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Dankwoord

Toen ik in 1990 voor het eerst met mijn kleine rugzakje naar de kleuterschool vertrok
en huilend aan de schoolpoort achterbleef denk ik niet dat iemand gedacht had dat
ik 25 jaar later nog steeds aan het studeren zou zijn om nog een allerlaatste diploma
te halen. Nuja, studeren... De laatste vijf jaar als doctoraatsstudent waren natuurlijk
een heel stuk anders dan de jaren daarvoor. Het leven als doctoraatsstudent verschilt
heel wat van dat van de gewone student: geen lessen en huiswerk, maar wel korte
cursussen, conferenties, publicaties, les geven en projectwerk. Toch blijf je nog
de hele tijd vaardigheden en kennis vergaren. En, net als voor al die diploma’s
daarvoor, is er om af te sluiten toch nog één allerlaatste examen.

Een doctoraatsboek is een individueel werk, maar dat wil niet zeggen dat al het
werk dat in dat boek terechtkomt ook volledig alleen uitgevoerd werd. Veel van
de ideeén in dit boek zijn dan ook het resultaat van lange discussies en intensieve
samenwerkingen met verscheidene collega’s, die ik bij deze dus ook zeer graag
wil bedanken. Vooraleerst wil ik mijn promotoren, Filip De Turck en Bart Dhoedt
bedanken voor al hun hulp, begeleiding en het vertrouwen dat ze in mij gesteld
hebben tijdens mijn doctoraat. Filip wil ik bedanken voor de vele interessante
discussies en omdat hij altijd klaarstond om te helpen om problemen op te lossen,
pakweg wanneer je een week voor je je boek indient ontdekt dat je eigenlijk al een
tijdje niet meer als doctoraatsstudent ingeschreven bent'. Ook buiten het werk kon
ik op hem rekenen: toen mijn vrienden mijn vrijgezellendag (of eerder verlengd
vrijgezellenweekeind) organiseerden, hielp hij mijn maandag vrij te houden door
mijn agenda te blokkeren (al heb ik er geen idee van hoe het kan dat ik het niet
op zijn minst verdacht vond dat hij proactief en een paar weken op voorhand een
meeting om een CNSM paper te bespreken in mijn agenda vastlegde) en nam hij
zelfs de tijd om een kort filmpje op te nemen voor de gelegenheid. Ook op Bart
kon ik steeds rekenen voor feedback, interessante discussies, of een korte babbel.

Een doctoraat doen kost tijd en geld. Ik ben dan ook het instituut voor Innovatie
door Wetenschap en Technologie (IWT) dankbaar voor de financié€le ondersteuning
voor mijn werk. Dankzij mijn IWT specialisatiebeurs kon ik mij concentreren
op het inhoudelijke werk, zonder mij zorgen te moeten maken over jaarlijkse
contractverlengingen.

Binnen IBCN waren er naast mijn promotoren nog verscheidene mensen met
wie ik vaak samenwerkte en die op hun manier bijgedragen hebben aan mijn

1Tk raad iedereen die zijn boek wil indienen aan om op voorhand eens op Plato te checken of de link
“mijn doctoraat” er tussen staat. Het kan je veel last-minute stress besparen.
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doctoraat. Om te beginnen wil ik hier Femke De Backere en Kristof Steurbaut
bedanken voor hun goede begeleiding van mijn masterthesis. De eerste keren
dat ik feedback kreeg op stukken tekst, was er op de bladzijden die ik terugkreeg
meer rood dan zwart te zien. Ik heb misschien wel een andere weg ingeslagen
met het onderwerp van mijn doctoraat, maar zonder jullie zou ik mogelijk nooit
aan een doctoraat begonnen zijn en van jullie heb ik veel bijgeleerd over het
schrijven van goed gestructureerde teksten. Daarnaast wil ik Steven Latré en Jeroen
Famaey bedanken, die mij in het begin op weg geholpen hebben, mij geholpen
hebben om een IWT specialisatiebeurs te behalen en mij begeleid hebben bij mijn
eerste publicaties. Verder wil ook ook Pieter-Jan Maenhaut en Maryam Barshan
bedanken voor de samenwerking bij verscheidene projecten. Via verschillende
industrieprojecten, CUSTOMSS, PUMA en MECaNO werkte ik ook samen met
verscheidene mensen van andere universiteiten en bedrijven, die mij hielpen om
vanuit een ander standpunt naar verschillende problemen te kijken. Graag wil
ik dan ook Stefan Walraven, Eddy Truyen, Bert Lagaisse, Dimitri Van Landuyt
en Wouter Joosen van KU Leuven, Marino Verheye van Televic Healthcare en
Koen Handekeyn van up-nxt bedanken voor hun input tijdens deze projecten die
bijgedragen hebben aan dit boek.

IBCN heeft een zeer sterke aanwezigheid binnen de network management com-
munity, waardoor we dus vaak met velen op conferentie gingen. Ik wil daarom
dan ook onze (intussen in sommige gevallen ex-)UGent IM-NOMS-CNSM-club
bedanken voor het aangename gezelschap op de vele edities van deze conferen-
ties op de verschillende al dan niet exotische locaties. Filip De Turck, Steven
Latré, Jeroen Famaey, Pieter-Jan Maenhaut, Niels Bouten, Maxim Claeys, Stefano
Petrangeli, Thomas Vanhove, Matthias Strobbe, Jeroen van der Hooft en Tim De
Pauw: bedankt voor het steeds aangename gezelschap, zowel tijdens de uren van de
conferentie, als bij de mojitos in Maui, de caipirinhas in Rio de Janeiro, de Guiness
in Dublin en de pintjes in Gent (en de vele andere minder exotische locaties) buiten
de conferentie-uren.

Daarnaast waren er nog een hele hoop andere interessante en onverwachte
conferentie-ervaringen: een speech van Obama in het midden van Dublin, waardoor
alle straten potdicht zaten en waardoor niet iedereen plaats had in het gereserveerde
hotel, plotse hagelbuien in Firenze in september, een voetbalmatch op het strand
in Rio en herten die vanuit het niets voor de auto springen in Canada (en waar
gelukkig op tijd voor gestopt kon worden)?.

Gedurende mijn doctoraat heb ik ook mogen proeven van het onderwijs, wat
ik een heel toffe ervaring vond en wat het werk een stuk gevarieerder maakte. Het
begeleiden van practica heeft mij geholpen om vlotter en zelfverzekerder voor grote
groepen te staan. Ik wil dan ook de teams van de verschillende vakken bedanken
voor de aangename samenwerking. Voor het vak informatica is dit na 5 jaar onder
leiding van Bart Dhoedt toch wel een hele lijst geworden (waarbij ik hoop dat ik
niemand vergeten ben): Vincent Sercu, Tom Van Haute, Bram Gadeyne, Thijs

2In tegenstelling tot hoe dit misschien overkomt kan tevens toch bevestigen dat er ook nog (regelma-
tig) serieus gewerkt wordt op conferenties.
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Walcarius, Steven Bohez , Cedric De Boom, Ine Melckenbeeck, Piet Smet, Dieter
De Witte, Samuel Dauwe, Tom Van Haute, Nick Vercammen, Sofie Demeyer,
Pieter Becue, An De Moor, Sofie Demeyer en Olivier Van Laere. Van het vak
softwareontwikkeling, ook onder leiding van Bart, herinner ik mij vooral de fijne
samenwerking bij de jaarlijkse begeleiding van de vele projectgroepen met Stijn
Verstichel. Daarnaast waren er van dit vak ook tal van practica, met ook een
hele reeks mede-begeleiders: Stijn Verstichel, Steven Van Canneyt, Steven Bohez,
Cedric De Boom, Tim Verbelen, Cedric De Boom, Dieter Plaetinck en Olivier Van
Laere. Verder waren er ook nog twee vakken onder leiding van Filip De Turck:
ODS, waar ik samen met Tim Verbelen en Jeroen Famaey enkele kleine projectjes
begeleidde en PDS waarvoor ik het cloud practicum maakte en dat samen met
Femke De Backere begeleidde.

Wie mij goed kent weet dat ik een hekel heb aan administratie en procedures.
Ik zou daarom Martine Buysse en Davinia Stevens willen bedanken voor alle
hulp bij het navigeren van het administratieve doolhof van UGent — iMinds en het
oplossen van de hieruit voorkomende problemen?. Ook wil ik hierbij de mensen van
financién, Bernadette Becue, Karien Hemelsoen, Nathalie Vanhijfte, Joke Stalens
en Dalila Lauwers, bedanken voor de ondersteuning met de finani€le kant van
de administratie. Een heel ander soort administratie wordt verzorgt door onze
(ex-)admins, die ik eveneens dankbaar ben voor hun snelle respons wanneer er
ergens problemen waren: Bert De Vuyst, Joeri Casteels, Simon Roberts, Bert De
Knijf, Serge van Ginderachter, Jonathan Moreel, Wouter Adem, Pascal Vandeputte
en Johan De Knijf. Om van de kantoren van IBCN een aangename werkplek te
maken, is het natuurlijk ook belangrijk dat ze proper gehouden worden. Daarvoor
wil ik dan ook graag Sandra en Sabine bedanken.

Een goede werksfeer en toffe collega’s maken het werk een stuk aangenamer.
Ik wil daarom dan ook graag mijn bureagenoten en ex-bureaugenoten bedanken
voor de aangename sfeer en de verscheidene gezellige bureauactiviteiten: Wan-
nes Kerckhove, Thomas Dupont, Femke De Backere, Femke Ongenae, Gregory
Van Seghbroek, Bert Vankeirsbilck, Jonas Anseeuw, Ali Farhan Azmat, Maryam
Barshan, Rafael Xavier dos Santos, Jeroen Famaey, Samuel Dauwe, Lien Deboosere
en Pol Dockx. Hierbij wil ik ook Thomas nog eens specifiek en expliciet bedanken
voor het afdrukken van de eerste editie van dit boek op de dag van de deadline toen
mijn PC weer eens besliste dat hij een andere taal spreekt dan de printer.

De boog kan natuurlijk niet altijd gespannen staan. Af en toe eens ontspannen
met een goede barbecue, een whisky tasting of een trappist tour, waarbij we op
veel te korte tijd alle trappistenabdijen bezochten (toen dat nog op twee dagen
mogelijk was) is goed voor de motivatie en inspiratie. Ik wil dan ook Tom De Nies,
Christophe Billiet, Nicholas Overloop en David Verhasselt bedanken voor al deze
toffe momenten. Daarnaast wens ik Tom en Christophe ook veel succes met hun
eigen doctoraat! Verder wil ik ook mijn ouders en familie bedanken. Zonder jullie

3Zoals bijvoorbeeld het niet formeel ingeschreven meer zijn voor een doctoraat de week voor het
indienen ervan.
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steun, zorgen en vertrouwen, zou ik het waarschijnlijk nooit aangedurfd hebben om
informatica te beginnen studeren, waardoor ik hier nooit geraakt zou zijn.

Om af te sluiten wil ik ook de belangrijkste persoon bedanken die mij doorheen
mijn hele doctoraat gesteund heeft. Ze begon als mijn vriendin, werd in de loop
van mijn doctoraat mijn verloofde en intussen is ze mijn vrouw. Isabelle, je was er
altijd om mij te steunen als ik het even niet zag zitten. Je hebt mij altijd geholpen
en goed verzorgd als er weer eens één of andere deadline aan zat te komen door op
die momenten een veel groter stuk van het huishouden op jou te nemen en hebt af
en toe actief geholpen door je door de bergen tekst heen te worstelen en ze grondig
na te lezen... Bedankt voor al je hulp en ondersteuning. Nu mijn doctoraat ten
einde is, is het mijn beurt om jou in de komende jaren te ondersteunen bij je eigen
doctoraatsonderzoek. Ik hoop dat ik dat voor jou even goed zal kunnen doen als jij
dat voor mij deed!

Gent, juni 2015
Hendrik Moens
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Samenvatting
— Summary in Dutch —

Het gebruik van cloud computing is de laatste jaren sterk toegenomen. Cloud
computing is een technologie die het mogelijk maakt om toepassingen en diensten
op aanvraag aan te bieden aan meerdere eindgebruikers. Hierdoor kunnen virtuele
computersystemen, softwareontwikkelingsplatformen en toepassingen verhuurd
worden, waarbij typisch enkel de systeembronnen die gebruikt worden betaald
moeten worden. Dit komt de flexibiliteit van toepassingen ten goede en maakt het
mogelijk om snel systeembronnen toe te voegen en te verwijderen naarmate de
belasting op de toepassing verandert. Deze cloud toepassingen en diensten worden
gehuisvest in een rekencentrum, waarvan de infrastructuur en toepassingen gedeeld
worden tussen meerdere gebruikers. De schaalvoordelen die hierdoor bekomen
worden zorgen ervoor dat deze diensten aan een lagere kost geleverd kunnen
worden. Om de voordelen van cloud computing maximaal te benutten, moeten
softwarediensten ontwikkeld worden zodat systeembronnen tussen verschillende
gebruikers gedeeld kunnen worden. In de praktijk betekent dit dat één enkele
instantie van de toepassing gedeeld wordt tussen verschillende gebruikers, wat
ervoor zorgt dat toepassingen meestal slechts beperkt aanpasbaar en configureerbaar
zijn: veel aanpassingen zorgen er immers voor dat wijzigingen aan de code van de
toepassing nodig zijn, waardoor meerdere instanties van de toepassing nodig zijn,
wat er dan weer toe leidt dat systeembronnen niet meer gedeeld kunnen worden
over verschillende gebruikers heen.

Voor de meeste toepassingen die een zeer grote hoeveelheid gebruikers aan-
spreken is dit een zeer goed werkend distributiemodel. Door een beperkte set
goed gekozen configuratieopties aan te bieden kan aan de noden van de meerder-
heid van de klanten voldaan worden. Individuele klanten kunnen in deze situatie
slechts weinig eisen stellen, gezien ze elk slechts een zeer klein aandeel van de
inkomsten representeren. Het gebrek aan aanpasbaarheid is echter voor sommige
toepassingsdomeinen een struikelblok dat een migratie naar de cloud blokkeert. Dit
is bijvoorbeeld het geval wanneer een toepassing niet aan een grote hoeveelheid
eindgebruikers aangeboden wordt, maar eerder verhuurd wordt aan een veel klei-
nere hoeveelheid organisaties, die elk een groep gebruikers kunnen hebben. Dit
zorgt ervoor dat iedere individuele huurder belangrijker wordt en dus meer eisen
kan stellen, wat er toe leidt dat de toepassingen vaak aangepast worden aan hun
specifieke noden. Voor deze sterk aanpasbare toepassingen heeft een migratie naar
de cloud slechts beperkt nut, aangezien de nodige aanpassingen voor iedere huurder
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er toe leiden dat aparte instanties van de toepassing nodig zijn, waardoor geen
systeembronnen gedeeld kunnen worden tussen verschillende huurders.

Dit proefschrift heeft tot doel het ontwerpen en bestuderen van technologieén en
beheertechnieken die gebruikt kunnen worden om aanpasbare cloudtoepassingen te
ontwerpen en beheren. Met dergelijke technieken wordt het mogelijk om systeem-
bronnen te delen over meerdere huurders heen en zo kosten uit te sparen. Hierdoor
kunnen toepassingen naar de cloud gemigreerd worden en kunnen nieuwe aanpas-
bare toepassingen ontwikkeld worden. Om dit te bereiken werden drie uitdagingen
beschouwd:

1. Een manier om aanpasbare softwarediensten te ontwerpen en modelleren
moet ontwikkeld worden. Deze aanpak moet het delen van systeembronnen
tussen verschillende huurders ondersteunen en ervoor zorgen dat deze cloud-
toepassingen toch zeer aanpasbaar zijn.

2. Eens er manieren zijn om aanpasbare softwarediensten te ontwikkelen, wordt
het nuttig om te onderzoeken hoe deze toepassingen binnen een rekencentrum
beheerd kunnen worden.

3. Gezien de softwarediensten over een netwerk aangeboden worden, is het
nodig om de invloed van het netwerk op deze toepassingen te beschouwen,
evenals hoe de ontwikkelde beheertechnieken binnen netwerken gebruikt
kunnen worden.

Vooraleerst werd bestudeerd op welke manier gedeelde aanpasbare softwa-
rediensten ontwikkeld kunnen worden. Hierbij werden verschillende manieren
bestudeerd om de tegenstrijdigheid tussen de aanpasbaarheid van toepassingen
en het delen van systeembronnen tussen huurders op te lossen. Als eerste stap
werd bekeken hoe de variabiliteit van de toepassingen gemodelleerd kan worden.
Daarna werd een naieve aanpak, waarbij verschillende instanties van de toepassing
gegenereerd worden die elk andere aanpassingen bevatten, vergeleken met een
oplossing waarbij toepassingen opgebouwd worden uit gedeelde componenten. Bij
de componentgebaseerde oplossing verzorgt iedere component een specifieke func-
tionaliteit van de toepassing en worden verschillende variaties van de toepassing
bekomen door dynamisch verschillende componenten aaneen te rijgen. Elk van
deze componenten kan door verschillende gebruikers gedeeld worden, wat het delen
van systeembronnen tussen huurders mogelijk maakt. Deze componentgebaseerde
oplossing heeft als voordeel dat systeembronnen beter gedeeld kunnen worden over
de verschillende huurders heen: indien twee toepassingen op sommige vlakken
vergelijkbare functionaliteit aanbieden, dan kunnen ze de voor die functionaliteit
gebruikte componenten delen, ook al zijn de toepassingen op andere vlakken niet
identiek.

Omdat toepassingen in deze aanpak bestaan uit meerdere gedeelde componen-
ten die individuele functies van de toepassing realiseren, wordt het nuttig om te
bestuderen hoe systeembronnen op een optimale manier aan deze componenten
toegewezen kunnen worden binnen een cloudomgeving. Daarom werden in een
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volgende stap verschillende functieplaatsingsalgoritmen ontwikkeld, die bepalen
waar de verschillende componenten waaruit de toepassingen samengesteld zijn, ge-
plaatst kunnen worden binnen een rekencentrum. Deze algoritmen houden rekening
met de variabiliteit van toepassingen en kunnen daardoor intelligentere beslissingen
nemen dan standaard cloudbeheeralgoritmen: enerzijds kan de hoeveelheid sys-
teembronnen die nodig is om de toepassing aan te bieden verminderd worden door
rekening te houden met alternatieve manieren om toepassingen aan te bieden en
anderzijds kan variabiliteitsinformatie in rekening gebracht worden indien er een
tijdelijk tekort is aan systeembronnen, om de kwaliteit van toepassingen maximaal
te behouden en een minimale dienstverlening te garanderen.

Als laatste werden softwarediensten binnen volledige netwerken beschouwd,
wat het mogelijk maakt om rekening te houden met de toestand van het netwerk dat
klanten met het rekencentrum verbindt en om diensten doorheen het hele netwerk
te verspreiden. Om te beginnen werd hierbij bestudeerd hoe de netwerkimpact van
softwarediensten bepaald kan worden. Dit is nuttig wanneer de toepassing gebruik
maakt van bij de klant geinstalleerde toestellen en maakt het mogelijk na te gaan of
er voldoende netwerk en service capaciteit is voordat diensten uitgerold of aangepast
worden. Daarnaast werd ook bekeken hoe aanpasbare softwarediensten aangeboden
kunnen worden in netwerkomgevingen. Hierbij werden de concepten die gebruikt
werden bij de ontwikkeling van de functieplaatsingsalgoritmen toegepast binnen
netwerken. Omdat deze netwerken vaker een grotere heterogeniteit hebben dan
de netwerken binnen een rekencentrum, werd de componentgebaseerde aanpak
hiervoor uitgebreid zodat niet alleen gedeelde virtuele diensten, maar ook fysieke
toestellen en door de klant aangeleverde virtuele machines gebruikt kunnen worden
als component.

Met de in dit proefschrift voorgestelde oplossingen, wordt het dus mogelijk
om zeer aanpasbare softwarediensten aan te bieden gebruik makende van cloud-
technologieén waarbij systeembronnen gedeeld worden tussen verschillende huur-
ders. Dit maakt het mogelijk om bestaande op maat aangepaste toepassingen
naar de cloud te migreren en om nieuwe soorten aanpasbare softwarediensten te
ontwikkelen en aan te bieden. Hierdoor kunnen aanbieders van deze diensten de
kostenvoordelen en toegenomen flexibiliteit die voortkomen uit het gebruik van
cloudinfrastructuur benutten.






Summary

In recent years, the use of cloud computing has increased significantly. Cloud
computing technologies can be used to offer on-demand applications and services
to multiple end users. This allows service providers to offer virtualized computer
systems, software platforms and applications to their users, who typically only
have to pay for the resources they use. This increases application flexibility, and
allows users to quickly add and remove resources as the application demand fluc-
tuates. Cloud resources are hosted in datacenters, where they are shared between
a large number of users. This allows service providers to exploit economies of
scale, making it possible to offer these resources at a relatively low cost. To fully
benefit from the advantages of cloud computing, software must be developed in
a way that ensures that resources can be shared between multiple end users. In
practice, a single application instance is therefore usually shared between a large
number of end users. This however has the adverse effect of limiting application
configurability and customizability: many changes would require modifications
to the application code, which means these changes could result in the creation of
separate application binaries for the applications. This would lead to the creation of
multiple separate application instances for different users, preventing the effective
sharing of resources.

For various applications which are developed for a large number of end users,
this distribution model can work very well. By providing a limited set of well-
chosen configuration options, the needs of the majority of customers can be met.
Meeting the demands of individual customers with specific requirements is in this
case not needed, and would not be profitable as each customer only represents a
small share of the total revenue. However, this approach does not work for every
type of application. In some domains, the limitation of application customization is
a roadblock preventing a migration to the cloud. This is, for example, the case when
applications are not sold to a large number of end users, but instead to a smaller
set of tenants that each have a large number of end users. In such a scenario, an
individual tenant becomes much more important, allowing some tenants to demand
a highly customized application which is tailored to their needs. For these highly
customizable applications, a cloud migration only results in limited advantages,
as customizations result in separate application instances that can not be shared
between tenants.

This dissertation aims to investigate technologies and management techniques
that can be used to design and manage customizable multi-tenant Software-as-a-
Service (SaaS) applications. These techniques allow the sharing of resources among
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tenants, the migration of existing customizable applications to multi-tenant cloud
environments, and the development of novel customizable SaaS applications and
services. To achieve this, three challenges were considered:

1. An approach for designing and modeling multi-tenant customizable SaaS
is needed. This approach should support the sharing of resources between
tenants, while still providing high customizability.

2. Once customizable SaaS can be modeled, it becomes useful to study how
customizable applications can be managed within a datacenter.

3. SaaS is offered to end users over a network. Therefore, it is important to
investigate the impact of the various applications on the network, and how
the management techniques developed in this dissertation can be used within
network environments.

To tackle the above challenges, approaches for designing and modeling cus-
tomizable SaaS were first developed. To achieve this, a methodology for modeling
the customizability of applications was studied. Then, three alternative approaches
for resolving the conflict between software customization and multi-tenancy were
studied: a naive approach, which generates multiple application binaries based on
the customizations, was compared to an approach where applications are composed
out of multi-tenant components and a hybrid approach combining properties of both.
In the component-based approach, every component realizes specific features that
the application can provide, and customized applications are built by dynamically
chaining together different components. Every individual component can be shared
between multiple applications, enabling multi-tenancy. This component-based ap-
proach has the advantage of better sharing system resources over different tenants,
as applications can share resources when they share individual components, even if
they are not identical when it comes to other functionalities.

In this approach, applications are built out of shared components, each provid-
ing part of the application features. Thus, it is useful to study how resources can be
assigned optimally to these shared components within a cloud datacenter. Therefore,
feature placement algorithms, which determine where the components the appli-
cations are composed of are allocated within a datacenter, were developed. These
algorithms take the application customizability into account, enabling them to make
more intelligent decisions than standard cloud resource management algorithms:
when sufficient resources are available, the amount of system resources needed
to provision applications can be reduced by taking into account alternative ways
to provide applications, ensuring resources are shared as much as possible, while
when there are insufficient resources customization information can be utilized to
maintain quality as well as possible, providing a minimal service.

