
Original Citation:

Robustness Verification of Support Vector Machines

Springer
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as
described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3312175 since: 2022-02-15T18:44:33Z

10.1007/978-3-030-32304-2_14

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Robustness Verification of Support Vector Machines

Francesco Ranzato[0000−0003−0159−0068] and Marco Zanella

Dipartimento di Matematica, University of Padova, Italy

Abstract. We study the problem of formally verifying the robustness to adver-
sarial examples of support vector machines (SVMs), a major machine learning
model for classification and regression tasks. Following a recent stream of works
on formal robustness verification of (deep) neural networks, our approach relies
on a sound abstract version of a given SVM classifier to be used for checking its
robustness. This methodology is parametric on a given numerical abstraction of
real values and, analogously to the case of neural networks, needs neither abstract
least upper bounds nor widening operators on this abstraction. The standard inter-
val domain provides a simple instantiation of our abstraction technique, which is
enhanced with the domain of reduced affine forms, an efficient abstraction of the
zonotope abstract domain. This robustness verification technique has been fully
implemented and experimentally evaluated on SVMs based on linear and nonlin-
ear (polynomial and radial basis function) kernels, which have been trained on
the popular MNIST dataset of images and on the recent and more challenging
Fashion-MNIST dataset. The experimental results of our prototype SVM robust-
ness verifier appear to be encouraging: this automated verification is fast, scalable
and shows significantly high percentages of provable robustness on the test set of
MNIST, in particular compared to the analogous provable robustness of neural
networks.

1 Introduction

Adversarial machine learning [10,17,37] is an emerging hot topic studying vulnera-
bilities of machine learning (ML) techniques in adversarial scenarios and whose main
objective is to design methodologies for making learning tools robust to adversarial
attacks. Adversarial examples have been found in diverse application fields of ML
such as image classification, speech recognition and malware detection [10]. Current
defense techniques include adversarial model training, input validation, testing and
automatic verification of learning algorithms (see the recent survey [10]). In partic-
ular, formal verification of ML classifiers started to be an active field of investiga-
tion [1,8,9,12,15,16,23,26,27,30,31,38,39,19] within the verification and static analy-
sis community. Robustness to adversarial inputs is an important safety property of ML
classifiers whose formal verification has been investigated for (deep) neural networks
[1,9,26,30,31,39]. A classifier is robust to some (typically small) perturbation of its
input objects representing an adversarial attack when it assigns the same class to all
the objects within that perturbation. Thus, slight malicious alterations of input objects
should not deceive a robust classifier. Pulina and Tacchella [26] first put forward the idea

of a formal robustness verification of neural network classifiers by leveraging interval-
based abstract interpretation for designing a sound abstract classifier. This abstraction-
based verification approach has been pushed forward by Vechev et al. [9,30,31], who
designed a scalable robustness verification technique which relies on abstract interpre-
tation of deep neural networks based on a specifically tailored abstract domain [31].

While all the aforementioned verification techniques consider (deep) neural net-
works as ML model, in this work we focus on support vector machines (SVMs), which
is a major learning model extensively and successfully used for both classification and
regression tasks [7]. SVMs are widely applied in different fields where adversarial at-
tacks must be taken into account, notably image classification, malware detection, in-
trusion detection and spam filtering [2]. Adversarial attacks and robustness issues of
SVMs have been defined and studied by some authors [2,3,24,36,40,42,45], in partic-
ular investigating robust training and experimental robustness evaluation of SVMs. To
the best of our knowledge, no formal and automatic robustness certification technique
for SVMs has been studied.

Contributions. A simple and standard model of adversarial region for a ML classifier
C : X → L, where X ⊆ Rn is the input space and L is the set of classes (or labels),
is based on a set of perturbations P (x) ⊆ X of an input x ∈ X for C, which typically
exploits some metric on Rn to quantify a similarity to x. A classifier C is robust on an
input x for a perturbation P when for all x′ ∈ P (x), C(x′) = C(x) holds, meaning
that the adversary cannot attack the classification of x made by C by selecting input
objects from P (x) [4]. We consider the most effective SVM classifiers based on com-
mon linear and nonlinear kernels, in particular polynomial and Gaussian radial basis
function (RBFs) [7]. Our technique for formally verifying the robustness of C is quite
standard: by leveraging a numerical abstraction A of sets of real vectors in ℘(Rn), we
define a sound abstract classifier C] : A → ℘(L) and a sound abstract perturbation
P] : X → A, in such a way that if C](P](x)) = {C(x)} holds then C is proved
to be robust on the input x for the adversarial region P . As usual in static analysis,
scalability and precision are the main issues in SVM verification. A robustness veri-
fier has to scale with the number of support vectors of the SVM classifier C, which in
turn depends on the size of the training dataset for C, which may be huge (easily ten-
s/hundreds of thousands of samples). Moreover, the precision of a verifier may crucially
depend on the relational information between the components, called features in ML,
of input vectors in Rn, whose number may be quite large (easily hundreds/thousands
of features). For our robustness verifier, we used an abstraction which is a product of
the standard nonrelational interval domain [6] and of the so-called reduced affine form
(RAF) abstraction, a relational domain representing the dependencies from the compo-
nents of input vectors. A RAF for vectors in Rn is given by a0 +

∑n
i=1 aiεi + arεr,

where εi’s are symbolic variables ranging in [-1,1] and representing a dependence from
the i-th component of the vector, while εr is a further symbolic variable in [-1,1] which
accumulates all the approximations introduced by nonlinear operations such as multi-
plication and exponential. RAFs can be viewed as a restriction to a given length (here
the dimension n of Rn) of the zonotope domain used in static program analysis [13],
which features an optimal abstract multiplication [32], the crucial operation of abstract
nonlinear SVMs. We implemented our robustness verification method for SVMs in a

2

tool called SAVer (Svm Abstract Verifier), written in C. Our experimental evaluation
of SAVer employed the popular MNIST [18] image dataset and the recent and more
challenging alternative Fashion-MNIST dataset [41]. Our benchmarks provide the per-
centage of samples of the full test sets for which a SVM is proved to be robust (and,
dually, vulnerable) for a given perturbation, the average verification times per sample,
and the scalability of the robustness verifier w.r.t. the number of support vectors. We
also compared SAVer to DeepPoly [31], a robustness verification tool for deep neural
networks based on abstract interpretation. Our experimental results indicate that SAVer
is fast and scalable and that the percentage of robustness provable by SAVer for SVMs
is higher than the robustness provable by DeepPoly for deep neural networks.

Illustrative Example. The figure below shows a toy binary SVM classifier for input
vectors in R2, with four support vectors sv1 = (8, 7), sv2 = (10,−4), sv3 = (8, 1),
sv4 = (9,−5) for a polynomial kernel of degree 2. The corresponding binary classifier
C : R2 → {–1,+1} is the following function:

C(x) = sign(
∑4

i=1 αiyi(svi · x)2 + b)

= sign(α1(8x1+7x2)
2−α2(10x1−4x2)2−α3(8x1+x2)

2+α4(9x1−5x2)2 + b)

where yi and αi are, resp., the classes (±1) and weights of the support vectors svi, with:
α1 ≈ 5.36 × 10−4, α2 ≈ −3.78 × 10−3, α3 ≈ −9.23 ×
10−4, α4 ≈ 4.17 × 10−3, b ≈ 3.33. The set of vectors
x ∈ R2 such that C(x) = 0 defines the decision curve
between labels –1 and +1. We consider a point p = (5, 1)
and an adversarial region P1(p) = {x ∈ R2 | max(|x1 −
p1|, |x2 − p2|) ≤ 1}, which is the L∞ ball of radius 1
centered in p and can be exactly represented by the interval
in R2 (i.e., box) P1(p) = (x1 ∈ [4, 6], x2 ∈ [0, 2]). As
shown by the figure, this classifier C is robust on p for this
perturbation because for all x ∈ P1(p), C(x) = C(p) =

+1. However, it turns out that the interval abstraction C]Int

of this classifier cannot prove the robustness of C:

C]
Int(P1(p)) = sign(

∑4
i=1 αiyi((svi)1[4, 6] + (svi)2[0, 2])

2 + b)

= sign(α1y1[1024, 3844] + α2y2[1024, 3600] + α3y3[1024, 2500] + α4y4[676, 2916] + b)

= sign([−9.231596, 12.735958]) = >

Instead, the reduced affine form abstraction C]RAF2
allows us to prove the robustness

of C on p. Here, the perturbation P1(p) is exactly represented by the RAF (x̃1 =
5 + ε1, x̃2 = 1 + ε2), where ε1, ε2, εr ∈ [−1, 1], and the abstract computation is as
follows:

C]
RAF2

(P1(p)) = sign(
∑4

i=1 αiyi[(svi)1(5 + ε1) + (svi)2(1 + ε2)]
2 + b)

= sign(α1y1(47 + 8ε1 + 7ε2)
2 + α2y2(46 + 10ε1 − 4ε2)

2+

α3y3(41 + 8ε1 + ε2)
2 + α4y4(40 + 9ε1 − 5ε2)

2 + b)

= sign(α1y1(2322 + 752ε1 + 658ε2 + 112εr) + α2y2(2232 + 920ε1 − 368ε2 + 80εr)+

α3y3(1746 + 656ε1 + 82ε2 + 16εr) + α4y4(1706 + 720ε1 − 400ε2 + 90εr) + b)

= sign(1.635264− 0.680779ε1 + 0.001047ε2 + 0.753025εr) = +1

3

Hence, the RAF analysis is able to prove that C is robust on p for P1, since the final
RAF has an interval range [0.200413, 3.070115] consisting of positive numbers.

