
Performance Analysis and Optimization
of Automotive GPUs

Fabio Mazzocchetti∗†, Pedro Benedicte∗†, Hamid Tabani∗,
Leonidas Kosmidis∗, Jaume Abella∗ and Francisco J. Cazorla∗

∗ Barcelona Supercomputing Center † Universitat Politècnica de Catalunya

Abstract—Advanced Driver Assistance Systems (ADAS) and
Autonomous Driving (AD) have drastically increased the per-
formance demands of automotive systems. Suitable high-
performance platforms building upon Graphic Processing Units
(GPUs) have been developed to respond to this demand, being
NVIDIA Jetson TX2 a relevant representative. However, whether
high-performance GPU configurations are appropriate for auto-
motive setups remains as an open question.

This paper aims at providing light on this question by
modelling an automotive GPU (Jetson TX2), analyzing its mi-
croarchitectural parameters against relevant benchmarks, and
identifying specific configurations able to meaningfully increase
performance within similar cost envelopes, or to decrease costs
preserving original performance levels. Overall, our analysis
opens the door to the optimization of automotive GPUs for
further system efficiency.

I. INTRODUCTION

Critical real-time embedded systems (CRTES), such as
those managing safety-related functionalities in avionics,
space, automotive and railway, have built during decades on
simple and low-performance microcontrollers. The increasing
software complexity, inherent to the increase in the number
and sophistication of delivered functionalities in those sys-
tems, has lead towards a slow adoption of multicore mi-
crocontrollers. For instance, the Infineon AURIX processor
family [21] in the automotive domain, or Gaisler’s LEON4
family [13] in the space domain deliver few cores (i.e. in
the range 3 to 6) with the aim of providing a moderate
performance scale up.

Such designs have already found difficulties to match the
increasing complexity of software in those systems, which
has increased at a rate of 10x every 10 years and, for the
automotive domain reached up to 100 million lines of code
for some cars in 2009 [11]. Moreover, as pointed out by
ARM prospects, the advent of driver assistance systems and
autonomous driving in the automotive domain will lead to a
performance demand increase of 100x in the timeframe 2016-
2024 [6], thus further exacerbating the performance needs for
CRTES.

The answer to this performance demand has been the de-
ployment of accelerators along with the microcontrollers, be-
ing Graphic Processing Units (GPUs) the main representative
of those [17], [28], [24] despite the existing challenges using
GPUs in this domain [29], [5]. In particular, several products
such as Renesas R-Car H3 [1], NVIDIA Jetson TX2 [18]
and NVIDIA Jetson Xavier [26] have already reached the

market building upon GPU technology inherited from the
high-performance domain. Automotive GPUs have inherited
designs devised for the high-performance domain with the
aim of reducing costs in the design, verification and validation
process for chip manufacturers.

Unfortunately, reusability of high-performance hardware
does not consider GPUs efficiency in the automotive domain
and, to the best of our knowledge, the design space for GPUs,
where resources are sized with the aim of optimizing specific
goals such as performance, has not been yet thoroughly
performed for the automotive domain.

This paper covers this gap by providing a GPU design
exploration for the automotive domain by analyzing the in-
fluence that different microarchitectural hardware parameters,
such as cache sizes, number of streaming multiprocessors
(SMs), and the like have on performance for an automotive
SoC representative, the NVIDIA Jetson TX2 platform [18]. In
particular, the main contributions of this work are as follows:

1) An adaptation of a cycle-level CPU-GPU simulator,
gem5-gpu [23], to match Jetson TX2 configuration as
much as possible. This is the basis of our exploratory
study.

2) A systematic performance analysis for the main hard-
ware parameters, assessing to what extent they influence
performance for a relevant set of benchmarks. We first
analyze the effect of each parameter individually, and
then the effect of two more parameters coordinately.

3) Finally, we propose two configurations which deliver: a)
similar performance to the baseline design at a decreased
hardware costs, and b) higher performance than the
baseline design with comparable hardware costs.

Overall, our analysis shows that opportunities for optimization
exist and can be exploited in two different axes depending on
the needs of end-users.