Finally, customizable SaaS services were considered within networks, making it
possible to take the network connecting the cloud datacenter to clients into account
when services are deployed, and to spread application components throughout the
network. First, an approach for determining the network impact of SaaS services
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was detailed. This is for example useful when applications make use of client-side
hardware devices, and makes checking whether there is sufficient network and
service capacity before services are deployed possible. In addition, an approach for
offering customizable SaaS in network environments is studied. Here, the concepts
previously used to develop feature placement algorithms for resource allocation in
datacenters are applied within network environments. As these networks are more
heterogeneous than the networks within a single datacenter, the component-based
approach was extended to support different types of components. In addition to
using virtualized shared services, physical devices and virtual machines provided
by clients can be used as application components.

The solutions presented in this dissertation enable the development of highly
customizable SaaS applications, making use of cloud technologies, where system
resources are shared between multiple tenants. This allows the migration of custom
tailored applications to the cloud, and the development of novel customizable SaaS
offerings built using cloud technologies, making it possible for service providers to
take advantage of the cost benefits and increased flexibility that result form the use
of cloud infrastructure and technologies.






Introduction

“The interesting thing about cloud computing is that we’ve redefined
cloud computing to include everything that we already do”

—Larry Ellison (Oracle CEO, 2008)

In common use, “cloud computing” has grown to become synonymous with
offering applications and services over the Internet. This has stretched the concept
to encompass many types of applications, making cloud computing omnipresent
in IT news in recent years. While this has diluted the meaning of the word cloud,
a clear definition of it does in fact exist: the National Institute of Standards and
Technology (NIST) defines the cloud computing as follows [1]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.”
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The NIST definition of cloud computing states that a cloud must have five
essential characteristics: (1) the resources must be provided on-demand and without
requiring human interaction by a service provider when a client requests them; (2)
the resources must be accessible over the network using standard technologies,
making them accessible by many different clients; (3) the resources are pooled,
meaning that physical and virtual resources can be shared between multiple con-
sumers using a multi-tenant model; (4) it should be possible to dynamically increase
or decrease the amount of resources allocated to a tenant when needed, a concept
referred to as rapid elasticity; and (5) the service should be metered, making it
possible to report and bill based on the resources used.

1.1 Everything as a service

Cloud computing is the latest evolution of the utility computing concept, which
was already envisioned in the early 1960s. In those days, computers were very rare
and expensive, making it very wasteful not to fully utilize them. Because of this,
computers were shared between multiple users. A user would offer programs, which
were sent to a time-shared mainframe, where they would be executed. Since the
Internet as we know it did not exist at the time, this was done by directly accessing
the mainframe or by using dumb terminals that were attached to the computer. At
most private networks were used, possibly using leased lines to connect multiple
sites. As computational capacity was shared between users, this led some to believe
that computing would eventually become a new utility, where computation would
be a service like water or electricity [2].

With the rise of microcomputers, computers became less expensive and more
widespread. The personal computers offered their users sufficient computing capa-
city at a low enough cost, thus removing the need for time-sharing. Computation
shifted to the edge of the networks, or to terminals that were not connected to a
network at all. This changed when the Internet gained popularity during the 1990s,
which caused more and more functionality to be shifted back to remote datacenters.
The mobile revolution further reinforced this trend, as it made energy-efficiency
more important, and as the computing capacity of these devices is more limited than
that of traditional computers, making remote computation more useful. Further-
more, the use of multiple computing devices further increased the benefits of using
remote servers, as this made the synchronization and management of data easier.
In 2014, 81% of mobile data traffic was already generated by cloud applications,
and it is expected that this will further increase to 90% by 2019 [3]. Following
this trend, various applications, which were at some point deployed on end user
terminals or on-premise such as mail, calendar, office suites, enterprise resource
planning, and many others are moving to a service-based distribution model. This
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Figure 1.1: The three cloud service models defined by the NIST:
Infrastructure-as-a-Service (laaS), Software-as-a-Service (SaaS) and
Platform-as-a-Service (PaasS).

approach of offering software as an on-demand service over a network is referred
to as Software-as-a-Service (SaaS).

This trend is supported by an increase in flexibility within the datacenters,
now often built using cheap commercial off-the-shelf hardware, where multiple
Virtual Machines (VMs) can be deployed using virtualization. A VM behaves
like a physical computer, but multiple VMs can be instantiated on a single host.
This makes the deployment of additional application instances, which is done by
instantiating new VMs, more flexible, and in turn makes it possible to elastically
scale applications based on changing demand. New service models make use of
this flexibility, making it possible to rent VMs by the hour. This resulted in the
Infrastructure-as-a-Service (IaaS) model, where VMs are offered on-demand using
a pay-per-use model, and the Platform-as-a-Service (PaaS) model, where a software
platform on top of which applications can be built is offered.

TaaS, PaaS and SaaS are considered the three service models of cloud com-
puting [1]. As illustrated in Figure 1.1, these models differ in how much of the
traditional IT stack is provided as a service by the service provider, and how
much of it is managed by the clients. Many other, less common models have also
been proposed, such as e.g. Network-as-a-Service (NaaS), where a virtualized
network is offered, Datacenter-as-a-Service (DCaaS) where both virtualized hosts
and networks are offered, and Business-Process-as-a-Service (BPaaS) where entire
business processes are outsourced and provided on-demand. This has resulted in
the popularity of the all-encompassing Everything-as-a-Service (XaaS) concept,
which embodies the notion of offering any type of application or resource as an on-
demand metered service. XaaS and cloud computing are closely related, and nearly
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Figure 1.2: Estimated evolution of datacenter workloads. Datacenter workloads are
expected to increase with a significant increase in the number of workloads handled by
clouds. By 2018, 78% of all workloads will be processed in cloud datacenters. (Data
obtained from [4])

every type of XaaS can be reduced to one of the three main cloud service models.
NaaS and DCaaS can for example be seen as specific (though less traditional) IaaS
variants. BPaaS can generally be considered either as SaaS or PaaS depending on
whether the client can plug into the process with custom components'. The popu-
larity of these new paradigms is rising, and workloads are increasingly migrated
from traditional datacenters to datacenters managed using cloud technologies [4].
Figure 1.2 demonstrates this evolution in recent years and shows a forecast for the
near future.

The characteristics of clouds offer their operators and users many benefits,
amongst others the following:

1. Applications are centralized within a datacenter. This makes it easier to
manage and upgrade the application. It also makes it easier to synchronize
application data as it can be managed in a centralized way.

2. The datacenter contains a large pool of resources which is shared by multiple
groups of clients and users, referred to as tenants. While the resource capacity
is finite, it generally greatly exceeds the resource requirements of a single
tenant. From the point of view of individual tenants, the cloud therefore
generally seems to offer limitless resource capacity.

! In some cases, a BPaaS workflow can also contain tasks which are outsourced to humans. These
human actors do not fit within the traditional cloud computing layers, and show that XaaS, while
supported by cloud technologies and concepts, is a broader concept than cloud computing.
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Figure 1.3: Multi-tenancy can be achieved at multiple levels, resulting in differing
granularity.

3. Economies of scale are leveraged by the datacenter operator, enabling him to
offer resources at a lower cost. In addition, spikes in the resource utilization of
one tenant can smoothed by the varying resource utilization of other tenants,
and are smaller relative to the total number of available resources. This
reduces the need for overprovisioning of resources for the service provider,
further reducing costs.

4. Resources can be acquired and released quickly and on-demand without
human interaction, allowing for quick reactions to changing demands. This
makes it possible to elastically scale applications up and down, removing the
need to overprovision for peak resource use by the tenant.

Clouds generally offer resources to different clients, organizations and groups
of end users, each referred to as tenants. When a single user subscribes for a service
such as for example Dropbox or Microsoft Office 365, he is both the tenant and
the end user. It is however also possible for an organization to subscribe for these
services, offering the service to its members. In this case, the organization buying
the service is a tenant, while the members of the organization are the end users. A
single tenant can therefore correspond to one or more end users.

Clouds are generally multi-tenant: multiple tenants can make use of the same
shared resource pool. This multi-tenancy can however occur at multiple granularity
levels. At the datacenter level, a single server may be dedicated to a single tenant.
A single server may also be split into virtual partitions, each emulating an entire
computer system. In this case, a single VM can be dedicated to a single tenant.
Finally, multi-tenancy can also be handled at the software level. In this case,
software is designed in such a way that is able to handle requests of the end users
of multiple tenants.

These alternative approaches to multi-tenancy are illustrated in Figure 1.3, and
impact the number of servers that are needed to provision an application: when
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Multi-tenant  Multi-tenant  Multi-tenant

datacenter servers software
Maximum # tenants 1 1802 15003
Servers needed 1500 9 1
Server utilization 0.1% 11% 100%

Table 1.1: Comparison of the different types of multi-tenancy for 1500 tenants with each a
single end user.

datacenter multi-tenancy is used, at least one server must be provided for every
tenant, even if these servers are underutilized, while software multi-tenancy is
only limited by the number of requests that a single server can handle. Table 1.1
illustrates this difference by showing the number of servers needed to provide
resources for an application with 1500 tenants, each having a single end user.
While every server may be able to handle requests for a similar number of end
user requests (in this case assumed to be 1500 end users, based on salesforce.com
numbers), datacenter-level multi-tenancy and server-level multi-tenancy are instead
limited by the number of tenants that a single server can provide resources for.
Multi-tenant software, by contrast, is only constrained by the number of end users
a single server can support, irrespective of the number of tenants. As shown in
the table, this can significantly impact the number of servers needed to provide a
software service, the server utilization, and therefore the cost of providing a service.
In this dissertation, the focus is specifically on multi-tenancy at the software level.

More recently, there has been an evolution to move away from single datacenter
deployments, once again bringing applications closer to the end user, as this can
improve both service reliability and quality. Multi-cloud deployments can improve
service availability and quality, as this prevents a service from breaking down when
a datacenter fails, and can reduce latency when the cloud closest to an end user is
used to service his requests. Edge clouds can also be used to lower network latency
and network loads e.g. by using caching. Fog computing [6] goes even further,
by not only leveraging edge clouds, but also other hardware such as set-top-boxes
and access points. In addition, there has been an increasing focus on the networks
within clouds and those interconnecting them. This has resulted in technologies

2 Assuming a high-end server with 60 available cores is used with 3 VMs per core. In practice,
deploying this many VMs on a single host may lead to significant performance penalties due to the
overhead incurred by context switches and the large number of running operating systems. A lower
number of VMs may be prefered to ensure applications perform consistently.

3 This number is dependent only on the executed application and the server capacity, and not on
the number of tenants. The value of 1500 is based on the server and user numbers of salesforce.com
in 2009. At a salesforce.com event in New York City, founder and CEO Marc Benioff stated that their
multi-tenant software was hosted on 1000 servers that together were able to handle the requests of their
1.5 million end users [5], implying that a single of their servers is, on average, responsible for handling
the requests of 1500 end users.
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such as Software-Defined Networking (SDN) [7], which are used to make the
network programmable, and Network Functions Virtualization (NFV) [8] which
allows service providers to replace expensive dedicated networking hardware by
dynamically instantiated cloud services.

1.2 Problem statement

As migrating applications to cloud environments can lead to significant cost savings,
more and more applications are offered using cloud infrastructures, migrating them
from on-premise deployments to remote datacenters. Usually these applications
are offered to a large number of customers, who can then request the SaaS on-
demand, and without human interaction. These mass-market applications are
usually provided with only limited customizability: clients order or register for a
take-it-or-leave-it version of the software with limited configurability. As shown by
the increasing popularity of these types of services, this approach works well for
cloud-scale applications with huge numbers customers.

Some applications are however typically sold to a small number of large clients,
who each pay a considerable amount of money for the provided service. Since
individual clients are much more important in this instance, they are able to demand
applications that are custom tailored to their specific needs. This traditionally re-
sults in heavily customized applications that are built from a customized code base,
which may contain client-specific changes. When these applications are hosted at
the client site, the service becomes more expensive as sufficient hardware must be
provided to handle peak workloads. Moving these applications to the cloud reduces
the need to provision resources for peak workloads, but as every client requires its
own active application instances, and no resources can be shared between clients,
the benefits of using cloud infrastructure are diminished. Ideally, customizable
SaaS should be developed in such a way that it supports multi-tenancy at a software
level, ensuring every tenant can make use of a single, shared application instance
that can scale on-demand. As customizations often result in changes to the ap-
plication binary, an approach for developing and managing customizable SaaS is
needed.

Many applications that are currently deployed on the client-side could benefit
from leveraging cloud technologies. To achieve this, the applications must be
migrated to a cloud environment, turning them into a SaaS offering. Depending on
the application, it is however not always possible to completely migrate applications
to a remote datacenter, as there are various reasons why application components
may not be migrated: local physical terminals may provide part of the service’s
functionality, local hardware may be needed to provide fallback functionality when
high reliability is needed, or the application may require local data that may not
be moved for compliance reasons. In each of these cases, only a partial migration
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can be achieved. This implies that the network connecting the local components to
the remote environment and its capacity must be taken into account as well during
service deployment.

A significant growth is expected in cloud workloads in the next few years. The
greatest growth is expected in SaaS, which is expected to have a 59% share of all
cloud workloads by 2018 [4]. To achieve this, a cloud migration path for existing
complex applications, and an approach for managing SaaS variability are needed.
The central research question in this dissertation is “How can application and service
customizability be handled in multi-tenant cloud and network environments?”. In
particular, the following issues are targeted:

1. While variability management approaches exist that can be used to maintain
multiple customized versions of an application [9], these approaches gene-
rally result in multiple application binaries, making it impossible to share
resources between tenants. Therefore, an approach is needed to design and
model customizable multi-tenant SaaS applications. This approach should
fit within a generic migration approach that can be used to migrate existing
customizable applications to the multi-tenant cloud.

2. SaaS customizability can be taken into account during the runtime mana-
gement of these applications. This makes it possible for the management
system to minimize resource usage, and to take application variability into
account when service failures occur due to insufficient resource availability.
To achieve this, novel datacenter resource management algorithms, which
can be used to manage customizable SaaS applications, are needed.

3. When applications are migrated to a remote cloud environment, it is not al-
ways possible or desirable to host the entire application in a single datacenter.
In some cases, application components must remain client-side, for compli-
ance and quality reasons, or because the service depends on the availability of
physical devices. In other cases, multi-cloud deployments and technologies
such as fog computing make it possible to spread application components
throughout the network. This puts an increasing strain on the underlying
network. Therefore, strategies are needed to take the underlying network into
account during the deployment and management of customizable applica-
tions.

1.3 Definitions & terminology

In this section, a definition is provided of the most important concepts used through-
out this Ph.D. dissertation:
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e Virtualization: Virtualization is used to make an abstraction of physical
hardware, turning physical resources into logical resources. Virtualized
resources provide identical functionality compared to their physical coun-
terparts, emulating their behavior. They can however be deployed with
more flexibility, e.g. by executing multiple virtualized resources on a single
physical machine.

e Virtual machine: A Virtual Machine (VM) is, as the name implies, a virtu-
alized computer system. VMs can be deployed on physical hardware, and
each VM behaves like an isolated computer system. VMs are generally used
as the primary resources offered and hosted by IaaS clouds.

e Multi-tenancy: A tenant is a group of users, typically belonging to a single
organization that have a similar view on a software application. In multi-
tenant applications, a single application instance is used to provide resources
for multiple tenants, making it possible to share resources between the dif-
ferent tenants. This contrasts with applications where a separate instance is
created for every tenant.

e Configuration and customization: When applications must be tailored for
a tenant, a distinction can be made between configuration changes and cus-
tomization changes. Configuration changes are smaller changes that can
be implemented by changing the application configuration. For traditional
applications, these changes are generally carried out by changing config-
uration files. These configuration changes are usually easy to implement,
and can therefore be supported with relative ease in SaaS applications. Cus-
tomization changes are more invasive changes that significantly impact the
functionality of an application or its quality characteristics. In traditional
applications, these changes are generally carried out by changing the appli-
cation at compile-time, resulting in a separate binary. These changes can
therefore not be provided using multi-tenant SaaS.

e Feature: A feature is a distinct application functionality that may or may not
be included in an application. By including and excluding features multiple
application variants can be created with differing functionalities. Features
can therefore be used to model application customizability. Feature models,
which define relations between features, are used to express which feature
combinations result in valid, feasible application instances.

1.4 Research contributions

The main contributions of this dissertation address the challenges involved with the
modeling and management of customizable SaaS applications and services, and
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how customizable applications can be migrated from on-premise deployments to
remote datacenters. The ultimate goal is to develop technologies that can be used
to improve the customizability of SaaS applications, making it possible to provide
tailored applications at a reduced cost. The following contributions are detailed in
this dissertation:

1. An approach for modeling and managing customizability of multi-tenant
SaaS applications.
Offering customizable SaaS applications is simple when multi-tenancy isn’t
needed, and multi-tenant SaaS can be delivered when customizability is
limited. Designing applications that support both properties is however more
complicated. To achieve this, the following contributions are presented:

(a) An approach for modeling SaaS applications by splitting them up into
individual components each realizing application features has been de-
veloped. Using this approach, applications are composed out of multiple
multi-tenant components using a Service-Oriented Architecture (SOA).

(b) An application development platform and a runtime platform are pre-
sented, demonstrating how multi-component applications can be de-
signed, and how they can be managed.

2. Aresource allocation approach for managing customizable SaaS applications
within datacenters.
Using a component-based approach for modeling SaaS applications makes
it necessary to develop management algorithms that can be used to allocate
these multi-component applications within the datacenter. These algorithms
can be made aware of application customizability, making it possible to take
variability into account during the application allocation. Concretely, the
following contributions are presented:

(a) The feature placement problem is introduced. This algorithmic problem
deals with the resource-allocation of component-based customizable
SaaS applications, and takes application variability into account during
the resource allocation process to minimize associated costs.

(b) Static and dynamic optimal and heuristic algorithms that solve the
feature placement problem are presented and evaluated.

(c) A scalable hierarchical resource management system that can be used
to improve the scalability of centralized cloud management algorithms
such as the heuristic feature placement algorithms is presented.

3. Network-aware modeling and management algorithms for inter-cloud net-
work environments.
SaaS applications and services are not always contained within a single cloud
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environment, but may also be distributed over multiple clouds, devices and
networks. To support this scenario, a management and modeling approach for
interconnected services in network environments is needed. This is achieved
by the following contributions:

(a) An approach for modeling service and network resource utilization
within networks is presented. This model can be used to determine the
impact of service migrations and deployments on client networks, and
can be used as an access filter before service changes are enacted.

(b) A generalized network-aware modeling and management approach for
customizable component-based multi-tenant SaaS services in wide area
networks is introduced.

1.5 Outline of this dissertation

This dissertation is composed of a number of publications that were realized during
this Ph.D. research (as typically the case for dissertations at the Faculty of Engi-
neering and Architecture of Ghent University). The selected publications provide
an integral and consistent overview of the work performed. The different research
contributions are detailed in Section 1.4 and the complete list of publications that
resulted from this work is presented in Section 1.6.

This section provides an overview of the remainder of this dissertation, showing
how the different chapters are linked together. A schematic overview of how the
chapters (Ch.) and appendices (App.) are related to each other and to the research
contributions is depicted in Figure 1.4. Table 1.2 shows how the chapters in this
dissertation relate to the contributions listed in Section 1.4.

In Chapter 2 multiple alternative approaches for modeling and managing cus-
tomizable multi-tenant SaaS application are presented and evaluated. An approach
where customizability is handled by creating and managing multiple application
binaries based on specific application configurations is compared with a SOA ap-
proach where customization is handled by composing applications out of different
services. Both approaches are evaluated, showing that the SOA-based approach
reduces the number of required instances when highly customizable applications
are considered, which translates to a greater potential for multi-tenancy. In addition,
a hybrid approach extending the SOA-based approach, and combining properties
of both basic approaches is presented.

Chapter 3 introduces the feature placement problem, which can be used to
allocate resources for customizable SaaS applications that are built using a SOA. A
formalized model for this problem is defined and multiple algorithms that can be
used to solve the static feature placement problem are defined. In Chapter 4, dy-
namic algorithms solving the feature placement problem are designed and evaluated
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in detail. These algorithms take changes in deployed applications and application
workloads into account. By limiting the number of migrations, these algorithms are
more suitable for cloud deployments. To improve the scalability of these centralized
datacenter management algorithms, a hierarchical management framework, such as
the one presented in Appendix A can be used.

The various customizable SaaS management concepts are framed within a wider
development and runtime platform in Chapter 5. The main focus of this chapter
is on the development process, showing how the SOA-based principles can be
utilized during development and deployment of the application. To achieve this, an
automated approach to convert between a development application model and a
runtime application model is presented.

When applications and services are migrated from localized deployments to
remote cloud environments, this has the risk of impacting the underlying network
infrastructure, as workloads may stress a larger part of the network. When software
is migrated, deployed or upgraded, it is therefore important to take network capabil-
ities into account. Chapter 6 addresses how the impact of service deployments on
networks can be determined, focusing on client networks. Appendix B shows how
this impact analysis approach fits within the cloud migration framework.

Chapter 7 combines the presented approach for management of customizable
SaaS applications with network-awareness, and studies how service variability can
be handled in service provider networks. To support heterogeneous networks, the
SOA-based approach is extended to support hardware devices and both virtual and
physical services.

Finally, in Chapter 8, conclusions and research perspectives are presented.

Ch2 Ch3 Ch4 Ch5 Ch6 Ch7

Modeling and management . . ° ° °
of customizable SaaS

Datacenter management al- ° ° °
gorithms
Network-aware service ma- . °
nagement

Table 1.2: An overview of the contributions (Section 1.4) per chapter in this dissertation.
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Feature-based SaaS (Ch. 2)
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Figure 1.4: Schematic position of the different chapters in this dissertation.
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Feature-Based Application
Development and Management of
Multi-Tenant Applications in Clouds

This chapter introduces an approach for designing multi-tenant Software-as-a-
Service (SaaS), and is the basis for the next chapters. In recent years, there has
been a rising interest in cloud computing, which is often used to offer SaaS over
the Internet. SaaS applications can be offered to clients at a lower cost as they are
usually multi-tenant: many end users make use of a single application instance, even
when they are from different organisations. It is difficult to offer highly customizable
SaaS applications that are still multi-tenant, which is why these SaaS applications
are often offered in a one size fits all approach. In this chapter, multiple approaches
for developing and managing customizable multi-tenant SaasS offerings are explored.
We compare two approaches: an Application-Based Binary (ABB) approach which
focuses on deploying multiple multi-tenant application variants, and a Feature-
Based Binary (FBB) approach where applications are composed out of multi-tenant
services using a service oriented architecture. In addition, a third, hybrid approach,
combining properties of both is presented. When many application variants are
possible, the FBB results in the fewest application instances at runtime, increasing
the resource sharing that can be achieved. In instances where ABB achieves more
resource sharing, the hybrid approach, which is based on FBB, can be used instead.
Because of these conclusions we focus on the FBB approach in the next chapters.
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2.1 Introduction!

There has been a growing interest in cloud computing, where applications are no
longer executed on-premise but in remote datacenters. For application providers,
offering Software-as-a-Service (SaaS) via the Internet makes it possible to offer ap-
plications to large numbers of end users, resulting in cost savings through economies
of scale. These cost-savings are partially achieved by using multi-tenancy: multiple
end users make use of the same application instances, reducing the total resource
need and reducing the impact of varying numbers of end users. This however
results in limited customizability, often causing SaaS applications to offer a one
size fits all approach. For some applications, such as e.g. document processing,
medical communications and medical information management a very high cus-
tomizability is needed. In these situations, multiple very large client organizations,
referred to as tenants, require extensive customization options for their specific use
cases. For these application cases, customizations were traditionally provided on
an ad-hoc basis resulting in limited code reuse, increasing management complex-
ity and high development costs. The development, deployment and management
approaches discussed in this chapter are based on our experiences with these three
applications.

