211 research outputs found

    A Business Intelligence Solution, based on a Big Data Architecture, for processing and analyzing the World Bank data

    Get PDF
    The rapid growth in data volume and complexity has needed the adoption of advanced technologies to extract valuable insights for decision-making. This project aims to address this need by developing a comprehensive framework that combines Big Data processing, analytics, and visualization techniques to enable effective analysis of World Bank data. The problem addressed in this study is the need for a scalable and efficient Business Intelligence solution that can handle the vast amounts of data generated by the World Bank. Therefore, a Big Data architecture is implemented on a real use case for the International Bank of Reconstruction and Development. The findings of this project demonstrate the effectiveness of the proposed solution. Through the integration of Apache Spark and Apache Hive, data is processed using Extract, Transform and Load techniques, allowing for efficient data preparation. The use of Apache Kylin enables the construction of a multidimensional model, facilitating fast and interactive queries on the data. Moreover, data visualization techniques are employed to create intuitive and informative visual representations of the analysed data. The key conclusions drawn from this project highlight the advantages of a Big Data-driven Business Intelligence solution in processing and analysing World Bank data. The implemented framework showcases improved scalability, performance, and flexibility compared to traditional approaches. In conclusion, this bachelor thesis presents a Business Intelligence solution based on a Big Data architecture for processing and analysing the World Bank data. The project findings emphasize the importance of scalable and efficient data processing techniques, multidimensional modelling, and data visualization for deriving valuable insights. The application of these techniques contributes to the field by demonstrating the potential of Big Data Business Intelligence solutions in addressing the challenges associated with large-scale data analysis

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Seaport Data Space for Improving Logistic Maritime Operations

    Full text link
    [EN] The maritime industry expects several improvements to efficiently manage the operation processes by introducing Industry 4.0 enabling technologies. Seaports are the most critical point in the maritime logistics chain because of its multimodal and complex nature. Consequently, coordinated communication among any seaport stakeholders is vital to improving their operations. Currently, Electronic Data Interchange (EDI) and Port Community Systems (PCS), as primary enablers of digital seaports, have demonstrated their limitations to interchange information on time, accurately, efficiently, and securely, causing high operation costs, low resource management, and low performance. For these reasons, this contribution presents the Seaport Data Space (SDS) based on the Industrial Data Space (IDS) reference architecture model to enable a secure data sharing space and promote an intelligent transport multimodal terminal. Each seaport stakeholders implements the IDS connector to take part in the SDS and share their data. On top of SDS, a Big Data architecture is integrated to manage the massive data shared in the SDS and extract useful information to improve the decision-making. The architecture has been evaluated by enabling a port authority and a container terminal to share its data with a shipping company. As a result, several Key Performance Indicators (KPIs) have been developed by using the Big Data architecture functionalities. The KPIs have been shown in a dashboard to allow easy interpretability of results for planning vessel operations. The SDS environment may improve the communication between stakeholders by reducing the transaction costs, enhancing the quality of information, and exhibiting effectivenessThis work was supported in part by the European Union's Horizon 2020 Research and Innovation Programme through the PIXEL Port Project under Grant 769355, and in part by the Secretaria Nacional de Educacion Superior, Ciencia, Tecnologia e Innovacion (SENESCYT), EcuadorSarabia-Jácome, D.; Palau Salvador, CE.; Esteve Domingo, M.; Boronat, F. (2019). Seaport Data Space for Improving Logistic Maritime Operations. IEEE Access. 8:4372-4382. https://doi.org/10.1109/ACCESS.2019.2963283S43724382

    Bench-Ranking: ettekirjutav analüüsimeetod suurte teadmiste graafide päringutele

    Get PDF
    Relatsiooniliste suurandmete (BD) töötlemisraamistike kasutamine suurte teadmiste graafide töötlemiseks kätkeb endas võimalust päringu jõudlust optimeerimida. Kaasaegsed BD-süsteemid on samas keerulised andmesüsteemid, mille konfiguratsioonid omavad olulist mõju jõudlusele. Erinevate raamistike ja konfiguratsioonide võrdlusuuringud pakuvad kogukonnale parimaid tavasid parema jõudluse saavutamiseks. Enamik neist võrdlusuuringutest saab liigitada siiski vaid kirjeldavaks ja diagnostiliseks analüütikaks. Lisaks puudub ühtne standard nende uuringute võrdlemiseks kvantitatiivselt järjestatud kujul. Veelgi enam, suurte graafide töötlemiseks vajalike konveierite kavandamine eeldab täiendavaid disainiotsuseid mis tulenevad mitteloomulikust (relatsioonilisest) graafi töötlemise paradigmast. Taolisi disainiotsuseid ei saa automaatselt langetada, nt relatsiooniskeemi, partitsioonitehnika ja salvestusvormingute valikut. Käesolevas töös käsitleme kuidas me antud uurimuslünga täidame. Esmalt näitame disainiotsuste kompromisside mõju BD-süsteemide jõudluse korratavusele suurte teadmiste graafide päringute tegemisel. Lisaks näitame BD-raamistike jõudluse kirjeldavate ja diagnostiliste analüüside piiranguid suurte graafide päringute tegemisel. Seejärel uurime, kuidas lubada ettekirjutavat analüütikat järjestamisfunktsioonide ja mitmemõõtmeliste optimeerimistehnikate (nn "Bench-Ranking") kaudu. See lähenemine peidab kirjeldava tulemusanalüüsi keerukuse, suunates praktiku otse teostatavate teadlike otsusteni.Leveraging relational Big Data (BD) processing frameworks to process large knowledge graphs yields a great interest in optimizing query performance. Modern BD systems are yet complicated data systems, where the configurations notably affect the performance. Benchmarking different frameworks and configurations provides the community with best practices for better performance. However, most of these benchmarking efforts are classified as descriptive and diagnostic analytics. Moreover, there is no standard for comparing these benchmarks based on quantitative ranking techniques. Moreover, designing mature pipelines for processing big graphs entails considering additional design decisions that emerge with the non-native (relational) graph processing paradigm. Those design decisions cannot be decided automatically, e.g., the choice of the relational schema, partitioning technique, and storage formats. Thus, in this thesis, we discuss how our work fills this timely research gap. Particularly, we first show the impact of those design decisions’ trade-offs on the BD systems’ performance replicability when querying large knowledge graphs. Moreover, we showed the limitations of the descriptive and diagnostic analyses of BD frameworks’ performance for querying large graphs. Thus, we investigate how to enable prescriptive analytics via ranking functions and Multi-Dimensional optimization techniques (called ”Bench-Ranking”). This approach abstracts out from the complexity of descriptive performance analysis, guiding the practitioner directly to actionable informed decisions.https://www.ester.ee/record=b553332
    corecore