10,499 research outputs found

    Diesel engine fuel injection monitoring using acoustic measurements and independent component analysis

    Get PDF
    Air-borne acoustic based condition monitoring is a promising technique because of its intrusive nature and the rich information contained within the acoustic signals including all sources. However, the back ground noise contamination, interferences and the number of Internal Combustion Engine ICE vibro-acoustic sources preclude the extraction of condition information using this technique. Therefore, lower energy events; such as fuel injection, are buried within higher energy events and/or corrupted by background noise. This work firstly investigates diesel engine air-borne acoustic signals characteristics and the benefits of joint time-frequency domain analysis. Secondly, the air-borne acoustic signals in the vicinity of injector head were recorded using three microphones around the fuel injector (120° apart from each other) and an Independent Component Analysis (ICA) based scheme was developed to decompose these acoustic signals. The fuel injection process characteristics were thus revealed in the time-frequency domain using Wigner-Ville distribution (WVD) technique. Consequently the energy levels around the injection process period between 11 and 5 degrees before the top dead center and of frequency band 9 to 15 kHz are calculated. The developed technique was validated by simulated signals and empirical measurements at different injection pressure levels from 250 to 210 bars in steps of 10 bars. The recovered energy levels in the tested conditions were found to be affected by the injector pressure settings

    Beam instrumentation for the Tevatron Collider

    Full text link
    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders

    A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

    Get PDF
    ABSTRACT:Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: insta- bility and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to vali- date the proposed method, numerical analyses have been carried out for a virtual response model and a 30m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique

    Support vector machine based classification in condition monitoring of induction motors

    Get PDF
    Continuous and trouble-free operation of induction motors is an essential part of modern power and production plants. Faults and failures of electrical machinery may cause remarkable economical losses but also highly dangerous situations. In addition to analytical and knowledge-based models, application of data-based models has established a firm position in the induction motor fault diagnostics during the last decade. For example, pattern recognition with Neural Networks (NN) is widely studied. Support Vector Machine (SVM) is a novel machine learning method introduced in early 90's. It is based on the statistical learning theory presented by V.N. Vapnik, and it has been successfully applied to numerous classification and pattern recognition problems such as text categorization, image recognition and bioinformatics. SVM based classifier is built to minimize the structural misclassification risk, whereas conventional classification techniques often apply minimization of the empirical risk. Therefore, SVM is claimed to lead enhanced generalisation properties. Further, application of SVM results in the global solution for a classification problem. Thirdly, SVM based classification is attractive, because its efficiency does not directly depend on the dimension of classified entities. This property is very useful in fault diagnostics, because the number of fault classification features does not have to be drastically limited. However, SVM has not yet been widely studied in the area of fault diagnostics. Specifically, in the condition monitoring of induction motor, it does not seem to have been considered before this research. In this thesis, a SVM based classification scheme is designed for different tasks in induction motor fault diagnostics and for partial discharge analysis of insulation condition monitoring. Several variables are compared as fault indicators, and forces on rotor are found to be important in fault detection instead of motor current that is currently widely studied. The measurement of forces is difficult, but easily measurable vibrations are directly related to the forces. Hence, vibration monitoring is considered in more detail as the medium for the motor fault diagnostics. SVM classifiers are essentially 2-class classifiers. In addition to the induction motor fault diagnostics, the results of this thesis cover various methods for coupling SVMs for carrying out a multi-class classification problem.reviewe

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    An effective diagnosis method for single and multiple defects detection in gearbox based on nonlinear feature selection and kernel-based extreme learning machine

    Get PDF
    Gear transmissions have been widely used in most of today’s manufacturing and production industries; however, they often suffer from deteriorations and damages on gear pairs. Severe damages of the machinery caused by the failures of gears account for 48 %, leading to significant economic losses. Therefore it is crucial to implement fault diagnosis procedure for gearboxes. The gear meshing motion is a kind of typical strong nonlinear movement, and the related vibration signals are the nonlinear mixtures of different kinds of vibration source, leading to great difficulty in the fault feature extraction and fault detection. In order to improve the fault detection of gearboxes, a new method based on the nonlinear fault feature selection and intelligent fault identification is proposed in this work. The blind source separation (BSS) procedure was firstly employed to eliminate the influence of noise signal sources. The useful information related to the fault vibration was hence separated by the independent component analysis (ICA). Then the spectral regression (SR) was used as a nonlinear feature selection technique for the separated vibration sources. Hence, distinct fault features can be obtained. Lastly, the kernel-based extreme learning machine (KELM) was applied for the pattern recognition of single and multiply faults of the gearbox. The fault vibration data acquired from a gearbox fault experimental tester was used to valuate the proposed diagnostic method. The experiment results show that useful fault vibration signals can be separated by the new method, and the fault detection rate of the proposed method is superior to the existing approaches with an increase of 4.4 % or better. Hence, this new development will produce considerable savings by reducing unplanned outages of machinery so a company can get the full benefit from condition monitoring

    A Case Study of Natural Frequency of the Tram Rail Due to Vibration Using Wavelets

    Get PDF
    Many vibration signals of tram rails due to tram movement are non-stationary and have highly complex time-frequency characteristics. The vibration signal of a rotating wheel involves condition monitoring and fault diagnosis. Many signal analysis methods are able to extract useful information from vibration data. In this paper, we were able to correlate non-linear independent signal acquired using acceleromets at different spots across the city and extract tram rail vibration noise and model the effect of signal noise to identify the frequency characteristics of the rail by characterizing the spectral content of the noise signal using parametric distribution and then by applying non parametric filters to characterize the signal power spectral density using Wavelet Transform (WT) and Parseval’s theorem. The fault can be detected from a given level of resolution. For this purpose, Parseval’s theorem is used as an evaluation criterion to select the optimal level. Associated to envelope analysis, it allows clear visualization of fault frequencies. on the inner rail of the railway line. The time-frequency contour map can easily show the power distribution of signal in time and frequency domain. Moreover, it is a good way to identify the rail track faults involving a breakdown change. The simulative results show that time-frequency contour map have the capabilities to identify the difference of those faults of vibration monitoring. In conclusion, the faults along the rail track can be classified by time-frequency contour map for frequency decomposition. We hereby decompose the high frequency detail of the signal without decomposition after wavelet transform, so as to improve the frequency resolution

    Damage Detection Using Blind Source Separation Techniques

    Full text link
    Blind source separation (BSS) techniques are applied in many domains since they allow separating a set of signals from their observed mixture without the knowledge (or with very little knowledge) of the source signals or the mixing process. Two particular BSS techniques called Second-Order Blind Identification (SOBI) and Blind Modal Identification (BMID) are considered in this paper for the purpose of structural damage detection or fault diagnosis in mechanical systems. As shown on experimental examples, the BMID method reveals significant advantages. In addition, it is demonstrated that damage detection results may be improved significantly with the help of the block Hankel matrix. The main advantage in this case is that damage detection still remains possible when the number of available sensors is small or even reduced to one. Damage detection is achieved by comparing the subspaces between the reference (healthy) state and a current state through the concept of subspace angle. The efficiency of the methods is illustrated using experimental data
    corecore