Offering multi-tenant SaaS applications with high customizability using a single
application instance is hard as all of the customization must then be handled at
runtime using a single application binary. Even in cases where this is possible,
e.g. if all customizations can be implemented using Aspect-Oriented Programming
(AOP) [1], this may still be a problem as executing different code paths for different
end users may impact the application performance, and by consequence the quality
characteristics of the service. This problem may be further exacerbated by additional
quality customizations making it even more difficult to provision the application
for all users using a single instance type.

These functional and quality considerations make it infeasible to use a single
application instance for all application variants. In this situation, two approaches
can be used to offer customizable SaaS applications. 1) Multiple application in-
stances can be built that each include a different set of customizations. In this
scenario, multiple multi-tenant application variants are built statically and managed
independently. Multi-tenancy can then only be achieved when two tenants make
use of the same application customization. We refer to this method for achieving
multi-tenancy as the Application-Based Binary (ABB) approach. 2) Alternatively,
an approach where every application is built using a Service-Oriented Architec-

! This chapter is based on the paper Feature-Based Application Development and Management of
Multi-Tenant Applications in Clouds by H. Moens and F. De Turck which was published in proceedings of
the 18th international Software Product Line Conference (SPLC 2014). For this dissertation, Section 2.3
(Software Product Line Engineering) was added to more clearly introduce the software product line
engineering concepts.
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ture (SOA) can be used. We refer to this as the Feature-Based Binary (FBB)
approach because each of the application services is used to offer one or more of
the application features. In this chapter, we analyze the approaches for offering
customizable multi-tenancy, comparing development, deployment and runtime
management; and the amount of multi-tenancy that can be attained using both
approaches. Additionally, we propose a hybrid approach that adds properties of the
ABB approach to the FBB approach.

In the next section we discuss related work. In Section 2.3 an approach for
modeling application variability is discussed. Afterwards, in Section 2.4 we discuss
the ABB and FBB approaches for managing variability of SaaS applications in
clouds and describe a hybrid approach incorporating ABB applications in the
FBB approach. Then we analyze the approaches theoretically in Section 2.5 and
experimentally in Section 2.6. This is followed by a brief discussion in Section 2.7.
Finally, in Section 2.8 we discuss our conclusions.

2.2 Related work

Dynamic software product lines [2, 3] can be used to develop applications that can
be customized at runtime. Many different approaches have been proposed in recent
years [4]. An aspect-oriented approach for dynamically managing variability is pre-
sented in [1]. This approach can be used to create highly customizable applications
that all function using a common code base, and thus using common application
instances. It is however not always possible to capture all possible variation using
a single code base, limiting the potential customizability of applications. More
importantly, using different code paths for different tenants may impact application
quality, causing tenants to influence each others performance. Therefore other
approaches for offering multi-tenant customizability in SaaS applications, such as
the approaches presented in this chapter, are still needed. The approaches presented
in this chapter benefit from such approaches, as they can be used to increase the
runtime customizability of individual application features.

Another approach for managing application customizability is by using SOA
architectures. An approach using runtime application customization was discussed
in [5], where runtime adaptation of applications based on changing application
context is achieved for applications built using service-oriented architectures. The
authors however do not focus on the running multiple customizations at the same
time, which is necessary for multi-tenant applications where tenants have custom
customizations.

In [6] Mietzner et al. present an approach for constructing customizable multi-
tenant applications using a SOA. This approach is similar to the FBB approach
which we discuss in this chapter. We however extend the approach by also consider-
ing the runtime management and resource allocation of applications. Furthermore,



22 CHAPTER 2

we compare the FBB approach with an alternative ABB approach to determine
when each approach is preferable using a theoretical and experimental analysis, and
we present a hybrid approach combining properties of both FBB and ABB. In [7],
the authors make a distinction between external and internal variation. Only the
former variations visible to end users while the other variants may be left undecided
when applications are specified resulting in open variation points. We exploit this
concept of open variation points to reduce resource costs in the FBB management
algorithms.

Some approaches, such as [8], focus on customizing applications by changing
the workflow in SOA applications. The FBB approach described in this chapter
is similar in that we use a SOA, but we focus on replacing components based on
tenant customizations for performance isolation rather than on customizing the in-
teractions between the components. These workflow customization approaches are
complementary to the FBB approach as they can be used to coordinate between the
resulting application components and offer additional application customizability.

The concepts presented in this chapter are based on service lines [9], which are
used to construct customizable workflows of customizable services. The authors
however focus on AOP and dependency injection to offer customizations. The
FBB approach presented in this chapter extends the approach by offering greater
customizability of services by permitting the use of separate application instances
when doing so is needed for performance isolation and higher customizability.
Furthermore, the management approach discussed in this chapter can be used to
reduce management costs by exploiting open variation points at runtime.

This chapter builds on our previous work in runtime management of customiz-
able cloud applications [10, 11], which will be discussed in-depth in Chapters 3
and 4, where we discuss how SOA applications can be managed by a cloud manage-
ment system, and how open variation points can be exploited at runtime to reduce
management costs. This chapter describes the broader approach, discussing how
these component-based applications can be developed, deployed and managed. We
also compare the FBB approach with an alternative ABB approach, and describe a
hybrid approach containing properties of both approaches.

2.3 Software Product Line Engineering

Software Product Line Engineering (SPLE) [12] is an engineering domain that
focuses on the development of methods, techniques and tools that can be used to
manage software variability. To represent application variability, an application is
modeled as a collection of features. A feature is a concept which is used to model
a distinct set of functionality that can be part of an applications. Features can be
implemented in multiple ways: they may link to application configuration changes,
they may refer to application code assets, or they may refer to AOP aspects that
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- Mandatory
-2 Optional
-3 or

-3 Alternative

Figure 2.1: An illustration of a hierarchically structured feature model. Every box represents
a feature. Feature a is the root of the feature model, while the other features are related
using various relations, which are represented using the Pure::Variants notation.

can be woven into an application to modify specific application functionality. By
selecting a subset of features, and including them in an application, an application
variant is created. Application customization can therefore be achieved by selecting
and deselecting different sets of features for different application variants, and
subsequently building the applications. Some features that do not contain any code
or configuration changes, can also be included. These empty features can be used
to add structure to the feature model.

To better structure the application customization process, the application fea-
tures are related using a feature model. This makes it easier to specify the sets
of features that may occur at the same time in an application, as the inclusion of
some features may result in the inclusion or exclusion of other features. Feature
models are generally structured hierarchically, and are constructed making use
of a limited set of relations that associate parent features with one or more child
features. This hierarchical approach makes it easier to reason using these models,
and also makes it possible to graphically represent feature models. Figure 2.1 shows
an illustrative feature model using the Pure::Variants [13] feature model notation
which we use throughout this dissertation. The following four relation types are
generally discerned:

e Mandatory(a, b): If a feature a is included, the feature b must be included
as well.

e Optional(a, b): If a feature a is included, the feature b may be included.
Conversely, the feature b must not be included if a is not included.

e Alternative(a, S): If a feature a is included exactly one of the features
contained in the set S must be included. If a is not included, none of the
features in S may be included.

e Or(a, S): If a feature a is included, at least one of the features contained in
the set S must be included. If a is not included, none of the features in S may
be included.
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2.4 SaaS multi-tenancy approaches

Multi-tenancy is an important concept for reducing costs in cloud environments.
When an application is multi-tenant, multiple end users and tenants make use of a
single shared application instance. An instance in this context is a compiled artifact
that is executed on physical or virtualized hardware. The different ways in which
variability is handled can have an impact on development complexity, performance
consistency and flexibility. We focus on an approach using feature modeling,
where the variability of an application is represented using features. A feature is
a specific application functionality that can be included in an application. These
functionalities can be represented in a feature model, a formal representation of
relations between features that can be used to determine which feature combinations
are possible. We consider two types of variability:

1. Compile time variation: If variations are compiled into the application, this
results in the maximum flexibility when developing applications as entirely
different code may be used for each different application variant. Furthermore,
it is easier to ensure there is more consistent application performance for
different users as all users make use of the same code. The cost of this
approach is however higher, as it is impossible to share resources between
tenants with different configurations. This results in an increase of instance
types and management complexity. These variations can be either defined by
developing separate code modules, or alternatively by defining AOP aspects
that are compiled statically into the application binary.

2. Runtime variation: Two runtime variation types can be distinguished: con-
figuration changes and customization changes [14]. Runtime configuration
can only be used for smaller changes that can be done by e.g. changing
configuration files. These changes are easy to implement and are therefore
already supported by many SaaS applications. They are however also the
least flexible. Runtime customization changes are harder to implement as
they result in the execution of different code paths. Using AOP techniques,
the code of running applications can be changed at runtime by dynamically
weaving changes into the runtime binary of an application. While dynamic
AOP is well-established, it is more complicated to develop and test applica-
tions using this approach compared to an approach where static compilation
is used.

In practice applications have multiple customization and configuration options.
Therefore, it is possible to combine the various variation generation approaches,
handling some of the changes at runtime while managing others at compile time.
As in pure multi-tenant applications all end users make use of the same application
instance, customization can only be offered through runtime variation. This limits
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the customizability of the application. Alternatively, an approach with multiple
application instances using different compile-time customizations must be used.
When using multiple instance types, there are two possible approaches for managing
customizability:

e Application-Based Binary (ABB) approach: Using the ABB approach, cus-
tom application binaries are generated for every application variant that is
used by tenants. Resources can be shared between application instances when
the users have identical customizations. Instances of every used application
variant must always be active in the cloud environment, even if there are no
users, to ensure new users requests can be handled with acceptable quality of
serviceZ. Provided the number of different customizations is limited, this ap-
proach can be acceptable, but as the number of application variants increases
the cost of using this approach increases as well.

e Feature-Based Binary (FBB) approach: In the feature-based approach, an
application is split into multiple interacting components. These components
are implemented as services that provide a distinct part of the application
functionality. Service instances are associated with individual features, and
the application is composed out of these resulting feature instances by using
a SOA. Individual feature instances provide a specific, well-defined part of
the application functionality, and as all applications making use of a feature
make use of the same customizations, resources can be shared within these
instances. Using this approach the customization is achieved by changing the
services that are active and by the way in which the services are composed.

Both approaches still support some multi-tenancy: in the ABB approach this is
by sharing resources between identically customized application, while in the FBB
approach this is done by ensuring the feature instances themselves are multi-tenant.
Figure 2.2 shows an illustrative example of both approaches. In this example, there
are five applications, of which two make use of an identical feature configuration.
In the ABB approach this results in four different instance types, one for every
configuration. When the FBB approach is used, the number of instances is not
dependent on the number of configurations, but rather on the number of different
feature instances; in the example, we assume the application is composed out of
three different feature instances. In the sample scenario, there are more application
variants than there are features, which is why the FBB approach results in more
multi-tenancy.

In practice, it is often the case that there are more potential application variants
than there are application features, in this case making it preferable to a feature-

2 If no instance would be active, a new instance would have to be created when a user request is
received. As creating new application instances may require considerable time, this would result in
unacceptable performance.
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(a) Load on application instances created using the ABB multi-tenancy approach. Multiple
applications may only use resources of a single application instance when their
customizations are identical.
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(b) Load on application instances created using the FBB multi-tenancy approach. Multiple
applications can share the resources offered by a single feature instance if the feature is part
of both applications, even when their configuration differs for other features.

Figure 2.2: An illustrative example comparing the ABB and a FBB multi-tenancy
approaches, showing how applications can be assigned to shared multi-tenant application
and feature instances. Every application and feature instance is contained in a separate VM.
When only a few applications can be assigned to a single instance, server capacity assigned
to the VM may be wasted, as then the VM may not fully utilize its available CPU or memory.

based approach. The FBB approach can also be modified to incorporate some
properties of the ABB approach. This results in a hybrid approach that can support
both feature-based and application-based instances. We will discuss this hybrid
approach later in this section.
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(b) The FBB development and deployment process.

Figure 2.3: The processes for developing and deploying multi-tenant feature-based SaaS
applications using the ABB and FBB approaches.

2.4.1 Application development, deployment and management

The processes for developing, deploying and managing applications differ between
both approaches. Figures 2.3a and 2.3b show the processes for respectively the
ABB and FBB approaches. When developing and deploying new applications,
the topmost processes are executed. When new applications are instantiated for a
tenant, the second processes are used. In some cases, new features may still have
to be implemented for specific very large tenant organizations when they request
new application instances, making it possible for the deployment workflow to be
interrupted by an additional development phase.

2.4.2 ABB applications

The process for developing ABB applications is straightforward, as shown in
Figure 2.3a: first a feature model is defined, then the features are implemented. For
this process traditional SPLE approaches can be used.

Deploying applications is done in multiple steps:
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. The process starts when a tenant requests a new application or requests

changes to an existing application. For new tenants, this request is typically
made by a seller employed by the platform provider. It may also be possible
for existing clients to make these requests themselves using a configuration
interface. When new organizations are added, it is possible for them to have
new requirements that are not yet supported by the current application. If this
is the case, and depending on the potential profit, a management decision may
be made to implement these requirements, in which case the development
process is started to first update the application by adding the additional
features.

. Next, a tenant configuration interface is used to specify the application

configuration. This interface can be used to specify the features that are
included in the tenant application and their configuration.

. Once the customizations are selected, it is possible to compile the application

instance. This is only needed if no instance with an identical configuration
exist.

. The application instance is deployed in the cloud environment. Managing

applications can then be done using standard management techniques for
multi-tenant applications such as [15]. If an identical application® already
exists, the application instance is not allocated; instead, the management
system reconfigures the existing instance to offer it to the new tenant using
multi-tenancy.

2.4.3 FBB application development

Developing applications using the FBB is a process that requires four steps as
shown in Figure 2.3b:

1. First, an application feature model is defined. This model contains all the

features that are defined by the application, and thus encompasses all the
customization and configurations that a tenant may request.

. The development model can then be analyzed to determine how each of

the features can be implemented. This can be done by classifying them
into compile time and runtime features. The former features are features
that impact performance or require distinct code modules, and therefore
require distinct application instances at runtime, while the latter features
can be implemented by configuration or AOP changes to an instance at
runtime. Based on this, a model where all runtime features are removed can

3 In this case an identical instance is one which contains the same static customizations. Two identical

instances may still differ in functionality if they have different runtime weaving or configuration changes.
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(a) A development feature model containing compile time and runtime variability.
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(b) A collection of services that each deliver part of the functionality of an application.
Features may or may not be customizable themselves (illustrated here by showing smaller
feature models within the features), but this customization must be provided using runtime

changes only.

Figure 2.4: An illustrative example of a development and runtime feature model. Both
models offer the same customizations, but in the development model all features are
contained within the model while the runtime model contains only compile-time
customizations requiring separate feature instances. The runtime changes are handled by
ensuring the feature instances themselves are customizable as well.

be determined. All of the features in this model are thus associated with
specific code modules.

3. The services that are defined in the runtime feature model can then be imple-
mented.

4. Finally, the service binaries and runtime feature model are pushed to the
management system running within the cloud environment. Once this is done,
it is possible to deploy the application services, but there no are applications
making use of the newly developed features yet.

An important and complex step in the application development is the removal
of runtime changes from the development feature model. To achieve this, all of the
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features that can be provided at runtime are stripped from the model, resulting in
a smaller runtime feature model containing only the features for which separate
instances are needed. Each of these features can then be implemented as a separate
instance that realizes specific application functionality. These feature instances may
themselves be customizable, but these customizations may not require compile-time
changes. The model transformation is illustrated in Figure 2.4, where we show how
an example development feature model (Figure 2.4a) may be transformed into a
runtime feature model (Figure 2.4b) where some features are realized by providing
them using different service instances while others are realized by runtime variation
of instances at runtime.

This model transformation can be a manual step during application development,
but for changes that can be represented using AOP aspects that need to be applied
to components, this approach can be automated. We described an approach for
automated feature conversion in [16]. In this approach it is possible to automate
the conversion of a feature model containing code modules and aspects applying to
specific components to a runtime feature model where all application features refer
to a code module.

In the presented approach, every feature in the runtime feature model is asso-
ciated with a code module that is used to instantiate the feature. Some features
may however be defined purely to add structure to the feature model. To make this
possible, developers may define empty features. These features are not associated
with code modules and including them does not create new instances.

2.4.4 FBB application deployment

Once the application is developed, new instances can be deployed for clients.
Typically, this process is done in the four steps shown in the second process in
Figure 2.3b:

1. First, a tenant may requests a new application or modifications to an existing
application. Like for ABB applications this request may be processed at once
if all of the requested features already exist. Alternatively, this may also
lead to a new development cycle where additional features are defined and
implemented.

2. A tenant configuration interface is used to specify the application configura-
tion. This interface is based on the development feature model (containing
all of the changes) and may be generated automatically based on the feature
model.

3. The new application configuration is then pushed to the management sys-
tem. This management system then allocates resources on existing feature
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Figure 2.5: The FBB approach management system. The feature placement algorithm is
responsible for allocating resources for the various application instances.

instances or instantiates additional feature instances to accommodate the
application.

4. The application is then deployed and available.

An advantage of using a runtime feature model to represent application com-
ponents is that it is possible to define open variation points [7]: features not just
be either selected or excluded, but they may also remain undecided. This makes it
possible to defer some decisions until runtime, reducing resource costs.

2.4.5 FBB application management

The cloud management system is responsible for allocating resources for the various
feature instances that must be deployed in the FBB approach. The runtime feature
model is known by the cloud management system, and is used by the management
system to determine the features that are included in application. The final feature
configuration of an application is dependent on the feature model, selected features,
excluded features, and how open variation points are filled in by the management
system.

Due to the presence of open variation points, there may be multiple possible
feature configurations for an application, which results in interesting opportunities
for reconfiguration of applications at runtime. This in turn results in multiple
benefits. 1) It is possible to reduce the number of active instance types by preferring
configurations that are already deployed within the cloud system. This increases
multi-tenancy and reduces resource costs. 2) Similarly, it is possible to choose a
feature configuration that results in the quickest deployment, which can also be
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done by reusing feature instances that already exist and minimizing the number of
new features that must be deployed.

To achieve these benefits, it is important to make use of management algorithms
that are feature-aware. These management algorithms combine cloud application
placement algorithms [15, 17, 18], which are used to allocate resources in clouds,
with feature-awareness. The resulting feature placement algorithms can both de-
termine an optimal application feature configuration and the placement of feature
instances on servers in the cloud environment.

Figure 2.5 shows the how the feature placement algorithm functions. The
feature placement is aware of the servers that are active within the cloud datacenter,
the feature model, and the applications that make use of this feature model. Based
on this information, a feature configuration can be determined for the applications,
and an allocation can be determined indicating which feature instance is allocated
on which server for which application. This application placement is then executed
on the servers. These feature placement algorithms are discussed in-depth in
Chapters 3 and 4.

2.4.6 Hybrid multi-tenancy

As mentioned previously, the FBB approach results in fewer application instance
types provided that the number of features is lower than the possible number of
different application variations. In some cases it may however be preferable to use
ABB applications rather than FBB applications:

1. If the number of custom variants is lower than the number of features, using
the FBB approach would result in more different instance types compared to
the application-based approach.

2. If a specific variant has a very large number of users, or has many tenants
using it. In this scenario it may be preferable to create a single instance imple-
menting the variant as this results in lower network demand and communica-
tions, and thus conversely may result in lower costs and higher performance.

3. If a specific variant may only be used by multiple end users of the same
tenant due to security reasons. In this scenario deploying separate instances
for every feature results in more active application than in a scenario where a
single instance is generated.

It is possible to extend the feature-based approach to also support ABB appli-
cation variants. This can be achieved by adding a root node ' as a parent of the
original root node r of the feature model. The set of specific application instances
I is then made. Every instance ¢ € I is a feature that links to a code module
containing the entire application with specific set of customizations as a single
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Figure 2.6: By adding specific application customizations as separate instances to the
feature model, a hybrid approach using both FBB and ABB approaches can be used.

instance. By adding the original root feature of the feature model r* and the instance
features I as using an alternative relation, a new feature model can be constructed.
This feature model contains all the relations of the original feature model with
the addition of the new Alternative(r’, I U {r}) relation. Using this approach, a
model is constructed where every instance is either an instance of the feature-based
approach, or of one of the chosen ABB instances.

This hybrid approach, further illustrated in Figure 2.6 combines properties
of both the FBB and ABB approaches. The hybrid multi-tenancy approach still
results in a runtime feature model with multiple services, and is thus equivalent to
the FBB approach with a larger feature model. By combining hybrid application
models with feature placement algorithms and open variation points interesting
synergies can be discerned: the feature placement algorithm can decide the optimal
application configuration by either deploying the application as a single instance
or by deploying the application as a collection of feature instances depending on
which option results in the lowest resource cost.

2.5 Analysis

We compare the ABB, FBB and hybrid approaches theoretically by comparing
the number of instance types that may be generated by them. As discussed in
the previous section, resources can only be shared between identical instances.
Therefore, there will be less multi-tenancy when more different instance types may
be generated, making it preferable to have fewer possible instance types. We refer
to the maximum number of instances that may be generated by a management
approach for a feature model as the Maximum number of Instance Types (MIT).
Note that the MIT results in a worst case scenario for a given feature model, and the
number of instances active at any time may be lower: in the ABB approach there
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will never be more different instance types than there are applications and in the
FBB the management algorithm may exploit open variation points to reduce the
number of instantiated instance types.

2.5.1 ABB instance count

In the ABB approach, the MIT is limited by the possible number of application vari-
ants as every variant is statically compiled and then allocated as a separate instance.
Thus, to determine the potential number of different instances, the total number of
valid feature selections of the application feature model must be determined. We
represent the MIT in the ABB approach of a family of applications with feature
model F' by A(F).

R represents the collection of all relations within the feature model, and R(f, -)
represents all relations in R with parent feature f. In our analysis we focus, as stated
previously, on feature models consisting of four types of relations: Mandatory,
Optional, Alternative and Or. For a feature x, A/ (z) represents the MIT of the
feature model containing x as the root feature and all of the subfeatures of w
within the original feature model. For a relation z, A" (x) represents the number
of variations introduced by this specific relation. The total MIT is then computed
by determining the number of variants of the root feature r, implying that A(F') =
Af(r).

When a feature f only has a single relation r in which it is the parent, Af (f) =
A (r). It may however occur a feature is a parent in multiple relations. In this
case, each of these relations results in a collection of possible variants. As all
of these relations are independent, the total number of variants can be computed
combinatorially by multiplying the individual MIT counts. This is expressed
formally in Equation (2.1).

A= J[ A" 2.1)

reR(a,-)

The MIT counts can be computed for the various relation types as follows.
Mandatory relations do not cause additional variants as they must always be
included if the parent feature is included. The child feature ¢ will however itself
result in multiple variations A/ (c), which is expressed in Equation (2.2). Optional
relations either result in including the child feature (resulting in all possible variants
of the child feature ¢, A (c)) or in not including the child feature (resulting in
an additional configuration and increasing the number of variants by 1); this is
expressed in Equation (2.4). Alternative relations always result in exactly one
child feature being included resulting in causing all of the variability of its child
nodes to be included, which is expressed in Equation (2.4). The formula for the
Or relation, shown in Equation (2.5), can be easily derived from Equations (2.1)
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and (2.3) by observing that an Or is equivalent to a collection of Optional relations
where one case, that where none of the child features are included, is removed.

A" (Mandatory(a, b)) = A/ (b) (2.2)
A" (Optional(a, )) =AM () +1 (2.3)
A"(Alternative(a Z Al (s (2.4)
s€S
A"(Or(a,S)) = (H (Af(s) + 1)) -1 (2.5)
s€ES

2.5.2 FBB instance count

For feature based applications the MIT, which is represented by F(F'), is limited
by the number of features. Therefore, 7 (F') equals the number of features in the
feature model F'. This value can also be be computed making use of the feature
hierarchy, similar to how this was done for application-based multi-tenancy, which
is useful for comparing the theoretical performance of FBB with ABB. F(F') can
be easily computed based on the same approach we previously used to compute
MIT for the ABB approach. The MIT of a feature z is represented as F/ (z); the
MIT of a relation x is represented by F"(x). F(F) = F7(r) with r the root
feature. The formulations for the various relation types can be computed trivially
based on their definition:

Fllay=1+ Y F(r) (2.6)
reR(a,-)

F"(Mandatory(a, b)) = F7(b) 2.7
F"(Optional(a, )) = Fl () (2.8)
F"(Alternative(a Z ]—"f 2.9)

ses
"(Or(a,8)) = > F/(s) (2.10)

ses

2.5.3 Hybrid instance count

The hybrid multi-tenancy approach extends the FBB approach and adds an addi-
tional root element 7/, an Alternative relation, and at least one feature linked to
an instance of a specific application customization. Therefore the hybrid multi-
tenancy approach will always result in at least two more instance types than the
FBB approach. Thus, the number of instance types H(F’) of the hybrid approach
can be computed by H(F') = F(F) + n + 1 where n is the number of added ABB
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Figure 2.7: The worst case feature model for the ABB approach resulting in the maximum
possible instance type count.

applications. In the evaluation and analysis, we will focus mainly on the ABB and
FBB approaches as the hybrid approach can be considered as a special case of the
FBB approach with a additional features and thus a slightly higher MIT.