The rest of the paper is organized as follows. Section II
provides some background on automotive systems needing
GPUs and on GPU architecture. Section III presents our
methodology to model the NVIDIA Jetson TX2 GPU and
the benchmarks we use to evaluate our proposals. Section IV
provides the design space exploration for the Jetson TX2 GPU.
Section V identifies and evaluates our two improved setups.
Section VI reviews some related work, and Finally, Section VII
summarizes the main conclusions of this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/286456262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: Schematic of the architecture of a GPU.

II. BACKGROUND

This section describes some background on the need for
GPUs in automotive systems, as well as the basic organization
of a GPU.

A. GPU-based Automotive Systems

The advent of Advanced Driver Assistance Systems and
Autonomous Driving (AD) imposes a higher level of system
autonomy to take decisions on behalf of the driver, or even
to fully replace the driver, as expected for the systems with
Autonomy Level 5 – the highest autonomy level according to
SAE International [25]. To make these systems real, a number
of processes related to Perception and Prediction modules of
autonomous driving systems need to be automated to process
large amounts of data from sensors (camera, LiDAR, radar)
in real-time to deliver system responses timely [4], [3], [2].
Therefore, object detection, trajectory prediction, and collision
avoidance algorithms, among others, need extremely high per-
formance to take driving decisions in very short timeframes.

B. GPU Architecture

While different GPUs from different vendors may have
significant differences, and differences may also be relevant
across different GPU generations for the same vendor, some
elements are mostly common to all GPUs. Next, we describe
those, as they are the basis of the study provided later on.

Figure 1 depicts the main elements of the architecture of
the GPU. First, it has a global scheduler that dispatches work
to the different Streaming Multiprocessors (SMs) of the GPU.
Each SM, to some extent, is a cluster of computing resources
orchestrated coordinately, whereas different SMs may lack

any coordination and work highly independently. Each SM
has a set of storage resources that include a first level (L1)
instruction cache and an L1 data cache, as well as some shared
memory to manage shared data. Each SM also includes a warp
scheduler, where warp refers, in NVIDIA nomenclature, to
the set of identical computations that are dispatched to the
parallel computing elements atomically. Thus, it is the smallest
scheduling unit.

Computing elements include CUDA1 cores (indicated with
black squares in the figure), able to process a warp entirely,
as long as the particular operation requested is part of the
CUDA cores, which typically include most integer and single-
precision floating-point arithmetic operations. Along with the
CUDA cores, some other units (indicated with different gray
squares) perform other types of operations, typically with
lower bandwidth than CUDA cores, such as load/store oper-
ations of data, and some area-costly operations that whose
hardware cannot be replicated as many times as CUDA
cores (e.g., double precision or highly-complex floating point
operations).

SMs also share one or more levels of cache (e.g. L2), thus
competing for cache space across SMs, as well as the memory
interface. Note, however, that different GPU architectures may
be different. For instance, it is not uncommon having clusters
of SMs, so that each cluster shares a cluster-local shared cache,
and then all clusters share a global L2 cache. Still, the concept
of highly parallel computing resources and hierarchical storage
organization holds in the general case for GPUs.

III. METHODOLOGY

A. Simulation Infrastructure

In this paper, we have used an in-house version of the
gem5-gpu simulator [23]. Gem5-gpu is a cycle-accurate and
heterogeneous CPU-GPU simulator incorporating gem5 [8]
and gpgpu-sim [7] simulators. These are the most accurate
and widely-used cycle-level simulators in the computer archi-
tecture community. In our version of gem5-gpu, we applied
major modifications to include latest versions of gem5 and
gpgpu-sim. This was a fundamental requirement before being
able to model latest GPU architectures such as Pascal since in
the baseline simulator only Fermi was supported.

B. Modelling NVIDIA Tegra X2

We have modeled an SoC, similar to NVIDIA TX2, in our
simulator. We have done a comprehensive study to extract the
available and public architectural parameters of TX2 in order
to tune the simulator to closely model the chosen platform. We
have extracted as much information as we could from public
sources about our NVIDIA GPU and we included them in
the configuration of the gpgpu-sim. However, we still do not
have access to part of the detailed parameters since they are
not provided by the manufacturer. Alternatively, we have tried
to estimate the missing parameters according to the available
information and also by fine-tuning those parameters with the

1CUDA is the programming paradigm for NVIDIA GPUs.

