910 research outputs found

    Blind Equalization in Optical Communications Using Independent Component Analysis

    Get PDF
    We propose a multi-tap independent component analysis (ICA) scheme for blind equalization and phase recovery in coherent optical communication systems. The proposed algorithm is described and evaluated in the cases of QPSK and 16-QAM transmission. Comparison with CMA equalization shows similar performance in the case of QPSK and an advantage for the ICA equalizer in the case of 16-QAM. The equalization scheme was evaluated in a multi-span optical communications system impaired by both polarization mode dispersion (PMD) and polarization dependent loss (PDL)

    Quantization of Neural Network Equalizers in Optical Fiber Transmission Experiments

    Full text link
    The quantization of neural networks for the mitigation of the nonlinear and components' distortions in dual-polarization optical fiber transmission is studied. Two low-complexity neural network equalizers are applied in three 16-QAM 34.4 GBaud transmission experiments with different representative fibers. A number of post-training quantization and quantization-aware training algorithms are compared for casting the weights and activations of the neural network in few bits, combined with the uniform, additive power-of-two, and companding quantization. For quantization in the large bit-width regime of ≥5\geq 5 bits, the quantization-aware training with the straight-through estimation incurs a Q-factor penalty of less than 0.5 dB compared to the unquantized neural network. For quantization in the low bit-width regime, an algorithm dubbed companding successive alpha-blending quantization is suggested. This method compensates for the quantization error aggressively by successive grouping and retraining of the parameters, as well as an incremental transition from the floating-point representations to the quantized values within each group. The activations can be quantized at 8 bits and the weights on average at 1.75 bits, with a penalty of ≤0.5\leq 0.5~dB. If the activations are quantized at 6 bits, the weights can be quantized at 3.75 bits with minimal penalty. The computational complexity and required storage of the neural networks are drastically reduced, typically by over 90\%. The results indicate that low-complexity neural networks can mitigate nonlinearities in optical fiber transmission.Comment: 15 pages, 9 figures, 5 table

    Robust Blind Equalization for NB-IoT Driven by QAM Signals

    Get PDF
    The expansion of data coverage and the accuracy of decoding of the narrowband-internet of things (NB-IOT) mainly depend on the quality of channel equalizers. Without using training sequences, blind equalization is an effective method to overcome adverse effects in the internet of things (IoT). The constant modulus algorithm (CMA) has become a favorite blind equalization algorithm due to its least mean square (LMS)-like complexity and desirable robustness property. However, the transmission of high-order quadrature amplitude modulation (QAM) signals in the IoT can degrade its performance and the convergence speed. This paper investigates a family of modified constant modulus algorithms for blind equalization of IoT using high-order QAM. Our theoretical analysis for the first time illustrates that the classical CMA has the problem of artificial error using high-order QAM signals. In order to effectively deal with these issues, a modified constant modulus algorithm (MCMA) is proposed to decrease the modulus matched error, which can efficiently suppress the artificial error and misadjustment at the expense of reduced sample usage rate. Moreover, a generalized form of the MCMA (GMCMA) is developed to improve the sample usage rate and guarantee the desirable equalization performance. Two modified Newton methods (MNMs) for the proposed MCMA and GMCMA are constructed to obtain the optimal equalizer. Theoretical proofs are presented to show the fast convergence speed of the two MNMs. Numerical results show that our methods outperform other methods in terms of equalization performance and convergence speed

    Digitally-Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference

    Get PDF
    A software-defined radio (SDR) receiver with improved robustness to out-of-band interference (OBI) is presented. Two main challenges are identified for an OBI-robust SDR receiver: out-of-band nonlinearity and harmonic mixing. Voltage gain at RF is avoided, and instead realized at baseband in combination with low-pass filtering to mitigate blockers and improve out-of-band IIP3. Two alternative “iterative” harmonic-rejection (HR) techniques are presented to achieve high HR robust to mismatch: a) an analog two-stage polyphase HR concept, which enhances the HR to more than 60 dB; b) a digital adaptive interference cancelling (AIC) technique, which can suppress one dominating harmonic by at least 80 dB. An accurate multiphase clock generator is presented for a mismatch-robust HR. A proof-of-concept receiver is implemented in 65 nm CMOS. Measurements show 34 dB gain, 4 dB NF, and 3.5 dBm in-band IIP3 while the out-of-band IIP3 is + 16 dBm without fine tuning. The measured RF bandwidth is up to 6 GHz and the 8-phase LO works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz LO, the analog two-stage polyphase HR achieves a second to sixth order HR > dB over 40 chips, while the digital AIC technique achieves HR > 80 dB for the dominating harmonic. The total power consumption is 50 mA from a 1.2 V supply

    Chip-scale optical frequency comb sources for terabit communications

    Get PDF
    The number of devices connected to the internet and the required data transmission speeds are increasing exponentially. To keep up with this trend, data center interconnects should scale up to provide multi-Tbit/s connectivity. With typical distances from a few kilometers to 100 km, these links require the use of a high number of WDM channels. The associated transceivers should have low cost and footprint. The scalability of the number of channels, however, is still limited by the lack of adequate optical sources. In this book, we investigate novel chip-scale frequency comb generators as multi-wavelength light sources in WDM links. With a holistic model, we estimate the performance of comb-based WDM links, and we compare the transmission performance of different comb generator types, namely a quantum-dash mode-locked laser diode and a microresonator-based Kerr comb generator. We characterize their potential for massively-parallel WDM transmission with various transmission experiments. Combined with photonic integrated circuits, these comb sources offer a path towards highly scalable, compact, and energy-efficient Tbit/s transceivers

    Chip-scale optical frequency comb sources for terabit communications

    Get PDF
    To keep up with the ever-increasing data transmission speed needs, data center interconnects are scaling up to provide multi-Tbit/s connectivity. These links require a high number of WDM channels, while the associated transceivers should be compact and energy efficient. Scaling the number of channels, however, is still limited by the lack of adequate optical sources. In this book, we investigate novel chip-scale frequency comb generators as multi-wavelength light sources for Tbit/s WDM links

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed
    • …
    corecore