2.5.4 Worst-case comparison

FBB and ABB multi-tenancy behave very differently depending on the feature
models they are used with. The FBB approach always results in the same number
of features for every feature model irrespective of the relations within the model
as it is only dependent on the number of features within the model. Therefore, we
consider the worst case for this approach to be the one where the model only results
in few variations while requiring many features. For a feature model with n features
containing only Mandatory features, FBB results in n different feature instance
types, while ABB results in an MIT of only 1 as there is no customization. In this
case, it would be preferable to restructure the feature model to reduce the number
of features, possibly reducing the feature model to a single feature. This is however
an edge case as there is no customizability in this scenario. Ignoring Mandatory
relations, the Alternative relation performs worst for the FBB approach compared
to the ABB approach. A feature model containing only a single Mandatory(r, S)
relation results in |S| + 1 instance types in the FBB approach and only in |S]
variants in the ABB approach.

The worst case scenario for the ABB approach is when it is used for a flat
feature model containing only Optional relations, as illustrated in Figure 2.7. This
model results in 2"~ ! possible variants with n the number of features within the
model.

Theorem 1. The worst case feature model, resulting in the maximum MIT for a
given number of features, only contains Optional relations.

Proof. We assume that a model F exists with the maximum .Af (r) that contains
relations other than Optional relations. This implies there must be at least one
relation r that is not an Optional relation. This relation can be one of three types:

1. Mandatory(a, b): By replacing Mandatory(a, b) with Optional(a, b),
A" (r) can be increased. This in turn increases the model MIT.
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2. Or(a, S): In this case, A"(r) = ([T,cq (A’ (s) + 1)) — 1. By replacing the
Or relation by a set of Optional(a, s) relations for every s € S, the number
of variants will be increased by one, increasing A/ (a) and in turn increasing
the MIT of the new feature model.

3. Alternative(a, S): From Equations (2.4) and (2.5), and the fact that the set .S
must always contain at least two features, it can be concluded that replacing
the relation Alternative(a, S) by Or(a, S) the MIT can be increased.

In each of the cases a new feature model F’ can be constructed for which A(F') <
A(F"), contradicting the assumption. O

Theorem 2. The feature model resulting in the maximum MIT for a given number
of features is flat and consists of a root feature r and a set of relations Optional(r, s)
for all features s € {F/r}.

Proof. Suppose the contrary that a feature model F' exists that is not flat and that
results in a higher MIT. This model must only contain Optional relations as proven
in Theorem 1. This model must therefore contain a relation Optional(n”, a), with
n” the root node, and a feature ¢ that is itself parent in one or more Optional(a, s)
relations with s € S as child features. The contribution to the total MIT by
the feature a and its subfeatures, represented as C'* can be determined using
Equations (2.1) and (2.3):

C" = A”(Optional(a,s)) = 1+ [ (A/(s) + 1)
seS
An alternative feature model F” can be constructed where the features s € S are
attached directly to the root node instead of to the feature a. The contribution of

a and the features in S is then represented by C’* (in this model, a no longer has
child nodes, ensuring A7 (a) = 1):

C" = (Aa)+1) x [ (A7 (s) +1)
ses
=2x [] (4%(s) +1)
seS
As Af(f) > 1 for all features f, we can conclude that C* < C’®, which due to
Equation (2.1) ensures that A(F') < A(F"). Therefore, this new model results in
more variations than the original model F', contradicting the assumption that the
feature model F' resulted in the maximum MIT given the number of features. [

From this analysis, we conclude that if a model has many Optional or Or
relations, or if a single feature is the parent in many relations, the FBB approach
will generally result in fewer instance types than the ABB approach. Mandatory
and Alternative relations may however work better in an ABB approach.
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2.6 Evaluation results

As noted in the previous section, it is trivial to construct feature models where
one approach is better than the other. It is however important to determine when
which approach is preferable for realistic feature models. For our evaluations we
make use of three feature models of commercial SaaS applications, a composed
feature model, and randomly generated feature models based on the structure of the
previous models.

We use the feature models of three commercial SaaS applications as a baseline
for our evaluations. The models are that of a Medical Communications (MC) appli-
cation, a Document Processing (DP) applications and a Medical Data Management
(MDM) application. These models contain 12, 22 and 16 features respectively.
Based on the application feature models we also define a composed feature model
Full which contains all of the features of the MC, DP and MDM models composing
them using an Alternative relation. This represents the situation where all of the
previous applications are executed on the same application platform. The composed
model contains in total 51 features.

We also defined a collection of randomly generated feature models of varying
sizes to compare the approaches for feature models of differing sizes. The models
are generated ensuring they are similar to the MC, DP, MDM and Full models
in terms of structure and frequency of relation types. First the set of features is
generated and one feature is selected as root of the feature model tree. Next the
other features are iteratively added to the feature model by selecting a random node
as the parent and one or more of the remaining features are added as child nodes.
We use an equal probability for selecting any of the relation types, with Optional
and Mandatory relations having (by definition) one child while Alternative and
Or relations have between 2 and 6 features as child nodes (chosen uniformly at
random).

Figure 2.8 compares the number of instance types that may have to be deployed
within a cloud environment for the four application feature models. For the four
cases the MIT is lower for the FBB approach than it is for the ABB approach. The
largest difference is observed for the DP where the ABB results in 22 times the
number of possible instances while the MDM case results in the smallest increase
(4.5 times as many possible instances as the FBB approach).

By using randomly generated feature models, we can further evaluate the
behavior of both approaches. Figure 2.9 compares the number of variants for the
ABB and FBB approaches for varying numbers of features. For the FBB approach
the number of instance types always equals the number of features, for the ABB
approach the number of instance types depends on the used feature model. For
every data point 10000 randomly generated feature models were used, which results



FEATURE-BASED MULTI-TENANT CLOUD APPLICATIONS 39

o 800

§ 700 | WABB

"G-J‘ 600 | B FBB

% 500

1z 400 -

£ 300

g 200

S 100

: o N/

z MC DP MDM Full
Application

Figure 2.8: The MIT for the ABB and FBB approaches for three commercial applications,
MC, DP and MDM, and a composed model containing all three models, Full.
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Figure 2.10: The distribution of MIT for the ABB approach for varying numbers of features

(10000 feature models per data point). The theoretical upper bound (ub), maximum (max),

median value (med) and minimum (min) are shown. The gray lines show the percentiles of
the distribution (5th until 95th in increments of 5).

in a large spread of resulting values. Figure 2.10 shows the distribution of the
number of instance types for the evaluation.

As the number of features increases, the FBB approach results in much fewer
instance types than the ABB approach. On average, the ABB approach only results
in fewer instance types for feature models containing 4 or less features, but the
average is heavily skewed by outliers. For the median feature model, the ABB
approach performs best for models with less than 7 features. For larger models, the
FBB approach results in fewer variants.

2.7 Discussion

The analysis and evaluations show that the FBB generally results in fewer distinct
application instances compared to the ABB approach, as measured by the MIT
metric. For very small feature models containing 6 or fewer features, the ABB
approach may however in be preferable. If the feature model contains many
mandatory and alternative relations, the ABB approach may also result in a lower
MIT value.

The hybrid approach is an extension to the FBB approach, adding specific
application configurations implemented using the ABB approach. Because of this,
the hybrid approach can be used in all scenarios where the FBB approach may be
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used, resulting in a slightly higher MIT (depending on the number of application
configurations that are added using the ABB approach). In a scenario where the
ABB results in fewer instances than FBB, however, these variants can be added to
the model, resulting in fewer instantiated instances at runtime compared to the FBB
approach. The hybrid approach may also be useful for application configurations
that are used by many tenants if the single-instance application requires fewer
resources, which may be the result of a reduction in communication overhead.

The most important disadvantage of the FBB approach is that it becomes more
difficult to manage applications, as more communication between components must
be taken into account. This disadvantage is shared with the hybrid approach. A
second disadvantage of the FBB approach is that more application instances are
needed to offer an application, which may be disadvantageous if some components
are rarely used causing the instances to be underutilized. This problem can be
mitigated using the hybrid approach as, in such cases dedicated instances can be
defined.

2.8 Conclusions

In this chapter, we formalized two approaches for managing variability in multi-
tenant SaaS environments: FBB, a SOA-based which composes the application out
of multiple multi-tenant components and ABB which statically generates multiple
distinct multi-tenant applications based on a common feature model. We described
how applications can be developed, deployed and managed using both approaches.
We also presented a hybrid approach, combining beneficial properties of both the
ABB and FBB approaches.

We found that, for feature models with more than 6 features requiring compile-
time changes, the FBB approach results in fewer possible runtime instance types,
which in turn results in more opportunities for exploiting multi-tenancy and lower
costs. For models with fewer features, the ABB approach will perform better.
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In Chapter 2 the Feature-Based Binary (FBB) approach for modeling and managing
customizable multi-tenant SaaS applications was introduced. In this chapter, we
use this approach to define a feature-based cloud resource management model. The
focus of this chapter is on how feature-based multi-tenant SaaS applications can
be allocated in a cost-effective way in a datacenter, a problem which we refer to
as the feature placement problem. A formal description of this problem, which is
used to allocate resources in a cost-effective way, is provided. Both the cost of
failure to place features, and the cost of using servers are considered, making it
possible to take energy costs or the cost of using public cloud infrastructure into
consideration during the placement calculation. Four algorithms for solving the
static feature placement problem, which takes all applications into account at once,
are defined, evaluated, and compared with an optimal solution. In Chapter 4 the
concepts introduced in this chapter are extended to support dynamic datacenter
scenarios and in Chapter 5 these management algorithms are framed within an
overarching development and management approach.
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3.1 Introduction

In recent years, there has been an increasing interest in cloud computing [1].
By moving applications to cloud platforms, and making use of multi-tenancy,
where multiple end users utilize the same application instances and hardware,
administrators can consolidate hardware and save costs. Cloud-hosted applica-
tions can also react faster to sudden changes in demand. Different obstacles to
the widespread adoption of cloud computing do however still exist. One of the
issues with contemporary cloud Software-as-a-Service (SaaS) offerings is that
the applications generally offer a one-size-fits-all package, with only limited
customizability. Often it is only possible to add minor changes using configu-
ration changes. Software customizability, where entirely separate code paths are
executed in different software versions, significantly changing the behavior of
applications, is difficult to add to SaaS applications.

Often, applications must however be tailored for specific customer needs,
offering similar but slightly differing functionality for different end users. The
CUSTOMSS [2] project seeks to create solutions to develop, deploy and man-
age highly customizable software and services on multi-tenant cloud infras-
tructures, by incorporating management of the variability of applications into
the cloud platform itself. Within the project we focus on applications from
three domains: 1) document processing, in which large batches of documents
are processed and managed using a web interface; 2) medical information
management, where medical data and patient information are stored and pro-
cessed; and 3) medical communication systems, where communication between
patients and nurses is coordinated based on a management system using ad-
vanced ontologies. While we focus our evaluation on these three use cases,
the presented approach could be applied to all cloud-based applications that
require high variability, provided the applications can be split into interact-
ing components. The techniques can either be applied on top of an Infras-
tructure as a Service (IaaS) or Platform as a Service (PaaS) platform, or can
be integrated into existing PaaS platforms. In this chapter, we will discuss
how customizable multi-tenant applications can be managed by a cloud plat-
form.

Software Product Line Engineering (SPLE) [3] concepts are often used to
develop customizable applications. In this approach, the software is modeled as
a collection of features. By selecting and deselecting features, different software
variants can be created. Features themselves are organized by relating them
to each other in a feature model. These techniques can however not easily be
adapted to a cloud context, as most approaches in SPLE focus on the develop-
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ment of statically configured products, where changes are compiled into the
application. In this approach, all variations are instantiated and compiled before a
product is delivered to customers and, once the decisions are made, it is difficult
for users to alter them. When used in a cloud context, this implies that every
software variant would be an entirely separate application, making it impossible
to use multi-tenancy where instances are shared between users if these users do
not use the same variant, thereby greatly reducing the potential cost savings of
a migration to the cloud.

An alternative approach [4], where the software is split up into separate
services using a Service-Oriented Architecture (SOA), and where the individ-
ual services are multi-tenant alleviates this shortcoming, but in this case, some
services risk being underutilized, especially if many features and variants ex-
ist. Furthermore, as these services are dependent on each other, failure of a
single service can result in performance degradations for the entire applica-
tion, which can not be taken into account by current cloud resource allocation
mechanisms.

By adding variability information to the applications running on a cloud
platform, and managing variability at this platform level, developing highly cus-
tomizable SaaS applications becomes easier. One very important functionality of
the platform, is to decide which applications are executed where. This is known
as the application placement problem [5, 6]. Current application placement tech-
niques are however inadequate for this purpose, as they do not take relationships
between services, introduced by variability modeling, into account. For our pur-
poses, the placement must take the variability of the managed applications into
account, ensuring all application components are allocated sufficient resources.
Furthermore, the cost of using servers for running applications must be taken
into account as well, as this makes it possible to either minimize the carbon
footprint of the managed cloud, or to reduce costs when part of the application
is executed on public cloud infrastructure. Within this chapter, we consider
two costs: the cost of failing to provision capacity for application components
(determined e.g. by a service level agreement) and the operational cost of using
a server.

In this chapter, we focus on the design of algorithms for placing high-
variability applications on cloud infrastructure, extending the methods and eval-
uations from our previous work [7], adding energy efficiency and server usage
costs, and incorporating relations between applications components. The ap-
plications are composed from a set of multi-tenant feature instances using a
SOA. For this purpose we designed a variation of the application placement
problem [8], which we refer to as the feature placement problem. An overview is
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Figure 3.1: A schematic representation of the feature placement problem. Applications
instantiate a feature model. Feature instances are placed on physical servers and can be
used by multiple applications.

shown in Figure 3.1. The resulting feature placement determines which servers
will execute which feature instances, taking into account the datacenter server
configuration, applications to be placed, and the feature model of which the
applications are instantiations. A single feature instance is capable of serving
multiple applications, ensuring applications composed of a set of features are
themselves multi-tenant. We address the following research questions: (i) How
can we define the feature placement problem, and what information is required to
define it? (ii) How can the feature placement problem be formally modeled? (iii)
Which algorithms can be designed to solve this problem in an efficient way? and
(iv) Which performance is achieved by the algorithms compared to the optimal
solution, in terms of placement quality and execution speed, and what is the
impact of model parameters on the obtained performance?

The contribution of this chapter is two-fold: (1) we describe how SPLE
techniques can be combined with cloud application placement techniques to
facilitate the management of high-variability applications; and (2) we formally
define the feature placement problem, define optimal and heuristic algorithms,
and evaluate them. In the next section, we will discuss related work. Afterwards,
in Section 3.3 we explain the feature modeling approach, and how it can be
applied to cloud applications. We then formally define the feature placement
problem in Section 3.4. This is followed by Section 3.5, where we outline differ-
ent approaches to solve the placement problem. In Section 3.6 we describe the
set-up of the evaluation. Subsequently, in Section 3.7 we evaluate the algorithms.
Both the quality of the results of the algorithms, and their execution speeds are
discussed. Finally, Section 3.8 contains our conclusions.



MULTI-TENANT FEATURE PLACEMENT 49

3.2 Related work

This work builds on two research areas: SPLE and feature-oriented application
development, and application placement.

3.2.1 Software Product Line Engineering

SPLE is used to manage the variability of applications, making it easier to build
and manage groups of similar applications, with different feature sets. Managing
a separate codebase for every software variant family would introduce a large
overhead. Instead, only a single codebase is used, in which the variability is
managed using SPLE techniques. Research has been done on configuration policies
and methodologies to support customizations of SaaS. In [9], Zhang et al. discuss
a policy-based framework for publishing customization options of web services
and building customizations on top of this, enabling clients to build their own
customizations. They however do not take multi-tenancy and runtime aspects
into account, nor do they propose a software development methodology to create
the customizable applications. Sun et al. [10] propose an approach choosing
configuration over customization to create modifiable applications, and propose a
software development methodology to develop such applications. We, by contrast,
focus on the customization aspect by using SPLE methods in combination with
a SOA development approach. In Mietzner et al. [4] an approach for modeling
customizable applications built using SOA is described. The application is linked
to a feature model, allowing automatic generation of deployment scripts. Our
approach is similar in its use of SOA in the proposed development approach. We
however focus on the resource allocation of customizable applications, proposing
optimal and heuristic algorithms to determine where to run specific features. Recent
work in the SPLE community [11-14] further progresses towards the development
of customizable SaaS applications, but mainly focuses on the design-time variability
of these applications, and not on their runtime management. Work on the dynamic
adaptation of SOA applications was conducted in [15], but it does not address how
these applications must be placed on physical infrastructure.

3.2.2 Application Placement

The application placement problem is used within clouds and clusters to determine
which services to execute on which servers, and has previously been formally
described [5, 6, 8, 16—-18]. Many different approaches to application placement
in clouds have been developed over the recent years. Specific requirements have
however led to the creation of many extensions to the application placement prob-
lem, each focusing on different parameters. Whalley et al. [19] extended a Virtual
Machine (VM) management system to take into account the complexities of soft-
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ware licensing. In a similar way, Breitgand et al. [20] added the consideration of
Service Level Agreements (SLAs) to the placement problem. The consideration of
energy consumption and carbon emissions was added in [21] using a system that
works in parallel with existing datacenter brokering systems. We extend the generic
application placement problem formulation to place the features of applications in
a cloud environment. Our approach further differs from the traditional application
placement problem formulation and its variants, as we consider an application to
be a set of interacting services, and not just a single service. By contrast to the
existing work surrounding application placement, our placement approach not only
takes these services, but also the relations between them into account during the
placement calculation.

The algorithm we describe within this chapter has similarities with the linear
application placement algorithm described in [16]. Our work however adds the con-
cept of software variability. Furthermore, our application-based feature placement
algorithm aims to place all application components at once and adds a backtracking
phase to the algorithm if placement of an application fails, lowering the cost of
placements.

Energy efficiency and server usage costs are incorporated in an application
placement system in [22]. The authors however focus on the placement at a VM
level, while our approach focuses on managing multi-tenant applications where
multiple applications can make use of a single instance, meaning more fine-grained
control is needed. Furthermore, our algorithm also adds explicit support for software
variability. This enables the management system to dynamically fill in undecided
variability, known as open variation points, at runtime.

In [23], the concept of application component placement is introduced, where
applications consisting of separate components are placed within datacenters, and
an integer linear programming algorithm to solve the problem is introduced. Our
approach similarly focuses on applications consisting of multiple components,
but we by contrast add support for multi-tenancy, making it possible for multiple
tenants to make use of individual application components. Additionally, we also
take relations between application components, modeled using SPLE, into account
during the placement.

We have previously discussed the runtime management of, and resource alloca-
tion for highly customizable applications [7]. In this chapter we extend the problem
description, generalizing the inputs, and add a server use cost, ensuring energy
efficiency and hybrid cloud scenarios can be taken into account. We also incorporate
requirements that improve the problem applicability, ensuring the algorithm can bet-
ter handle scenarios where memory requirements increase when the loads increase,
and situations where features depend on each other to function. We also present and
evaluate an improved, application-centric placement algorithm yielding more cost-
effective resource allocations than the algorithms described in our previous work.
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Mandatory Optional

“ If the parent is selected ‘“ If the parent is selected

the child must be selected the optional children can

as well. be selected.
Mandatory (A, B) Optional(A4, B)
Mandatory (A4, C) Optional(4,C)
Alternative Or

n If the parent is selected '“ If the parent is selected

exactly one of the child ' at least one of the child
nodes must be selected. nodes must be selected.
Alternative(A, {B,C}) Or(A,{B,C})

Table 3.1: Graphical representation of feature models, description of relations, and formal
representation. The nodes on the left are parent features, those on the right are child
features.

In literature, most application placement algorithms make use of specific re-
sources, usually taking into account CPU and memory limitations [5, 8, 24, 25],
application bandwidth requirements [26], or generalized load-dependent and load-
independent resources [27]. Our approach generalizes these inputs, as done in [27],
but goes further by allowing for the definition of multiple resources. This is
achieved by making use of concepts we previously described in [28], enabling the
management of high-variability applications with heterogeneous resource demands.

In [29] and [30], a management system for services composed of multiple VMs
is presented. These works focus on the definition and deployment of composed
cloud services. Our work is complementary with this approach, as it focuses on
the relations between the different services using SPLE techniques and not on how
these relations are represented. We also focus on the physical location where the
instances are executed, rather than how they are deployed.

3.3 Feature placement concepts

Using SPLE, an application is modeled as a collection of features and relations
between these features. The features are then linked to actual code modules or
configuration files. Sometimes the inclusion of a feature can imply the inclusion
or exclusion of other features, which is represented using relations in the feature
model. A software variant can then be generated by selecting and excluding features
from this feature model.
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Figure 3.2: A feature model fragment for a medical data processing application.

To facilitate reasoning on these relations, feature models are often created
hierarchically. Table 3.1 contains the different relation types, a description, a
graphical representation, based on the notation used in [31], and a formal notation
which will be used later on in this chapter. An example feature model is shown
in Figure 3.2. The figure shows an illustrative fragment of the feature model for a
medical data processing application. The application contains an interfacing engine
feature to connect to individual hospitals, which is capable of handling input in one
or more different formats. Additional encryption can optionally be added to the
interfacing engine. Finally, parts of the application can be hosted at the hospital or
they can be hosted by the application provider. An application created for a hospital
using their own datacenter and a hospital specific interface will differ significantly
from the application created for a hospital using public cloud infrastructure and a
standard medical data interface.

Sometimes a feature can be implemented by simply updating configuration files.
This could for example be changing the logo of an application. More complicated
changes can be created by adding code changes. The most complicated changes
lead to completely different modules being used by the applications. The first
method is variation by configuration, the latter two variation types are referred to
as customization [10]. In this chapter, we only consider customization, which leads
to the creation of applications that are different at the code level. Configuration-
based features can already be adapted into a cloud context using existing software
development techniques [10]. The feature models used further on in this chap-
ter will only contain features that cause changes at a code level in the deployed
services.

The development of applications will be driven using the feature model, build-
ing an application using a SOA, in which the individual services map to the different
features defined in the feature model. An example of this is shown in Figure 3.3a.
Deploying the application then comes down to allocating feature instances and con-
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> d.jar
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> g.jar

Feature
Placement

Application Feature Runtime Application
Selection

(b) Deploying applications composed of feature instances.

Figure 3.3: Features are associated with code modules. Applications containing the features
are created by instantiating these features and linking them together.

necting them either to each other or by using a coordinator component, illustrated
in Figure 3.3b. To determine where these instances are placed, a feature placement
algorithm is used. We assume that the individual services are multi-tenant and
can serve multiple applications. In our use cases, the various feature instances are
developed, managed and tested by the platform provider, ensuring the components
can be trusted and that calls to a service respect the tenant resource limits. This in
turn minimizes performance interference between tenants which can be caused by
sharing a feature instance between different tenants. The allocation of the different
feature instances, taking into account relations as defined by the feature model,
is the main focus of this chapter. We assume the application has already been
split up into components, and that data isolation issues are resolved using existing
techniques [32, 33]. We also assume the performance of the various components has
been evaluated using performance models such as those in [34], possibly grouping
components that often communicate together to guarantee they are colocated, which
ensures good performance is achieved.