2 Background

Notation. If x,y ∈ Rn, z ∈ R and i ∈ [1, n] then xi = πi(x) ∈ R, x · y ,
∑
i xiyi ∈

R, x + y ∈ Rn, zx ∈ Rn, ‖x‖2 ,
√
x · x ∈ R, ‖x‖∞ , max{|xi| | i ∈ [1, n]} ∈ R,

denote, resp., i-th component, dot product, vector addition, scalar multiplication, L2

(i.e., Euclidean) and L∞ (i.e., maximum) norms in Rn. If h : X → Y is any function
then hc : ℘(X) → ℘(Y) defined by hc(S) , {h(x) | x ∈ S} denotes the standard
collecting lifting of h, and, when clear from the context, we slightly abuse notation by
using h(S) instead of hc(S).

Classifiers and Robustness. Consider a training dataset T = {(x1, y1), ..., (xN , yN)}
⊆ X × L, where X ⊆ Rn is the input space, xi ∈ X is called feature (or attribute)
vector and yi is its label (or class) ranging into the output space L. A supervised learn-
ing algorithm SL : ℘(X × L) → (X → L) (also called trainer) computes a classifier
function SL(T) : X → L ranging in some function subspace (also called hypothesis
space). The learned classifier SL(T) is a function that best fits the training dataset T ac-
cording to a principle of empirical risk minimization. The machine learning algorithm
SL computes a classifier SL(T) by solving a complex optimization problem. The out-
put space is assumed to be represented by real numbers, i.e., L ⊆ R, and for binary
classifiers with |L| = 2, the standard assumption is that L = {–1,+1}.

The standard threat model [4,10] of untargeted adversarial examples for a generic
classifier C : X → L is as follows. Given a valid input object x ∈ X whose correct
label isC(x), an adversarial example for x is a legal input x′ ∈ X such that x′ is a small
perturbation of (i.e., is similar to) x and C(x′) 6= C(x). An adversarial region is the set
of perturbations P (x) ⊆ X that the adversary is allowed to make to x, meaning that a
function P : X → ℘(X) models an adversarial region. A perturbation P (x) is typically
modeled by some distance metric to quantify a similarity to x, usually a p-norm, and
the most general model of perturbation simply requires that for all x ∈ X , x ∈ P (x).
A classifier C is defined to be robust on an input vector x for an adversarial region P
when for all x′ ∈ P (x), C(x′) = C(x) holds, denoted by Rob(C,x, P)

4⇔ {C(x′) |
x′ ∈ P (x)} = {C(x)}. This means that the adversary cannot attack the classification
of x made by C by selecting input objects from the region P (x).

Support Vector Machines. Several strategies and optimization techniques are available
to train a SVM, but they are not relevant for our purposes ([7] is a popular standard
reference for SVMs). A SVM classifier partitions the input space X into regions, each
representing a class of the output space L. In its simplest formulation, the learning
algorithm produces a linear SVM binary classifier with L = {–1,+1} which relies
on a hyperplane of Rn that separates training vectors labeled by –1 from vectors la-
beled +1. The training phase consists in finding (i.e., learning) this hyperplane. While
many separating hyperplanes may exist, the SVM separating hyperplane has the maxi-
mum distance (called margin) with the closest vectors in the training dataset, because a
maximum-margin learning algorithm statistically reduces the generalization error. This

4

SVM hyperplane is univocally represented by its normal vector w ∈ Rn and by a dis-
placement scalar b ∈ R, so that the hyperplane equation is w ·x = b. The classification
of an input vector x ∈ X therefore boils down to determining the half-space containing
x, namely, the linear binary classifier is the decision function C(x) = sign(w · x− b),
where the case sign(0) = 0 is negligible (e.g. sign(0) may assign the class +1). This
linear classifier sign(w · x − b) is in so-called primal form, while nonlinear classifiers
are instead in dual form and based on a so-called kernel function.

When the training set T cannot be linearly separated in a satisfactory way, T is pro-
jected into a much higher dimensional space through a projection map ϕ : Rn → Rk,
with k > n, where ϕ(T) may become linearly separable. Training a SVM classifier
boils down to a high-dimensional quadratic programming problem which can be solved
either in its primal or dual form. When solving the dual problem, the projection func-
tion ϕ is only involved in dot products ϕ(x) · ϕ(y) in Rk, so that this projection is not
actually needed if these dot products in Rk can be equivalently formulated through a
function k : Rn × Rn → R, called kernel function, such that k(x,y) = ϕ(x) · ϕ(y).
Given a dataset T = {(x1, y1), ..., (xN , yN)}, with yi ∈ {–1,+1}, solving the dual
problem for training the SVM classifier means finding a set {αi}Ni=1 ⊆ R, called set of
weights, which maximizes the following function f : RN → R:

max f(α1, ..., αN) ,
∑N
i=1 αi −

1
2

∑N
i,j=1 αiαjyiyjk(xi,xj)

subject to: for all i, 0 ≤ αi ≤ c, where c ∈ R>0 is a tuning parameter, and
∑N
i=1 αiyi =

0. This set of weights defines the following SVM binary classifier C: for all input x ∈
X ⊆ Rn,

C(x) , sign([
∑N
i=1 αiyik(xi,x)]− b) (1)

for some offset parameter b ∈ R. By defining Dk(x) ,
∑N
i=1 αiyik(xi,x), this clas-

sifier will be also denoted by C(x) = sign(Dk(x) − b). In practice most weights
αi are 0, hence only a subset of the training vectors xi is actually used by the SVM
classifier C, and these are called support vectors. By a slight abuse of notation, we
will assume that αi 6= 0 for all i ∈ [1, N], namely {xi}Ni=1 ⊆ Rn denotes the set
of support vectors extracted from the training set by the SVM learning algorithm for
some kernel function. We will consider the most common and effective kernel func-
tions used in SVM training: (i) linear kernel: k(x,y) = x · y; (ii) d-polynomial kernel:
k(x,y) = (x · y + c)d (common powers are d = 2, 3, 9); (iii) Gaussian radial basis
function (RBF): k(x,y) = e−γ‖x−y‖

2
2 , for some γ > 0.

SVM Multiclass Classification. Multiclass datasets have a finite set of labels L =
{y1, ..., ym} with m > 2. The standard approach to multiclass classification problems
consists in a reduction into multiple binary classification problems using one of the
following two simple strategies [14]. In the “one-versus-rest” (ovr) strategy, m binary
classifiers are trained, where each binary classifier Ci,̄i determines whether an input
vector x belongs to the class yi ∈ L or not by assigning a real confidence score for its
decision rather than just a label, so that the class yj with the highest-output confidence
score is the class assigned to x. Multiclass SVMs using this ovr approach might not
work satisfactorily because the ovr approach often leads to unbalanced datasets already
for a few classes due to unbalanced partitions into yi and Lr {yi}.

5

The most common solution [14] is to follow a “one-versus-one” (ovo) approach,
where m(m−1)/2 binary classifiers C{i,j} are trained on the restriction of the original
training set to vectors with labels in {yi, yj}, with i 6= j, so that each C{i,j} deter-
mines whether an input vector belongs (more) to the class yi or (more to) yj . Given an
input vector x ∈ X each of these m(m − 1)/2 binary classifiers C{i,j}(x) assigns a
“vote” to one class in {yi, yj}, and at the end the class with the most votes wins, i.e.,
the argmax of the function votes(x, yi) , |{j ∈ {1, ...,m} | j 6= i, C{i,j}(x) = yi}|
is the winning class of x. Draw is a downside of the ovo strategy because it may well
be the case that for some (regions of) input vectors multiple classes collect the same
number of votes and therefore no classification can be done. In case of draw, a com-
mon strategy [14] is to output any of the winning classes (e.g., the one with the smaller
index). However, since our primary focus is on soundness of abstract classifiers, we
need to model an ovo multiclass classifier by a function Movo : X → ℘(L) defined
by Movo(x) , {yk ∈ L | k ∈ argmaxi∈{1,...,m} votes(x, yi)}, so that |Movo(x)| > 1
models a draw in the ovo voting.
Numerical Abstractions. According to the most general definition, a numerical abstract
domain is a tuple 〈A,≤A, γ〉 where 〈A,≤A〉 is at least a preordered set and the con-
cretization function γ : A → ℘(Rn), with n ≥ 1, preserves the relation ≤A, namely,
a ≤A a′ implies γ(a) ⊆ γ(a′) (i.e., γ is monotone). Thus, A plays the usual role
of set of symbolic representations for sets of vectors of Rn. Well-known examples
of numerical abstract domains include intervals, zonotopes, octagons, convex polyhe-
dra (we refer to the tutorial [22]). Some numerical domains just form preorders (e.g.,
standard representations of octagons by DBMs allow multiple representations) while
other domains give rise to posets (e.g., intervals). While a monotone concretization γ
is enough for reasoning about soundness of static analyses on numerical domains, the
notion of best correct approximation of concrete sets relies on the existence of an ab-
straction function α : ℘(Rn) → A which requires that 〈A,≤A〉 is (at least) a poset
and that the pair (α, γ) forms a Galois connection/insertion. Consider a concrete k-ary
real operation f : ℘(Rn)k → ℘(Rn), for some k ∈ N>0, and a corresponding ab-
stract map f] : Ak → A. Then, f] is a correct (or sound) approximation of f when
f◦〈γ, ..., γ〉 ⊆ γ◦f] holds, while f] is exact (or γ-complete) when f◦〈γ, ..., γ〉 = γ◦f]
holds. When a Galois connection (α, γ) for A exists, if f] is exact then it coincides
with the best correct approximation (bca) of f on A, which is the abstract function
α◦f ◦〈γ, ..., γ〉 : Ak → A. The abstract domain Int of numerical intervals on the poset
of real numbers 〈R ∪ {–∞,+∞},≤〉 is defined as usual [6]:

Int , {⊥, [–∞,+∞]}∪{[l, u] | l, u ∈ R, l ≤ u}∪{[–∞, u] | u ∈ R}∪{[l,+∞] | l ∈ R}.

The concretization map γ : Int→ ℘(R) is standard. Intervals admit an abstraction map
α : ℘(R)→ Int such that α(X) is the least interval containingX , so that (α, γ) defines
a Galois insertion between 〈Int,v〉 and 〈℘(R),⊆〉.