Configuration
GPU NVIDIA Pascal: 256 CUDA cores

2 SMs with 4 SMBs each.
32 CUDA cores per SMB

CPU 2-core Denver2 (128KB 4-way IL1, 64KB, 4way dL1)
4-core ARM A57 (48KB 3-way IL1, 32KB 2-way dL1)
2MB 16-way L2 per cluster

DRAM 8 GB, 256-bit LPDDR4x, 59.7 GB/s

TABLE I: System Configurations of NVIDIA TX2 SoC.

help of synthetic experiments. Table II shows the detailed
parameters that we have employed in our simulator.

To out knowledge, the latest gpgpu-sim version (released in
late 2018) is the most accurate and open-source simulator to
model a Pascal architecture, which is the architecture used in
the TX2 GPU. In addition, we have designed several synthetic
benchmarks to validate our configuration against the real GPU.

NVIDIA TX2 is based on the 16nm NVIDIA Tegra Parker
system on chip (SoC). The TX2 has a Pascal GPU with 2
SMs, each of them with 4 SM Blocks (SMBs). Each SMB
comprises of 32 cores and in total the GPU has 256 cores.
The TX2 SoC also comprises of two different clusters of dual-
and quad-core CPUs, whose L2 cache is shared inside each
cluster. The first CPU cluster, Denver2, has 2 cores each with
its own private first level instruction and data caches (referred
to as iL1 and dL1 respectively). The other CPU cluster has 4
ARM Cortex-A57 cores also with private iL1 and dL1 caches.
Table I presents the architectural parameters of both CPUs
and the GPU in NVIDIA TX2. In this work, we focus on the
development board of the TX2 processor (Jetson), which has
one SoC. It is worth pointing out that commercial versions of
the TX2 can have up to 2 SoCs like the one described and
even one discrete GPU.

C. Benchmarks

In this paper, we use Rodinia [12] benchmark suite for our
experiments. Rodinia benchmark suite is targeting heteroge-
neous computing and in order to study emerging platforms
such as GPUs, Rodinia suite includes applications and kernels
that target multi-core CPU and GPU platforms.

The EEMBC (Embedded Microprocessor Benchmarks Con-
sortium) recently released ADASMark [14], an ADAS Bench-
mark suite that would be highly relevant for our study. How-
ever, in the moment of writing this paper we still have not been
able to access this benchmark suite. Therefore, we used some
of the most suitable benchmarks for GPU microarchitecture
such as Rodinia. In fact, Rodinia includes some key kernels
in autonomous driving systems that have similarities with
ADASMark such as image processing and pattern recognition.

IV. DESIGN SPACE EXPLORATION

The objective of the design space exploration is to know
which parameters of the processor design could be in-
creased/decreased and what would be their impact on perfor-
mance. Since there are many parameters that can influence

CPU Configuration
Core ARMv8 ISA, 2.0 GHz, 128-entry ROB

40-entry Issue Queue, Full Out-of-Order
3-Width Decoder, 3-Width Instruction Dispatch
48 KB, 3-Way TLB
48-Entry Fully-Associative L1 TLB

Caches 32 KB L1-D Cache, 2-Way, 1 Cycle
48 KB L1-I Cache, 3-Way, 1 Cycle
2 MB L2 Cache, 16-Way, 12 Cycles
64 Bytes Cache Line Size

Prefetcher Stride Prefetcher (Degree 1)
2K Branch Target Buffer (BTB)
32-Instruction Fetch Queue
15 Cycles Misprediction Penalty

DRAM DDR4 1866 MHz, 2 Ranks/Channel
8 Banks/Rank, 8 KB Row Size.
tCAS = tRCD = tRP = CL = 13.75ns
tREFI = 7.8 us
GPU Configuration

SMs 1.1 GHz, 32 Warps, 65536 shader registers
32 Thread blocks, 2048 threads per core
4 scheduler per core

Memory 48KB 4-way, 512 KB 4-way L2
64KB shared memory, 8 GB total memory size
16 sub-partition per memory channel

TABLE II: System Configurations employed in the gem5-gpu
simulator.

performance, making all the possible combinations is unfea-
sible. Thus, we will first change one parameter at a time, and
then changing more than one parameter together (for instance,
size and way of caches).

