11 research outputs found

    SACRE: A tool for dealing with uncertainty in contextual requirements at runtime

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Self-adaptive systems are capable of dealing with uncertainty at runtime handling complex issues as resource variability, changing user needs, and system intrusions or faults. If the requirements depend on context, runtime uncertainty will affect the execution of these contextual requirements. This work presents SACRE, a proof-of-concept implementation of an existing approach, ACon, developed by researchers of the Univ. of Victoria (Canada) in collaboration with the UPC (Spain). ACon uses a feedback loop to detect contextual requirements affected by uncertainty and data mining techniques to determine the best operationalization of contexts on top of sensed data. The implementation is placed in the domain of smart vehicles and the contextual requirements provide functionality for drowsy drivers.Peer ReviewedPostprint (author's final draft

    Self-adaptive Software Modeling Based on Contextual Requirements

    Get PDF
    The ability of self-adaptive software in responding to change is determined by contextual requirements, i.e. a requirement in capturing relevant context-atributes and modeling behavior for system adaptation. However, in most cases, modeling for self-adaptive software is does not take into consider the requirements evolution based on contextual requirements. This paper introduces an approach through requirements modeling languages directed to adaptation patterns to support requirements evolution. The model is prepared through contextual requirements approach that is integrated into MAPE-K (monitor, anayze, plan, execute - knowledge) patterns in goal-oriented requirements engineering. As an evaluation, the adaptation process is modeled for cleaner robot. The experimental results show that the requirements modeling process has been able to direct software into self-adaptive capability and meet the requirements evolution

    SACRE: Supporting contextual requirements' adaptation in modern self-adaptive systems in the presence of uncertainty at runtime

    Full text link
    Runtime uncertainty such as unpredictable resource unavailability, changing environmental conditions and user needs, as well as system intrusions or faults represents one of the main current challenges of self-adaptive systems. Moreover, today's systems are increasingly more complex, distributed, decentralized, etc. and therefore have to reason about and cope with more and more unpredictable events. Approaches to deal with such changing requirements in complex today's systems are still missing. This work presents SACRE (Smart Adaptation through Contextual REquirements), our approach leveraging an adaptation feedback loop to detect self-adaptive systems' contextual requirements affected by uncertainty and to integrate machine learning techniques to determine the best operationalization of context based on sensed data at runtime. SACRE is a step forward of our former approach ACon which focus had been on adapting the context in contextual requirements, as well as their basic implementation. SACRE primarily focuses on architectural decisions, addressing self-adaptive systems' engineering challenges. Furthering the work on ACon, in this paper, we perform an evaluation of the entire approach in different uncertainty scenarios in real-time in the extremely demanding domain of smart vehicles. The real-time evaluation is conducted in a simulated environment in which the smart vehicle is implemented through software components. The evaluation results provide empirical evidence about the applicability of SACRE in real and complex software system domains.Comment: 45 pages, journal article, 14 figures, 9 tables, CC-BY-NC-ND 4.0 licens

    SACRE: Supporting contextual requirements’ adaptation in modern self-adaptive systems in the presence of uncertainty at runtime

    Get PDF
    Runtime uncertainty such as unpredictable resource unavailability, changing environmental conditions and user needs, as well as system intrusions or faults represents one of the main current challenges of self-adaptive systems. Moreover, today’s systems are increasingly more complex, distributed, decentralized, etc. and therefore have to reason about and cope with more and more unpredictable events. Approaches to deal with such changing requirements in complex today’s systems are still missing. This work presents SACRE (Smart Adaptation through Contextual REquirements), our approach leveraging an adaptation feedback loop to detect self-adaptive systems’ contextual requirements affected by uncertainty and to integrate machine learning techniques to determine the best operationalization of context based on sensed data at runtime. SACRE is a step forward of our former approach ACon which focus had been on adapting the context in contextual requirements, as well as their basic implementation. SACRE primarily focuses on architectural decisions, addressing selfadaptive systems’ engineering challenges. Furthering the work on ACon, in this paper, we perform an evaluation of the entire approach in different uncertainty scenarios in real-time in the extremely demanding domain of smart vehicles. The real-time evaluation is conducted in a simulated environment in which the smart vehicle is implemented through software components. The evaluation results provide empirical evidence about the applicability of SACRE in real and complex software system domains.Peer ReviewedPostprint (author's final draft

    Dealing with uncertainty in contextual requirements at runtime: A proof of concept

    Get PDF
    This work presents SACRE, a proof-of-concept implementation of an existing approach, ACon. ACon uses a feedback loop to detect contextual requirements affected by uncertainty and data mining techniques to determine the best operationalization of contexts on top of sensed data
    corecore