5 research outputs found

    Detecting Phishing Websites Using Associative Classification

    Get PDF
    Phishing is a criminal technique employing both social engineering and technical subterfuge to steal consumer's personal identity data and financial account credential. The aim of the phishing website is to steal the victims’ personal information by visiting and surfing a fake webpage that looks like a true one of a legitimate bank or company and asks the victim to enter personal information such as their username, account number, password, credit card number, …,etc. This paper main goal is to investigate the potential use of automated data mining techniques in detecting the complex problem of phishing Websites in order to help all users from being deceived or hacked by stealing their personal information and passwords leading to catastrophic consequences. Experimentations against phishing data sets and using different common associative classification algorithms (MCAR and CBA) and traditional learning approaches have been conducted with reference to classification accuracy. The results show that the MCAR and CBA algorithms outperformed SVM and algorithms. Keywords: Phishing Websites, Data Mining, Associative Classification, Machine Learning

    Detecting Phishing Websites Using Associative Classification

    Get PDF
    Phishing is a criminal technique employing both social engineering and technical subterfuge to steal consumer's personal identity data and financial account credential. The aim of the phishing website is to steal the victims’ personal information by visiting and surfing a fake webpage that looks like a true one of a legitimate bank or company and asks the victim to enter personal information such as their username, account number, password, credit card number, …,etc. This paper main goal is to investigate the potential use of automated data mining techniques in detecting the complex problem of phishing Websites in order to help all users from being deceived or hacked by stealing their personal information and passwords leading to catastrophic consequences. Experimentations against phishing data sets and using different common associative classification algorithms (MCAR and CBA) and traditional learning approaches have been conducted with reference to classification accuracy. The results show that the MCAR and CBA algorithms outperformed SVM and algorithms. Keywords: Phishing Websites, Data Mining, Associative Classification, Machine Learnin

    Tutorial and Critical Analysis of Phishing Websites Methods

    Get PDF
    The Internet has become an essential component of our everyday social and financial activities. Internet is not important for individual users only but also for organizations, because organizations that offer online trading can achieve a competitive edge by serving worldwide clients. Internet facilitates reaching customers all over the globe without any market place restrictions and with effective use of e-commerce. As a result, the number of customers who rely on the Internet to perform procurements is increasing dramatically. Hundreds of millions of dollars are transferred through the Internet every day. This amount of money was tempting the fraudsters to carry out their fraudulent operations. Hence, Internet users may be vulnerable to different types of web threats, which may cause financial damages, identity theft, loss of private information, brand reputation damage and loss of customers’ confidence in e-commerce and online banking. Therefore, suitability of the Internet for commercial transactions becomes doubtful. Phishing is considered a form of web threats that is defined as the art of impersonating a website of an honest enterprise aiming to obtain user’s confidential credentials such as usernames, passwords and social security numbers. In this article, the phishing phenomena will be discussed in detail. In addition, we present a survey of the state of the art research on such attack. Moreover, we aim to recognize the up-to-date developments in phishing and its precautionary measures and provide a comprehensive study and evaluation of these researches to realize the gap that is still predominating in this area. This research will mostly focus on the web based phishing detection methods rather than email based detection methods

    An Ensemble Self-Structuring Neural Network Approach to Solving Classification Problems with Virtual Concept Drift and its Application to Phishing Websites

    Get PDF
    Classification in data mining is one of the well-known tasks that aim to construct a classification model from a labelled input data set. Most classification models are devoted to a static environment where the complete training data set is presented to the classification algorithm. This data set is assumed to cover all information needed to learn the pertinent concepts (rules and patterns) related to how to classify unseen examples to predefined classes. However, in dynamic (non-stationary) domains, the set of features (input data attributes) may change over time. For instance, some features that are considered significant at time Ti might become useless or irrelevant at time Ti+j. This situation results in a phenomena called Virtual Concept Drift. Yet, the set of features that are dropped at time Ti+j might return to become significant again in the future. Such a situation results in the so-called Cyclical Concept Drift, which is a direct result of the frequently called catastrophic forgetting dilemma. Catastrophic forgetting happens when the learning of new knowledge completely removes the previously learned knowledge. Phishing is a dynamic classification problem where a virtual concept drift might occur. Yet, the virtual concept drift that occurs in phishing might be guided by some malevolent intelligent agent rather than occurring naturally. One reason why phishers keep changing the features combination when creating phishing websites might be that they have the ability to interpret the anti-phishing tool and thus they pick a new set of features that can circumvent it. However, besides the generalisation capability, fault tolerance, and strong ability to learn, a Neural Network (NN) classification model is considered as a black box. Hence, if someone has the skills to hack into the NN based classification model, he might face difficulties to interpret and understand how the NN processes the input data in order to produce the final decision (assign class value). In this thesis, we investigate the problem of virtual concept drift by proposing a framework that can keep pace with the continuous changes in the input features. The proposed framework has been applied to phishing websites classification problem and it shows competitive results with respect to various evaluation measures (Harmonic Mean (F1-score), precision, accuracy, etc.) when compared to several other data mining techniques. The framework creates an ensemble of classifiers (group of classifiers) and it offers a balance between stability (maintaining previously learned knowledge) and plasticity (learning knowledge from the newly offered training data set). Hence, the framework can also handle the cyclical concept drift. The classifiers that constitute the ensemble are created using an improved Self-Structuring Neural Networks algorithm (SSNN). Traditionally, NN modelling techniques rely on trial and error, which is a tedious and time-consuming process. The SSNN simplifies structuring NN classifiers with minimum intervention from the user. The framework evaluates the ensemble whenever a new data set chunk is collected. If the overall accuracy of the combined results from the ensemble drops significantly, a new classifier is created using the SSNN and added to the ensemble. Overall, the experimental results show that the proposed framework affords a balance between stability and plasticity and can effectively handle the virtual concept drift when applied to phishing websites classification problem. Most of the chapters of this thesis have been subject to publicatio
    corecore