3 Abstract Robustness Verification Framework

Let us describe a sound abstract robustness verification framework for binary and mul-
ticlass SVM classifiers. We consider a general classifier C : X → L, where L is a set

6

of labels, and an adversarial region P : X → ℘(X) for C. Consider a numerical ab-
stract domain 〈A,≤A〉 whose abstract values represent sets of input vectors for a binary
classifier C, namely γ : A → ℘(X), where X is the input space of C. We use An to
emphasize that A is used as an abstraction of properties of n-dimensional vectors in
Rn, so that A1 denotes that A is used as an abstraction of sets of scalars in ℘(R).

Definition 3.1 (Sound Abstract Classifier). A sound abstract classifier on A is an
algorithm C] : A → ℘(L) such that, for all a ∈ A, {C(x) ∈ L | x ∈ γ(a)} ⊆ C](a)
holds. ut

Thus,C] is a sound abstraction of a classifierC when, given an abstract value a ∈ A
representing a set of concrete inputs, C](a) computes a superset of the labels computed
by C on inputs ranging in γ(a). In particular, the output C](a) = L plays the role of a
“don’t know” answer, while if |C](a)| = 1 then every sample in γ(a) must necessarily
be classified by C with a same label C](a).

Definition 3.2 (Sound Abstract Perturbation). A sound abstract perturbation is a
function P] : X → A which is sound for P , i.e., for all x ∈ X,P (x) ⊆ γ(P](x)). ut

A sound abstract classifier and a sound abstract perturbation 〈C], P]〉 allows us to
define a robustness verifier as follows

Theorem 3.3 (Robustness Verifier). If C] and P] are sound then 〈C], P]〉 is a sound
robustness verifier, namely, for all x ∈ X , |C](P](x))| = 1⇒ Rob(C,x, P).

As multiclass SVMs combine the outputs of a number of binary classifiers, let us
focus on binary classifiers C : X → {–1,+1}, where C(x) = sign(D(x)− b) and D :
X → R has been trained for some kernel function k. For the sake of clarity we will use
a slightly different notation for C] : X → {–1,+1,>}, where > is an abstract “don’t
know” value representing {–1,+1}. Of course, the key step for defining an abstract
robustness verifier is to design a sound abstract version of the trained function D :
X → R on some abstraction A, namely an algorithm D] : An → A1 such that, for all
a ∈ An, Dc(γ(a)) ⊆ γ(D](a)). We also need that the abstraction A is endowed with a
sound approximation of the Boolean test signb(·) : R → {–1,+1} for any bias b ∈ R,
where signb(x) , if x ≥ b then +1 else –1. Hence, we require a computable abstract
function sign]b : A1 → {–1,+1,>} which is sound for signb, that is, for all a ∈ A1,
sign]b(a) 6= > ⇒ ∀x ∈ γ(a). signb(x) = sign]b(a). These hypotheses therefore provide
a straightforward sound abstract classifier C] : A → {–1,+1,>} defined as follows:
C](a) , sign]b(D

](a)). It turns out that these hypotheses entail the soundness of the
robustness verifier.

Lemma 3.4. If P] is a sound abstract perturbation then 〈C], P]〉 is a sound robustness
verifier.

If T is a test set for the classifier C then we may correctly assert that C is provably
q%-robust on T for the perturbation P when a sound abstract robustness verifier is able
to check that C is robust on q% of the test samples in T . Of course, by soundness,
this means that C is certainly robust on at least q% of the inputs in T , while on the

7

remaining (100 − q)% of T we do not know: these could be spurious or real unrobust
input vectors.

In order to design a sound abstract version ofD(x) =
∑N
i=1 αiyik(xi,x) we surely

need sound approximations onA1 of scalar multiplication and addition. We thus require
a sound abstract scalar multiplication λa.za : A1 → A1, for any z ∈ R, such that for
all a ∈ A1, zγ(a) ⊆ γ(za), and a sound addition +] : A1 × A1 → A1 such that for
all a, a′ ∈ A1, γ(a) + γ(a′) ⊆ γ(a +] a′), and we use

∑]
i∈I ai to denote an indexed

abstract summation.

Linear Classifiers. Sound approximations of scalar multiplication and addition are
enough for designing a sound robustness verifier for a linear classifier. As a prepro-
cessing step, for a binary classifier C(x) = sign([

∑N
i=1 αiyi(xi · x)] − b) which

has been trained for the linear kernel, we preliminarly compute the hyperplane nor-
mal vector w ∈ Rn: for all j ∈ [1, n], wj ,

∑N
i=1 αiyixij , so that for all x ∈ Rn,

w · x =
∑n
j=1 wjxj =

∑N
i=1 αiyi(xi · x). Thus, C(x) = sign([

∑n
j=1 wjxj] − b)

is the linear classifier in primal form, whose robustness can be abstractly verified by
resorting to just sound abstract scalar multiplication and addition on A1. The note-
worthy advantage of abstracting a classifier in primal form is that each component of
the input vector x occurs just once in sign([

∑n
j=1 wjxj] − b), while in the dual form

sign([
∑N
i=1αiyi(xi ·x)]− b) each component xj occurs exactly N times (one for each

support vector), so that a precise abstraction of this latter dual form should be able to
represent the correlation between (the many) multiple occurrences of each xj .

Nonlinear Classifiers. Let us consider a nonlinear kernel binary classifier C(x) =

sign(D(x) − b), where D(x) =
∑N
i=1 αiyik(xi,x) and {xi}Ni=1 ⊆ Rn is the set

of support vectors for the kernel function k. Thus, what we additionally need here is a
sound abstract kernel function k] : Rn × An → A1 such that for any support vector
xi and a ∈ An, {k(xi,x) | x ∈ γ(a)} ⊆ γ(k](xi, a)). Let us consider the polynomial
and RBF kernels.

For a d-polynomial kernel k(x,y) = (x · y + c)d, we need sound approximations
of the unary dot product λy.x · y : Rn → R, for any given x ∈ Rn, and of the
d-power function (·)d : R → R. Of course, a sound nonrelational approximation of
λy.x ·y =

∑n
j=1 xjyj can be obtained simply by using sound abstract scalar multipli-

cation and addition on A1. Moreover, a sound abstract binary multiplication provides
a straightforward definition of a sound abstract d-power function (·)d] : A1 → A1. If
∗] : A1 × A1 → A1 is a sound abstract multiplication such that for all a, a′ ∈ A1,
γ(a) ∗ γ(a′) ⊆ γ(a ∗] a′), then a sound abstract d-power procedure can be defined
simply by iterating the abstract multiplication ∗].

For the RBF kernel k(x,y) = e−γ‖x−y‖
2
2 = e−γ(x−y)·(x−y), for some γ > 0,

we need sound approximations of the self-dot product λx.x · x : Rn → R, which is
the squared Euclidean distance, and of the exponential ex : R → R. Let us observe
that sound abstract addition and multiplication induce a sound nonrelational approxi-
mation of the self-dot product: for all 〈a1, ..., an〉 ∈ An, 〈a1, ..., an〉 ·] 〈a1, ..., an〉 ,∑]n
j=1 aj ∗] aj . Finally, we require a sound abstract exponential e](·) : A1 → A1 such

that for all a ∈ A1, {ex | x ∈ γ(a)} ⊆ γ(e]a).

8

Abstract Multi-Classification. Let us consider multiclass classification for a set of la-
bels L = {y1, ..., ym}, with m > 2. It turns out that the multi-classification approaches
based on a reduction to multiple binary classifications such as ovr and ovo introduce
a further approximation in the abstraction process, because these reduction strategies
need to be soundly approximated.

Let us first consider the ovr strategy and, for all j ∈ [1,m], letCj,j̄ : X → R denote
the binary scoring classifier of yj-versus-rest where Cj,j̄(x) , Dj(x)− bj . In order to
have a sound approximation of ovr multi-classification, besides havingm sound abstract
classifiers C]

j,j̄
: An → A1 such that for all a ∈ An, {Cj,j̄(x) ∈ R | x ∈ γ(a)} ⊆

γ(C]
j,j̄
(a)), we need an abstract maximum function max] : (A1)

m → {1, ...,m,>}
which is sound, namely, if (a1, ..., am) ∈ (A1)

m and (z1, ..., zm) ∈ γ(a1)× ...×γ(am)
then max](a1, ..., am) 6= > ⇒ max(z1, ..., zm) ∈ γ(amax](a1,...,am)) holds. Clearly,
as soon as the abstract function max] outputs>, this abstract multi-classification scheme
is inconclusive.

Example 3.5 Letm = 3 and assume that an ovr multi-classifierMovr is robust on x for
some adversarial region P as a consequence of the following ranges of scores: for all
x′ ∈ P (x), −0.5 ≤ C1,1̄(x

′) ≤ −0.2, 3.5 ≤ C2,2̄(x
′) ≤ 4 and 2 ≤ C3,3̄(x

′) ≤ 3.2. In
fact, since the least score of C2,2̄ on the region P (x) is greater than the greatest scores
of C1,1̄ and C3,3̄ on P (x), these ranges imply that for all x′ ∈ P (x), Movr(x

′) = y2.
However, even in this advantageous scenario, on the abstract side we could not be able
to infer that C2,2̄ always prevails over C1,1̄ and C3,3̄. For example, for the interval
abstraction, some interval binary classifiers for a sound perturbation P](x) could output
the following sound intervals: C]

1,1̄
(P](x)) = [−1,−0.1], C]

2,2̄
(P](x)) = [3.4, 4.2]

and C]
3,3̄

(P](x)) = [1.5, 3.5]. In this case, despite that each abstract binary classifier
C]
i,̄i

is able to prove that Ci,̄i is robust on x for P (because the output intervals do not
include 0), the ovr strategy here does not allow to conclude that the multi-classifierMovr
is robust on x, because the lower bound 3.4 of the interval approximation provided by
C]

2,2̄
is not above the interval upper bound 3.5 of C]