A. Changing one parameter

In Figure 2, we see the results for the design space explo-
ration when changing only one parameter. Please note that the
plots have 2 different scales: 0-2 (a, b, d, e, h) and 0-5 (c, f,
g, i, j, k). Y-axis shows the slowdown in comparison with the
baseline configuration. In the first row, we show the results for
the variation in L1 and L2 associativity and L2 size. Increasing
the L1 size provides a small performance improvement, while
reducing the size degrades the performance. When reducing
the L2 cache size, we observe performance degradation, how-
ever, further increasing the L2 cache size does not provide
further performance improvement.

Regarding the associativity, neither changes in L1 nor in L2
result in significant changes when increasing or decreasing it
moderately (1 to 8 ways). This parameters are again tested in
the next part since changing both size and associativity at the
same time may have different effects that are not seen when
changing them one at a time.

Figure 2 e) shows that doubling the number of CUDA
cores does not increase performance, but reducing it can result
in significant performance degradation, specially in compute-
intensive applications like hotspot or particlefilter naive. In the
next two Figures, f) and g), we show the effects on changing
the sizes of the register file and the shared memory. Both
components do not show significant differences when reducing

Name Short name Problem type Domain
Back Propagation backprop Unstructured Grid Pattern Recognition
Breadth-First Search bfs Graph Traversal Graph Algorithms
3D Stencil cell Structured Grid Cellular Automation
Gaussian Elimination gaussian Dense Linear Algebra Linear Algebra
Hotspot3D hotspot Structured Grid Physics Simulation
Myocyte myocyte Structured Grid Biological Simulation
Needleman-Wunsch needle Dynamic Programming Bioinformatics
k-Nearest Neighbors nn Dense Linear Algebra Data Mining
Particle Filter pf float Structured Grid Medical Imaging
Particle Filter pf naive Structured Grid Medical Imaging
SRAD srad Structured Grid Image Processing

TABLE III: Rodinia benchmarks used in the experiments.

its size by half or increasing it to double. Figure 2 h) changes
the number of warp schedulers in each SM. While increasing
(from 4 to 8 or 16) it does not show any performance benefits,
and reducing it to just 1 incurs in significant penalty (10%
more execution time), reducing it by half (from 4 to 2) results
in the same average performance, with almost no variability
in the different benchmarks.

In Figures 2 i), 2 j), and 2 k), we show the results for
the number of SMB per SM, the number of SM per cluster,
and the number of clusters with just 1 SM, respectively. Since
the simulator does not support more than 4 SMB per SM (the
standard in Pascal), we just focus on reducing it to 1 and
2. We observe that this reduction would incur in significant
performance penalties. The last two (SM per cluster and
number of clusters) show a similar trend, since in the end both
of them are increasing the total amount of SMs. We observe
that increasing the total number of SMs has positive effects
in performance, but just up to a certain point. The increase
in SMs has to be tailored to the application implementation
and behavior, so some applications may not be able to use all
these SMs while others could if they were implemented with
more granularity. These two components are the ones that vary
most depending on the benchmark, with several improving
performance and others decreasing it.

B. Changing two or more parameters

Some parameters that changed on their own have a specific
impact on performance, can behave differently if changed
together with other parameters. This is because how one
parameter performs depends also on how other parameters
perform. This is obvious in caches. Changing the associativity
of a small cache may have bigger impact on performance than
changing the associativity of a big cache, since sets may be
big enough anyway to notice any degradation.

