiple-shooting approaches can deal with unstable

dynamics like the LIPM or centroidal dynamics model (unlike single shooting).

To be really effective, collocation methods must rely on fine discretization grid in

order to make the state trajectory consistent with the dynamics. This leads to

a high dimensional problem, likely to be difficult to solve with real-time aiming

even on modern computers. For its part, the multiple-shooting method is able to

work with coarser grid, leading to an underlying optimization problem of smaller

dimension.

In the end, it appears that multiple-shooting is a well suited approach to

solve in a sparse manner (4.20) thanks to the problem structure. In addition, a

multiple-shooting problem can be easily warm-started with a good initial guess

of the state trajectory. This initial solution just needs to be consistent on the

multiple-shooting interval, not necessarily on the interval bounds.

Our implementation of (4.20) relies on the multiple-shooting optimal control

framework MUSCOD-II [Leineweber et al., 2003]. MUSCOD-II provides internal

routines for accurate integration and computation of sensitivities along with an

efficient sparse sequential quadratic program (SQP) solver. In our experiments, we

used the sparse solver OOQP [Gertz and Wright, 2003] as internal QP solver of the

SQP. Finally, it is worth mentioning that MUSCOD-II has already been successively

applied for multi-contact locomotion [Kudruss et al., 2015].

4.6 Experimental results

We first quickly present the complete pipeline used to compute the robot

movements, from generating the sequence of contacts, then optimizing the

locomotion patterns and finally computing the whole-body trajectory. We then

report several movements with the real HRP-2 humanoid robot in industrial

scenarios, along with the same last movement in simulation on the new TALOS

robot.

4.6.1 Description of the complete pipeline

Our locomotion framework is composed of three stages:

Contact sequence planning Depending on the experiments, the contact

sequences are either manually designed or automatically generated using the contact
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Figure 4.8: Comparison of the state trajectories obtained with either the force-based
OCP (simple and exact 3D cones, nonminimal parameters – af ) or the motion-based
OCP (approximate 6D cone, minimal 6D parameters – ac). In theory, the optimum
of both problems should be the same, however the numerical properties of each
OCP leads to minor variations. The CoM trajectories have similar shape but the
dynamic marginally varies. The motion-based OCP leads to marginally smoother
trajectories. Much more oscillations appear at the angular momentum level when
optimizing the forces, but they mostly correspond to numerical noise.

planner Tonneau et al. [2015]. We also manually design the end-effector trajectories

by using splines with zero acceleration and velocity at take off and landing instants.

Centroidal resolution From the contact sequence and the learned CoM

feasibility constraints, we solve the optimal control formulation (4.20). We initialize

the OCP with a linear interpolation of the CoM positions between the initial and

final postures. In addition, the OCP initial guess considers the system to be at

rest on each multiple-shooting interval. The state is then discontinue at each

multiple-shooting node which is not a problem for the multiple-shooting solver.

The control inputs are encoded as cubic splines, allowing the control variable to be

differentiable along all the motions.

Whole-body resolution From the OCP, we obtain a reference trajectory for the

centroidal dynamics that we follow using a second-order inverse kinematics (IK)

solver similar to Saab et al. [2013]. In addition, the IK must track the end-effector

trajectories. Optimal forces are also extracted from the OCP (if uf is the control

variable) and can be used as references to control the robot with an inverse dynamics

low-level controller.

Time scores Table 4.1 summarizes the performances of our approach on the

different scenarios, either using the centroidal wrench uc or the contact forces uf as

control input. The two last rows of this table show the percentage of the time spent
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Exp.1 (a) Exp.1 (b) Exp.2 Exp.3
control type uc uf uc uc

motion duration 8 s 8 s 24 s 36 s
computation time 1.23 s 3.89 s 8 s 10 s
iterations 22 40 42 15
time / iteration 56 ms 97 ms 0.19 s 0.66 s
QP 42 % 77 % 70 % 70 %
sensitivity computation 53 % 14 % 20 % 16 %

Table 4.1: Summary table of computation times and percentage spent for the
resolution of the OCP.

either in solving the QP inside the SQP or in computing the numerical sensitivities

of the multiple-shooting problem using finite-differences. All the computations have

been done on a single thread of a I7 CPU running at 2.2 GHz (similar to the one

we have on the real robot).