3,3̄
. In such a case, a sound abstract

multi-classifier based on ovr cannot prove the robustness of Movr for P (x). ut

Let us turn to the ovo approach which relies on m(m − 1)/2 binary classifiers
C{i,j} : X → {i, j}. Let us assume that for all the pairs i 6= j, a sound abstract binary
classifier C]{i,j} : A → {yi, yj ,>} is defined. Then, an abstract ovo multi-classifier
M]

ovo : A → ℘(L) can be defined as follows. For all i ∈ {1, ...,m} and a ∈ A,
let votes](a, yi) ∈ IntN be an interval of nonnegative integers used by the following
abstract voting procedure AV, where +Int denotes standard interval addition:

forall i ∈ [1,m] do votes](a, yi) := [0, 0];

forall i, j ∈ [1,m] s.t. i 6= j do
if C]{i,j}(a) = yi then votes](a, yi) := votes](a, yi) +

Int [1, 1]; (2)

elseif C]{i,j}(a) = yj then votes](a, yj) := votes](a, yj) +
Int [1, 1];

else votes](a, yi) := votes](a, yi) +
Int [0, 1]; votes](a, yj) := votes](a, yj) +

Int [0, 1];

Let us notice that the last else branch is taken when C]{i,j}(a) = >, meaning that the
abstract classifier C]{i,j}(a) is not able to decide between yi and yj , so that in order to

9

preserve the soundness of the abstract voting procedure, we need to increment just the
upper bounds of the interval ranges of votes for both classes yi and yj while their lower
bounds are left unchanged. Let us denote votes](a, yi) = [vmin

i , vmax
i]. Hence, at the

end of the AV procedure, [vmin
i , vmax

i] provides an interval approximation of concrete
votes as follows:

|{j 6= i | ∀x ∈ γ(a). C{i,j}(x) = i}| ≥ vmin
i ,

|{j 6= i | ∃x ∈ γ(a). C{i,j}(x) = i}| ≤ vmax
i .

The corresponding abstract multi-classifier is then defined as follows:

M]
ovo(a) , {yi ∈ L | ∀j 6= i. vmin

j ≤ vmax
i }.

Hence, one may have an intuition for this definition by considering that a class yi is
not in M]

ovo(a) when there exists a different class yk whose lower bound of votes is
certainly strictly greater than the upper bound of votes for yi. For example, for m = 4,
if votes](a, y1) = [4, 4], votes](a, y2) = [0, 2], votes](a, y3) = [4, 5], votes](a, y4) =

[1, 3] then M]
ovo(a) = {y1, y3}.

Example 3.6 Assume that m = 3 and for all x′ ∈ P (x), Movo(x
′) = {y3} because we

have that argmaxi=1,2,3 votes(x
′, yi) = {3}. This means that a draw never happens for

Movo, so that for all x′ ∈ P (x), C{1,3}(x′) = y3 and C{2,3}(x′) = y3 certainly hold
(because m = 3). Let us also assume that {C{1,2}(x′) | x′ ∈ P (x)} = {y1, y2}. Then,
for a sound abstract perturbation P](x), we necessarily have that C]{1,2}(P

](x)) = >.
If we assume that C]{1,3}(P

](x)) = y3 and C]{2,3}(P
](x)) = > then we have that

M]
ovo(P](x)) = {y1, y2, y3} because votes(P](x), y1) = [0, 1], votes(P](x), y2) =

[0, 2] and votes(P](x), y3) = [1, 2]. Therefore, in this case, M]
ovo is not able to prove

the robustness of Movo on x. Let us notice that the source of imprecision in this multi-
classification is confined to the binary classifier C]{2,3} rather than the abstract voting
AV strategy. In fact, if we have that C]{1,3}(P

](x)) = {y3} and C]{2,3}(P
](x)) = {y3}

then M]
ovo(P](x)) = {y3}, thus proving the robustness of M . ut

Lemma 3.7. Let Movo be an ovo multi-classifier based on binary classifiers C{i,j}.
If the abstract ovo multi-classifier M]

ovo is based on sound abstract binary classifiers
C]{i,j} then M]

ovo is sound for Movo.

In our experimental evaluation we will follow the ovo approach for concrete multi-
classification, which is standard for SVMs [14], and consequently we will use this ab-
stract ovo multi-classifier for robustness verification.

On Completeness. Let C : X → {–1,+1} be a binary classifier, P : X → ℘(X)
a perturbation and C] : A → {–1,+1,>}, P] : X → A be a corresponding sound
abstract binary classifier and perturbation on some abstraction A.

Definition 3.8 (Complete Abstract Classifiers and Robustness Verifiers).C] is com-
plete for C when for all a ∈ A, C](a) = > ⇒ ∃x,x′ ∈ γ(a). C(x) 6= C(x′).
〈C], P]〉 is a (sound and) complete robustness verifier for C w.r.t. P when for all
x ∈ X , C](P](x)) = C(x) iff Rob(C,x, P). ut

10

Complete abstract classifiers can be obtained for linear binary classifiers once these
linear classifiers are in primal form and the abstract operations are exact. We therefore
consider a linear binary classifier in primal form Cpr(x) , signb(

∑n
j=1 wjπj(x)) and

an abstraction A of ℘(X) with concretization γ : A → ℘(X). Let us consider the
following exactness conditions for the abstract functions on A needed for abstracting
Cpr and the perturbation P :

(E1) Exact projection π]j : For all j ∈ [1, n] and a ∈ An, γ(π]j(a)) = πj(γ(a));
(E2) Exact scalar multiplication: For all z ∈ R and a ∈ A1, γ(za) = zγ(a);
(E3) Exact scalar addition +]: For all a, a′ ∈ A1, γ(a+] a′) = γ(a) + γ(a′);
(E4) Exact sign]b: For all b ∈ R, a ∈ A1, (∀x ∈ γ(a). signb(x) = s)⇒ sign]b(a) = s;
(E5) Exact perturbation P]: For all x ∈ X , γ(P](x)) = P (x).

Then, it turns out that the abstract classifier C]pr(a) , sign]b(
∑]n
j=1 wjπ

]
j(a)) is com-

plete and induces a complete robustness verifier.

Lemma 3.9. Under hypotheses (E1)-(E5), C]pr is (sound and) complete for Cpr and
〈C]pr, P

]〉 is a complete robustness verifier for Cpr w.r.t. P .

Let us now focus on multi-classification. It turns out that completeness does not
scale from binary to multi-classification, that is, even if all the abstract binary classifiers
are assumed to be complete, the corresponding abstract multi-classification could lose
the completeness. This loss is not due to the abstraction of the binary classifiers, but
it is an intrinsic issue of a multi-classification approach based on binary classification.
Let us show how this loss for ovr and ovo can happen through some examples.

Example 3.10 Consider L = {y1, y2, y3} and assume that for two different inputs
x,x′ ∈ X , the scoring ovr binary classifiersCi,i are as follows:C1,1(x) = 3,C2,2(x) =
−1, C3,3(x) = 2, C1,1(x

′) = 1, C2,2(x
′) = −1, C3,3(x) = 0.5. Hence, Movr(x) =

Movr(x
′) = {y1}, meaning that Movr is robust on x for a perturbation P (x) = {x,x′}.

However, it turns out that the mere collecting abstraction of binary classifiers Ci,i, al-
though being trivially complete according to Definition 3.8, may well lead to a (sound
but) incomplete multi-classification. In fact, even if we consider no abstraction of sets
of vectors/scalars and an abstract binary classifier is simply defined by a collecting ab-
straction C]

i,i
(Y) , {Ci,i(x) ∈ R | x ∈ Y }, then we have that while each C]

i,i
is

complete the corresponding abstract ovr multi-classifier turns out to be sound but not
complete. In our example, we have that: C]

1,1
(P (x)) = {1, 3}, C]

2,2
(P (x)) = {−1},

C]
3,3

(P (x)) = {0.5, 2}. Hence, the ovr strategy can only derive that both y1 and y2 are
feasible classes for P (x), namely,M]

ovr({x,x′}) = {y1, y2}, meaning thatM]
ovr cannot

prove the robustness of M . ut

The above example shows that the loss of relational information between input vec-
tors and corresponding scores is an unavoidable source of incompleteness when ab-
stracting ovr multi-classification. An analogous incompleteness happens in ovo multi-
classification.

11

Example 3.11 Consider L = {y1, y2, y3, y4, y5} and assume that for some x,x′ ∈ X ,
the ovo binary classifiers C{i,j} give the following outputs:

C{1,2} C{1,3} C{1,4} C{1,5} C{2,3} C{2,4} C{2,5} C{3,4} C{3,5} C{4,5}

x y1 y1 y1 y5 y2 y2 y5 y3 y3 y4
x′ y1 y1 y4 y1 y2 y4 y2 y3 y5 y5

so that Movo(x) = Movo(x
′) = {y1}, meaning that Movo is robust on x for the pertur-

bation P (x) = {x,x′}. Similarly to Example 3.10, the collecting abstractions of bi-
nary classifiers C{i,j} are trivially complete but define a (sound but) incomplete multi-
classification. In fact, even with no numerical abstraction, if we consider the abstract
collecting binary classifiers C]{i,j}(Y) , {C{i,j}(x) | x ∈ Y } then we have that:

C{1,2} C{1,3} C{1,4} C{1,5} C{2,3} C{2,4} C{2,5} C{3,4} C{3,5} C{4,5}

P (x) {y1} {y1} {y1, y4} {y1, y5} {y2} {y2, y4} {y2, y5} {y3} {y3, y5} {y4, y5}

Thus, the ovo voting for P (x) in order to be sound necessarily has to assign 4 votes
to both classes y1 and y5, meaning that M]

ovo(P (x)) = {y1, y5}. As a consequence,
M]

ovr cannot prove the robustness of Movo. Here again, this is a consequence of the
collecting abstraction which looses the relational information between input vectors
and corresponding classes, and therefore is an ineluctable source of incompleteness
when abstracting ovo multi-classification. ut

Let us observe that when all the abstract binary classifiers C]{i,j} are complete, then
in the abstract voting procedure AV defined by (2), for all votes](a, yi) = [vmin

i , vmax
i],

we have that |{j 6= i | ∃x ∈ γ(a). C{i,j}(x) = i}| = vmax
i holds, meaning that the

hypothesis of completeness of abstract binary classifiers strengthens the upper bound
vmax
i to a precise equality, although this is not enough for preserving the completeness.