When configuring a SPLE application, part of the variability can be left unde-
cided, creating open variation points [4]. When two applications with different
feature configurations exist, and some have open variation points, this information
can be used to reduce the cost of the full placement. This makes it particularly
interesting to take these points into account during the placement of applications.
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Application 1 Application 2

Figure 3.4: Different feature model selections for two applications. Features with a solid
border are selected, features with a dotted border are undecided and remain open variation
points. By selecting Feature D for Application 2 during placement, the total resource
requirement of both applications can potentially be decreased.

Available Resources
Server Use Cost Feature Selection
Servers

Features

Feature Relations Feat

Resource Requirements Pl eature "

Resource Dependencies acemen 2@]00]00O

Feature Model ~Resource Limitations 12000 -
10[1@[0 O Feature Instantiations
1[0 0O[0 0O Feature Allocation Matrix
- 2 ) 0

Application Demand 1 8 n 8 o 8

Feature Selection 01000

Cost of Failure to Place 03000

Applications

Figure 3.5: A detailed overview of the feature placement inputs and outputs. We use a small
example feature model to illustrate the inputs. The root of this feature model is marked using
the letter R.

An application with, e.g., regular availability requirements can use high availability
instances when such instances exist with remaining capacity, rather than creating
new instances with lower reliability, effectively lowering the total resource usage.
This is further illustrated in Figure 3.4, where two applications are shown. The first
application uses Feature D, and the second application requires either Feature B,
C, or D. If the placement function is unaware of these open variation points, it
would simply choose the cheapest alternative, while a choice for the, possibly more
expensive Feature D might be preferable as this choice reduces the total number of
feature instances used in the application.

The inputs and outputs of the feature placement problem are shown in Figure 3.5.
Input for the placement problem comes from three sources: the servers, on which the
application are executed, the feature model, that defines the structure of applications
that are to be placed, and the applications themselves. More specifically:

e The servers contain resources, such as CPU, memory, disk space and band-
width. Each of these are limited, and it is impossible to allocate more of
these resources to feature instances than available. Using a server also incurs
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a server use cost. This is the operational cost of using the server, and can
represent an energy cost, to determine an energy-efficient placement, or an
instance cost in a hybrid or public cloud environment.

e The feature model describes the different features, and the relations between
them. These must be expressed, ensuring they can be taken into account
during the placement process. For every feature, instance resource require-
ments are needed. The different feature instances may also impact each
others resource requirements. For example, the addition of a security feature
can increase the load on other services, that then have to use encryption in
their communications. To get a realistic view of the actual resource need of
features, the impact features have on each others resource demands is added
as an input. Finally, it is possible that a single instance of a feature, with a
fixed amount of e.g. memory, can only use a limited amount of resources,
e.g. CPU. If this is the case, these limitations are also added as an input of
the feature placement problem. Then, multiple instances of a feature can be
instantiated on a single server to handle higher resource demands.

e Each application is an instantiation of the feature model, with a specific
selection of features. Applications add three parameters to the feature place-
ment: (1) the demand, that varies depending on the load on the application,
(2) a feature selection, that indicates the selected and excluded features, and
(3) the cost of failing to place the application. In some cases an additional
cost for the failure to provision specific features can be added, for example
a feature providing a minimal service. If so, this feature failure cost is also
added as an input. The cost of failing applications and features can either be
an actual economical cost, defined in a SLA, or it can be an estimated cost
such as the potential cost of losing customers due to a bad service.

Using these inputs, the feature placement will generate two outputs:

e For every application, a feature selection will be returned. This contains all
the features that were selected in the feature selection input variable, but any
remaining open variation points are filled in.

o A placement, that contains for every server the number of instances of a
feature that are executed on it, and the amount of resources allocated to
them. Each instance of a feature uses part of the available resources on the
server on which it is executed (represented using pie charts in Figure 3.5).
When no services are allocated on a server, it can be turned off, reducing the
operational cost of the placement.

When a resource conflict occurs, and more resources are needed by applications
than available, the algorithm handles this conflict by choosing the best configuration
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based on its resulting cost. In this case, some of the application features will not
be placed. The cost used within the optimization is composed of the cost incurred
by a failure to place applications and the cost of using a server, with the cost of
failure of placing applications typically significantly larger than the cost of using
servers. An optimal solution to the feature placement problem is a placement that
minimizes the total cost.

A feature placement algorithm will be used as one of the central components of
a cloud management system. The system architecture of this management system
contains three components that are responsible for determining feature placement
inputs: 1) a staging environment where new configurations are tested, and where the
impact of features on other features can be measured in a controlled environment;
2) a monitoring system, that can be used to dynamically improve estimated demand
and impacts during execution; and 3) an admission controller, limiting the number
of applications admitted into the system.

3.4 Formal problem description

The variables used in the model are listed in Table 3.2. We begin by discussing
the optimization objective. This is followed by a description of the input variables.
Three variable types can be distinguished: input variables, decision variables and
auxiliary variables. Finally we will discuss the constraints used within the model.

3.4.1 Optimization objective

The objective of a placement algorithm is to minimize two costs: the cost of failure
to place an application or feature, which we refer to as the cost of non-realized
demand, and the cost of using servers, referred to as the server use cost. When
multiple applications contend for resources, the configuration with the lowest cost
according to this objective function will be chosen.

More formally, the goal of the model is to minimize the cost, C, of the placement.
This cost is determined by two factors: the cost of non-realized demand, C'p, which
is incurred due to failure to place applications, and a server use cost, Cyy which is
incurred when servers are used. We express this cost using Equation (3.1).

C=Cp+Cy 3.1)
Cp is defined in Equation (3.2).

C'D = Z Pa X Cv(a) + Z Pfa X CV(fva) (32)

acA fesel(a)

Equation (3.2) uses binary variables to indicate when the provisioning of fea-
tures or applications fail, and multiplies these binary variables with the cost that this
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Input Variables
Symbol Type Description

r The set of considered resource types (eg. memory, CPU, bandwidth).

s p(T) Resource types for which the demand is strict: they must be allocated
for each feature instance for the instance to be usable.

I's p(T) The resource types for which the demand is non-strict: the goal of the
optimization process it to allocate as much of this demand as possible,
but a configuration in which not all of these resources have been allocated
is still valid.

S The set of servers.

Ra? [0,4+00)  The available resources on a server s for a resource type v € I

F The feature model used by the applications.

F The set of features contained in F.

R The set of relations contained in JF, using relations as described in
Table 3.1.

A The set of applications.

sel(a) o(F) The features that must be included for application a.
excl(a) p(F) The features that must not be included for application a.
FI ?1 (f2) [0,400)  The impact on the resource requirement for feature fo if feature fi is
included in the selected features of an application, for a resource type
v E Fg.

D (0,400)  The demand for an application a.

1 R}Y [0,400)  The resource requirement of a single instance of a feature f for a resource
type v € I's.
L} (0,400)  The instance limitations indicate the maximum amount of non-strict
resource type -y that can be allocated to a single instance of a feature f.
CV(f,a) [0,4+00)  The cost of failing to place a feature f for an application a.
CV(a) [0,+00)  The cost of failing to place an application a.
CY(s) [0,400)  The cost of using a server s.
Decision Variables
Symbol Type Description
M;f,a [0,4+00)  The amount of a resource v € I's to be allocated for a given server s,
feature f and application a.
D, {0,1} A binary variable indicating whether application a includes feature f.
I1C ¢ N The instance count is an integer variable, indicating how many instances

of a feature f are instantiated on a server s.

Auxiliary Variables

Symbol Type Description
Al }Y’a [0,400)  The application impact, containing the actual resource impact per feature
f of a specific application a, for a resource v € I's.
Pa {0,1} A binary variable that has value 1 if an application a is not correctly
placed, that is when any of its features are not placed.
Df.a {0,1} A variable that has value 1 when the resource demand of a single feature
f of an application a is not placed.
p}’ o {0,1} A variable indicating whether the resource demand of a single feature f
of an application a is not placed, for a specific resource v € I's.
Usg {0,1} A binary variable indicating whether a server s is used.

Table 3.2: The different symbols used in Section 3.4.
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failure causes. The variable p; , takes on value 1 if the feature f of an application a
is not provisioned sufficient resources, and 0 otherwise. Similarly, a binary variable
D, 1s used to express the failure of any feature of an application a. To determine
the total costs, these binary variables are then combined with the cost of failing
to provision individual features CV (f, a), and the cost of failing to provision an
application CV (a).

Note that within our approach, any feature can fail, including those that are
considered mandatory; feature failure is handled by assigning a cost to it. This
is done to ensure the feasibility of results: by enforcing the inclusion of selected
features using constraints, some inputs could lead to an infeasible result to which
no solution exists. It is better for a single application or feature to fail, than for
there not to be a feasible solution at all. More importantly, if no feasible solution
can be determined, it is important that the application or feature that fails incurs the
lowest possible cost.

The cost of using a server is expressed in Equation (3.3). The equation makes
use of a server usage cost CU(s), denoting the cost of using a server, and binary
variables U, indicating whether a server is used.

Cu =) UsxCYs) (3.3)

ses

3.4.2 Input variables

In literature, application placement techniques are generally designed to place
application instances on servers, ensuring a global CPU demand is met. Each of
these application instances requires a fixed amount of memory for it to work. Some
works, however, make use of different resource types, e.g. bandwidth [26], or
sometimes the resource types are abstracted [27]. To ensure maximum applicability
of the formal model, we will define it making use of two generalized resource types,
and we will allow multiple resources of these types to occur:

e The first resource type is associated with individual instances, and these
resources are needed to create a valid instance. Every instance needs exactly
the right amount of these resources to function correctly. We refer to these
resources as strict resources, as a given amount of them is needed to create a
valid feature instance. This in turn implies these requirements are enforced
as constraints. The memory resource, in a VM placement scenario, has this
behavior, as an instance needs a fixed amount of memory to run. Similarly,
disk space is also a resource of this type, as each VM requires disk space
for its image. In some cases, a fixed amount of bandwidth is required per
instance, making it a resource of this type.

e The second resource type behaves differently. For these resource, there is a
global demand, that must be fulfilled, and fulfilling as much of this demand
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as possible is the goal of the optimization process. To succeed, instances
must be created that handle part of the resource demand. We refer to these
resources as non-strict resources. The traditional example of this resource
requirement is the CPU demand, that is often used in application placement.
In some cases other resource types can occur, such as bandwidth, if fulfilling
a given bandwidth demand is the optimization goal.

We have previously made a similar distinction between resources in [28], and a
similar approach was used in [27]. Within the model, we define I" as the collection
of all resource types, and we use I'g and I'5 to denote strict and non-strict resource
types respectively. Note that in practice less strict resources than needed could
be allocated to an instance: a virtual machine can for example function with less
memory at the cost of performance degradation. Characterizing this performance
degradation is however service-specific, and as every service is used by multiple ap-
plications this performance degradation impacts the quality of multiple applications.
By using conservative fixed resource requirement estimates, these issues can be
avoided. For these reasons, strict resources are defined as a fixed value requirement
within this chapter.

Sometimes a pure separation between the two resource types is difficult to
achieve, as an increase in for example CPU use can sometimes cause increasing
memory utilization. To linearize this problem, we will introduce instance limitations
further in this section. These ensure a limit is added to the amount of work a single
instance can process, ensuring that memory-intensive applications can also be
modeled using this formulation.

Each problem also has a set of servers S with an amount of available resources.
For a server s € S the available resources are given by Ra}, for the different
resource types v € I'. The goal of the optimization is to allocate the required
non-strict resources for applications at a minimal cost, while ensuring the created
instances have the required strict resources they require to execute.

The problem statement also contains a set of applications A that must be placed.
Each of the applications is a specific instantiation of a global feature model F.
This feature model contains a set of features F' and a collection of relations R,
formally describing the feature model tree. The possible relations are described in
Section 3.3 and Table 1. This approach still allows the placement of entirely distinct
application types with separate feature models J; by creating a set containing
the roots of every feature model, R, and linking these different feature models
in a global feature model by the addition of a new root feature r and a relation
Alternative(r, R). This ensures that each application executed on the cloud is an
instance of exactly one of the separate feature models, and that an arbitrary amount
of different application types can be placed using the model. An example of this
will be shown in Section 3.7.3.2.
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Every application a € A contains a set sel(a) € F with features that must be
selected in the application and a set excl(a) € F, containing features that must
be excluded. The configuration of both is assumed to be valid according to F.
Features contained in neither set are considered open variation points as described
in Section 3.3.

It is possible for features to impact the resource needs of other features. For
instance, adding the encryption feature to the application in Figure 3.2 can increase
the CPU load on the interfacing engine, and applications hosted by the application
provider will require more CPU resources than applications partially hosted at the
client site. We assume that applications with similar feature selections will have
similar load characteristics, as this is the case for the three application use cases, and
represent this using a feature impact matrix £'I. F'1 }1 (f2) represents the impact of
feature f; on feature f, for a non-strict resource type . The resource requirement
of a feature f can be expressed using the feature’s impact on itself FI;Z( f). By
including a feature f, it’s own feature impact F'1 }’( f) is added, representing the
resource requirement of the feature itself, and it’s impact is added to all other
features f’ for which F'T ]7( 1) # 0. When two applications make use of the same
feature, they will both require resources allocated to this feature, and thus both
resource requirements will be counted to determine the total resource demand for
this feature. As the demand for an application varies in time, we also add a D,
variable denoting the user demand for an application a. This variable impacts
the resource need for the entire application. If load characteristics can vary for
individual applications, the approach could be extended ensuring a F'I matrix is
defined per-application, but in such a case detailed measurements would be needed
to determine this matrix for every individual application. Every instance of a feature
f also requires a specific amount of strict resources / R}.

In many situations, it is unrealistic to assume that a single instance with limited
strict resources allocated to it, would be able to use an unlimited amount of non-
strict resources. Because of this, we introduce resource limitations: A single
instance of a feature f cannot use more than L} of non-strict resource v € I's.
E.g. an application component that is memory intensive will have a low limit,
ensuring only a limited amount of CPU can be used by it. These limitations make
the model more applicable to real-life applications, ensuring the ratio between
allocated non-strict and strict resource types remains realistic.

The optimization process is used to minimize the cost of failed placement and
the server use cost. Two variables are needed to represent the cost of failing to place
specific features and applications:

e The cost of failing to reserve the capacity for a specific feature f of an
application a is given by C'V (f,a). This can be used if failure of specific
features needs to be taken into account.
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e The cost of failing to reserve the capacity for any feature of an application is
given by CV (a).

Finally, for every server s, the cost of using the server C'V(s) can be determined.
This cost can be the energy cost of using the server, or the cost of using a server from
a remote IaaS provider. This parameter allows the system to take energy-efficiency
of the cloud into account, and could also be used to differentiate between the cost
of using the local datacenter and a remote IaaS cloud in a hybrid cloud scenario.

3.4.3 Decision variables

The output of the formulation is a placement, indicating which applications are
executed where, and the amount of resources allocated for each of these applications.
The resource types behave differently, leading to two separate expressions. For
strict resource types, we determine how often an application is instantiated on a
server, a value that can be used to determine the required strict resource requirement.
As the amount of non-strict resources that can be allocated for a given feature can
be limited, it is possible for there to be multiple instances of a feature on a single
server. For non-strict resources we make use of a matrix representing the amount
of resources allocated on a server. This yields two variables:

e The variable IC ; determines the number of instances of feature f on server
s. This integer variable can be used to determine the total strict resource
usage of features on servers, by multiplying it with the, fixed, per-instance
resource requirements I R.

e For non-strict resources we use an allocation matrix M. For a server s, feature
f, and application a, M, Z fa contains the amount of non-strict resources of a
type - that need to be allocated.

Another output is the feature selection matrix ®, indicating which applications
are selected and excluded for a given application. For application a and feature
f, @5, = 1if the application contains the feature and ® ¢, = 0 if it does not. At
the start of the algorithm this matrix can be partially filled in by using sel(a) and
excl(a), the remaining features are assigned values during the optimization process.

3.4.4 Auxiliary variables

Up until now, we have not yet defined a variable that determines the actual resource
requirement of a feature of an application. For this, we define the application
impact matrix AI;Z@ which contains, for every feature f of application a, the
actual resource requirement for a given non-strict resource . This matrix can be
constructed using the selected features and the feature impact matrix.



62 CHAPTER 3

A set of binary variables is needed to express whether an application is cor-
rectly provisioned. We do this by introducing variables denoting application failure,
feature failure, and the failure to provision specific resource demands for an appli-
cation:

e For every application a there is a variable p,, indicating whether the provi-
sioning of an application has failed. If p, = 1, a feature of a exists that has
not been allocated sufficient non-strict resources.

e For every application a and feature f there is a variable py ,. This vari-
able indicates whether a specific feature of the application is insufficiently
provisioned.

e For every application a, feature f and non-strict resource -, there is a variable
p} »» Which has value 1 when too few resources of type - were allocated for
a feature of an application.

Finally, a collection of variables is needed to determine whether a server is
active. For every server s there is a binary variable Uy, indicating whether the server
is used. If Uy = 0 the server is not used and can be turned off.

3.4.5 Constraint details

In the following sections we will discuss the different constraints included in the
model.

3.4.5.1 Feature-based constraints

The feature selection matrix ® is used to indicate whether a feature f is present in an
application a, ® ¢ o being 1 if f is included in a, and 0 if it is not. For an application
a we add the constraints &7, = 1if f € sel(a) and ®;, = 0if f € excl(a). If the
feature does not occur in either set, the value of @ , remains undecided, creating
open variation points, which will be filled in during the optimization process.

The relations between features R must also be converted into constraints.
Elements of R define relations between individual features. As the constraints of
the feature model affect all applications, they must be applied to all application
features in the feature selection matrix. Because of this, we define f; = ®; . a row
of the feature selection matrix. We describe the conversion for the relation types
to constraints in Table 3.3. This conversion is required as the logical constraints
defined by the relations must be converted into linear expressions for them to be
formally used within the model. When we, for example, apply this conversion
to the Alternative(fa,{f5, fc}) relation, this yields the constraint ®;, , =
Dry a0+ Proa foreverya € A
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Relation Conversion
Mandatory(fa, f5) fa=fB
Optional(f4, f5) fa>fB
Alternative(fa,{fs, fc}) fa=fs+ fc
Or(fa,{fB, fc}) fa>fs
fa=>fc
fa<fe+ fc

Table 3.3: Conversion of relations in the feature model F to constraints.

3.4.5.2 Application resource requirement constraints

Each feature f can have resource requirements, but it can also impact resource
requirements of other features. If feature f is selected, its impact matrix, F'1 } will
be added to the total resource requirement for the application. A feature f; can only
affect a feature f; if f; requires f; according to the feature model. Otherwise the
feature impact matrix would be able to add feature constraints not included in the
feature model, which could in turn lead to inconsistencies.

Using the selected features ® and the feature impact matrices F'I}, an appli-
cation impact matrix AI 1, can be constructed. This application impact matrix,
expressed in Equation (3. 4) displays the resource requirements for individual fea-
tures f, of an application a, for a given non-strict resource -y, and additionally takes
into account the global application demand variable D, for the application.

AT}, = Dy x Z Opra x FIJ(f) (3.4)
fleF

3.4.5.3 Resource constraints

Resource constraints are expressed for every server s, but this is done differently
for strict and non-strict resources. For non-strict resources, the used resources are
expressed using the allocation matrix M, of which the requirement is aggregated
over all features and applications. This is done, for every v € I's, in Equation (3.5).
Strict resource limitations follow from the instance count IC for the service, in-
dicating the number of times a service is allocated, and the required amount of
strict resources per-instance, as shown in Equation (3.6), which is added for every
v e ls.

S M) < Ra) (3.5)
fEF acA

Y IR} xIC.; < Ra] (3.6)
feF
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As discussed earlier in Section 3.4.2, we assume that single feature instances
are only capable of using limited amounts of resources. This is expressed using
Equation (3.7). The equation expresses that the total resource allocation, for a
non-strict resource type v, of a given feature f, on server s, must not exceed the
amount of resources the instances can handle.

Z M), <L} xICyy (3.7)
acA

3.4.5.4 Application provisioning constraints

Additional constraints are needed to ensure the variables p})a, Pf.q and py, intro-
duced in Section 3.4.4, correctly express whether the application and features are
insufficiently provisioned. Logically, we can express the p'})a this using Equa-
tion (3.8):
Pl.=Y M}, <Al], (3.8)
ses
This statement can be turned into constraints using the transformation of Equa-
tion (3.9) to Equation (3.10), with = € {0,1}, and M a number larger than any
possible value of expr. If x = 0, it follows from Equation (3.10) that expr < 0,
while z = 1 yields the constraint expr < M, which is always true. Consequently,
this transformation holds only in optimizations where the objective function value
improves when z = 0, which is the case here as a placement in which no applica-
tions fail (p'y’a = 0) is preferred by the optimization objective function.

r = expr>0 3.9)
expr < xxM (3.10)

Applying the transformation to Equation (3.8), expr = AI} , — > o M} _ .
To determine a minimal value for M, we must find a maximum value for the first
term, and a minimal value for the second term of expr. For the first term, the
definition of AI, Equation (3.4), can be used with an application that contains all
features. For the second term, an empty allocation matrix can be used. This leads to
M=1+ Zf,eF FI;Z, (f), ensuring M > expr for all possible values of expr.

Once the different p'})a variables are determined, we can use these to determine
the value of py , by expressing, for all of the non-strict resource types <, that
Dfa = p},a, as the failure for a single resource type (p},a = 1) implies the failure of
the entire feature (fr , = 1). We also add the constraint p, > py , for every feature
f and application a, using a similar logic.

3.4.5.5 Cascading failure of features

Child features are dependent on their parent features, and require the parent feature
to be selected for them to be used. This implies that, should the parent feature



MULTI-TENANT FEATURE PLACEMENT 65

fail, the child feature will fail as well. This is easy to add to the model by, for
every parent feature f and child feature c related in the feature model, and every
application a, adding the following constraint:

Pf.a < DPe,a 3.11)

Equation (3.11) expresses that if a parent feature fails for an application, the
child features must fail as well.

3.4.5.6 Server usage constraints

The variable U, expresses whether a server s is used. Logically, a server is used if
any resource r € I'is allocated on the server. We express this using Equation (3.12).

U, = TSU,#0 (3.12)
TSU, = > 3 Y M)+ > D> IR}xICp  (3.13)
vel's fEF a€A ’ ~yel's feF

Equation (3.13) describes the total server use (TSU) for a server s, and calculates
the sum of all resources used on the server. This adds values for all non-strict
resource types, by summing them over the allocation matrix M, and for all the strict
resource types by multiplying the instance counts /C' with the instance requirements
IR. This summation adds elements with different unit types, so the actual resulting
value is of little use, but as soon as a single resource is used on the server, T'SU
will be non-zero, ensuring U = 1.

The transformation from Equation (3.14) to Equation (3.15) transforms these
logical statements into constraints, and only holds if expr is non-negative, which
is the case here as negative resource requirements are impossible. If z = 1, then
expr < M, which is always true. If x = 0, it follows that expr < 0, which taking
into account that expr > 0 implies that expr = 0. Again, this transformation
holds only if the placement quality benefits when = = 0, as otherwise this option
will not necessarily be taken, but this is the case as switching off servers (Us = 0)
lowers the cost of execution.

r = expr#0 (3.14)
expr < zxM 3.15)

Like in the previous section, we can determine a minimal value for M, again by
finding a maximal value for expr. Here this can be done by observing that expr
equals the sum of all resources used on a server, which can never be larger than the
sum of all available resources. Thus, we choose M =1+ > ver Rad.
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Function Description

place This recursive function forms the main part of the feature
placement algorithm, and is responsible for placing a
collection of features on a collection of servers.

placeFeature This function is responsible for placing a single feature
on a collection of servers.

featureConversion A function used to fill in open variation points in feature

models.

groupStrategy A function determining whether an application features
are placed at once or in multiple steps.

featureOrder Determines the order in which features or applications
are placed.

serverOrder The order in which servers are considered during place-
ment.

Table 3.4: The different functions used in Section 3.5.2.

3.5 Solution techniques

We consider an optimal algorithm, based on an Integer Linear Programming (ILP)
solver, and several heuristic algorithms to solve the feature placement problem.

