25,646 research outputs found

    Development of the Integrated Model of the Automotive Product Quality Assessment

    Get PDF
    Issues on building an integrated model of the automotive product quality assessment are studied herein basing on widely applicable methods and models of the quality assessment. A conceptual model of the automotive product quality system meeting customer requirements has been developed. Typical characteristics of modern industrial production are an increase in the production dynamism that determines the product properties; a continuous increase in the volume of information required for decision-making, an increased role of knowledge and high technologies implementing absolutely new scientific and technical ideas. To solve the problem of increasing the automotive product quality, a conceptual structural and hierarchical model is offered to ensure its quality as a closed system with feedback between the regulatory, manufacturing, and information modules, responsible for formation of the product quality at all stages of its life cycle. The three module model of the system of the industrial product quality assurance is considered to be universal and to give the opportunity to explore processes of any complexity while solving theoretical and practical problems of the quality assessment and prediction for products for various purposes, including automotive

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    Performance analysis and optimization of automotive GPUs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) have drastically increased the performance demands of automotive systems. Suitable highperformance platforms building upon Graphic Processing Units (GPUs) have been developed to respond to this demand, being NVIDIA Jetson TX2 a relevant representative. However, whether high-performance GPU configurations are appropriate for automotive setups remains as an open question. This paper aims at providing light on this question by modelling an automotive GPU (Jetson TX2), analyzing its microarchitectural parameters against relevant benchmarks, and identifying specific configurations able to meaningfully increase performance within similar cost envelopes, or to decrease costs preserving original performance levels. Overall, our analysis opens the door to the optimization of automotive GPUs for further system efficiency.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773) and the HiPEAC Network of Excellence. Pedro Benedicte and Jaume Abella have been partially supported by the MINECO under FPU15/01394 grant and Ramon y Cajal postdoctoral fellowship number RYC-2013-14717 respectively and Leonidas Kosmidis under Juan de la Cierva-Formacin postdoctoral fellowship (FJCI-2017-34095).Peer ReviewedPostprint (author's final draft
    corecore