4 Numerical Abstractions for Classifiers

Interval Abstraction. The n-dimensional interval abstraction domain Intn is simply
defined as a nonrelational product of Int, i.e., Intn , Intn (with Int1 = Int), where
γIntn : Intn → ℘(Rn) is defined by γIntn(I1, ..., In) , ×ni=1γInt(Ii), and, by a slight
abuse of notation, this concretization map will be denoted simply by γ. In order to
abstract linear and nonlinear classifiers, we will use the following standard interval
operations based on real arithmetic operations.

– Projection πj : Intn → Int defined by πj(I1, ..., In) , Ij , which is trivially exact
because Intn is nonrelational.

– Scalar multiplication λI.zI : Intn → Intn, with z ∈ R, is defined as componen-
twise extension of scalar multiplication λI.zI : Int1 → Int1 given by: z⊥ = ⊥
and z[l, u] , [zl, zu], where z(±∞) = ±∞ for z 6= 0 and 0(±∞) = 0. This is an
exact abstract scalar multiplication, i.e., {zx | x ∈ γ(I)} = γ(zI) holds.

– Addition +] : Intn × Intn → Intn is defined as componentwise extension of
standard interval addition, that is, ⊥ +] I = ⊥ = I +] ⊥, [l1, u1] +

] [l2, u2] =
[l1 + l2, u1 + u2]. This abstract interval addition is exact, i.e., {x1 + x2 | xi ∈
γ(Ii)} = γ(I1 +

] I2) holds.

12

– One-dimensional multiplication ∗] : Int1 × Int1 → Int1 is enough for our pur-
poses, whose definition is standard: ⊥ ∗] I = ⊥ = I ∗] ⊥, [l1, u1] ∗] [l2, u2] =
[min(l1l2, l1u2, u1l2, u1u2),max(l1l2, l1u2, u1l2, u1u2)]. As a consequence of the
completeness of real numbers, this abstract interval multiplication is exact, i.e.,
{x1x2 | xi ∈ γ(Ii)} = γ(I1 ∗] I2).

It is worth remarking that since all these abstract functions on real intervals are exact
and real intervals have the abstraction map, it turns out that all these abstract functions
are the best correct approximations on intervals of the corresponding concrete functions.

For the exponential function ex : R → R used by RBF kernels, let us consider a
generic real function f : R→ R which is assumed to be continuous and monotonically
either increasing (x ≤ y ⇒ f(x) ≤ f(y)) or decreasing (x ≤ y ⇒ f(x) ≥ f(y)).
Its collecting lifting f c : ℘(R) → ℘(R) is approximated on the interval abstraction by
the abstract function f] : Int1 → Int1 defined as follows: for all possibly unbounded
intervals [l, u] with l, u ∈ R ∪ {–∞,+∞},

fi([l, u]) , inf{f(x) ∈ R | x ∈ γ([l, u])} ∈ R ∪ {–∞}
fs([l, u]) , sup{f(x) ∈ R | x ∈ γ([l, u])} ∈ R ∪ {+∞}
f]([l, u]) , [min(fi([l, u]), fs([l, u])),max(fi([l, u]), fs([l, u])] f](⊥) , ⊥

Therefore, for bounded intervals [l, u] with l, u ∈ R, f]([l, u]) = [min(f(l), f(u)),
max(f(l), f(u))]. As a consequence of the hypotheses of continuity and monotonicity
of f , it turns out that this abstract function f] is exact, i.e., {f(x) ∈ R | x ∈ γ([l, u])} =
γ(f]([l, u])) holds, and it is the best correct approximation on intervals of f c.

Reduced Affine Arithmetic Abstraction. Even if all the abstract functions of the interval
abstraction are exact, it is well known that the compositional abstract evaluation of
an inductively defined expression exp on Int can be imprecise due to the so-called
dependency problem, meaning that if the syntactic expression exp includes multiple
occurrences of a variable x and the abstract evaluation of exp is performed by structural
induction on exp, then each occurrence of x in exp is taken independently from the
others and this can lead to a significant loss of precision in the output interval. This loss
of precision may happen both for addition and multiplication of intervals. For example,
the abstract compositional evaluations of the simple expressions x− x and x ∗ x on an
input interval [−c, c], with c ∈ R>0, yield, resp., [−2c, 2c] and [−c2, c2], rather than
the exact results [0, 0] and [0, c2]. This dependency problem can be a significant source
of imprecision for the interval abstraction of a polynomial SVM classifier C(x) =

sign([
∑N
i=1 αiyi(

∑n
j=1(yi)jxj + c)d]− b), where each attribute xj of an input vector

x occurs for each support vector yi. The classifiers based on RBF kernels suffer from
an analogous issue.

Affine Forms. Affine arithmetic [34,35] mitigates this dependency problem of the non-
relational interval abstraction. An interval [l, u] ∈ Int which approximates the range
of some variable x is represented by an affine form (AF) x̂ = a0 + a1εx, where
a0 = (l+ u)/2, a1 = (u− l)/2 and εx is a symbolic (or “noise”) real variable ranging
in [−1, 1] ∈ Int which explicitly represents a dependence from the parameter x. This

13

solves the dependency problem for a linear expression such as x− x because the inter-
val [−c, c] for x is represented by 0+ cεx so that the compositional evaluation of x− x
for 0 + cεx becomes (0 + cεx) − (0 + cεx) = 0, while for nonlinear expressions such
as x ∗ x, an approximation is still needed.

In general, the domain AFk of affine forms with k ≥ 1 noise variables consists
of affine forms â = a0 +

∑k
i=1 aiεi, where ai ∈ R and each εi represents either

an external dependence from some input variable or an internal approximation de-
pendence due to a nonlinear operation. An affine form â ∈ AFk can be abstracted
to a real interval in Int, as given by a map αInt : AFk → Int defined as follows:
for all â = a0 +

∑k
i=1 aiεi ∈ AFk, αInt(â) , [câ − rad(â), câ + rad(â)], where

câ , a0 and rad(ê) ,
∑k
i=1 |ai| are called, resp., center and radius of the affine

form â. This, in turn, defines the interval concretization γAFk : AFk → R given by
γAFk(â) , γInt�R(αInt(â)). Vectors of affine forms may be used to represent zono-
topes, which are center-symmetric convex polytopes and have been used to design an
abstract domain for static program analysis [13] endowed with abstract functions, joins
and widening.

Reduced Affine Forms. It turns out that affine forms are exact for linear operations,
namely additions and scalar multiplications. If â, b̂ ∈ AFk and c ∈ R then abstract
additions and scalar multiplications are defined as follows: â +] b̂ , (a0 + b0) +∑k
j=1(aj + bj)εj and câ , ca0 +

∑k
j=1 cajεj . They are exact, namely, {x+ y ∈ R |

x ∈ γAFk(â), y ∈ γAFk(b̂)} = γAFk(â+
] b̂) and cγAFk(â) = γAFk(câ).

For nonlinear operations, in particular multiplication, in general the result cannot be
represented exactly by an affine form. Then, the standard strategy for defining the mul-
tiplication of affine forms is to approximate the precise result by adding a fresh noise
symbol whose coefficient is typically computed by a Taylor or Chebyshev approxima-
tion of the nonlinear part of the multiplication (cf. [13, Section 2.1.5]). Similarly, for
the exponential function used in RBF kernels, an algorithm for computing an affine
approximation of the exponential ex evaluated on an affine form x̂ for the exponent
x is given in [34, Section 3.11] and is based on an optimal Chebyshev approximation
(that is, w.r.t. L∞ distance) of the exponential which introduces a fresh noise symbol.
However, the need of injecting a fresh noise symbol for each nonlinear operation raises
a critical space and time complexity issue for abstracting polynomial and RBF classi-
fiers, because this would imply that a new but useless noise symbol should be added for
each support vector. For example, for a 2-polynomial classifier, we need to approximate
a square operation x∗x for each of the N support vectors, and a blind usage of abstract
multiplication for affine forms would add N different and useless noise symbols. This
drawback would be even worse for d-polynomial classifers with d > 2, while an analo-
gous critical issue would happen for RBF classifiers. This motivates the use of so-called
reduced affine forms (RAFs), which have been introduced in [20] as a remedy for the
increase of noise symbols due to nonlinear operations and still allow us to keep track of
correlations between the components of the input vectors of classifiers.

A reduced affine form ã ∈ RAFk of length k ≥ 1 is defined as a sum of a stan-
dard affine form in AFk with a specific rounding noise εa which accumulates all the
errors introduced by nonlinear operations. Thus, RAFk , {a0 +

∑k
j=1 ajεj + arεa |

14

a0, a1, ..., ak ∈ R, ar ∈ R≥0}. The key point is that the length of ã ∈ RAFk remains
unchanged during the whole abstract computation and ar ∈ R≥0 is the radius of the
accumulative error of approximating all nonlinear operations during abstract computa-
tions. Of course, each ã ∈ RAFk can be viewed as a standard affine form in AFk+1

and this allows us to define the interval concretization γRAFk(ã) and the linear abstract
operations of addition and scalar multiplication of RAFs simply by considering them as
standard affine forms. In particular, linear abstract operations in RAFk are exact w.r.t.
interval concretization γRAFk .