The solver takes between 7ms and 15ms to make one step of optimization for

one second of motion. If using our method as a model-predictive controller, it would

be necessary to take 2 to 3 seconds of horizon length, allowing the solver to run at

20Hz. This matches the application needs Nishiwaki and Kagami [2006].

There exists no open-source software that would have allowed us to benchmark

our method with respect existing works Time scores are given in some previous

works. In Kudruss et al. [2015], 30 minutes are needed for some few steps.

In Dai and Tedrake [2016], 8 minutes are needed per iteration for long movements.

In Ponton et al. [2016], 100ms are needed per iterations for 5 steps, but to the

cost of a relaxation of the dynamics (results are not demonstrated on a real

robot). From our own experience on preliminary implementations, optimizing whole

body movements with the real robot constraints implies several ten minutes of

computation. Whole-body optimization using MUSCOD-II Koch et al. [2012],

Clever et al. [2017] requires hours of computation to generate biped gaits.

In Lengagne et al. [2013], the solver needs 3 hours to generate multi-contact

movements. Model-predictive control is targeted in Tassa et al. [2012, 2014], while

one step of optimization (with horizon length of 0.5s) implies 100ms of computation;

however, the results are yet not realistic enough to generate locomotion movements

on a real robot.

In summary, our approach is the first one that is able to generate effective

movements that the robot can execute, with a versatile and exact formulation,

while matching the computation performances imposed by the application.

4.6.2 Experiment 1 - long steps walking

In this first experiment, we aim to compare the influence of both types of controls

uc and uf on the solution. For that purpose, we use a simple benchmark which

consists in long step walking with a stride of 0.9m with the HRP-2 robot. This

stride is quite huge for such a humanoid robot of 1.6m height. Then, starting from
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X-Z projection

Figure 4.9: Projection of the CoM trajectory inside the right foot frame with and
without taking into account the log-pdf term in the cost function. The level set
corresponds to the GMM distribution used in our OCP.

a resting position and ending to an other resting position, the solver has to find a

crouching gait in order to satisfy kinematics feasibility constraints.

The results of such motion are depicted in Fig. 4.8. The state trajectories

have similar shapes, with smooth trajectories at the position and velocity levels

on the x-axis and y-axis directions. On the z-axis, we can observe some weak

oscillations of the CoM position mainly when optizing the forces uf . This might

appear as the conflict between the least-square cost on the CoM acceleration and

the feasibility constraint. For the contact forces control, the angular momentum

trajectory is more jerky. This is because the angular momentum is not a direct

control of the systems, but a consequence of the contact wrenches action. Then,

the least-square minimization of such a quantity is affected by the sensitivities

and the conic constraints on the contact forces. The noise is moslty below the

threshold of numerical noise. While direct OCP resolution (e.g. multiple shooting)

is sensitive to local minima, it is likely that the two obtained trajectories are

numerical approximation of a same minimum, with the formulation uc better able

to approximate it thanks to the more direct correlation between the centroidal

variables and the resulting motion.

4.6.3 Experiment 2 - climbing up 10-cm high steps

The experimental setup is an industrial stairs made of six 10-cm high steps. The

steps have a length of 30 cm. The durations of the single and double support phases

are 1.4s and 0.2s respectively. The resulting motion is depicted in Fig. 4.10. During

execution, the reference posture is tracked as well as the reference foot forces using

the robot low-level control system (named HRP “stabilizer”).
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Figure 4.10: Snapshots of the climbing up 10-cm high steps motion with the HRP-2
robot.

Figure 4.11: Snapshots of the climbing up 15-cm high steps motion with the HRP-2
using the handrail.

Figure 4.12: Snapshots of the climbing 15-cm high steps motion with handrail by
the TALOS robot in simulation.
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Fig. 4.9 shows two trajectories of the CoM projected in the right foot frame:

the black curve takes into account the log-pdf term in the cost function, while the

green one does not. The figure also includes the level sets of the GMM of right foot

(depicted in Fig. 4.2). It appears that the OCP tends to maximize the inclination

of the CoM to stay in the most feasible region, i.e. closed to the maxima of the

PDF. On the contrary, if we do not add the log-pdf term, the CoM tends to be

infeasible.