The first two parameters that we have changed together
are cache size and associativity, both for L1 (Figure 3a) and
L2 (Figure 3b). For both we have changed the associativity
(first element in the x-axis) and the size (second element)
together. Although for the L1 we do not see significant
performance changes, for the L2 we see that reducing the size
and associativity to small enough numbers we have significant
performance degradation. This degradation is bigger than the

one observed in the previous experiments when only changing
the associativity or the size separately.

In the next experiments, we change the size of both caches
at the same time (Figure 3c), and we see similar results to the
previous experiment, with a lot of degradation when the L2
size is small. We also changed both L1 and L2 associativities
at the same time (Figure 3d) and as in previous experiments we
see that it has no noticeable effect. In the last experiment with
multiple cache components, we change both L1 and L2 sizes
and associativities. The results are similar to b) and c), with big
performance penalties in the small setup and no improvement
in the big one.

Finally, in Figure 3f, we change both the number of SM
as well as the number of CUDA cores per SM, changed
from 128 to just 32. Comparing with the previous experiment,
Figure 2k, we see that the trends are similar, with small
variations depending on the benchmark.

C. Changing the software

The changes in performance we observe when modifying
the different hardware components depend on the type of ap-
plication we are running (compute intensive, memory intensive
etc), but also on the specific CUDA/OpenCL implementation
done. Usually, when parallelizing an application for GPUs the
computation is divided into grids and thread blocks (using
NVIDIA’s terminology). A specific grid and thread block
division of a program could be optimal for a configuration
(number of SM, sizes of caches etc) while being suboptimal
for others.

D. Parameter classification

Depending on the results obtained in the design space
exploration, we classify the parameters into four categories:

1) Parameters that (based on Rodinia) are not worth to
increase beyond a given point since they produce no
gains.

2) Parameters that require SW to be modified (e.g. block-
/grid) to make it worth to change them.

In the following table (Table IV), we show a classification
of the parameters into the two different types, and the last
column shows the limit where an increase of the parameter
does not provide significant performance benefits.

3 6 12 24 48 96
182

364
728

1456
0.0

0.5

1.0

1.5

2.0

(a) L1 size

1 2 4 8 16 32
0.0

0.5

1.0

1.5

2.0

(b) L1 associativity

8 16 32 64
128

256
512

1024
2048

0.0

1.0

2.0

3.0

4.0

5.0

(c) L2 size

1 2 4 8 16 32 64
0.0

0.5

1.0

1.5

2.0

(d) L2 associativity

32 64
128

256
512

0.0

0.5

1.0

1.5

2.0

(e) Number of CUDA cores

1 2 4 8 16 32 64
128

256
0.0

1.0

2.0

3.0

4.0

5.0

(f) Register file size

0.5 1 2 4 8 16 32 64
128

256
0.0

1.0

2.0

3.0

4.0

5.0

(g) Shared memory size

1 2 4 8 16
0.0

0.5

1.0

1.5

2.0

(h) Number of warp schedulers

1 2 4 8 16
0.0

1.0

2.0

3.0

4.0

5.0

(i) Number of SMB per SM

1 2 4 8 16 32 64
0.0

1.0

2.0

3.0

4.0

5.0

(j) SM per cluster

1 2 4 8 16 32 64
128

0.0

1.0

2.0

3.0

4.0

5.0

(k) Number of SMs

1248163264
128
256

0.01.02.03.04.05.06.07.0

backprop

bfs

cell

gaussian

hotspot

myocyte

needle

nn

pf_float

pf_naive

srad

mean

(l) Legend

Fig. 2: Design Space Exploration results for one parameter changes (all sizes are in KB).

V. IMPROVED SETUPS

Based on the knowledge obtained in the design space
exploration, we want to propose modified hardware designs
with some improvement, either in terms of performance or in
terms of die area. The two setups that we propose are:

• Same performance with less cost.

• More performance with the same cost.
These setups would be optimized for the Rodinia bench-

marks used in the design space exploration and will be based
on the TX2 basic design.