Nonlinear abstract operations, such as multiplication, must necessarily be approx-
imated for RAFs. Several algorithms of abstract multiplication of RAFs are avail-
able, which differ in precision, approximation principle and time complexity, rang-
ing from linear to quadratic complexities [32, Section 3]. Given ã, b̃ ∈ RAFk, we
need to define an abstract multiplication ã ∗] b̃ ∈ RAFk which is sound, namely,
{xy ∈ R | x ∈ γRAFk(ã), y ∈ γRAFk(b̃)} ⊆ γRAFk(ã ∗] b̃), where it is worth pointing
out that this soundness condition is given w.r.t. interval concretization γRAFk and scalar
multiplication. Time complexity is a crucial issue for using ∗] in abstract polynomial
and RBF kernels, because in these abstract classifiers at least an abstract multiplication
must be used for each support vector, so that quadratic time algorithms in O(k2) can-
not scale when the number of support vectors grows, as expected for realistic training
datasets. We therefore selected a recent linear time algorithm by Skalna and Hladı́k [32]
which is optimal in the following sense. Given ã, b̃ ∈ RAFk, we have that their concrete
symbolic multiplication is as follows:

ã ∗ b̃ = (a0 +
∑k
j=1 ajεj + arεa) ∗ (b0 +

∑k
j=1 bjεj + brεb)

= a0b0 +
∑k
j=1(a0bj + b0aj)εj + (a0brεb + b0arεa) + fã,b̃(ε1, ..., εk, εa, εb)

where fã,b̃(ε1, ..., εk, εa, εb) , (
∑k
j=1 ajεj + arεa)(

∑k
j=1 bjεj + brεb). An abstract

multiplication ∗]e on RAFk can be defined as follows: ifRmax, Rmin ∈ R are, resp., the
minimum and maximum of {fã,b̃(e) ∈ R | e ∈ [−1, 1]k+2} then

ã ∗]e b̃ , a0b0 + 0.5(Rmax +Rmin) +
∑k
j=1(a0bj + b0aj)εj +

(|a0|br + |b0|ar + 0.5(Rmax −Rmin))εa∗b

where 0.5(Rmax + Rmin) and 0.5(Rmax − Rmin) are, resp., the center and the radius
of the interval range of fã,b̃(ε1, ..., εk, εa, εb). As argued in [32, Proposition 3], this de-
fines an optimal abstract multiplication of RAFs. Skalna and Hladı́k [32] put forward
two algorithms for computing Rmax and Rmin, one with O(k) time bound and one in
O(k log k): the O(k) bound is obtained by relying on a linear time algorithm to find
a median of a sequence of real numbers, while the O(k log k) algorithm is based on
(quick)sorting that sequence of numbers. The details of these algorithms are here omit-
ted and can be found in [32, Section 4]. In abstract interpretation terms, it turns out
that this abstract multiplication algorithm ∗]e of RAFs provides the best approximation
among the RAFs which correctly approximate the multiplication with the same coeffi-
cients for ε1,...,εk of ã ∗]e b̃.

Finally, let us consider the exponential function ex used in RBF kernels. The al-
gorithm in [34, Section 3.11] for computing the affine form approximation of ex and

15

based on Chebyshev approximation of ex can be also applied when the exponent is rep-
resented by a RAF x̃ = x0 +

∑k
j=1 xjεj + xrεx ∈ RAFk, provided that the radius

of the fresh noise symbol produced by computing ex̃ is added to the coefficient of the
rounding noise εx of x̃.

Floating Point Soundness. The interval and RAF abstractions and the corresponding
abstract functions described above rely on precise real arithmetic on R, in particular
soundness and exactness of abstract functions depend on real arithmetic. These abstract
functions may yield unsound results for floating point arithmetic such as the standard
IEEE 754 [33]. These domains therefore need some suitable adjustments to make them
“floating-point” sound [21], which are described in the full version of this paper [28].

5 Verifying SVM Classifiers

Perturbations. We consider robustness of SVM classifiers against a standard adversar-
ial region defined by the L∞ norm, as considered in Carlini and Wagner’s robustness
model [4] and used by Vechev et al. [9,30,31] in their verification framework. Given a
generic classifier C : X → L and a constant δ ∈ R>0, a L∞ δ-perturbation of an input
vector x ∈ Rn is defined by P∞δ (x) , {x′ ∈ X | ‖x′ − x‖∞ ≤ δ}. Thus, if the space
X consists of n-dimensional real vectors normalized in [0, 1] (our datasets follow this
standard) and δ ∈ (0, 1] then P∞δ (x) = {x′ ∈ Rn | ∀i. x′i ∈ [xi − ε,xi + ε] ∩ [0, 1]}.
Let us observe that, for all x, P∞δ (x) is an exact perturbation for intervals and therefore
for RAFs as well (cf. (E5)). The datasets of our experiments consist of h×w grayscale
images (with 8 bits per pixel, i.e., the pixel depth allows 256 different gray intensities)
where each image is represented as a normalized real vector in [0, 1]hw whose com-
ponents encode the light values of pixels. Increasing (decreasing) the value of a vector
component means brightening (darkening) that pixel, so that a brightening of +0.01
means +2.55 pixel depth. Hence, a perturbation P∞δ (x) of an image x represents all
the images where every possible subset of pixels is brightened or darkened up to δ.

We also consider robustness of image classifiers for the so-called adversarial fram-
ing on the border of images, which has been recently shown to represent an effective
attack for deep convolutional networks [43]. Consider an image represented as a h×w
matrix M ∈ Rh,w with normalized real values in [0, 1]. Given an integer framing thick-
ness t ∈ [1,min(h,w)/2], the “occlude” t-framing perturbation of M is defined by

P frm
t (M) , {M ′ ∈ Rh,w | ∀i ∈ [t+ 1, h− t], j ∈ [w + 1, w − t].M ′i,j =Mi,j ,

∀i 6∈ [t+ 1, h− t], j 6∈ [w + 1, w − t].M ′i,j ∈ [0, 1]}.

This framing perturbation models the uniformly distributed random noise attack in [43].
Also in this case P frm

t (M) is a perturbation which can be exactly represented by inter-
vals and consequently by RAFs.

Linear Classifiers. As observed in Section 4, for the interval abstraction it turns out
that all the abstract functions which are used in abstract linear binary classifiers in pri-
mal form are exact, so that, by Lemma 3.9, these abstract linear binary classifiers are
complete. This completeness implies that there is no need to resort to the RAF abstrac-
tion for linear binary classifiers. However, as argued in Section 3, this completeness for

16

binary classifiers does not scale to multi-classification. Nevertheless, it is worth point-
ing out that for each binary classifier C{i,j} used in ovo multi-classification, since L∞
and frame perturbations are exact for intervals, we have a complete robustness verifier
for each C{i,j}. As a consequence, this makes feasible to find adversarial examples of
linear binary classifiers as follows. Let us consider a linear binary classifier in primal
form C(x) = sign([

∑n
j=1 wjxj]− b) and a perturbation P which is exact on intervals,

i.e., for all x, P (x) = γIntn(P
](x)), where P](x) = 〈[l1, u1], ..., [ln, un]〉) ∈ Intn.

Completeness of robustness linear verification means that if the interval abstraction∑]n
j=1 wj [lj , uj] outputs an interval [l, u] ∈ Int1 such that 0 ∈ [l, u], then C is surely

not robust on x for P . It is then easy to find two input vectors y, z ∈ P (x) which
provide a concrete counterexample to the robustness, namely such that C(y) 6= C(z).
For all i ∈ [1, n], if yi , if sign(wi) ≥ 0 then ui else li and zi , if sign(wi) ≥
0 then li else ui then we have defined y, z ∈ P (x) such that

∑n
j=1 wjyj = u and∑n

j=1 wjzj = l, so that C(y) = +1 and C(z) = –1. This pair of inputs (y, z) there-
fore represents the strongest adversarial example to the robustness of C on x.

Nonlinear Classifiers. Let us first point out through an example that interval and RAF
abstractions are incomparable for nonlinear operations.

Example 5.1 Consider the 2-polynomial in two variables f(x1, x2) , (1 + 2x1 −
x2)

2 − 1
4 (2 + x1 + x2)

2, which could be thought of as a 2-polynomial classifier in R2.
Assume that x1 and x2 range in the interval [−1, 1]. The abstract evaluation of f on the
intervals Ix1

= [−1, 1] = Ix2
is as follows:

f]
Int(Ix1 , Ix2) = (1 + 2[−1, 1]− [−1, 1])2 − 1

4
(2 + [−1, 1] + [−1, 1])2

= [−2, 4]2 − 1
4
[0, 4]2 = [0, 16] + [−4, 0] = [−4, 16]

On the other hand, for the RAF2 abstraction we have that x̃1 = ε1, x̃2 = ε2 and the
abstract evaluation of f is as follows:

f]
RAF2

(x̃1, x̃2) = (1 + 2ε1 − ε2)2 − 1
4
(2 + ε1 + ε2)

2

= [1 + 0.5(R1max +R1min) + 4ε1 − 2ε2 + 0.5(R1max −R1min)εr]−
1
4
[4 + 0.5(R2max +R2min) + 4ε1 + 4ε2 + 0.5(R2max −R2min)εr]

where R1max = max((2ε1 − ε2)2) = 9, R1min = min((2ε1 − ε2)2) = 0,

R2max = max((ε1 + ε2)
2) = 4, R2min = min((ε1 + ε2)

2) = 0

= [5.5 + 4ε1 − 2ε2 + 4.5εr]− 1
4
[6 + 4ε1 + 4ε2 + 2εr]

= [5.5 + 4ε1 − 2ε2 + 4.5εr] + [−1.5− ε1 − ε2 − 0.5εr]

= 4 + 3ε1 − 3ε2 + 4εr

Thus, it turns out that γRAF2
(f]RAF2

(x̃1, x̃2)) = [4 − 10, 4 + 10] = [−6, 14], which is
incomparable with γInt(f

]
Int(Ix1

, Ix2
)) = [−4, 16]. ut

In view of Example 5.1, for a nonlinear binary classifier C(x) = sign(D(x) − b),
withD(x) =

∑N
i=1 αiyik(xi,x), we will use both the interval and RAF abstractions of

C in order to combine their final abstract results. More precisely, if D]
Intn

and D]
RAFn

are, resp., the interval and RAF abstractions of D, assume that P : X → ℘(X) is a

17

perturbation for C which is soundly approximated by P]Int : X → Intn on intervals
and by P]RAF : X → RAFn on RAFs, so that P] : X → Intn × RAFn is defined
by P](x) , 〈P]Int(x), P

]
RAF(x)〉. Then, for each input vector x ∈ X , our combined

verifier first will run both D]
Intn

(P]Int(x)) and D]
RAFn

(P]RAF(x)). Next, the output
D]

RAFn
(P]RAF(x)) = â ∈ RAFn is abstracted to the interval [câ−rad(â), câ+rad(â)]

which is then intersected with the interval D]
Intn

(P]Int(x)) = [l, u]. Summing up, our
combined abstract binary classifier C] : Intn × RAFn → {–1,+1,>} is defined as
follows:

C](P](x)) ,


+1 if max(l, câ − rad(â)) ≥ 0

–1 if min(u, câ + rad(â)) < 0

> otherwise

As shown in Section 4, it turns out that all the linear and nonlinear abstract opera-
tions for polynomial and RBF kernels are sound, so that by Lemma 3.4, this com-
bined abstract classifier C] induces a sound robustness verifer for C. Finally, for multi-
classification, in both linear and nonlinear cases, we will use the sound abstract ovo
multi-classifier defined in Lemma 3.7.