3.5.1 Integer Linear Programming (ILP)

The formulation, discussed in the previous section, can be used to define an ILP.
This program can be solved using a commercial ILP solver, and yields the optimal
problem solution using Simplex and Branch and Bound algorithms. As the model
contains integer values, the ILP algorithm can not be run in polynomial-bound
execution time. Therefore, we will define heuristic algorithms that approximate the
optimal solution generated by the ILP solver.

3.5.2 Heuristic algorithms

We first define a single meta-heuristic, consisting of two recursive functions: an
inner function placeFeature, placing individual features and a place function
that does the actual feature placement. The meta-heuristic as we define it makes
use of four functions that are left open. We then present different approaches
for filling in these functions. The combination of the algorithm with different
function implementations can be used to define different algorithms with varying
performance and properties. The different functions used in this section are shown
in Table 3.4.



MULTI-TENANT FEATURE PLACEMENT 67

Data: problem P
Data: Instance Count for a feature on a server IC, ¢
Data: current placement matrix M, ,
Data: a feature f of an application a to place
Data: list of servers with remaining resources Servers
sort Servers using serverOrder;
s «+ findServer(f, Servers);
if no s found then

| return 0;
else
if no remaining capacity for f on s then

| IC,;=1ICss+1;
end
Update M r , for all resource types;
Adjust remaining resources on s;
if all non-strict resource demand placed then

| return (IC, M, Servers);
else

Update f, decreasing its resource demand;
return placeFeature(P, IC, M, f, Servers);

end

end
Algorithm 1: The placeFeature function used by the algorithm.

Algorithm 1, describes the placeFeature function, responsible for the place-
ment of a single feature. As input, this function requires different parameters: (1)
the problem configuration P, containing all the input variables of the formal prob-
lem formulation, (2) the instance count matrix /C/ ;, which contains the number
of instances of a features each server has, (3) the placement matrix Mg far which
specifies the amount of resources allocated to a feature and application on a server,
(4) the feature f that must be placed, and (5) a list Servers containing all the
servers in the system and their remaining resource capacities.

The algorithm sorts the list, using a given serverOrder, and uses a findServer
operation to find the first server s in the sorted list on which either a feature instance
exists with remaining free space, or on which enough resources remain to create
a new instance of the feature. In the latter case, a new instance is created. The
serverOrder, which determines the order in which servers are considered, is
essential for the performance of the algorithm, and will be elaborated on later on
in the chapter. Subsequently, the maximum amount of resources possible, taking
into account instance resource limitations, are allocated for the feature that is to be
placed, by adding them to M; f.a- The server information of s is also updated, to
reflect the decrease in available resources on the server. If the entire feature f is
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placed, the updated allocation /C' and M is returned, along with the updated server
list Servers are returned. If the feature is not fully placed yet, the placeFeature
function is repeated recursively, and is given as an argument the residual demand
of feature f. The placeFeature function will always either return a placement
where the feature is placed in its entirety, or not placed at all.

The main body of the heuristic is listed in Algorithm 2, which displays the
place function. The function is responsible for placing a list of applications or
features. It requires five parameters: (1) the problem model description P, (2)
the instance count IC, (3) the current placement matrix M, (4) a list Servers,
containing all the servers, (5) a list AppFeatures, of which every entry is either
an application or a feature, and (6) a collection F'ailed containing the applications
for which the placement of the application as a whole has failed. The first four
parameters are also used for the placeFeature function. The fifth parameter
determines the order in which features and applications are added, and makes it
possible to place features as either applications, or as individual instances. The
sixth parameter maintains a list of applications and features that could not be placed
successfully.

The formulation of the place function makes use of two additional functions:

1. The dependingFeatures(f) function returns the set of all features that
depend on the feature f. All the features present in the subtree with root f of
the feature model tree, except the feature f itself, are included in this set.

2. The dependentFeatures(f) function is the opposite of the previous re-
lation, and returns the collection of all features upon which the feature f is
dependent. This set can be constructed by, within the feature model tree,
selecting the parent feature of f, and subsequently recursively adding all of
the parent features of the features present in the set.

The place function starts by choosing the first element of the AppFeatures
list. If this element is a feature, it first checks whether the feature should be added.
If any feature upon which the feature depends has already failed to be placed for
this application, the selected feature is not placed, as it would automatically fail
because of the cascading of failure constraint described in Equation (3.11). If the
application has already failed to be placed, and there is no additional cost for the
failure of this feature or any of the child features, the feature is not placed either.
This rule is added, as placing these features would increase both the load on the
system and the cost of used servers, without decreasing the cost of failed placement.
If neither condition is met, the algorithm continues by using the placeFeature
function to place the feature on the infrastructure. The place function is then
repeated with the remaining elements of the AppFeatures list and, if the feature
was correctly placed, the server configuration returned by the placeFeature
function. Otherwise the initial server configuration is reused.



MULTI-TENANT FEATURE PLACEMENT 69

Data:
Data:
Data:
Data:
Data:
Data:

problem P

Instance Count for a feature on a server /Cy ¢

current placement matrix M, |

list of servers with remaining resources Servers

list of applications and features to place AppFeature
collection of failed application placements Failed

if AppFeature is empty then
| return (ICy y, M, ., Servers)

else

end

fa + take first element of AppFeature;
AppFeatures’ <+ tail of AppFeature list;
if fa is a feature f of an application a then

failedDependent < Failed N dependentFeatures(f);
failCOSt < CV(f? (l) + Zf’edependingFeatures(f) CV(f/’ a);
if failedDependent # () then
| Do not place feature;
else if a € Failed A\ failCost = 0 then
‘ Do not place feature;
else
(IC", M’ Servers’) «
placeFeature(P, IC, M, Servers, f);
end
if feature fa placed then
‘ place(P, IC', M', AppFeature’, Servers', Failed);
else
‘ place(P, IC, M, AppFeature’, Servers, Failed U fa);
end

else if fa is an application then

features + features of fa;
sort features using featureOrder;
(IC', M, Servers’) < place(P, IC, M, features, Servers);
if fa is correctly provisioned then
‘ place(P, IC', M, features, Servers’, Failed);
else
AppFeatures’ + AppFeatures’ + features;
sort AppFeatures’ using featureOrder;
place(P, IC, M, AppFeatures’, Servers, Failed U fa);
end

end

Algorithm 2: The place function.
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If the head element of the AppFeatures list is an application, the list of
all features in the application will be determined, and this list will be placed
by recursively calling the placeFeature function. If this succeeds, and all the
features of the application can be placed, the algorithm will continue by processing
the tail of the AppFeatures list. If this fails, the changes are undone, and the
individual features of the applications are added to the AppFeatures list, which
will be sorted again, and then placed using a recursive call to the placeFeature
function. This ensures that, if an application can not be placed in its entirety, the
algorithm will still make an effort to place individual application features. As the
cost of failing to place the application is incurred by this, only features that further
add to the cost of failure will still be considered for placement.

Algorithm 3 shows how the initial parameters are generated, and contains the
complete feature placement algorithm.

Data: problem P

features + featureConversion(P);

list < groupStrategy(P, features);

AppFeature < sort list using featureOrder;

Servers < sort servers in P using serverOrder;

ICSJ +— 0

M, 0

Failed < 0;

execute place(P, IC, M, AppFeature, Servers, Failed);
Algorithm 3: The feature placement algorithm.

The algorithm contains four components that we have not yet elaborated on.
At the start of the algorithm, the open variation points of the feature model are
filled in using a featureConversion function. This function ensures that for every
application, all features are either selected or excluded, eliminating open variation
points. The groupStrategy is used to determine whether all the application features
should be considered as a whole, or whether they should be placed independently.
The result of this function is a list containing a mix of features and applications: the
AppFeature list. The featureOrder is used to sort the AppFeature list, and can
compare features and applications to determine the order in which they are placed.
Finally, the order in which servers are considered is determined by the serverOrder
function. The effectiveness of the meta-heuristic is largely determined by the
featureConversion, groupStrategy, featureOrder, and serverOrder functions.
We will now present different implementations for these functions.

3.5.2.1 Feature ordering

The order in which features are considered significantly impacts the quality of
the final result, as it determines which features are placed first, and thus assigns a
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priority to the features. We make use of an application-based ordering, where appli-
cations and features with a higher cost of failure are placed first. For applications,
we define the cost of failure as the sum of feature failure costs, and the application
failure costs. For features, we define this cost as the sum of the cost of failure of
the feature, the application, and the cost of failure of all features dependent on the
feature. When according to this ordering no preference is achieved, we consider
the number of instances required to place the feature or application. The instance
requiring the smallest number of instances is placed first.

3.5.2.2 Grouping strategies

As explained above, the list AppFeature can contain either entire applications,
individual application features or a combination of both. The groupStrategy
function determines for each application present in the problem definition whether
it must be considered as a whole, or as a group of features. We consider two
versions:

e Feature grouping, where every application is split up into features, and the
features are placed independently. This corresponds to the approach we
previously described in [7].

e Application-based grouping, where applications are always grouped, their
features are placed at the same time. Should the placement of an application
fail, the algorithm will still try to place individual features, as described in
the Algorithm 2.

It is important to note that in both cases, the algorithm will place multi-tenant
feature instances, and allocate part of their capacity to the placed applications.
Using application-based grouping, the algorithm will however start by trying to
place all of the feature instances of a given application at once.

3.5.2.3 Server ordering

We consider two different server orderings:

e Instance Based (IB) ordering, which orders servers according to the best fit
for the feature f that is to be placed. This ordering prefers servers that have
instances of the feature placed on it, that are not fully utilized by the current
allocation. If multiple servers comply, the server with the best fit will be
selected. If, using this approach, two servers score the same, the server with
the lowest utilization cost is used.

e Cost Based (CB) ordering, where servers are ordered according to their
utilization cost.
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Note that the IB ordering of nodes changes for every invocation of the place
method, whereas the CB ordering does not change. This ensures the sort in Algo-
rithm 1 does not have to be executed for the CB ordering. Both of the approaches
take the cost of using servers, CY, into account, but only in the IB case is it the
primary selection criterion.

3.5.2.4 Feature model conversion

The featureConversion function is used to fill in open variation points. This
function determines the features that must be included in the placed applications.
We make use of an approach in which the cheapest feature combination in terms of
resource requirements is determined in two steps. First, ten cheap combinations of
feature models are determined for every application. As the number of combinations
increases exponentially, at each point in time the list of possibilities is shortened.
We have shown before that shortening to ten elements is sufficient for improving
the placement [7]. This can be determined as soon as an application is added, rather
than when application placement is executed. Within the evaluation section, we
will refer to this as the preparation step of the algorithm.

Secondly, when the list of all applications is known, the best total configuration
is determined. This is done by incrementally iterating all applications, and creating
a partial list containing a the best configuration for the subset of applications that
has already been considered. In every step, an application is added, and each of its
ten feature combinations is combined with the list of best applications from before.
From the resulting collection, the ten best elements are retained and passed on to
the next iteration.

3.5.2.5 Heuristic algorithms

The described functions can be combined with the meta-heuristic to create different
algorithms. For this chapter, we use the two grouping strategies, feature and
application based, and the two server orderings, IB and CB. This creates four
algorithms: IB_application, IB_feature, CB_application and CB_feature.

3.6 Evaluation setup details

We implemented the ILP problem and the heuristics using Scala. The ILP solver
uses CPLEX [35] as its back-end. Within the evaluations, we will make use of
two types of problem models: 1) problem models based on the three real-life
applications studied in the CUSTOMSS project, and 2) problems created using a
generator capable of creating a wide range of random problem:s.
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3.6.1 CUSTOMSS problem model

The full model, used by the CUSTOMSS project, is shown in Figure 3.6, and
contains the features and relations as they are currently defined in the project.
The feature names have been replaced by numbers. Each feature entry also
contains an estimated CPU requirement and a CPU use limitation (in the form
CPU = requirement/limit), and an instance memory requirement (M emory =
requirement). The relations between features are expressed in the format as de-
scribed in Section 3.3. As discussed earlier, features can impact each other. This
is illustrated by the arrows between nodes, the number on the arcs represents the
impact on CPU requirement other nodes. For example, the addition of Feature 7
increases the CPU demand for Feature 1 by 100.

The presented model groups the models for the three real-life applications, with
application roots Feature 1, Feature 16 and Feature 28 into a single model by adding
a new root node, modeling a cloud that executes these distinct applications. As
the nodes are grouped using an Alternative relation, every application will be an
instance of exactly one of the CUSTOMSS applications. This approach for running
multiple distinct applications was discussed previously in Section 3.4.2. Note that
some of the features do not have any CPU or Memory requirement. These features
are either used for grouping other features, improving the structure of the complete
feature model, or as they do not create new feature instances but significantly
impact the demand for other features. When these features are included, they are
automatically satisfied, provided that their parent nodes are correctly provisioned.

Applications feature selections are randomly generated by creating random
valid selections, where all features are either selected or excluded. Open variation
points are then randomly added. The application failure cost is set to 10. Some
features are selected in the feature model and are considered as being critical: if
they are selected, they must be correctly provisioned, or an additional cost of 5 will
apply. The features in the model that can be considered as critical are Features 13,
21, 22, 26 and 40. The energy cost is chosen as 1. This ensures applications will
always be placed if possible, the desired behavior, and that, if an application does
fail, only its critical features are placed.

In practice, a realistic cost could be determined by utilizing the actual economi-
cal cost of failure of applications. This cost would however vary throughout time,
based on previous placement performance. Practically, it is better to assign relative
costs that are maintained by the management system. In general, the cost of failure
of applications is always bigger than the cost of using servers, and specific features
exist that significantly increase the cost, on top of application placement failure
cost, if they fail to be placed.
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Figure 3.6: The combined feature model containing the CUSTOMSS applications. Each
entry in this model corresponds to a feature in one of three real-life applications.
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3.6.2 Generated problem models

To evaluate the algorithms for differing problem sizes and varying features models,
we generated different problem models. These models are similar in structure to
those of the applications studied in the CUSTOMSS project, but the number of
features in the feature models can be varied.

The generator creates a collection of servers, a feature model, and a set of
applications. For the purposes of the evaluation, we use I's = {CPU} and
I's = {Memory}. First, the servers S are generated. For these evaluations we
assume a uniform server configuration with 4000MiB memory and a 2000MHz
processor. We also use a uniform server use cost of 1. The costs of failure are
chosen relative to this cost.

To create a random feature model F, first, a collection of features F' is generated
with random memory requirements from a set {500M B,1GB,2GB,2.5GB}.
Subsequently a feature model tree R is created. This is done by iteratively selecting
nodes that are not in the tree yet and adding them in a relation with a node in the tree
as the parent node. To start this process, a random feature is selected as root of the
feature tree. There is an equal chance of picking any of the four relation types, and
Alternative and Or relations have between two and six child nodes. Feature models
generated in this fashion are similar in structure to those used for the applications
in the CUSTOMSS project.

Next, we generate the impact matrix FI"Y . Each feature impacts itself and
has a chance of impacting any feature required by it. This is enforced by only
letting a feature impact parent features. The CPU impact of a feature on itself is
randomly chosen from the set {100M H z,200M H z, 500M H z, 1000M H =}, the
CPU impact of a feature on a parent feature is added with a probability of 50%, and
chosen randomly from the same set. As stated earlier, we assume a homogeneous
host capacity.

Selecting features is done by randomly selecting or excluding features, and
checking the validity of the resulting feature model with SAT4J [36], an open source
SAT solver. This ensures that the selection is feasible according to feature model F.
Features are randomly removed from either the collection of selected features, or
from the collection of excluded features. All dependent features are removed as
well, ensuring an open variation point is added.

Finally, random applications A are generated using the generated feature selec-
tions. Each application and application feature is also assigned costs for failure,
randomly chosen from a given set. We use four different scenario’s, shown in
Table 3.5 for the evaluations, each with a different application failure cost. The
Varying Costs (VC) scenario makes use of varying costs for both application and
feature failure, and represents the realistic case where the failure of some applica-
tions or features can incur a much larger cost than the failure of others. The Identical
Costs (IC) scenario by contrast only considers a single cost for both application
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Scenario Application Failure Costs  Feature Failure Costs
Varying Costs (VC) {2,4,8,16,32} {2,4,8,16,32}
Identical Costs (IC) {2} {2}
Application Costs (AC) {2} {0}

Feature Costs (FC) {0} {2}

Table 3.5: The costs for the different evaluation scenarios.

and feature failure. Finally, the Application Costs (AC) and Feature Costs (FC)
scenarios consider situations in which either only application failure, or only feature
failure are considered. Costs are defined relative to each other, the VC scenario
representing the case where the costs of different applications differ by a large order
of magnitude.

3.6.3 Evaluation methodology

We will now discuss the different evaluation strategies, and the different quality
metrics used in these evaluations.

3.6.3.1 Load-based evaluation

We use a large number of randomly generated problem models in our evaluations.
As each of the randomly generated problem models can have very different prop-
erties, we need a common parameter to represent the difficulty of finding a good
solution. For this, we use the problem model load. The problem model load is
determined by filling in the feature model for every application, and determining
the cheapest possible application. We sum the CPU load for all features and all
applications, to determine the total application demand. We then divide this by the
sum of all available resources. This variable is indicative of the problem difficulty,
as higher load values imply that it becomes more difficult to place all applications.

Load-based evaluation of feature placement algorithms is done by first gen-
erating a large batch of problem models: a model is generated for every value
of (s, a, f) € {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}3, thus creating 1000 problem
models. We subsequently removed all problem models with a load > 3. In these
cases, it would be preferable to filter applications using admission policies, such as
those described in [37], in the management system, ensuring some applications are
not accepted by the system.

Due to the nature of ILP solvers, some problems require large amounts of
memory or computing time. Additionally, the CPLEX solver allows slight constraint
violations, in the order of 102, making the solutions to a minority of the problem
models violate constraints when the values are rounded. In both cases, the models
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causing problems are excluded from the test. The placement quality comparisons
were performed using the Stevin Supercomputer Infrastructure at Ghent University,
a hardware cluster containing quad core Intel Xeon L5420 nodes with 16 GB ram.
This ensures almost no problem models are filtered due to resource constraints.

For the each of the evaluations in this chapter, we repeat this process three times,
retaining on average 150 entries for every test set, most being excluded due to the
load limitations.

3.6.3.2 Execution time evaluations

The execution speed evaluations of the algorithms were executed on a Linux server
with a Dual-Core AMD Opteron(tm) Processor 2212 with 4GiB of memory, and
using Scala version 2.9.0.1. For these evaluations, the different versions of the
algorithm are executed for varying server, application and feature count.

3.6.3.3 Quality evaluation metrics
The results of a placement can be evaluated in different ways:

e Cost of Non-Realized Demand (NRD): This metric measures the cost caused
by the failure to provision applications. It corresponds to the C'p variable in
the formal model, defined in Equation (3.2).

e Cost of Non-Realized Demand Simple (NRDs): This measure is similar to
NRD, but does not take cascading failure of features into account.

e Full: Measures the total cost function as defined by the formal model. This
corresponds to the total cost C' defined in Equation (3.1).

3.7 Evaluation results

First, we evaluate the feature-based approach by comparing the degree of multi-
tenancy that can be achieved compared to an approach where every variant would
be provisioned its own instance. We then evaluate the impact of some of the design
decisions, determining the maximal amount of quality that can be achieved by the
placement when the various constraints are taken into account, and the importance
of including these constraints. Then, we evaluate the placement quality of the
algorithms compared to an optimal solution, and finally we evaluate the execution
speed of the algorithms.

3.7.1 Degree of multi-tenancy

As discussed earlier, there are two approaches to build high-variability applications
in clouds: (1) by generating a binary application for every variant and (2) by
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Figure 3.7: The maximum number of tenants sharing instances for an application-based
approach, where variants are created as monolithic instances, and a feature-based
approach, where applications are composed from feature instances.
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splitting the application into separate components, which we have referred to as
feature instances. In the former case, tenants can only share an application instance
if they require the same variant, in the latter case, individual feature instances are
shared by tenants. Note that the application-based grouping in Section 3.5.2.2 still
makes use of the second approach, and ensures that the different feature instances
are considered at the same time during placement.

To compare the degree of multi-tenancy that can be achieved using an applica-
tion instance approach to that of a feature based approach, we use the CUSTOMSS
problem model and count the number of instances that make use of the same appli-
cation variant for the former, and the number of applications that make use of the
same feature for the latter.

By counting the number of identical applications appearing within the problem
models used in the next subsections, we can determine how many tenants make
use of the same application. We then sort these values, showing frequently used
applications first, and average the results over the different problem models used in
the CUSTOMSS model evaluation, which will be discussed more in depth later on
in Section 3.7.3.2. The results, shown in Figure 3.7a, show that in average problems,
100 different applications must be provisioned that are each used by 5 to 30 tenants.
Many of these instances share less than 10 tenants.

When the focus is shifted from application instances to feature instances, and
we count how many applications require specific features, we see that a much higher
degree of multi-tenancy can be achieved, as seen in Figure 3.7b. Only 49 feature
instances are needed, and each instance is shared between 150 to 2500 different
tenants.

Our more fine-grained approach where applications are composed using multi-
tenant services, thus increases the achievable level of multi-tenancy while at the
same time decreasing the number of different instances that must be provisioned.

3.7.2 Impact of the model constraints

We will now determine the impact of various constraints that are defined in the
model on the maximum amount of quality that can be achieved by the optimization
algorithm. Compared to our earlier work [7], three additional constraints have
been added: (1) resource limits, expressing the limited amount of resources that
can be used by single application instances, (2) the cascading failure of features,
which expresses that parent features, upon which the feature relies for its correct
execution, need to be correctly provisioned for the feature to be allocated, and
(3) the consideration of server usage costs. Each of these additional constraints will
have an impact on the complexity of the problem, and on the minimal achievable
cost.
We consider three variants of the ILP formulation:



80 CHAPTER 3

e The first formulation, ILP Simple (ILPs) represents a simple variant of the
ILP formulation, where no resource limits, energy requirements or cascading
failure are taken into account.

e ILP Requires Parent (ILPrp) is a variant of the ILP formulation that adds the
cascading failure of applications, but not the energy requirement of servers
nor the resource limitations.

e ILP Requires Parent Limited (ILPrpl) is a variant of the ILP formulation,
considering both resource limitations and cascading failure of features.

We will now evaluate the impact of these requirements on the quality of the
resulting feature instance allocations using a load-based evaluation using randomly
generated problem models. We will do this by comparing the algorithms using the
two evaluation functions, NRD and NRDs. The results of these evaluations are
shown in Figure 3.8a and Figure 3.8b.

In Figure 3.8a we show the performance of the three variations of the ILP
solution with respect to NRDs metric. The addition of the different constraints
increases the number of applications that fail. Introducing the cascading failure of
features greatly increases the cost of placing applications. This is to be expected,
as constraints are added to the ILP formulation that complicate placement, but
that are not taken into account by the NRDs evaluation function. Adding resource
limitations further increases the cost, as more instances are required to meet the
required demand.

When we add the effect of cascading failure in the evaluation, and measure
the performance using NRD, the performance of the different ILP formulation
changes drastically, as shown in Figure 3.8b. Here, the ILP solution performs badly,
which is again to be expected as it allocates features with a high cost of failure,
without taking into account whether the parent features are correctly allocated.
The performance of both ILPrp and ILPrpl remains identical for both evaluation
mechanisms, as no new failed features are introduces.

From this evaluation we can conclude that the use of cascading failure and
resource limitations comes at a cost, making it more difficult to find a satisfactory
placement on given infrastructure as more requirements are taken into account. This
disadvantage is in addition to the increased computational cost incurred by these
constraints. If, however, the constraints are required for an accurate representation
of the application, they must be considered during placement, as these results show
that otherwise the quality of the eventual placement result will be significantly
worse.
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Figure 3.9: Performance of the heuristics and the ILP algorithm for the different scenarios.

3.7.3 Placement quality

We evaluate the placement quality using both the load-based approach as discussed
in the previous section, and the CUSTOMSS model.

