32 research outputs found

    Parallel NFS Block Layout Module for Linux

    Full text link
    This position statement presents CITI's Linux prototype of NFSv4.1 pNFS client block layout module and reviews our implementation approach. CITI's prototype implements the IETF draft specification draft-ietf-nfsv4-pnfs-block and is one of three layout modules being developed along with the Linux pNFS generic client, which implements the draft-ietf-nfsv4-minorversion1 specification. The block layout module provides for an I/O data path over iSCSI directly to client SCSI devices identified by the pNFS block server.http://deepblue.lib.umich.edu/bitstream/2027.42/107895/1/citi-tr-08-1.pd

    Object-Based Parallel NFS (pNFS) Operations

    Full text link

    Advances the Forward Security in Parallel Network File System using An Efficient and Reliable Key Exchange Protocols

    Get PDF
    In parallel file system we can disperse data over numerous nodes to permit simultaneous access by various errands of a parallel application. By play out the numerous errands in a parallel system is commonly to reduce execution and solid access to substantial data sets. In this work, we research the issue of secure many to numerous correspondences in substantial scale network file systems that bolster parallel access to different storage devices. That is, we consider a correspondence model where there are countless getting to various remote and conveyed storage devices in parallel. Especially, we concentrate on the most proficient method to trade key materials and set up parallel secure sessions between the clients and the storage devices in the parallel Network File System the present Internet standard in a productive and versatile way. In this paper we are proposed convention for performing key trade and furthermore build up parallel secure session amongst clients and storage devices. In this paper we are likewise proposed another idea for encryption and decoding of put away data. By actualizing this procedure we are utilizing mixture encryption and decoding calculation. By actualizing those ideas we can enhance execution of network and furthermore give greater security of put away data in the put away devices

    Infrastructure Plan for ASC Petascale Environments

    Full text link

    A shared-disk parallel cluster file system

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaToday, clusters are the de facto cost effective platform both for high performance computing (HPC) as well as IT environments. HPC and IT are quite different environments and differences include, among others, their choices on file systems and storage: HPC favours parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT data centres favour both external disk arrays (to provide highly available storage) and POSIX compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). These specialised file systems do perform very well in their target environments provided that applications do not require some lateral features, e.g., no file locking on parallel file systems, and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say that none of the above approaches solves the problem of providing high levels of reliability and performance to both worlds. Our pCFS proposal makes a contribution to change this situation: the rationale is to take advantage on the best of both – the reliability of cluster file systems and the high performance of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full POSIX compliance, a rich feature set, and levels of reliability and performance good enough for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS engines that may run over regular files, and video streaming. pCFS’ main ideas include: · Cooperative caching, a technique that has been used in file systems for distributed disks but, as far as we know, was never used either in SAN based cluster file systems or in parallel file systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. · Fine-grain locking, whereby processes running across distinct nodes may define nonoverlapping byte-range regions in a file (instead of the whole file) and access them in parallel, reading and writing over those regions at the infrastructure’s full speed (provided that no major metadata changes are required). A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was slightly modified, and two kernel modules and a user-level daemon were added. In the prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is maintained through data (page fragments) movement over the LAN. Our benchmarks for non-overlapping writers over a single file shared among processes running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the same CPU usage.Lusitania, Companhia de Seguros S.A, Programa IBM Shared University Research (SUR

    Enabling multi-segment 5G service provisioning and maintenance through network slicing

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Network and Systems Management . The final authenticated version is available online at: http://dx.doi.org/10.1007/s10922-019-09509-9The current deployment of 5G networks in a way to support the highly demanding service types defined for 5G, has brought the need for using new techniques to accommodate legacy networks to such requirements. Network Slicing in turn, enables sharing the same underlying physical infrastructure among services with different requirements, thus providing a level of isolation between them to guarantee their proper functionality. In this work, we analyse from an architectural point of view, the required coordination for the provisioning of 5G services over multiple network segments/domains by means of network slicing, considering as well the use of sensors and actuators to maintain slices performance during its lifetime. We set up an experimental multi-segment testbed to demonstrate end-to-end service provisioning and its guarantee in terms of specific QoS parameters, such as latency, throughput and Virtual Network Function (VNF) CPU/RAM consumption. The results provided, demonstrate the workflow between different network components to coordinate the deployment of slices, besides providing a set of examples for slice maintenance through service monitoring and the use of policy-based actuations.Peer ReviewedPostprint (author's final draft

    Management of customizable software-as-a-service in cloud and network environments

