2,538 research outputs found

    The Backside of Habit: Notes on Embodied Agency and the Functional Opacity of the Medium

    Get PDF
    In this chapter what I call the “backside” of habit is explored. I am interested in the philosophical implications of the physical and physiological processes that mediate, and which allow for what comes to appear as almost magic; namely the various sensorimotor associations and integrations that allows us to replay our past experiences, and to in a certain sense perceive potential futures, and to act and bring about anticipated outcomes – without quite knowing how. Thus, the term “backside” is meant to refer both the actual mediation and the epistemic opacity of these backstage intermediaries that allow for the front stage magic. The question is if the epistemic complexities around sensorimotor mediation gives us valuable insights into the nature of human agency and further how it might begin to show us new ways to think of the mind as truly embodied yet not reducible to any finite body-as-object

    A Sensor-based Learning Public Health System

    Get PDF
    New smartphone technologies for the first time provide a platform for a new type of on-person, public health data collection and also a new type of informational public health intervention. In such interventions, it is the device via automatically collecting data relevant to the individual’s health that triggers the receipt of an informational public health intervention relevant to that individual. This will enable far more targeted and personalized public health interventions than previously possible. However, furthermore, sensor-based public health data collection, combined with such informational public health interventions provides the underlying platform for a novel and powerful new form of learning public health system. In this paper we provide an architecture for such a sensor-based learning public health system, in particular one which maintains the anonymity of its individual participants, we describe its algorithm for iterative public health intervention improvement, and examine and provide an evaluation of its anonymity maintaining characteristics

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Enabling Auditing and Intrusion Detection of Proprietary Controller Area Networks

    Get PDF
    The goal of this dissertation is to provide automated methods for security researchers to overcome ‘security through obscurity’ used by manufacturers of proprietary Industrial Control Systems (ICS). `White hat\u27 security analysts waste significant time reverse engineering these systems\u27 opaque network configurations instead of performing meaningful security auditing tasks. Automating the process of documenting proprietary protocol configurations is intended to improve independent security auditing of ICS networks. The major contributions of this dissertation are a novel approach for unsupervised lexical analysis of binary network data flows and analysis of the time series data extracted as a result. We demonstrate the utility of these methods using Controller Area Network (CAN) data sampled from passenger vehicles

    Volume 7, 2020

    Get PDF

    Science in Sanitary and Phytosanitary Dispute Resolution

    Get PDF
    The World Trade Organization Sanitary and Phytosanitary Agreement (SPS Agreement) relies heavily on science and expert organizations to avoid and resolve trade disputes over measures enacted under the rationale of food safety or plant and animal health protection. However, the state of science for sanitary and phytosanitary risk analysis is highly uncertain, and the SPS Agreement leaves many science policy issues unsettled. The international agencies charged under the SPS Agreement with harmonizing standards and forging international scientific consensus face a daunting and politically-charged task. Two case studies are briefly developed. In the first case, the international scientific consensus strongly supports the U.S. challenge of the European Union’s ban on cattle growth hormones, but the root causes of the dispute go much deeper. The case suggests that establishing a precedent for SPS measures based solely on "sound science" may be a slippery objective. In the second case, domestic avocado producers challenged a U.S. Department of Agriculture assessment which concluded that a partial lifting of the ban on Mexican avocado imports posed a negligible plant pest risk. Although the Department’s phytosanitary risk assessment gained endorsement by independent scientists, a contributing factor to resolving this dispute was the threat of retaliation against U.S. agricultural exports to Mexico. A recent survey of current and proposed technical barriers to U.S. agricultural exports suggests that the trade impacts could approach $5 billion a year and that the most common SPS disputes in the future will be over biological hazardsïżœparticularly plant pests and food-borne microbial pathogens. This poses a tremendous challenge, however, because the practice of risk assessment for biological stressors is much less developed than that for chemical substances. The paper concludes with some proposed criteria for evaluating the weight of scientific evidence in SPS risk assessment.

    Preliminaries of orthogonal layered defence using functional and assurance controls in industrial control systems

    Get PDF
    Industrial Control Systems (ICSs) are responsible for the automation of different processes and the overall control of systems that include highly sensitive potential targets such as nuclear facilities, energy-distribution, water-supply, and mass-transit systems. Given the increased complexity and rapid evolvement of their threat landscape, and the fact that these systems form part of the Critical National infrastructure (CNI), makes them an emerging domain of conflict, terrorist attacks, and a playground for cyberexploitation. Existing layered-defence approaches are increasingly criticised for their inability to adequately protect against resourceful and persistent adversaries. It is therefore essential that emerging techniques, such as orthogonality, be combined with existing security strategies to leverage defence advantages against adaptive and often asymmetrical attack vectors. The concept of orthogonality is relatively new and unexplored in an ICS environment and consists of having assurance control as well as functional control at each layer. Our work seeks to partially articulate a framework where multiple functional and assurance controls are introduced at each layer of ICS architectural design to further enhance security while maintaining critical real-time transfer of command and control traffic
    • 

    corecore