710 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Secure Identity Management Framework for Vehicular Ad-hoc Network using Blockchain

    Get PDF
    Vehicular Ad Hoc Network (VANET) is a mobile network formed by vehicles, roadside units, and other infrastructures that enable communication between the nodes to improve road safety and traffic control. While this technology promises great benefits to drivers, it has many security concerns that are critical to road safety. It is essential to ensure that only authenticated vehicles transmit data and revoked vehicles do not interfere in this communication. Many current VANET technologies also depend on a central trusted authority that can cost computation and communication overhead and be a single point of failure for the network. By using blockchain technology in VANET, we can take advantage of the decentralized and distributed framework and thereby avoid a single point of trust. Moreover, blockchain technology ensures the immutability of the data strengthening the integrity of the system. In the proposed framework, Hyperledger Fabric, a permissioned blockchain technology, is used for identity management in VANET. All the vehicles with their pseudo IDs are registered, validated, and revoked using the blockchain technology. The vehicles in the network check the validity of the safety messages received from the neighboring nodes, using the services provided by the road side units that have access to the blockchain. This framework works on looking-up the pseudo IDs and public keys on the blockchain for their validity, thus promising a light-weight authentication and reduced computation and communication overhead for vehicles to access the safety messages in the network

    On Board unit based authentication for V2V communication in VANET

    Get PDF
    The recent developments in wireless communication technologies along with the plummeting costs of hardware allow both V2V and V2I communications for information exchange. Such a network is called Vehicular ad Hoc Network (VANET) which is very important for various road safety and non-safety related applications. However, Due to the wireless nature of communication in VANETs, it is also prone to various security attacks which are originally present in wireless networks. Hence to realize the highest potential of VANET, the network should be free from attackers, there by all the information exchanged in the network must be reliable i.e. should be originated from authenticated source. However, authentication of vehicles using a PKI based architecture which is mostly based on V2I communication and solely depends on Road side Units, might fail in case of absence of proper infrastructure. Moreover PKI based solutions incur more communication overhead due to repeated connections with the Trusted Authority every time you want to authenticate a vehicle. Hence, this thesis work gives an OBU based authentication mechanism which allows the vehicle to authenticate each other for V2V communication when there is lack of proper infrastructure. Here each vehicle is capable of generating a pair of self-certified public/private key pair which can be verified by any other vehicle using a predefined secret key given by Trusted Authority. The grouping concept used in order to lower the communication overheads. The Vehicle in close proximity of each other form a group. A vehicle can obtain the group key by authenticating itself to the group leader. Our proposed scheme also preserves the privacy of the vehicle but can reveal the identity in liability issues. The security analysis of the proposed scheme shows that it can indeed operate with limited support of infrastructure and can become a fully self-organized system

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Big data traffic management in vehicular ad-hoc network

    Get PDF
    Today, the world has experienced a new trend with regard to data system management, traditional database management tools have become outdated and they will no longer be able to process the mass of data generated by different systems, that's why big data is there to process this mass of data to bring out crucial information hidden in this data, and without big data technologies the treatment is very difficult to manage; among the domains that uses big data technologies is vehicular ad-hoc network to manage their voluminous data. In this article, we establish in the first step a method that allow to detect anomalies or accidents within the road and compute the time spent in each road section in real time, which permit us to obtain a database having the estimated time spent in all sections in real time, this will serve us to send to the vehicles the right estimated time of arrival all along their journey and the optimal route to attain their destination. This database is useful to utilize it like inputs for machine learning to predict the places and times where the probability of accidents is higher. The experimental results prove that our method permits us to avoid congestions and apportion the load of vehicles in all roads effectively, also it contributes to road safety

    Overview of security issues in Vehicular ad-hoc networks

    Get PDF
    Vehicular ad-hoc networks (VANETs) are a promising communication scenario. Several new applications are envisioned, which will improve traffic management and safety. Nevertheless, those applications have stringent security requirements, as they affect road traffic safety. Moreover, VANETs face several security threats. As VANETs present some unique features (e.g. high mobility of nodes, geographic extension, etc.) traditional security mechanisms are not always suitable. Because of that, a plethora of research contributions have been presented so far. This chapter aims to describe and analyze the most representative VANET security developments

    Congestion control in vehicular adhoc network: A survey

    Get PDF
    Vehicular adhoc network (VANET) has a significant potential in reducing traffic congestion to provide a stress-free and safer platform for road drivers to travel on the road. However, the current VANET is vulnerable to several challenges which need to be overcome. Congestion control is considered as one of the main challenges in VANET due to the high dynamic topology characteristic. Reliable congestion control (CC) are necessary to provide effectient dissemination of time-critical safety messages in VANET applications; safety and non-safety applications. In this paper, we present the overview on VANET, its application and challenges. We also discuss on the congestion control and provide a brief survey on the congestion control algorithms such as vehicular cloud computing, multiplicative rate decreasing algorithm, multi-objective Tabu search, D-FPAV algorithm and beaconing strategies which have been proposed in order to provide better solutions towards achieving a successful Smart Tranporation System
    corecore