A. Proposed setups

The two proposed setups and its objectives are:

3-1
48-4

364-16
0.0

0.5

1.0

1.5

2.0

(a) L1 size and associativity

8-1
512-4

2048-64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

(b) L2 size and associativity

3-8
48-512

364-2048
0.0

1.0

2.0

3.0

4.0

5.0

6.0

(c) L1 and L2 size

1-1 4-4 8-8
16-16

32-32
64-64

0.0

0.5

1.0

1.5

2.0

(d) L1 and L2 associativity

3-1 8-1
48-4 512-4

364-16 2048-64
0.0

1.0

2.0

3.0

4.0

5.0

6.0

(e) L1 and L2 size and associativity

1-32
2-32

4-32
8-32

16-32
32-32

64-32
128-32

0.0

1.0

2.0

3.0

4.0

5.0

6.0

(f) SM with 32 CUDA cores

Fig. 3: Design Space Exploration results for several parameter changes (all sizes in KB). The legend is the same used in
Figure 2.

Parameter Category Limit
L1 size 1 48KB
L1 associativity 1 4
L2 size 1 256KB
L2 associativity 1 2
Number of CUDA cores 1 128
Register file size 1 64KB
Shared memory size 1 16KB
Number of warp schedulers 1 2
Number of SMB per SM 2 -
SM per cluster 2 -
Number of SMs 2 -

TABLE IV: GPU parameters classified depending on the
potential improvement on hardware or software.

• Decrease the hardware keeping the same performance.
The first improved setup proposed aims to reduce the
amount of die space used while roughly keeping the same
performance (within 5% of performance degradation).
Looking at the results of the design space exploration, the
features that are susceptible to being reduced without too
much performance degradation are: register size, warp
schedulers per SM and shared memory. In all of these
features, the number of units or size can be divided by
half without having a significant impact in performance.
Thus, our proposal is to use the same configuration but
reducing the register size from 64KB to 32KB (12), the
warp schedulers per SM from 4 to 2 (12) and the shared
memory from 64KB to 16KB (14).

• Increase performance using the same hardware.

Parameter Base Reduced Increased Increased
changed setup die space perf. a) perf. b)

Number of SM 2 2 4 4
Warp sched 4 2 4 4
Register file 64KB 32KB 64KB 64KB
Shared mem 64KB 16KB 64KB 64KB
L1 size 48KB 48KB 96KB 96KB
L2 size 512KB 512KB 256KB 128KB

TABLE V: Changes made in the improved setups.

In order to increase the performance using the same
amount of die space, we need to increase some resources,
which will increase performance and area and decrease
others, which will decrease performance but decrease
area. The tradeoff between the resources increased and
decreased needs to be positively balanced to improve the
performance per die area.
Based on the design space exploration, our proposal for
this setup is to increase the number of SMs and L1 cache
sizes, while decreasing the size of the L2. The difference
in die space between the new SMs and larger L1 should
be similar to the decrease in L2 size. Furthermore, we
will provide two variations of this setup. In one we will
double the size of the L1 and the number of SMs, while
reducing the L2 size by half. Furthermore, in a more area
limited setup, we will also double the L1 and number of
SMs, while reducing the L2 to one fourth of its size.

Justifying that the hardware cost of our proposed setups
is challenging without having information about the actual

Fig. 4: NVIDIA GTX 1080 die. Same architecture (Pascal)
and manufacturing process (16nm) as the TX2.

space occupied by each resource in the real hardware imple-
mentation. Since there is no available information about the
Tegra X2 die, instead we use, as a reference, the GTX 1080’s
die information. The GTX 1080 is a discrete graphics card
developed by NVIDIA with the same architectural generation
(Pascal) and manufacturing process (16nm).

In the GTX 1080 die, we see the area dedicated to the SMs
to the per SM caches (including L1 and shared memory), to the
shared L2 and the rest to I/O and other features (debugging,
performance counters etc). Although these are estimates, they
give us a good idea of the overall die space used to each
processor part.

B. Evaluation

In the first setup, the improvement is in the die space used.
Specifically, we use half the register size, half the schedules
and a quarter of the shared memory. Of the three, the shared
memory is the one that has a bigger impact in die area reduced.
An advantage of reducing these components is that they are
private to each SM, so if we increase the number of SMs, the
reduced area would be proportional to the number of SMs.
In contrast with decreasing shared resources such as the L2
cache, that would have the same impact if we changed the
number of SMs.