4.6.4 Experiment 3 - climbing up 15-cm high steps with handrail
support

The experimental setup is another industrial stairs made of four 15-cm high steps

and equipped with a handrail. The steps have a length of 30 cm too. The durations

of the double and triple support phases are 1.8s and 0.4s respectively. Here, the

double support phases correspond either to the case of two feet on the steps or

one feet plus the right gripper on the handrail. Snapshots of the entire motion are

shown in Fig. 4.11.

We reproduce the climbing stairs with handrail scenario, but this time with

the TALOS robot in simulation. Compared to HRP-2, TALOS is a 1.78m high

humanoid robot weighting around 100kg. For this experiment, only the end-effector

trajectories and the GMMs are different: the cost function remains the same. The

complete motion is depicted in Fig. 4.12.

4.7 Related works

In the following, we present a state-of-the-art the main LPG formulations present

in the literature. In particular, we detail how those LPGs correspond to specific

choices of the generic formulation (4.9).

4.7.0.1 Walking patterns in 2D

One major difficulty of (4.9) comes from the bilinear form of the dynamics (4.8).

When the contacts are all taken on a same plane, a clever reformulation of the

dynamics makes it linear [Kajita et al., 2003], by neglecting the dynamics of both

the CoM altitude and the angular momentum. In that case, K boils down to the

constraint of the zero-momentum point to lie in the support polygon.

Kajita et al. [2003] did not explicitly check the constraint (4.9c); in exchange,

ℓu is used to keep the control trajectory close to a reference trajectory provided

a priori. Similarly, (4.9f) is not checked; in exchange, ℓx tends to stabilize the

robot at the end of the trajectory by minimizing the jerk of the CoM. These three

simplifications turns (4.9) into a simple unconstrained problem of linear-quadratic

regulation (LQR) that is implicitly solved by integrating the corresponding Riccati

equation.
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The Kajita’s LQR was reformulated into an explicit OCP [Herdt et al., 2010a],

directly solved as quadratic program. The OCP formulation makes it possible to

explicitly handle inequality constraints: (4.9c) is then explicitly checked under its

ZMP reformulation. A modification of this OCP is proposed in Sherikov et al.

[2014] where (4.9f) is nicely approximated by the capturability constraint, which

constrains the CoM position and velocity in the context of coplanar contacts.

4.7.0.2 Walking patterns in 3D

An iterative scheme is proposed in Hirukawa et al. [2007] that can be written as an

implicit optimization scheme whose cost function is the distance to a given CoM

trajectory and a given forces distribution. The resulting forces satisfies (4.9c) by

construction of the solution. There is no condition on the angular momentum (4.9d)

neither on the viability of the final state (4.9f), however the reference trajectory

enforced by the cost function is very likely to play the same role.

In Perrin et al. [2015], L̇c is null by construction of the solution. Moreover,

(4.9c) is supposed to always hold by hypothesis and is not checked, while (4.9f) is not

considered but tends to be enforced by minimizing the norm of the jerk of the CoM,

like in Kajita et al. [2003]. These assumptions result in an (bilinear)-constrained

quadratic program that is solved by a dedicated numerical method.

In Qiu et al. [2011], (4.9c) is explicitly handled (using the classic linear

approximation of the quadratic cones). As in Kajita et al. [2003], (4.9f) is indirectly

handled by minimizing the jerk. No condition (4.9d) on the angular momentum

is considered. Additionally, the proposed cost function maximizes the robustness

of the computed forces and minimizes the execution time. Finally, constraints are

added to represent the limitation of the robot kinematics.

In Herzog et al. [2015], (4.9c) is handled under a simple closed form solution,

while (4.9f) is not considered. To stabilize the resolution, the cost function tends

to stay close to an initial trajectory of both the CoM and the angular momentum,

computed beforehand from a kinematic path. Consequently, (4.9d) is not considered

either (as it will simply stay close to the initial guess).

In Kudruss et al. [2015], the conic constraint is directly handled. The angular

momentum is treated through the orientation of the system (Lc ≈ Ĩω + τLc
, with

Ĩ the compound (rigid) inertia of the robot and τLc
the angular momentum due to

the internal gesticulation). Ĩω is kept low by penalizing the large rotation ω but

τLc
is unlimited, resulting in (4.9d) not being checked. The viability (4.9f) is not

checked neither, but like previously, it is approximately handled by minimizing the

derivatives of the state in the cost function (however the first derivatives instead

of the third), while a reference trajectory of the CoM is provided to keep a nice

behavior of the numerical scheme. Additionally, hard constraints on the CoM

position are added to represent the kinematic limits of the whole body.

