17,290 research outputs found

    Analysis and Voice Recognition in Indonesian Language Using MFCC and SVM Method

    Full text link
    Voice recognition technology is one of biometric technology. Sound is a unique part of the human being which made an individual can be easily distinguished one from another. Voice can also provide information such as gender, emotion, and identity of the speaker. This research will record human voices that pronounce digits between 0 and 9 with and without noise. Features of this sound recording will be extracted using Mel Frequency Cepstral Coefficient (MFCC). Mean, standard deviation, max, min, and the combination of them will be used to construct the feature vectors. This feature vectors then will be classified using Support Vector Machine (SVM). There will be two classification models. The first one is based on the speaker and the other one based on the digits pronounced. The classification model then will be validated by performing 10-fold cross-validation.The best average accuracy from two classification model is 91.83%. This result achieved using Mean + Standard deviation + Min + Max as features

    Robust Sound Event Classification using Deep Neural Networks

    Get PDF
    The automatic recognition of sound events by computers is an important aspect of emerging applications such as automated surveillance, machine hearing and auditory scene understanding. Recent advances in machine learning, as well as in computational models of the human auditory system, have contributed to advances in this increasingly popular research field. Robust sound event classification, the ability to recognise sounds under real-world noisy conditions, is an especially challenging task. Classification methods translated from the speech recognition domain, using features such as mel-frequency cepstral coefficients, have been shown to perform reasonably well for the sound event classification task, although spectrogram-based or auditory image analysis techniques reportedly achieve superior performance in noise. This paper outlines a sound event classification framework that compares auditory image front end features with spectrogram image-based front end features, using support vector machine and deep neural network classifiers. Performance is evaluated on a standard robust classification task in different levels of corrupting noise, and with several system enhancements, and shown to compare very well with current state-of-the-art classification techniques

    Acoustic and Device Feature Fusion for Load Recognition

    Get PDF
    Appliance-specific Load Monitoring (LM) provides a possible solution to the problem of energy conservation which is becoming increasingly challenging, due to growing energy demands within offices and residential spaces. It is essential to perform automatic appliance recognition and monitoring for optimal resource utilization. In this paper, we study the use of non-intrusive LM methods that rely on steady-state appliance signatures for classifying most commonly used office appliances, while demonstrating their limitation in terms of accurately discerning the low-power devices due to overlapping load signatures. We propose a multilayer decision architecture that makes use of audio features derived from device sounds and fuse it with load signatures acquired from energy meter. For the recognition of device sounds, we perform feature set selection by evaluating the combination of time-domain and FFT-based audio features on the state of the art machine learning algorithms. The highest recognition performance however is shown by support vector machines, for the device and audio recognition experiments. Further, we demonstrate that our proposed feature set which is a concatenation of device audio feature and load signature significantly improves the device recognition accuracy in comparison to the use of steady-state load signatures only

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Robustness Verification of Support Vector Machines

    Get PDF
    We study the problem of formally verifying the robustness to adversarial examples of support vector machines (SVMs), a major machine learning model for classification and regression tasks. Following a recent stream of works on formal robustness verification of (deep) neural networks, our approach relies on a sound abstract version of a given SVM classifier to be used for checking its robustness. This methodology is parametric on a given numerical abstraction of real values and, analogously to the case of neural networks, needs neither abstract least upper bounds nor widening operators on this abstraction. The standard interval domain provides a simple instantiation of our abstraction technique, which is enhanced with the domain of reduced affine forms, which is an efficient abstraction of the zonotope abstract domain. This robustness verification technique has been fully implemented and experimentally evaluated on SVMs based on linear and nonlinear (polynomial and radial basis function) kernels, which have been trained on the popular MNIST dataset of images and on the recent and more challenging Fashion-MNIST dataset. The experimental results of our prototype SVM robustness verifier appear to be encouraging: this automated verification is fast, scalable and shows significantly high percentages of provable robustness on the test set of MNIST, in particular compared to the analogous provable robustness of neural networks
    corecore