From the 11 Rodinia benchmarks that we analyzed, 8
of them have the same performance (within less than 1%
of variation). Based on our previous analysis, from the 3
benchmarks that show a significant increase in execution time,
one (hotspot) is mainly due to the decrease in register size
and the other 2 (needle and srad) are due to the decrease in
shared memory size. On average, less than 5% of performance
degradation is shown when making these changes.

In the second setup, we want to improve performance while
increasing some resources and decreasing others to maintain
die area. Since knowing the exact area gained or lost with
each change is challenging, we propose two setups. In both,

Fig. 5: Execution time of the proposed setups normalized to
the baseline.

we double the number of SMs and the L1 size, but in one, we
reduce the L2 size by half and in the other, by one quarter.

For both variations, the results change significantly depend-
ing on the benchmark. Of the 11 benchmarks, in 4 of them, we
observe a performance improvement, in 4 of them we observe
a slowdown, and the rest stay the same. Overall, the setup that
halves the L2 shows a 10% reduction in execution time while
the setup that divides it by 4 shows a 5%.

Between the two setups, some benchmarks (cell, gaussian,
hotspot, particlefiler naive) show no difference at all. Of the
ones that show difference, all, except for bfs, perform better
in the 256KB L2 than in the 128KB.

VI. RELATED WORK

GPU performance analysis for general purpose applications
has been a research topic for many years. Two main research
lines exist on this topic. The first one focuses on the analysis
of Commercial Off-The-Shelf (COTS) GPUs by means of
the execution of different types of parallel applications [30],
[27], [22]. These studies have allowed determining what
the most convenient way is to deploy and run software on
those GPUs and, at most, it has been guessed how hardware
should be modified to improve performance. However, since
COTS GPUs cannot be modified, hypotheses raised cannot
be verified. The second research line on this topic considers
the use of GPU performance simulators in order to determine
how to tune high-performance GPUs for general purpose high-
performance applications [19], [20]. However, those GPUs
are significantly different from automotive ones since they
are not subject to strict power constraints such as those in
the automotive domain, which are intended to operate under
much lower power envelops. Thus, conclusions cannot be
extrapolated across both market segments.

Several works have analyzed the performance of COTS
automotive GPUs to optimize the behavior of applications
running atop [16]. While conclusions reached by those works
are highly valuable for an efficient use of hardware, they do
not provide any insight on how to optimize hardware design.
Finally, some works target task scheduling on GPUs for an
efficient use of hardware resources, minimizing their timespan
while respecting their deadlines [15], [10], [9].

VII. CONCLUSIONS

Performance requirements of future automotive systems
have increased significantly with the promise of Autonomous
Driving. GPUs are commonly used to reach the required
performance levels. In this work, we focus on the NVIDIA
Jetson TX2, a widely-used and well-known platform that
focuses on automotive domain.

First, we modelled the TX2 in our CPU-GPU simulator as
a representative solution of GPUs for the automotive domain.
Then, using Rodinia benchmarks that focus on several het-
erogeneous computing (CPU+GPU) applications, we analyzed
how the different parameters of the TX2’s GPU affected
performance. This is done with isolated changes (just changing
one parameter at the same time) as well as with combined
changes (changing several parameters).

Building on the conclusions of this experimentation, we
propose three different improved setups: one that reduces die
space significantly with less than a 5% impact in performance,
and two that maintain approximately the same die space but
reduce execution time from 10 to 15%.

Some hardware improvements could only be fully exploited
by modifying the software (mainly the block and thread
distribution). We leave this tuning of software as future work
to continue improving GPU-based system to meet the demands
of the automotive industry.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) un-
der grant TIN2015-65316-P, the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773) and
the HiPEAC Network of Excellence. Pedro Benedicte and
Jaume Abella have been partially supported by the MINECO
under FPU15/01394 grant and Ramon y Cajal postdoctoral fel-
lowship number RYC-2013-14717 respectively and Leonidas
Kosmidis under Juan de la Cierva-Formacin postdoctoral fel-
lowship (FJCI-2017-34095).