3.7.3.1 Generated problem models

We use the load-based evaluation with generated problem models for the differ-
ent scenarios which we defined in Table 3.5, and evaluate the performance of
the algorithms using the total cost evaluation function (Full) defined earlier. Fig-
ure 3.9a shows that in the Varying Costs (VC) scenario with varying costs, the
IB_application and CB_application algorithms perform significantly better than
the IB_feature and CB_feature algorithms. This indicates that an application-
based feature grouping strategy performs well in practice. In both cases, the IB
server ordering strategy performs slightly better than the CB approaches, but these
differences are less significant.

As shown in Figure 3.9b, the application-based approach works remarkably
well when both features and applications impact the cost of placing features, as



e}

MULTI-TENANT FEATURE PLACEMENT 3

6000 2000
% 99pct 1800 % 99pct 7
5000 Sggpct /// /// 1600 ® 98pct Z /
pct @ 95pct / /
1400
R 4000  W50pct /// . W 50pct < v
3 % 3 y/ /
w
£ 3000 2 Z £ 1000 77 % 4
S S 800 4
'g 2000 E 600
1000 400
200
0 0
ILP |B_Feature CB_Feature ILP IB_Feature CB_Feature
IB_Application CB_Application I1B_Application CB_Application
(a) Using all datapoints. (b) Using datapoints with load between 1
and 1.4.

Figure 3.10: Percentiles for the performance of the heuristic and ILP algorithms for the VC
scenario.

we do in the IC scenario, even if these costs are kept constant, yielding significant
improvements when compared to a purely feature-based approach.

The results for the AC scenario are shown in Figure 3.9c. In this scenario, the
different algorithm variations all perform more or less the same, and significantly
worse than the ILP results. While this may seem counterintuitive, considering the
feature placement focuses on applications in their entirety, this is not unexpected:
this phenomenon is caused by the homogeneous nature of the different applications,
which makes each application equally important in the placement, making it difficult
to decide on which applications to exclude.

Even when no costs for application failure are taken into account, as in the
FC scenario, an application-based approach again performs best, as we show
in Figure 3.9d. It is however to be noted that the combination of a purely CB
approach for servers, combined with an application-based approach for grouping,
can sometimes result in bad performance, as seen in the [1, 1.2] region of the plot.

As explained previously, these evaluations make use of randomly generated
problem models. While a load-based approach groups elements according to
their difficulty, variations in feature models can still cause large differences in the
eventual quality of the placement. We show the percentiles for the VC scenario
in Figures 3.10. Figure 3.10a shows the percentiles for the entire test set, with
loads between 0 and 3. Figure 3.10b shows the percentiles for the problem entries
with loads in [1, 1.4], an interesting region as it represents a situation that could
potentially occur when application demand spikes. In both charts, the tendencies
explained previously reoccur: an application-based approach performs better than a
feature-based approach, and an instance based order for servers performs better than
a purely cost based approach. On average, the application-based approach performs
+25% better than a feature-based approach, in the [1, 1.4] region, while when
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all results are considered, this difference increases to +42%. Using a cost-based
approach rather than a feature-based approach also slightly increases placement
quality, by +12 in the [1,1.4] range, but only by a negligible 1% when all
evaluation results are included.

It is noticeable that, globally, the instance-based approach has a similar worst-
case performance as the cost-based approach, but its occurs less often. In an
overload situation, the difference between both approaches is only noticeable in the
99th percentile. It is of note that, for loads in the [0.5, 1] range, not shown here, the
different algorithms often perform slightly better than the ILP-based algorithm due
to the assignment of non-integer values to integer variables that occurs in CPLEX.

The results in this section demonstrate that an application-based approach
to feature placement, where the algorithm tries to place all of the features of
applications at once, performs significantly better compared to a feature-based
approach, where the features are considered separately. Note that in both cases, the
placed feature instances are multi-tenant services and shared between applications,
as discussed previously. When servers are selected, it is best to take into account
how well applications fit on the server, as it is done with the IB approach, but the
improvements of this choice compared to a purely cost-based approach are limited,
and this change only impacts problem models in the 98th and 99th percentiles.
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3.7.3.2 CUSTOMSS problem model

Using the CUSTOMSS model, we assessed the costs when the number of servers is
varied using the total cost evaluation function (Full) and using the CB_application
algorithm. Figure 3.11 shows the quality of placement considering varying appli-
cation and server counts. These graphs were generated by using the CUSTOMSS
feature model, and creating applications as described in Section 3.7. To generate
the problem for n applications, a single application is generated and added to the
problem generated using n — 1 applications. Because of this, the graph shows the
impact of iteratively adding applications and servers to a cloud.

We see that as applications are added, the cost for failed placement increases.
The plot consist of two intersecting planes. One plane is nearly flat, with only a
slight slope as application counts increase, as this ensures more servers that need
to execute applications, increasing the server use cost. The second plane shows
a steeper increase in costs, as in these points application failure occurs, incurring
a larger cost. The intersection of the planes shows the point at which too many
applications are allocated, and a cost of failure is incurred.

3.7.4 Execution speed evaluation

We consider the execution speed of the algorithm for increasing application counts,
server counts and feature counts, using randomly generated problem models. In
the graphs, we separate the total execution time of the algorithms into two parts:
a preparation time and an execution time. Each data point is an average of 20
executions using randomly generated feature models with the parameters discussed
in the previous section. The preparation time is the part of the computation that
can be executed when an application is added, and is needed only once. This
mainly comprises of the time required to create feature model configurations using
the feature model conversion as discussed in Section 3.5.2.4. We only show the
preparation cost for the CB_application algorithm, but these costs are identical
for the other three algorithms. The execution time is the time required to execute
feature placement, provided the preparation step has been executed in advance.
This step must be executed when applications are actually running, to take changing
application demands and the addition of new applications into account.

As shown in Figure 3.12a, increasing the number of applications increases the
execution duration of the algorithm in a more or less linear fashion. It is notable that
the application-based approach performs a bit worse than a feature-based approach,
as some applications will be considered twice by it, once in an application-based
fashion and once in a per-feature order, while the feature-based approach only
considers each feature once. Similarly, an IB approach to server ordering also
increases the execution duration w.r.t. a CB approach, as it requires an additional
sort operation. As the number of applications doubles, so does the preparation
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Figure 3.12: The execution speed of the feature placement algorithm as a function of varying
application counts, server counts and feature counts.
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duration, as this preparation runs for each application. Such a trend is noticeable in
the plot, but the preparation duration does vary significantly from problem model
to problem model.

In Figure 3.12b, we show the performance of the algorithm in the face of
varying server counts. Once more, the high variability in preparation execution
time is demonstrated, as for each data point the same number of applications are
considered. We notice that the CB algorithms are largely independent from the
number of servers considered. This opposed to the IB approach, for which the
required computational time increases with the server count.

Figure 3.12c demonstrates the execution speed considering varying feature
counts. Here we notice a significant increase in preparation time as feature counts
increase, but only limited impact on the execution time of the algorithms. We again
observe that an application based approach requires more time to execute, as do the
IB algorithms.

Feature models become more complicated to manage as the number of features
increases, especially as within this chapter we only consider customization changes,
in which a change implies the use of a different code module that must be main-
tained. Because of this, we do not expect the models to become prohibitively large,
ensuring the preparation duration will remain acceptable. Furthermore, this has
little impact on the execution time of the algorithm. We can conclude that the CB
algorithms scale well in terms of application and server counts, and that, due to the
possibility of preparing applications before execution, increasing feature counts can
be managed as well. The IB algorithms do not scale as well when server counts
increase as the CB approach. This implies that, while the IB algorithms perform
slightly better than the CB algorithms, it can be preferable to make use of the latter
in large server configurations to improve the speed with which placements can be
determined. The presented algorithms still make use of a centralized approach, im-
plying they could become a bottleneck as the size of the cloud increases. To address
this, techniques such as those we presented in [28] could be used to increase the
scalability of the algorithms in larger clouds, by reusing the centralized algorithms
within a hierarchically structured management infrastructure.

3.8 Conclusions

In this chapter, an approach for managing highly customizable applications using
feature modeling and SPLE techniques was presented. We first presented the feature
placement problem, determining the different inputs, outputs and requirements,
which we subsequently formalized. Then, heuristics were developed and compared
to the optimal ILP-based algorithm. In this evaluation we used the feature models
from existing applications, ensuring the presented techniques are applicable to
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realistic cases, and using generated feature models, ensuring the performance
remains similar for different cases.

For the considered cases, using feature instances rather than application in-
stances greatly increased the achievable level of multi-tenancy. In the former
approach, each instance can be shared between up to at least 150, while in the latter
approach some instances can only be used to serve +5 tenants. We found that an
application-centric approach to feature placement, where the services correspond-
ing to application features are placed at once, performs 25% to 40% better than a
feature-based approach, where the features are placed independently without taking
their relations into account. We also conclude that an approach where servers are
chosen based on a best fit approach performs best, albeit with a penalty to execution
times. For three out of four scenarios, the application-based approach to feature
placement performs close to the optimal algorithm, failing only when no differences
between applications occur. The presented heuristics scale well, with execution
times remaining under 10s for the considered cases.

In future work we will extend the discussed approach to achieve dynamic
application placement, and we will incorporate the designed algorithms in a cloud
management platform as a proof-of-concept.
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Addendum

The dynamic application placement which is referenced in the conclusion of this
chapter is discussed in Chapter 4.
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In Chapters 2 and 3, a feature-based approach for modeling and managing
customizable multi-tenant SaaS applications was introduced. In this chapter, we
describe dynamic feature placement algorithms that minimize migrations between
subsequent invocations. These algorithms extend the algorithms presented in
Chapter 3, adding migration-awareness, and use similar principles to achieve their
results. We evaluate the algorithms in dynamic scenarios where applications are
added and removed throughout the evaluation scenario. We find that the developed
algorithm achieves a low cost, while resulting in few resource migrations. In
our evaluations, we observe that adding migration-awareness to the management
algorithms reduces the number of instance migrations by more than 77% and
reduces the load moved between instances by more than 96% when compared to a
static management approach. Despite the reduction in the number of migrations, a
cost that is on average less than 3% more than the optimal is achieved.
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4.1 Introduction

In recent years there has been a growing interest in using cloud computing as a
means of offloading applications and reducing costs. An efficient way in which costs
of cloud deployments may be reduced is through multi-tenancy. In a traditional
model, every client is provided with a separate application instance. In multi-
tenant environments, however, a single instance can be used by multiple clients.
Every client of the application is referred to as a fenant and is considered to be an
organization with its own end users. The major advantage of this approach is that it
makes it possible to use less application instances to provision the service to each of
these tenants, reducing the cost of offering the service. Additionally, this approach
makes it easier to scale applications, as sudden increases in numbers of users result
in smaller increases of the number of required instances. Spikes in the numbers
of end users of one tenant can also be compensated by decreasing numbers of end
users of other tenants.

Building customizable multi-tenant applications is however difficult, and it
is often hard to make changes that are not just cosmetic configuration changes.
Therefore, multi-tenant applications are often offered as a take it or leave it package,
with only limited customizability. This approach works well for many application
types, especially when tenant needs are very similar, but there are use cases where a
very high degree of customizability is required. This is the case in various domains,
such as for example document processing, medical communications and medical
information management. These application cases are all characterized by the fact
that the offered platform is used by a relatively small number of large tenants that
each have a large number of end users. Each of these tenants may request its own
customizations to the application platform, and as many tenants are large, it is
difficult to deny these requests. Currently such customizations are often developed
on an ad-hoc basis. This however poses difficulties concerning the management
of these customizations and as separate tenants have custom tailored codebases, it
becomes impossible to share resources between end users. This problem becomes
even more complex when clients are also split up into multiple departments that
each require specific customizations and when the application platform is offered
to other clients using resellers. An illustration of the various tenant types is shown
in Figure 4.1.

Using feature modeling [1], this issue can be addressed. Feature modeling
is an approach where the variability of an application is modeled using a feature
model. The customizability of the application is represented by a collection of
features, a representation of specific functionality that may or may not be added
to the application, and their relations. Features can be implemented using aspect
oriented programming [2], as configuration changes, or as custom code modules.
While feature modeling is an interesting approach for managing the codebase of
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Figure 4.1: An illustration of a scenario where the application is offered to end users by a
hierarchy of the three types of tenants: resellers, clients, and client departments. Resellers
can also sell the application to other resellers, and departments may also be further divided
into smaller departments. At every level, different application customizations may be
required.

customizable applications, this still results in customized application binaries, mak-
ing it impossible to use multi-tenancy in the resulting applications. We previously
proposed an approach where applications are separated into multiple interacting
components, effectively making sure every feature is implemented in its own ser-
vice [3]. The entire application is then composed from the various components, thus
forming a service oriented architecture. As every code module is itself multi-tenant,
the advantages of multi-tenancy can be attained.

Splitting applications into multiple components however impacts the perfor-
mance of the applications, complicating cloud management. Additionally, the cho-
sen features should be taken into account by the management system. It may e.g. be
cheaper to use an existing high-performance instance for a tenant that does not pay
for such an instance rather than to allocate a low-performance instance specifically
for this tenant. We previously addressed resource allocation taking this information
into account, referred to as feature placement, in [4] and [5], but the approach how-
ever resulted in a static resource allocation, that has to be recomputed periodically.
In doing so, the number of migrations is not taken into account, which adversely
impacts the performance of the system when services are migrated. Furthermore,
adding applications is relatively expensive and slow as they can only be added
whenever the algorithm is invoked rather than immediately when they are added.

In this chapter, we focus on dynamic feature placement algorithms that relocate
and reconfigure features when changes occur. In computing these changes, the
previous state of the system is taken into account, minimizing the number of ap-
plication changes and instance migrations. We present both ILP-based algorithms
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Figure 4.2: The dynamic feature placement, its inputs and its function within a management
system.

and a heuristic algorithm, the Dynamic Feature Placement Algorithm (DFPA). Fig-
ure 4.2 shows the algorithm inputs and how it functions within a cloud management
system.

The remainder of this chapter is structured as follows. In the next section we
discuss related work. Afterwards, in Section 4.3 we describe how the system in
which the feature placement algorithm is executed is structured, and how feature
modeling is used within the approach. A formal problem representation is presented
in Section 4.4. In Section 4.5, we present the DFPA. The evaluation setup is
presented in Section 4.6, and the algorithms are then evaluated in Section 4.7.
Finally, we state our conclusions in Section 4.8.

4.2 Related Work

To manage variability when building applications, Software Product Line Engi-
neering (SPLE) [6] techniques are used. Instead of managing multiple codebases
for different application variants, a single codebase is used, and different variants
are generated using SPLE tools. In traditional SPLE applications, the application
configuration is however generally decided at compile-time, making it ill-suited for
cloud environments. Dynamic SPLE [7] can be used to configure and reconfigure
software variants at runtime, making it more suited for cloud environments. This
makes it possible to characterize runtime variability and reconfigure applications at
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runtime. SPLE has been used in cloud environments [8—10], but the approaches
tend to focus mostly on development, deployment and configuration. We however
focus specifically on runtime resource allocation for customizable SPLE appli-
cations by adding awareness of application variability to the cloud management
algorithms. Similarly, other work [11-14] focuses on the design-time variability of
the applications rather than on their runtime management, the latter being the focus
of this chapter.

In this chapter, we focus on cloud resource allocation [15] and design dynamic
management algorithms that are aware of application customizability. In particular,
we focus on extending the generic application placement problem [16] and cloud
application placement problem [17-19] to incorporate both multi-tenancy and
software variability. The approach we use for multi-tenancy uses component-based
applications composed using a Service-Oriented Architecture (SOA), making the
relations between components another important consideration.

Our approach is similar to application component placement approaches [20—
23], where applications consisting of multiple components, represented as a set
of Virtual Machines (VMs), are placed within a datacenter taking the relation be-
tween components into account. These approaches typically focus on colocation,
anti-colocation and other placement constraints used to impact application security,
performance, and reliability. These approaches however do not take multi-tenancy
on a VM-level into account, meaning the approaches do not support sharing com-
ponents between different multi-component applications. Our approach further
differs by the inclusion of SPLE principles within the management system, making
it possible to take application variability into account during resource allocation.

[24] both focuses on VM placement taking energy efficiency into account.
Our approach also incorporates server use costs, but differs in that we focus on
managing multi-tenant applications where multiple applications can make use
of a single instance. Additionally, our algorithm also adds support for software
variability within the management algorithm itself. Energy efficiency and server
usage costs are incorporated in an application placement system in [25]. The
authors however focus on the placement at a VM level, while our approach focuses
on managing multi-tenant applications where multiple applications can make use
of a single instance, meaning more fine-grained control is needed. Furthermore,
our algorithm also adds explicit support for software variability. This enables the
management system to dynamically fill in undecided variability, referred to as open
variation points [10], at runtime.

Application placement algorithms typically focus on server CPU and memory
resources [19, 26-28] or bandwidth limitations [29]. In this chapter we make
use of a generalized approach where arbitrary resources of different types can be
used. Such an approach was previously used in [30], but our approach goes further
as it allows the definition of multiple resources rather than just supporting two
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arbitrary resource types, enabling the management of high-variability applications
with heterogeneous resource demands.

This chapter extends our previous work related to feature placement [4, 5],
which focused on the static feature placement problem, and describes and evalua-
tions new dynamic feature placement algorithms that can be used in a context where
applications are added and removed through time. The modeling approach we use is
further based on our work on feature model conversion [3], which focuses more on
how the code modules themselves are defined and how customizable applications
within our approach can be designed rather than on how these modules are managed
at runtime, which is the focus of this chapter.

An overview of how the DFPA, which is introduced in this chapter, compares to
the most relevant previous work is shown in Table 4.1. In the table, we focus specif-
ically on approaches using and supporting multi-component cloud applications. We
compare multiple properties for the various publications. These properties are the
following:

1. Multi-component applications: Whether the approaches support the manage-
ment of applications consisting out of multiple components.

2. Application variability: Whether application variability and customizability
is considered in the work.

3. Resource management: Whether the work addresses the runtime management
and resource allocation of these applications.

4. Dynamic cloud management: Whether the management of applications is dy-
namic (i.e. resource demand can vary over time and application components
can be migrated).

5. Service management: Whether the management focuses on services instead
of VMs. This makes it possible to consider how application resources are
allocated within VMs in addition to how the VMs themselves are allocated.

6. Service and VM migrations: Whether both service and VM migration is
supported (i.e. VMs can be moved between nodes and application load can
be shifted between VMs without moving the VMs themselves).

7. Generalized resources: Whether the approach supports generalized arbitrary
resources, and not just CPU and memory capacity.

8. Server use minimization: Whether the approach takes server utilization into
account, enabling energy-efficient resource management.

!Focuses on modeling of applications, not on managing them at runtime.
20n-line algorithm, but does not migrate instances over time.
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[10], [14] [17] [20] [21] [22] [23] [4],[5] DFPA

Multi-component applications + + + + + + + +
Application variability + - - - - - + +
Resource management -1 + + + + + + +
Dynamic cloud management N/A 2 + + - - - +
Service Management N/A - - - - - + +
Service and VM migrations N/A - - - - - - +
Generalized resources N/A - + + + + + +
Server use minimization N/A - - - - - + +

Table 4.1: An overview of the relation between the DFPA introduced in this chapter and
previous work.

4.3 Feature Placement

SPLE [6] techniques can be used to model an application as a collection of features
and relations between features. Both the features themselves, which encapsulate
specific functionality that may or may not be included in an application, and their
relations are important. It may for example be the case that the inclusion of a feature
implies that other features must be included or conversely that the inclusion of a
feature prevents another feature from being selected. To make it easier to reason
using these relations, feature models are often defined hierarchically. The relation
between child nodes can be chosen as one out of four types:

e Mandatory(a, b): If a feature a is included, the feature b must be included
as well.

e Optional(a, b): If a feature a is included, the feature b may be included.
Conversely, the feature b must not be included if a is not included.

e Alternative(a, S): If a feature a is included exactly one of the features
contained in the set S must be included. If a is not included, none of the
features in S may be included.

e Or(a, S): If a feature a is included, at least one of the features contained in
the set S must be included. If a is not included, none of the features in S may
be included.

In our feature placement approach, applications are constructed using a service
oriented architecture and are composed out of various feature instances. Only
features that refer to actual code modules are used, while other features such as
smaller configuration changes are handled at runtime. The code module of a feature
can then be instantiated as a VM in a cloud. We assume that feature instances are
multi-tenant, meaning they can be used to serve multiple applications for different
clients. For more information as to how features are represented and how feature
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Figure 4.3: An illustrative example of a small feature model using the Pure::Variants
notation.

models containing non-code changes can be mapped to feature models containing
feature models we refer to [3]. To support this transformation, and add versatility
to the feature model representation, two additional non-hierarchical relation types
are used:

e Excludes(a, b): If a feature a is included, the feature b must not be included
and vice versa.

e Requires(a, b): A feature a may only be included if the feature b is included
as well.

Figure 4.3 shows an illustrative example a simple feature model consisting
of six features. The relations between the various features are expressed using
the Pure::Variants notation [31] which we also used in our previous work [3, 5].
This model corresponds to three relations: Optional(a, b), Or(a, {c, d}), and
Alternative(c, {e, f}). Based on this model, a specific configuration of features can
be selected to be used in an application. A feature can either be selected, excluded
or undecided. A selected feature must always be included for the feature placement
of the application to be successful. An excluded feature may not be included in
the application under any circumstance. Finally, undecided features may either be
included or excluded at runtime, based on what results in the lowest placement
cost. It may, e.g. be cheaper to add encryption for a client, even if he has not
selected the feature, if only instances with encryption exist than to create a new
instance specifically for this client. These undecided features are referred to as open
variation points [10]. If, for the model in Figure 4.3, {a, ¢, d} are selected and {b}
is excluded, e and f remain as open variation points. Only when the application is
deployed will it be decided whether e or f are included.

An overview of the workflow when new requests are added to the system is
shown in Figure 4.4. As application placement requests enter the system, the
viability of adding them is first evaluated by an application request filter. This filter
can make decisions based on multiple factors:
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Figure 4.4: An overview of the relevant components within the cloud management system
and the communication flow between the components.

e The amount of system resources required for the request can be determined
and compared to the remaining resources available within the datacenter. If
there are not sufficient remaining resources, the application request should
be rejected.

e Another factor that is important when application allocations are initiated is
the consideration of network capacity. This is especially important if some
features are allocated in different networks and part of the communication
must pass over the Internet. Filters such as this can be created by determining
the impact on the underlying network of instantiating these services, which
we previously discussed in [32].

This filter is invoked whenever a new application configuration is instantiated,
which is when a seller enters the feature configuration for a client within the system.
Accepted requests are sent to the feature placement system, which runs algorithms
responsible for determining where the services out of which the application consists
should be allocated on the physical infrastructure. These allocation changes are
then enforced by the feature placement system resulting in a change of the physical
allocation. System load information is then sent back to the application request
filter and feature placement components, which can be used to update allocations
and to allow or reject future application instantiation requests.

4.4 Feature Placement Model

We previously presented a formal problem formulation for the static feature place-
ment problem in [5]. In this section we briefly describe the problem model, focusing
on the variables that are needed to add migration-awareness to the model. For a
more detailed discussion of the model parameters and formulation we refer to [5].
We will end this section by discussing how migration-awareness can be added to
the model to make it useful for dynamic application placement scenarios.
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Figure 4.5: The input and output of the feature placement.

Figure 4.5 shows the inputs and outputs of feature placement. As an input, the
model defines servers, with associated CPU, memory and usage cost information.
Additionally, a feature model is defined containing all of the application features and
their relations. Individual features, comparable to VMs in traditional application
placement scenarios, can be instantiated on a server. Thus, every instance has
specific memory requirements. Additionally, we limit the amount of processing
that a single instance can do by limiting the amount of CPU resources that can be
processed by a single instance. These instance limits are used as it is unrealistic for
a VM with limited memory to be able to be able to process an infinite amount of
requests (represented by their CPU use). Finally, applications are composed out
of multiple features. They are represented by a set of selected features, and a set
of excluded features. Some features may be neither selected nor excluded for an
application, leaving these features as open variation points. During the execution of
the feature placement algorithm, these open variation points are filled in by either
selecting or excluding them based on the feature model. The above results in three
sets of input variables: servers, features and applications. These are respectively
contained in the sets S, F and A.