    Get PDF

    A multi-tier cached I/O architecture for massively parallel supercomputers

    Get PDF
    Recent advances in storage technologies and high performance interconnects have made possible in the last years to build, more and more potent storage systems that serve thousands of nodes. The majority of storage systems of clusters and supercomputers from Top 500 list are managed by one of three scalable parallel file systems: GPFS, PVFS, and Lustre. Most large-scale scientific parallel applications are written in Message Passing Interface (MPI), which has become the de-facto standard for scalable distributed memory machines. One part of the MPI standard is related to I/O and has among its main goals the portability and efficiency of file system accesses. All of the above mentioned parallel file systems may be accessed also through the MPI-IO interface. The I/O access patterns of scientific parallel applications often consist of accesses to a large number of small, non-contiguous pieces of data. For small file accesses the performance is dominated by the latency of network transfers and disks. Parallel scientific applications lead to interleaved file access patterns with high interprocess spatial locality at the I/O nodes. Additionally, scientific applications exhibit repetitive behaviour when a loop or a function with loops issues I/O requests. When I/O access patterns are repetitive, caching and prefetching can effectively mask their access latency. These characteristics of the access patterns motivated several researchers to propose parallel I/O optimizations both at library and file system levels. However, these optimizations are not always integrated across different layers in the systems. In this dissertation we propose a novel generic parallel I/O architecture for clusters and supercomputers. Our design is aimed at large-scale parallel architectures with thousands of compute nodes. Besides acting as middleware for existing parallel file systems, our architecture provides on-line virtualization of storage resources. Another objective of this thesis is to factor out the common parallel I/O functionality from clusters and supercomputers in generic modules in order to facilitate porting of scientific applications across these platforms. Our solution is based on a multi-tier cache architecture, collective I/O, and asynchronous data staging strategies hiding the latency of data transfer between cache tiers. The thesis targets to reduce the file access latency perceived by the data-intensive parallel scientific applications by multi-layer asynchronous data transfers. In order to accomplish this objective, our techniques leverage the multi-core architectures by overlapping computation with communication and I/O in parallel threads. Prototypes of our solutions have been deployed on both clusters and Blue Gene supercomputers. Performance evaluation shows that the combination of collective strategies with overlapping of computation, communication, and I/O may bring a substantial performance benefit for access patterns common for parallel scientific applications.-----------------------------------------------------------------------------------------------------------------------------En los últimos años se ha observado un incremento sustancial de la cantidad de datos producidos por las aplicaciones científicas paralelas y de la necesidad de almacenar estos datos de forma persistente. Los sistemas de ficheros paralelos como PVFS, Lustre y GPFS han ofrecido una solución escalable para esta demanda creciente de almacenamiento. La mayoría de las aplicaciones científicas son escritas haciendo uso de la interfaz de paso de mensajes (MPI), que se ha convertido en un estándar de-facto de programación para las arquitecturas de memoria distribuida. Las aplicaciones paralelas que usan MPI pueden acceder a los sistemas de ficheros paralelos a través de la interfaz ofrecida por MPI-IO. Los patrones de acceso de las aplicaciones científicas paralelas consisten en un gran número de accesos pequeños y no contiguos. Para tamaños de acceso pequeños, el rendimiento viene limitado por la latencia de las transferencias de red y disco. Además, las aplicaciones científicas llevan a cabo accesos con una alta localidad espacial entre los distintos procesos en los nodos de E/S. Adicionalmente, las aplicaciones científicas presentan típicamente un comportamiento repetitivo. Cuando los patrones de acceso de E/S son repetitivos, técnicas como escritura demorada y lectura adelantada pueden enmascarar de forma eficiente las latencias de los accesos de E/S. Estas características han motivado a muchos investigadores en proponer optimizaciones de E/S tanto a nivel de biblioteca como a nivel del sistema de ficheros. Sin embargo, actualmente estas optimizaciones no se integran siempre a través de las distintas capas del sistema. El objetivo principal de esta tesis es proponer una nueva arquitectura genérica de E/S paralela para clusters y supercomputadores. Nuestra solución está basada en una arquitectura de caches en varias capas, una técnica de E/S colectiva y estrategias de acceso asíncronas que ocultan la latencia de transferencia de datos entre las distintas capas de caches. Nuestro diseño está dirigido a arquitecturas paralelas escalables con miles de nodos de cómputo. Además de actuar como middleware para los sistemas de ficheros paralelos existentes, nuestra arquitectura debe proporcionar virtualización on-line de los recursos de almacenamiento. Otro de los objeticos marcados para esta tesis es la factorización de las funcionalidades comunes en clusters y supercomputadores, en módulos genéricos que faciliten el despliegue de las aplicaciones científicas a través de estas plataformas. Se han desplegado distintos prototipos de nuestras soluciones tanto en clusters como en supercomputadores. Las evaluaciones de rendimiento demuestran que gracias a la combicación de las estratégias colectivas de E/S y del solapamiento de computación, comunicación y E/S, se puede obtener una sustancial mejora del rendimiento en los patrones de acceso anteriormente descritos, muy comunes en las aplicaciones paralelas de caracter científico

    Service-oriented models for audiovisual content storage

    No full text
    What are the important topics to understand if involved with storage services to hold digital audiovisual content? This report takes a look at how content is created and moves into and out of storage; the storage service value networks and architectures found now and expected in the future; what sort of data transfer is expected to and from an audiovisual archive; what transfer protocols to use; and a summary of security and interface issues
    corecore