REFERENCES

[1] RENESAS R-Car H3. https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

[2] Autoware. An open autonomous driving platform. https://github.com/
CPFL/Autoware/, 2016.

[3] Udacity. An Open Source Self-Driving Car. https://github.com/udacity/
self-driving-car/, 2017.

[4] Apollo, an open autonomous driving platform. http://apollo.auto/, 2018.
[5] Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez,

Jaume Abella, and Francisco J Cazorla. Safety-related challenges and
opportunities for gpus in the automotive domain. IEEE Micro, 38(6):46–
55, 2018.

[6] ARM. ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade. https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.
php, ARM Press Release, April 2015.

[7] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M
Aamodt. Analyzing cuda workloads using a detailed gpu simulator.
In 2009 IEEE International Symposium on Performance Analysis of
Systems and Software, pages 163–174. IEEE, 2009.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[9] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru.
Deadline-based scheduling for GPU with preemption support. In 2018
IEEE Real-Time Systems Symposium (RTSS), pages 119–130, Dec 2018.

[10] Nicola Capodieci, Roberto Cavicchioli, and Marko Bertogna. NVIDIA
GPU scheduling details in virtualized environments: Work-in-progress.
In Proceedings of the International Conference on Embedded Software,
EMSOFT ’18, pages 12:1–12:3, Piscataway, NJ, USA, 2018. IEEE
Press.

[11] R.N. Charette. This car runs on code. In IEEE Spectrum online, 2009.
[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark
suite for heterogeneous computing. In IEEE International Symposium
on Workload Characterization, 2009.

[13] Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-
NGMP-DRAFT - Data Sheet and Users Manual, 2011.

[14] EEMBC. ADASMark.
[15] Glenn A. Elliott. Scheduling of GPUs, with applications in advanced

automotive systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2015.

[16] J. Fickenscher, O. Reiche, J. Schlumberger, F. Hannig, and J. Teich.
Modeling, programming and performance analysis of automotive envi-
ronment map representations on embedded GPUs. In 2016 IEEE In-
ternational High Level Design Validation and Test Workshop (HLDVT),
pages 70–77, Oct 2016.

[17] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[18] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[19] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU ar-
chitecture with memory-level and thread-level parallelism awareness. In
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009.
ACM.

[20] Sunpyo Hong and Hyesoon Kim. An integrated GPU power and
performance model. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pages 280–289, New
York, NY, USA, 2010. ACM.

[21] Infineon. AURIX Multicore 32-bit Microcontroller Family to
Meet Safety and Powertrain Requirements of Upcoming Vehi-
cle Generations. http://www.infineon.com/cms/en/about-infineon/press/
press-releases/2012/INFATV201205-040.html.

[22] Paulius Micikevicius. GPU performance analysis and optimization. In
Proceedings of the 3rd GPU Technology Conference, GTC ’12, 2012.

[23] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A
Wood. gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer
Architecture Letters, 14(1):34–36, 2015.

[24] Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella, and Francisco J Cazorla. Generating and exploiting deep learning
variants to increase heterogeneous resource utilization in the nvidia
xavier. In 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[25] SAE International. J3016: Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems, 2014.

[26] Danny Shapiro. Introducing xavier, the nvidia ai supercomputer for the
future of autonomous transportation. NVIDIA blog, 2016.

[27] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc.
A performance analysis framework for identifying potential benefits
in GPGPU applications. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’12, pages 11–22, New York, NY, USA, 2012. ACM.

[28] K. Suleman. Intel paves the road for bmw’s inext autonomous cars in
2021. 2017.

[29] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco J Cazorla,
and Guillem Bernat. Assessing the adherence of an industrial au-
tonomous driving framework to iso 26262 software guidelines. In
Proceedings of the 56th Annual Design Automation Conference 2019,
page 9. ACM, 2019.

[30] Y. Zhang and J. D. Owens. A quantitative performance analysis model
for GPU architectures. In 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, pages 382–393, Feb 2011.