6 Experimental Results

We implemented our robustness verification method for SVM classifiers in a tool called
SAVer (Svm Abstract Verifier), which has been written in C (approximately 2.5k LOC)
and whose source code together with all the datasets, trained SVMs and results is avail-
able on GitHub [29]. We assessed the percentage of samples of the full test sets for
which a SVM classifier is proved to be robust (and, dually, vulnerable) for a given per-
turbation, as well as the average verification time per sample. We also evaluated the
impact of using subsets of the training set on the robustness of the corresponding clas-
sifiers and on verification times. We compared SAVer to DeepPoly [31], a robustness
verification tool for convolutional deep neural networks based on abstract interpretation.
Our experimental results indicate that SAVer is fast and scalable and that the percentage
of robustness provable by SAVer for SVMs on MNIST is higher than the robustness
provable by DeepPoly for deep neural networks. Our experiments were run on a AMD
Ryzen 7 1700X 3.0GHz CPU.

Datasets and Classifiers. For our experimental evaluation of SAVer we used the stan-
dard and widespread MNIST [18] image dataset together with the recent alternative
Fashion-MNIST (F-MNIST) image dataset [41]. They both contain grayscale images
of 28×28 = 784 pixels (of depth 256) which are represented as normalized vectors
of floating-point numbers in [0, 1]784 (0 is black, 1 is white). MNIST contains images
of handwritten digits, while F-MNIST comprises professional images of fashion dress
products from 10 categories taken from the popular Zalando’s e-commerce website.
F-MNIST has been recently put forward as a more challenging alternative for the orig-
inal MNIST dataset for benchmarking machine learning algorithms, since the exten-
sive experimental results reported in [41] showed that the test accuracy of most ma-
chine learning classifiers significantly decreases (a rough average is about 10%) from

18

MNIST to F-MNIST. In particular, [41] reports that the average test accuracy (on the
whole test set) of linear, polynomial and RBF SVMs on MNIST is 95.4% while for
F-MNIST drops to 87.4%, where RBF SVMs are reportedly the most precise classi-
fiers on F-MNIST with an accuracy of 89.7%. Both datasets include a training set of
60000 images and a test set of 10000 images, with no overlap. Our tests are run on
the whole test set, where, following [31], these 10000 images of MNIST and F-MNIST
have been filtered out of those misclassified by the SVMs (ranging from 3% of RBF and
polynomial kernels to 7% for linear kernel), while the experiments comparing SAVer
with DeepPoly are conducted on the same small test subset of MNIST used in [31]. We
trained a number of SVM classifiers using different subsets of the training sets and dif-
ferent kernel functions. We trained our SVMs with linear, RBF and (2, 3 and 9 degrees)
polynomial kernels, and in order to benchmark the scalability of the verifiers we used
the first 1k, 2k, 4k, 8k, 16k, 30k, 60k samples of the training set (training times never
exceeded 3 hours). For training we used Scikit-learn [25], a popular machine learning
library for Python, which relies on the standard Libsvm C library [5].

Results. The results of our experimental evaluation are summarized by the following
tables and charts.

P∞
δ

Provable Robustness %
Linear Poly2 Poly3 Poly9 RBF

0.01 82.23 98.64 99.07 98.51 99.83
0.02 38.95 94.82 96.96 96.34 99.57
0.03 12.77 82.14 91.80 92.85 99.19
0.04 3.22 57.44 78.95 87.33 97.27
0.05 0.71 30.52 57.31 77.69 93.58
0.06 0.13 14.89 34.80 61.12 82.21
0.07 0.00 7.89 18.36 39.75 67.76
0.08 0.00 4.08 10.64 23.70 48.02
0.09 0 1.61 6.28 12.86 28.10
0.10 0 0.58 3.33 7.18 16.38

(a): Comparison of kernel functions

P∞
δ

Provable Robustness %
Interval RAF Combined

0.01 47.73 99.83 99.83
0.02 14.95 99.57 99.57
0.03 6.26 99.19 99.19
0.04 2.42 97.27 97.27
0.05 0.82 93.58 93.58
0.06 0.17 82.21 82.21
0.07 0.04 67.76 67.76
0.08 0 48.02 48.02
0.09 0 28.10 28.10
0.10 0 16.38 16.38

(b): Comparison of abstractions for RBF kernel

P∞
δ

Provable Robustness %
1k 2k 4k 8k 16k 30k 60k

0.01 99.50 99.72 99.69 99.74 99.73 99.77 99.83
0.02 99.01 99.20 99.36 99.35 99.49 99.42 99.57
0.03 98.28 98.58 98.81 98.80 98.95 98.94 99.19
0.04 97.01 97.73 97.91 97.99 98.02 97.71 97.27
0.05 95.28 96.42 96.71 96.50 96.32 95.73 93.58
0.06 93.15 94.69 95.13 94.33 93.90 91.72 82.21
0.07 90.30 92.15 91.16 91.07 88.51 84.43 67.76
0.08 86.69 87.92 87.89 84.86 78.40 66.84 48.02
0.09 81.79 82.47 81.01 74.29 62.38 49.45 28.10
0.10 75.45 74.66 70.83 58.80 45.87 30.86 16.38

(c): Comparison of training set sizes (thousands of samples)

P∞
δ

Provable Provable
Robustness % Vulnerability %

MNIST F-MNIST MNIST F-MNIST
0.01 99.83 88.59 94.48 39.20
0.02 99.57 60.63 73.62 11.80
0.03 99.19 42.13 48.47 5.50
0.04 97.27 27.24 32.51 3.00
0.05 93.58 18.36 20.25 1.50
0.06 82.21 12.18 9.86 0.90
0.07 67.76 8.22 3.68 0.60
0.08 48.02 5.23 0.61 0.40
0.09 28.10 1.96 0 0.10
0.10 16.38 0.48 0 0

(d): MNIST vs F-MNIST

P frm
t

Provable Robustness
MNIST F-MNIST

1 100.00% 49.56%
2 99.64% 4.71%
3 87.34% 0.00%
4 40.35% 0.00%

(e): MNIST vs F-MNIST

P∞
δ

SAVer DeepPoly
poly9 RBF Sigmoid Small

0.005 100% 100% 100% 100%
0.010 98.9% 100% 98% 95%
0.015 98.9% 100% 97% 75%
0.020 97.8% 100% 95% 50%
0.025 97.8% 100% 92% 25%
0.030 96.7% 100% 80% 10%

(f): SAVer vs DeepPoly

19

(g) (h)

Table (a) compares the provable robustness to a P∞δ adversarial region of SVMs
which have been trained with different kernels. It turns out that the RBF classifier is
the most provably robust: even with δ = 0.03, meaning a perturbation of pixel depth of
±7, SAVer can prove that more than 99% of the full test set of MNIST is robust. The
RBF classifier is therefore taken as reference classifier for the successive experiments.
Table (b) compares the relative precisions of robustness verification which can be ob-
tained by changing the abstraction of the RBF classifier. As expected, the relational
information of the RAF abstraction makes it significantly more precise than interval
abstraction, although in a few cases (which do not affect the reported percentages) in-
tervals can help in refining RAF analysis, and this justifies their combined use. Table (c)
shows how the provable robustness depends on the size of the training subset. We may
observe here that using more samples for training a SVM classifier tends to overfit the
model, making it more sensitive to perturbations, i.e. less robust. Table (d) shows what
we call provable vulnerability of a classifier C: we first consider all the samples (x, y)
in the test set which are misclassified by C, i.e., C(x) = y′ 6= y holds, then our robust-
ness verifier is run on the perturbations P∞δ (x) of these samples for checking whether
the region P∞δ (x) can be proved to be consistently misclassified by C to y′. Prov-
able vulnerability is significantly lower than provable robustness, meaning that when
the classifier is wrong on an input vector, it is more likely to assign different labels to
similar inputs, rather than assigning the same (wrong) class. Charts (g) and (h) show
the average verification time per image, in milliseconds, with respect to the size of the
classifier, given by the number of support vectors, and compared for different abstrac-
tions. Let N and n denote, resp., the number of support vectors and the size of input
vectors. The interval-based abstract d-polynomial classifier is inO(dN) time, while the
RBF classifier is in O(N), because the interval multiplication is constant-time. Hence,
interval analysis is very fast, just a few milliseconds per image. On the other hand, the
RAF-based abstract d-polynomial and RBF classifiers are, resp., in O(dNn log n) and
O(Nn log n), since RAF multiplication is in O(n log n), so that RAF-based verifica-
tion is slower although it never takes more than 0.5 seconds.