In Caron and Kheddar [2016], the authors work only with the CoM acceleration

and neglect the contribution of the angular momentum quantity setting it to 0 as

in Kajita et al. [2003]. They approximate the Minkowski sum of contact cones K6
c
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with a conservative linear approximation following the method proposed in Qiu

et al. [2011]. The proposed cost function regularizes the control vector and tries to

minimize the distance between the final and the desired states. No proxy constraint

is provided to ensure the feasibility of the CoM trajectory w.r.t. the whole-body.

In Dai and Tedrake [2016], the authors do not directly consider the angular

momentum quantity but instead, they chose to minimize an upper bound of its L1

norm. Similar to Caron and Kheddar [2016], they consider a linear approximation

of K6
c and try to mazimize the margin on the CWC. In addition to those previous

criteria, the cost function is augmented with a regularization term on the CoM

acceleration.

In Serra et al. [2016], the authors propose an efficient OCP formulation to

compute CoM trajectory for horizontal contacts. The cost function is composed

of regularization terms on the contacts forces and moments as well as on the CoM

jerk. In addition, they try to follow at best a reference trajectory both for the ZMP

and the CoM. In their work, the authors do not consider friction cones, they just

restrict the ZMP to lie in the convex hull of the contact points.

4.8 Conclusion and perspectives

In this chapter, we have proposed an efficient approach to generate multi-contact

motion for legged robots. For that aim, we first showed under which conditions the

locomotion problem can be decoupled into two stages: first find a feasible centroidal

trajectory, then track this centroidal trajectory at the whole-body level. This led

us to introduce a generic optimal control formulation able to work both with the

contact forces or with the centroidal wrench. In a second time, we proposed a

generic way to handle feasibility constraints of the centroidal dynamics (or reduced

models in general) inside the optimal control formulation as occupation measure. In

particular, we suggest a learning procedure to approximate the occupation measure

of the CoM with respect to the contact sequence. To work with the centroidal

wrench as control input, we also introduced a conic approximation of the centroidal

wrench cone leading to a single dimensional constraint. We experimentally validated

all those contributions with several multi-contact experiments on the HRP-2 robot

on real scenarios and also in simulation with the TALOS humanoid robot.

This work first shows that both formulations are able to deal with Receding

Horizon thanks to computation times very low both for the centroidal wrench (near

0.2s for 25s of motion) and the force implementations (near 0.4s for 17s of motion).

For any investigated scenario, the centroidal wrench formulation is largely faster

than the formulation in contact forces. This is due to the dimensionality of the

control which remains constant and equal to 6 in the first case. However, if one seeks

for robustness in the locomotion pattern, one must additionally adjust the duration

of each phase and also consider contact placements as free variables as suggested

in Khadiv et al. [2017]. In this precise case, the second formulation is much more

suited as no computation of the CWC approximation is required between two
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iterations of the Multiple-Shooting algorithm. In addition, the feasibility constraint

on the CoM is already adapted for such case thanks to the independence assumption.

Currently, we have only investigated the learning of the CoM feasibility

constraint. As an extension of this work, a promising research area is to look

at the complete proxy µ(c, ċ, c̈, Lc, L̇c) which will link all the centroidal state and

its dynamics to the whole-body kinematics and dynamics constraints. Then, the

cost function of the optimal centroidal problem will be only composed of the proxy

term, the regularization terms currently contained in ℓs will become irrelevant.



Chapter 5

Conclusion and perspectives

Throughout this thesis, we have explored the central role played by the centroidal

dynamics in human locomotion as well as for locomotion of anthropomorphic

systems.

In Chapter 2, we have shown that its linear component related to the center

of mass is observable with standard sensors used in biomechanics and in robotics.

From this observability analysis, we proposed an original estimator of the center

of mass position which combines the contribution of each sensor according to their

accuracies in the spectral domain.

From this estimator, we have highlighted in Chapter 3 the existence of a similar

cycloidal pattern when humans walk in a nominal way. We have demonstrated that

the parameters of this pattern only depend on the size of the subjects. The presence

of this pattern promotes the idea of a general coordination of movements during

human locomotion.

Finally, in Chapter 4 we have proposed a complete solution to generate such

locomotion patterns for both the center of mass and the angular momentum of

the system, while taking into account the kinematics limits, hence leading to the

generation of versatile and efficient multi-contact locomotion of legged robots. Our

solution extensively relie on the centroidal dynamics. The originality of our solution

is to propose a generic way to handle the feasibility constraints of the whole body

inside the reduced formulation. We have also illustrated the efficiency and the

versatility of the approach with several examples on two humanoid robots. This

last contribution is a necessary step toward autonomous locomotion of legged robots.

Perspectives on human locomotion

Several perspectives have been raised all along the manuscript concerning the study

of human locomotion. In the short term, a direct continuation of this work is to

build further a global estimator of the centroidal dynamics. This estimator can no

longer be linear due to the presence of the cross product operator in the centroidal

dynamics equations. An extension of our observability analysis is also required in

order to know exactly under which conditions this dynamics is fully observable.

This new estimator would enable us to study more deeply the patterns of

humans, not only for walking, but also in other locomotory tasks like jumping,

climbing, running or in parkour. These studies could lead to a better understanding

of human strategies when they move. From these studies, it would be also possible to
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provide passivity-based walkers with a design largely inspired from human skeletal

architecture, able to produce similar strategies and behaviors.

In a longer-term perspective, another promising direction that I feel essential

is to build a general estimator of the whole-body dynamics of human bodies

when they move. This estimator should be based on the theory of stochastic

optimal control [Fleming and Rishel, 2012]. This stochastic framework would

allow us to consider the variability inherent in human motions, unlike standard

approaches [Delp et al., 2007, Rasmussen et al., 2002]. It would then be able to

optimally estimate not only the mass distribution of the bodies, but also the joint

torques profiles together with the joints kinematics. This estimator should also be

robust to soft tissues artifacts, outliers coming from motion capture acquisitions,

etc.

This generic estimator could also be used in a reverse way in order to generate

missing information from partial measurements. Indeed, if we are able to estimate

a control input trajectory together with corporal parameters which minimizes a

reconstruction error, we will also able to compute a control input trajectory that

minimizes a given cost function. Such an approach will be useful to reconstruct

for instance the locomotory patterns of our common ancestor Lucy [Ruff et al.,

2016] from her skeletal remains together with environement data like footprints in

clay. To be effective, this optimal estimator should work not with trajectories but

rather with measures over trajectories, in a similar way to Lasserre et al. [2008].

In addition to that, such framework may also deal with inverse optimal control.

Similar to Pauwels et al. [2014], the idea would consist in representing the cost

function over the space of measures. And by supposing that a recorded movement

is optimal, it would allow to recover the optimal cost function which leads to such

a behavior.

Perspectives on humanoid robot locomotion

In Chapter 4, we have provided a generic formulation for multi-contact locomotion

of legged robots. This formulation, thanks to a multi-shooting resolution, meets

near real-time performances. The very short-coming step consists in implementing

the Receding Horizon version of this approach. This implementation will increase

the autonomy of robots for locomotion. In addition to that, foot placements can be

easily realized, allowing to adjust the feasibility of the given sequence of contacts.

But the most critical part concerns the angular momentum quantity. Indeed,

while it is relatively easy to draw a shape for the center of mass trajectory, it seems

to be harder to find a good pattern for the angular momentum trajectory, certainly

because this quantity is a complex composition of limb motions. For instance during

walking, the major contribution in the angular momentum quantity is the swing leg,

which must accelerate and decelerate during a short period. What produces a huge

variation of the angular momentum quantity. Having a good estimate of the angular

momentum profile will allow to release the time quantity, which is crucial in the
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context of push recovery for example. An interesting approach proposed in Herzog

et al. [2016] is to alternate between two optimal control problems, the first one

dealing only with the centroidal dynamics and trying to find a feasible center of

mass trajectory, the second one dealing with the full-dynamics and computing a

feasible angular momentum trajectory which is compatible with this center of mass

trajectory. And so on.

An alternative to this approach can be to learn directly angular momentum

patterns inside the proxy. Then, this proxy will no more work with centroidal

state variables but rather directly with centroidal trajectories. The optimal control

problem will tend to maximize the likelihood of those trajectories. This will be

the early stages of a memory of motion, i.e. mathematical condensation of all the

feasible motions achievable by a given robot.