The same experiments have been replicated on the F-MNIST dataset and Table (d)
shows a comparison of the results between MNIST and F-MNIST. As expected, robust-
ness is harder to prove (and very likely to achieve) on F-MNIST than on MNIST, while
SAVer proved that F-MNIST is less vulnerable than MNIST. Moreover, Table (e) shows
the percentage of provable robustness for MNIST and F-MNIST for the frame adversar-

20

ial region defined in Section 5, for some widths of the frame. F-MNIST is significantly
harder to prove robust under this attack than MNIST: this is due to the fact that the bor-
ders of MNIST images do not contain as much information as their centers so that clas-
sifiers can tolerate some perturbation in the border. By contrast, F-MNIST images often
carry information on their borders, making them less robust to adversarial framing. Fi-
nally, Table (f) compares SAVer with DeepPoly, a robustness verifier for feedforward
neural networks [31]. This comparison used the same test set of DeepPoly, consisting
of the first 100 images of the MNIST test set, and the same perturbations P∞δ . Although
a strict comparison is not possible, as SAVer and DeepPoly operates on different ML
models, we argue that percentages of provable robustness achieved by SAVer are com-
petitive with respect to other state-of-the-art tools. Moreover, we point out the fact that a
verification of a single image by DeepPoly can take as long as 10s [31], while the max-
imum verification time per image on SAVer is 0.5s. Among the benchmarks reported in
[31, Section 6], we selected the FFNNSmall and FFNNSigmoid deep neural networks,
denoted, resp., by DeepPoly Small and Sigmoid. FFNNSmall has been trained using
a standard technique and achieved the best accuracies in [31], while FFNNSigmoid
was trained using PGD-based adversarial training, a technique explicitly developed to
make a classifier more robust. It turns out that the percentages of robustness provable
by SAVer are higher than those provable by DeepPoly (precise percentages are not pro-
vided in [31], we extrapolated them from the charts). In particular, both 9-polynomial
and RBF SVMs can be proved more robust that FFNNSigmoid networks, despite the
fact that these classifiers are defended by a specific adversarial training.

7 Future Work

We believe that this work represents a first step in applying formal analysis and verifi-
cation techniques to machine learning based on support vector machines. We envisage
a number of challenging research topics as subject for future work. Generating adver-
sarial examples to machine learning methods is important for designing more robust
classifiers [11,40,44] and we think that the completeness of robustness verification of
linear binary classifiers (cf. Section 3) could be exploited for automatically detecting
adversarial examples in linear multiclass SVM classifiers. The main challenge here is
to design more precise, ideally complete, techniques for abstracting multi-classification
based on binary classification. Adversarial SVM training is a further stimulating re-
search challenge. Mirman et al. [23] put forward an abstraction-based technique for
adversarial training of robust neural networks. A similar approach could also work for
SVMs, namely applying abstract interpretation to SVM training models rather than to
SVM classifiers.

Acknowledgements. We are grateful to the anonymous referees for their helpful re-
marks. The doctoral fellowship of Marco Zanella is funded by Fondazione Bruno Kes-
sler (FBK), Trento, Italy. This work has been partially funded by the University of
Padova, under the SID2018 project “Analysis of STatic Analyses (ASTA)” and by the
Italian Ministry of Research MIUR, under the PRIN2017 project no. 201784YSZ5
“AnalysiS of PRogram Analyses (ASPRA)”.

21

References
1. G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization and abstraction: A syn-

ergistic approach for analyzing neural network robustness. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI2019),
pages 731–744. ACM, 2019.

2. B. Biggio, I. Corona, B. Nelson, B. I. P. Rubinstein, D. Maiorca, G. Fumera, G. Giacinto,
and F. Roli. Security evaluation of support vector machines in adversarial environments. In
Y. Ma and G. Guo, editors, Support Vector Machines Applications, pages 105–153. Springer,
2014.

3. B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise.
In Proceedings of the 3rd Asian Conference on Machine Learning (ACML2011), pages 97–
112, 2011.

4. N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks. In Proc.
of 2017 IEEE Symposium on Security and Privacy (SP2017), pages 39–57, 2017.

5. C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL1977),
pages 238–252. ACM, 1977.

7. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, 2000.

8. R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Proc.
15th Intern. Symp, on Automated Technology for Verification and Analysis (ATVA2017),
pages 269–286, 2017.

9. T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. T. Vechev. AI2:
safety and robustness certification of neural networks with abstract interpretation. In Proc.
2018 IEEE Symposium on Security and Privacy (SP2018), pages 3–18, 2018.

10. I. Goodfellow, P. McDaniel, and N. Papernot. Making machine learning robust against ad-
versarial inputs. Commun. ACM, 61(7):56–66, 2018.

11. I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
In Proc. International Conference on Learning Representations (ICLR2015), 2015.

12. D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett. DeepSafe: A data-driven approach for
assessing robustness of neural networks. In Proceedings of the 16th Int. Symp. on Automated
Technology for Verification and Analysis (ATVA2018), pages 3–19, 2018.

13. E. Goubault and S. Putot. A zonotopic framework for functional abstractions. Formal Meth-
ods in System Design, 47(3):302–360, 2015.

14. C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector machines.
IEEE Trans. Neur. Netw., 13(2):415–425, 2002.

15. X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural net-
works. In Proc. Intern. Conf. on Computer Aided Verification (CAV2017), pages 3–29.
Springer, 2017.

16. G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient
SMT solver for verifying deep neural networks. In Proc. Intern. Conf. on Computer Aided
Verification (CAV2017), pages 97–117. Springer, 2017.

17. A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In
Proceedings of the 5th International Conference on Learning Representations (ICLR2017),
2017.

18. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

22

19. F. Leofante and A. Tacchella. Learning in physical domains: Mating safety requirements
and costly sampling. In Proc. of the Conference of the Italian Association for Artificial
Intelligence, pages 539–552. Springer, 2016.

20. F. Messine. Extentions of affine arithmetic: Application to unconstrained global optimiza-
tion. J. Universal Computer Science, 8(11):992–1015, 2002.

21. A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In
Proc. European Symposium on Programming (ESOP2004), pages 3–17. Springer, 2004.

22. A. Miné. Tutorial on static inference of numeric invariants by abstract interpretation. Foun-
dations and Trends in Programming Languages, 4(3-4):120–372, 2017.

23. M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for provably
robust neural networks. In Proc. of the International Conference on Machine Learning
(ICML2018), pages 3575–3583, 2018.

24. G. P. Nam, B. J. Kang, and K. R. Park. Robustness of face recognition to variations of illu-
mination on mobile devices based on SVM. KSII Transactions on Internet and Information
Systems, 4(1):25–44, 2010.

25. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

26. L. Pulina and A. Tacchella. An abstraction-refinement approach to verification of artificial
neural networks. In Proc. of the Intern. Conf. on Computer Aided Verification (CAV2010),
pages 243–257. Springer, 2010.

27. L. Pulina and A. Tacchella. Challenging SMT solvers to verify neural networks. AI Com-
mun., 25(2):117–135, 2012.

28. F. Ranzato and M. Zanella. Robustness verification of support vector machines. http://arxiv.
org/abs/1904.11803, CoRR arXiv, April 2019.

29. F. Ranzato and M. Zanella. SAVer GitHub Repository. https://github.com/
svm-abstract-verifier, 2019.

30. G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev. Fast and effective robust-
ness certification. In Advances in Neural Information Processing Systems 31: Proc. Annual
Conference on Neural Information Processing Systems 2018, (NeurIPS2018), pages 10825–
10836, 2018.

31. G. Singh, T. Gehr, M. Püschel, and M. Vechev. An abstract domain for certifying neural
networks. Proc. ACM Program. Lang., 3(POPL2019):41:1–41:30, Jan. 2019.

32. I. Skalna and M. Hladı́k. A new algorithm for Chebyshev minimum-error multiplication of
reduced affine forms. Numerical Algorithms, 76(4):1131–1152, Dec 2017.

33. I. C. Society. IEEE standard for binary floating-point arithmetic. Institute of Electrical and
Electronics Engineers, New York, 1985. Note: Standard 754–1985.

34. J. Stolfi and L. H. de Figueiredo. Self-Validated Numerical Methods and Applications.
Brazilian Mathematics Colloquium Monograph, IMPA, Rio de Janeiro, Brazil, 1997.

35. J. Stolfi and L. H. de Figueiredo. Affine arithmetic: Concepts and applications. Numerical
Algorithms, 37(1):147–158, Dec 2004.

36. T. B. Trafalis and R. C. Gilbert. Robust support vector machines for classification and com-
putational issues. Optimisation Methods and Software, 22(1):187–198, 2007.

37. Y. Vorobeychik and M. Kantarcioglu. Adversarial machine learning. In Synthesis Lectures
on Artificial Intelligence and Machine Learning, volume 12(3), pages 1–169. Morgan &
Claypool Publishers, August 2018.

38. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal security analysis of neural net-
works using symbolic intervals. In Proceedings of the 27th USENIX Conference on Security
Symposium, (SEC2018), pages 1599–1614. USENIX Association, 2018.

23

http://arxiv.org/abs/1904.11803
http://arxiv.org/abs/1904.11803
https://github.com/svm-abstract-verifier
https://github.com/svm-abstract-verifier

39. T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. S. Boning, and I. S. Dhillon.
Towards fast computation of certified robustness for ReLU networks. In Proceedings of the
35th International Conference on Machine Learning, (ICML2018), pages 5273–5282, 2018.

40. H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli. Support vector machines
under adversarial label contamination. Neurocomputing, 160:53–62, 2015.

41. H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for benchmark-
ing machine learning algorithms. CoRR arXiv, abs/1708.07747, 2017.

42. H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector ma-
chines. Journal of Machine Learning Research, 10:1485–1510, 2009.

43. M. Zajac, K. Zolna, N. Rostamzadeh, and P. O. Pinheiro. Adversarial framing for image and
video classification. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI2019), 2019.

44. Z. Zhao, D. Dua, and S. Singh. Generating natural adversarial examples. In Proc. 6th
International Conference on Learning Representations (ICLR2018), 2018.

45. Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi. Adversarial support vector machine
learning. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD2012), pages 1059–1067. ACM, 2012.

24