In a longer-term perspective, the question on how to learn and encode this huge

catalog comes up. This is an open question, even inside the Machine Learning

community. One solution might be to encode this catalog through the notion of

politics, as recently shown by Lillicrap et al. [2016]. This solution is built upon

neural networks approaches. Neural networks are generic tools able to approximate

complex mathematical objects. Yet, they are certainly not suited to extract from

their organization a general picture on the way the undergoing process works.

Another approach can rely on recent advances made in the field of reproducing

kernel Hilbert space [Aronszajn, 1950] concerning the approximation of densities.

In my opinion, this approach can lead to a better understanding of the whole

structure of the catalog compared to solutions based on neural networks.

Finally, there is still some open questions that peak my interest. What is the

fundamental structure of human and robotic motions? What are the key elements

to explain and encode this very specific structure describing such complex space?

Some answers were proposed a century ago by Henri Poincaré Poincaré [1895].

These answers deal only with the geometric aspects of the movement. It seems now

reasonable to also investigate at the time being the dynamic aspects of motion by

edifying its mathematical foundations. This is left as a future continuation of this

thesis.
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Résumé en français:

La locomotion anthropomorphe est un processus complexe qui met en jeu un

très grand nombre de degrés de liberté, le corps humain disposant de plus de

trois cents articulations contre une trentaine chez les robots humanoïdes. Pris

dans leur ensemble, ces degrés de liberté montrent une certaine cohérence rendant

possible la mise en mouvement du système anthropomorphe et le maintien de

son équilibre, dans le but d’éviter la chute. Cette thèse met en lumière les

fondements calculatoires à l’origine de cette orchestration. Elle introduit un cadre

mathématique unifié permettant à la fois l’étude de la locomotion humaine, et

la génération de trajectoires locomotrices pour les robots humanoïdes. Ce cadre

consiste en une réduction de la dynamique corps-complet du système pour ne

considérer que sa projection autour du centre de gravité, aussi appelée dynamique

centroïdale. Bien que réduite, nous montrons que cette dynamique centroïdale joue

un rôle central dans la compréhension et la formation des mouvements locomoteurs.

Pour ce faire, nous établissons dans un premier temps les conditions

d’observabilité de cette dynamique, c’est-à-dire que nous montrons dans quelle

mesure cette donnée peut être appréhendée à partir des capteurs couramment

employés en biomécanique et en robotique. Forts de ces conditions d’observabilité,

nous proposons un estimateur capable de reconstruire la position non-biaisée du

centre de gravité. A partir de cet estimateur et de l’acquisition de mouvements de

marche sur divers sujets, nous mettons en évidence la présence d’un motif cycloïdal

du centre de gravité dans le plan sagittal lorsque l’humain marche de manière

nominale, c’est-à-dire sans y penser. La présence de ce motif suggère l’existence

d’une synergie motrice jusqu’alors ignorée, soutenant la théorie d’une coordination

générale des mouvements pendant la locomotion.

La dernière contribution de cette thèse porte sur la locomotion multi-contacts.

Les humains ont une agilité remarquable pour effectuer des mouvements

locomoteurs qui nécessitent l’utilisation conjointe des bras et des jambes, comme

lors de l’ascension d’une paroi rocheuse. Comment doter les robots humanoïdes de

telles capacités ? La difficulté n’est certainement pas technologique, puisque les

robots actuels sont capables de développer des puissances mécaniques suffisantes.

Leurs performances, évaluées tant en termes de qualité des mouvements que

de temps de calcul, restent très limitées. Dans cette thèse, nous abordons le

problème de génération de trajectoires multi-contacts sous la forme d’un problème

de commande optimale. L’intérêt de cette formulation est de partir du modèle réduit

de la dynamique centroïdale tout en répondant aux contraintes d’équilibre. L’idée

originale consiste à maximiser la vraisemblance de cette dynamique réduite vis-à-vis

de la dynamique corps-complet. Elle repose sur l’apprentissage d’une mesure

d’occupation qui reflète les capacités cinématiques et dynamiques du robot. Elle

est effective : l’algorithmique qui en découle est compatible avec des applications

temps réel. L’approche a été évaluée avec succès sur le robot humanoïde HRP-2,

sur plusieurs modes de locomotions, démontrant ainsi sa polyvalence.

Mot-clés: Locomotion anthropomorphe, Robotique humanoïde, Biomécanique,

Contrôle optimal, Estimation, Apprentissage automatique
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