The model has two outputs: a placement matrix that defines where features are
instantiated and for which applications they are used, and the application feature
selection which indicates which features are used for which applications, filling in
open variation points. The placement matrix itself consists of two separate parts.
First, it describes on which servers features are instantiated. As the amount of CPU
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resources that can be used by a single feature instance is limited, it is possible for
multiple instances of a feature to exist on a server. Secondly, the placement matrix
also describes which applications make use of which feature instances and how
much CPU capacity of a feature instance is used for every application. The above
results in three output variables:

e The instance count, IC r, represents the number of instances of a feature
f € F that are instantiated on a server s € .S in the solution.

e The placement matrix, M SC ij g, shows how much CPU resources are allocated

on a given server s € S for a feature f € F' of an application a € A.

e The binary variables ® ¢ , are used to represent the feature selections: @y , =
1 if the feature f € F is included for application a € A. Conversely, feature
is excluded if ¢, = 0.

The objective of the feature placement optimization is to minimize the cost of
the placement. This cost consists of two separate components: the cost of using
servers and the cost of failing to place applications or their components. The
cost of using a server represents an operational cost that can either be an energy
cost or the cost of renting a server. The failure cost represents a Service Level
Agreement (SLA) cost of failing to place an application correctly. Two separate
failure costs are taken into account: an application failure cost is incurred whenever
any feature of an application fails to be placed correctly, while the feature failure
cost is incurred when a single feature of an application is not placed correctly. These
separate costs make it possible to define an additional cost for failing to provide
specific essential features of the applications. These costs may be represented as
a monetary cost, but also as a virtual cost determined by the management system
that varies during the execution of the management system. E.g. failing to place an
application may in reality result in a cost of 0 if the service interruption is short but
should still have an assigned cost within the management system to prevent it from
happening at all.

In the previous discussion, we focused specifically on memory and CPU re-
sources for simplicity. In practice, it is however possible for there to be additional
relevant resource types, such as disk space and bandwidth. The model supports
this by making an abstraction of the concept of resource, and making a distinction
between two resource types:

e Strict resource types are resources that are required to create an instance of
the feature. The typical example of this resource type when studying resource
allocation problems is application memory. Another possible example is disk
space. To create a VM, this memory and disk demand must be satisfied;
otherwise it is impossible to create an instance of the feature. Every server
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has a specified amount of available strict resources, and every feature instance
has a specific strict resource demand.

e Non-strict resource types behave differently. The goal of the optimization
is to ensure that all of the requested resources of this type are allocated for
applications. To achieve this, instances are created and that are responsible
for providing (part of) the resource demand of an application. The common
example here is CPU capacity: a certain amount of CPU capacity must be
allocated to an application to ensure all requests for the application can be
handled, but not all of the calls must always be handled on the same instance,
especially for larger tenants for whom the application must be distributed
over multiple nodes anyway because of their scale. While every server has a
specified available non-strict resource demand, feature instances do not have
a non-strict resource demand. Instead, applications have a specific non-strict
resource demand that must be handled by one or more feature instances.
As stated previously, it is possible for feature instances to be limited in the
amount of non-strict resources that they can process, which is represented
using instance non-strict resource limits.

All of the resources are contained within the set I, strict resources are contained
in the set I's, while non-strict resources are contained in the set I's. Generalizing
the output variables, we obtain a placement matrix M;’ f,a» Where «y is any of the
non-strict variables in I'5.

4.4.1 Dynamic feature placement: resource migrations

The static problem model as summarized above can be used to minimize the cost
of a placement, in terms of both failed placements and server use, but it does not
take the current application allocation into account. By adding the current resource
allocation as an input, the number of resource migrations that are required to apply
the placement can be determined. Based on how the model is defined, there are two
types of resource migrations that should be considered. On one hand, the number
of instance count changes can be determined. This represents the number of virtual
machines that must be started and stopped. We refer to this migration type as an
instance count change. Due to the multi-tenant nature of the instances, a second
measure for migrations can be considered as well: the amount of resources used
for applications that are allocated using other instances. This type of migration,
which we refer to as resource shift, can also cause network traffic as application
data present in one instance may have to be transferred to another instance. An
illustration of instance count change and resource shift is shown in Figure 4.6.

To model the migrations caused by a placement, the current allocation must be
added as an input to the model. This current allocation can be represented using
two additional inputs:
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(a) An example of a resource shift migration. No new instances are created, but resources
that were allocated for an application a4 within a feature instance on server s1 are moved
to another feature instance on server sa.
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(b) An example of an instance count change migration. An instance is removed on server si
and a new instance is created on server sa. (Note that in this example the resources
allocated for the applications a1 to as are shifted as well.)

Figure 4.6: An illustration of the difference between resource shift migrations and instance
count change migrations.



108 CHAPTER 4

1. The previous instance count 1 Cg’ Iz which indicates the number of instances
of a feature f that are currently allocated on a server s. This input is required
to determine the change in instance count on every instance, which can in
turn be used to measure the number of instance count change migrations.

2. The previous resource allocation, represented as Mgf’a must be included
as an input variable as well. By determining changes between M’ and the
currently computing allocation M, the number of resource shift migrations
can be modeled.

The number of instance count increases /C';. can be determined as shown in
Equation (4.1). The increase can be determined by, for every server and feature
type, calculating the difference in the number of feature instances between both
allocations. We are only interested in feature instance count increases, as only
creating a new feature instance incurs a cost, in the form of network load and delays.
Therefore decreasing values (when IC y — I C; 5 < 0) are ignored and replaced
by 0 within the sum.

IC+:ZZmaX(ICS’f_IC;’f’O) 4.1)

seS feF

To characterize resource shift migrations, we make use of a similar formulation.
The difference in resource use between the current placement matrix M and the
previous placement matrix M’ are determined. Like in the definition of ICy
negative values are removed, and only positive changes are counted. Equation (4.2)
shows how this resource shift can be computed for non-strict resource types. As
there may be migrations of resources of different types, this results in a value for
every resource type. By normalizing the Mz values based on the total resource
load these different resource types can be combined into a single measure M .
This is shown in Equation (4.3). In this equation, 7" is the total load for non strict
resource -y in the previous iteration, which is used for the normalization.

MI =3 % > max(M],, —M;,.0) 4.2)

seS feFacA

1 1
— 0l
M, = o] X E (1 - X M+> 4.3)
S ’YEF?

These model extensions add IC'y, which is a measure of instance count change
migrations, and M, which is a measure of resource shift migrations.
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Figure 4.7: The different optimization steps of the migration minimizing model.

4.4.2 Iterative migration minimizing model

The migration minimizing model makes use of an iterative approach for minimizing
the cost, instance count increase /C'; and resource shift M. Within the optimiza-
tion, we define use of nearness parameter o > 1, and ensure the cost of the solution
will always be within a factor « of its optimal value. The migration minimizing
model is illustrated in Figure 4.7 and consists of three steps:

1. First, the base model is optimized, minimizing the total cost. This results in
an optimal cost C"*.

2. Subsequently, the instance count increase /Cy is minimized. During this
minimization, an additional constraint on the cost is added: C < o x C*.
This results in an optimal instance count increase value IC7; .

3. Finally, the resource shift migrations M are minimized. During this op-
timization, two constraints are added, limiting both the cost and instance
count increase migrations: C' < o x C* and ICy < o x IC7. This last
optimization returns a placement result where the total cost C' the number of
instance count migrations /C'; and the amount of resource shift migrations
M are all taken into account.

4.5 The Dynamic Feature Placement Algorithm

We designed the Dynamic Feature Placement Algorithm (DFPA) heuristic to solve
the problem discussed in the previous section. To create a dynamic algorithm that
minimizes the number of migrations between iterations, we design an algorithm
that, using the current placement state and a specific change, results in a new
application placement. These changes can either be the addition of an application,
the removal of an application, or a change to the resource requirement of an
application. The latter can be achieved by sequentially removing and re-adding the
application with different resource requirements, which is why we focus specifically
on application start and stop events. The management algorithm dynamically
generates a new solution whenever applications are added or removed, and bases



110 CHAPTER 4
Current
‘Placement: Remove Allocate Improve : '
Application E> Determine E> Unplaced E> Placement : Placement |
) . ) Unplaced | Result |
! : (if applicable) placeAll refine
. Change ;Q

Figure 4.8: A high level overview of the Dynamic Feature Placement Algorithm (DFPA)
steps. The functions placeAll and refine are discussed in Sections 4.5.1 and 4.5.2

respectively.

itself on the previous allocation to achieve good placement results with limited
resource migrations.

The algorithm is invoked whenever an application is instantiated or halted. A
high level overview of the algorithm steps is shown in Figure 4.8. The algorithm
maintains a solution to the placement problem in-memory, which it updates during
each of the steps. The initial state of the algorithm is the current placement, before
the changes are taken into account. The main steps of the algorithm are as follows:

1.

Two inputs are used by the DFPA: the current placement and a change to the
current state. The current placement is represented using a placement matrix
M and is used as the initial algorithm state. The provided change is either a
start or a stop event for an application.

If the change is the removal of an application, the application is removed
from the current solution, possibly reducing the number of feature instances
for some of the application features if this causes feature instances to become
unused.

Subsequently, the applications that must be placed are determined. This may
be an application that must be instantiated now if the change is the addition
of an application, but this list may also be larger if an application was not
successfully placed in a previous algorithm iteration.

In a next step, the applications are placed iteratively. This is done using a
placeAll function that is described in detail in Section 4.5.1.

Then, an improve operation is used to refine the placement and improve its
quality. This is done by selectively removing and re-adding applications,
reducing the number of servers used and making it possible to place some
applications that would otherwise have failed. This solution refinement
process, executed using a refine function, is discussed in Section 4.5.2.

Finally, the placement result that has been determined during the previous
steps is returned as the placement result.



DYNAMIC FEATURE PLACEMENT 111

[ J

[Placement successful]

[Unplaced Applications Remain]

Unplaced

Applications Pick lowest cost
> unplaced L
application

Create reduced application

[Placement failed]

Figure 4.9: A high level overview of the placeAll function which is responsible for
allocating all unplaced applications. To achieve this, the function iterates over all unplaced
applications and allocates resources for them using the place function. If this succeeds, the

next unplaced application is allocated. Otherwise, a reduced version of the application is
created and added to the collection of unplaced applications. This application will then be
placed in a later iteration of the algorithm.

4.5.1 Placing applications

The placeAll function, illustrated in Figure 4.9 and shown in Algorithm 4 is
responsible for allocating resources for a collection of applications. This function
iterates over all of the applications, and allocates resources one by one. The order
by which applications are selected is defined by the total cost of failing to place the
application, and can be computed by adding the cost of failing the application to the
cost of failing of its individual features. Applications with a higher cost are placed
first, which is done using a place function which will be explained later on. If it is
impossible to place the application due to insufficient resources, a reduced version
of the application is created: for this version of the application the cost of failing the
application itself is O (as at this point it has already failed) and only the features that
incur a separate failure cost are included. Alternatively, if the application failure
cost is already 0, the reduced application is created by removing the feature with
the lowest cost of failure. The reduced application is then re-added to the collection
of applications that must be placed, ensuring critical application components will
be allocated in a later iteration.

Using this approach, applications are either placed in their entirety, or if this is
impossible, an effort is made to place a reduced version of the application. This
ensures that important features, for which the cost of failure is high, will still be
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included even if not all other features can be made available. This approach for
allocating collections of applications is based on the application-based feature
placement algorithm which we previously presented in [5].

4.5.1.1 The place function

The place function is illustrated in Figure 4.10 and shown in detail in Algorithm 5.
First, the function determines the different possible feature configurations where
the open variation points are filled in. Then, the algorithm evaluates the possible
configurations, using a chooseBestFeatureSelection function to select the
best configuration. While doing so, it takes into account the current allocation,
minimizing the number of new instances needed and maximizing the use of currently
existing instances. Once the features that are chosen have been determined, the
resources that must be allocated can be determined. This resource demand is
then allocated on the existing feature instances using a placeResidualCapacity
function. If, after allocating resources on existing instances, not all of the resource
demand is handled, new feature instances are created using a doCreateInstance
function. These last two steps are repeated until all demand has been allocated.

In the first step of the place function, it determines all of the different possible
alternative feature allocations. This is done by at first selecting all of the features
that are logically implied by the current feature selection (e.g. by adding parent
features of selected features to the collection of parent features) and pruning optional
features that are not implied as being included by adding them to the set of excluded
features. If at this point there are still features that are neither included nor excluded,
new configurations are generated where, in every new configuration, one of the
undecided features is added to the selected set. This process is repeated until only

chooseBestFeatureSelection

> placeResidual it
44444 )p aceResidualCapacity

.—) """ 5 E:) y Allocate resources

,,,,, on existing instances

4. A

[All resources allocated]

Unallocated Intermediate >
Feature Placement Result [Else]
> Resources

CcPU
Memory
Disk space

doCreatelInstance

Allocate a new feature
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Figure 4.10: A high level overview of the place function which is responsible for allocating
a single application. The function first determines a feature selection for the application,
resulting in a collection of application features for which resources must be allocated.
Resources are then allocated using existing feature instances. When there is no capacity left
on existing feature instances, new instances are created.

®
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Data: The current allocation matrix M
Data: A collection of applications toPlace for which resources must be
allocated

while toPlace not empty do

a < application with highest cost;

toPlace < toPlace \ {a};

M’ < place(a, M);

if placement of a unsuccessful then
a’ < create a reduced version of application a;
if a’ still contains features with failure cost then

| toPlace < toPlace U {a'}

end

end

end
return M ;
Algorithm 4: The placeAll function.

Data: The current allocation matrix M
Data: An application a for which resources must be allocated
Determine alternative feasible feature configurations ¢(a);
F + chooseBestFeatureSelection(M, ¢(a));
d < resources required for features F';
while d not empty do

(M, d) < placeResidualCapacity(M,d);

if d not empty then

| (M, d) + doCreateInstance(M,d);

end
end
return M ;

Algorithm 5: The place function.
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feature selections where every feature is either selected or excluded are left>. This
results in a collection ¢(a) containing the possible feature configurations of a.

4.5.1.2 Choosing the best feature selection

Next, the chooseBestFeatureSelection function is used to determine the best
selection of features given the selected application features and the current allo-
cation. In this function, the alternative allocations in ¢(a) are compared using
two criteria: the strict resource increase (S RI), and the total resource requirement
(T R). The S RI represents the amount additional strict resources that are needed to
instantiate this application, thus not counting already existing application instances.
The T'R measure computes the total resource demand of a configuration, showing
its general resource requirement.

A low SRI implies that the cost of allocating the specific feature selection
is low, taking into account the current placement, as few additional instances are
needed. If the feature selection can be instantiated entirely on existing instances,
the SRI value will be zero. A low T'R on the other hand implies that the cost of
the selection is low in general. When instantiating new applications, we prioritize
a low SRI value, and T'R values are only minimized when SRI values of two
configurations are equal.

The SRI of a feature selection represents the amount of strict resources that
must be added to instantiate a specific feature selection taking into account the
current placement state. This value is determined in three steps:

1. First, determine how many of the non-strict resources required for this allo-
cation can be allocated on existing instances.

2. Based on this, determine the number of new feature instances that can be
allocated to place the application.

3. Finally, the amount of strict resources needed to create these instances can
be calculated. The resulting value is the SRI for the analyzed application
feature configuration.

Equation (4.4) shows how the T'R value for an application is computed. This
value is composed out both non-strict resource demands 7' Rz and strict resource
demands T'R. As strict resource demands are more constraining than non-strict
demands, the impact of T' Rz is divided by 2, making it impact the total T'R value
less than the T' R value. Non-strict resource demand is calculated by directly
measuring the resource demand of an application feature configuration. Strict
resource demand is calculated by determining the number of instances required for

3Note that this process is only dependent on the application and feature model. Thus, these alter-
natives can be computed once when the application is added and do not have to be computed every
iteration.
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Figure 4.11: An illustration of how T'R values can be determined for an application a using
CPU and memory resources. TRSTY can be calculated directly based on the application
demand. The memory requirement, T RX®™ is calculated indirectly as the feature
instance’s memory demand is shared between the different applications using the instance.
The ratio of CPU resources used compared to the total available resources is used to
determine the share of the total memory that is dedicated to the application.

the configuration. Both T'R; and T'R5 values are normalized by dividing them by
the maximum value for any application.
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In Figure 4.11 an illustrative example is shown of how the T'R and T'R3 values
can be computed for CPU and memory resources. More formally, T Rz, as defined
in Equation (4.5), can be computed in a straightforward way: the total resource
demand is the sum of the demand for the individual selected features (represented
by the variable required(f,~)). The T R value of a feature selection is computed,
as shown in Equation (4.6), by taking into account both the amount of resources
needed for its instances and the share of the instance that is used for this specific
configuration. This share, for a given feature f, is computed by determining the
total amount of non-strict resources that are required for the feature, and comparing
this value to the amount of these resources that can be provided by a single feature
instance. This is expressed in Equation (4.7).

TRz(vy) = Z required(f,) 4.5)
fé€selected
TR,(y)= > share(f)x IR} (4.6)
fé€selected
required(f,v)

share(f) = max

4.7
vyel's L} ( )

As mentioned previously, the feature configuration with the lowest SR value
is chosen. If, for two configurations the .S RI metrics are equal, the alternative with
the lowest T'R value is preferred.
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4.5.1.3 Allocating resources

Once a feature configuration has been selected, the placeResidualCapacity
function, shown in Algorithm 6, is used to allocate as much of the demand as
possible on existing feature instances. This is done by iterating over every feature
that must still be allocated and every feature instance with remaining capacity that
is currently allocated.

Data: The current allocation matrix M
Data: The demand d that is not yet allocated
Data: The application a for which the demand must be allocated
for every feature f in d do
for every feature instance of i in M do
s < the server on which ¢ is running;
fCap + remaining resource capacity of feature f;
sCap < remaining resource capacity of server s;
forr € I'sdo
toAssign < min(fCap(r), sCap(r),d(f,r));
allocate(a, f, s, 7, toAllocate);
Update the remaining unallocated demand d;
end

end

end

return (M, d);
Algorithm 6: The placeResidualCapacity function allocates the remaining
demand d on currently existing feature instances.

If not all of the demand is provided after allocating resources on existing
instances, additional feature instances must be instantiated. To achieve this, the
doCreateInstance function, shown in Algorithm 7, is used. This function first
determines the features with unassigned capacity, for which new feature instances
must be instantiated. The algorithm then iterates over these features, allocating
resources for them sequentially. For every feature f that must be instantiated,
the number of times the feature must be instantiated, N, is determined using the
remaining resource demand d. The servers within the datacenter that are capable
of running the service and have sufficient free resources are then filtered and put
in the set S’. The best server in S’ for instantiating the feature is then selected,
and as many instances as needed and possible are instantiated on the server. This
process is repeated until either N new instances have been created, or until no
servers are left to allocate instances on. If not all required instances can be created,
it is impossible to fully allocate the desired applications. If this happens, the current
place operation is aborted, and a new feature selection is determined as previously
discussed in the description of the placeAll function.
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Data: The current allocation matrix M
Data: The demand d that is not yet allocated
Data: The application a for which the demand must be allocated
Funassigned . features with remaining unassigned capacity;
for every feature f € Frunassigned qq
N < determine number of features needed;
S’ + {s|s € S A s has sufficient free resources};
while N > 0and S’ # {} do
s + selectBestServer (5, f);
N? ¢ determine maximum possible number of instances of f on s;
createInstance(M, f, s, min(N, N*®));
N < min(N, N*®);
end
if N > 0 then
Abort: Insufficient resources, allocation is impossible;
end

end

return M ;
Algorithm 7: The doCreateInstance function creates additional feature in-
stances for the demand d that is not yet allocated and allocates these resources.

4.5.1.4 Server selection

The doCreatelInstance function compares different servers and makes use of the
selectBestServer(S’, f) function to determine the best server in S’ to create
instances of f on. This function selects the server s with the highest quality Q(s).
To ensure that the algorithm avoids using additional servers, the quality of an unused
server is defined as 0. For other servers, this quality is composed of three factors:
1) the quality of remaining resources Q) R(s) characterizes the desirability of using
a server based on the remaining resources on the server; 2) the quality of the fit
QF(s) determines whether it is desirable to instantiate the feature on the server
by determining the amount of resources that would be remaining on the server
afterwards; finally 3) a bonus is added through a binary server use variable SU (s) if
an instance already physically exists. Equation (4.8) shows how this server quality
can be computed by combining these three factors with different weights.

{0.3 X QR(s)+ 0.5 x QF(s) +0.2 x SU(s) if sused
(s) = (4.8)

0 otherwise

It is preferred to use servers with little remaining resources if possible, as this
ensures other servers, with more remaining resources may be used for later, more
complicated tasks. This is expressed, for a server, using the quality of remaining
resources Q R(s) metric. This metric is shown in Equation (4.9), and represents the
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Figure 4.12: The piecewise linear function used to determine the quality of a fit. minI R is
the minimum resource requirement of an instance, medl R is the median resource
requirement and max1 R is the maximum resource requirement. If there are more remaining
resources than maxI R, any other feature can be instantiated on the server, indicating the fit
is good. When there are nearly no remaining resources (less than m%] £) the fit is good as
well, as in this scenario few resources are wasted.

desirability of using a server regardless of the instance type that is to be instantiated
on it. Within this equation, remaining(~, s) refers to the amount of resources
of s that are currently remaining on the server, while Ra] shows the amount of
available resources on the server s.

QR(s) = 1 — min remaining(7y, s)

~er, Ral (4.9)

QF(s) characterizes the quality of the fit of the chosen instance on the server,
and represents the quality of remaining resources after an instance is allocated. This
remaining capacity should either be enough to support new instances or alternatively,
it should be very low ensuring few resources are wasted. This value is determined
by, for every strict resource type, determining a separate Q F"7(s) value which in
turn is determined by the amount of resources left after allocating the feature on
the server. To these remaining resources, a piecewise linear function, shown in
Figure 4.12, is applied. If after the allocation any other application instance may
be instantiated, a high QF 7 (s) will be achieved. If after the allocation none of
the other application instances may be instantiated, the remaining server capacity
will be wasted, so a low QF7(s) value is achieved, unless the amount of residual
resources becomes very low which again indicates a good fit. The final QF(s)
value, defined in Equation (4.10), is the minimum of all QF"7(s) values.

QF(s) = min QF(s) (4.10)
YETS

The SU (s) variable is added to prevent instance migrations. During the execu-
tion of the DFPA algorithm multiple feature instances may be removed and added.
SU(s) = 1 if in the original problem model there was already an instance of the
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feature on the server, otherwise SU(s) = 0. This makes it more likely to select a
server on which an instance of the feature already exists, even though this instance
may have already been removed previously by the remove application step of the
algorithm.

4.5.2 Refining placements

After a change to the placement has been made, there are multiple ways in which the
placement may be improved. First, it is possible to remove some applications to free
resources on a server with low utilization, making it possible to turn it off, and to
reallocate the removed applications elsewhere. A second possible improvement can
be determined by reconsidering the placement of applications that have a relatively
expensive feature configuration. These expensive configurations can occur as the
placement algorithm chooses a feature configuration that requires the least new
feature instances, even if it requires slightly more resources. After adding and
removing other applications, this configuration may however no longer be ideal, so
it may be beneficial to re-place this application at a lower cost.

The placement refinement operation starts with an allocation M, and generates
a new allocation M’ by removing and re-adding a collection of applications A.
Subsequently, the quality of M’ is compared to the quality of M. If the quality
of M’ is better than that of M (i.e. the placement has a lower cost), this refined
placement is returned. Otherwise, the original placement M is returned. The
refine function is designed to reconsider the placement of a limited collection of
applications by ensuring it only moves about as many applications as one server
can handle. The number of migrations is further limited by ensuring the refined
placement is only enforced if it improves the resulting allocation.

The refine function is entirely defined by how the collection of applications A
is determined. Applications within this set are chosen in two ways: by determining
applications that are running on underutilized servers and by determining applica-
tions of which the current allocation requires a high amount of resources compared
to its minimum resource use. The final application set is determined in three steps:

1. The collection of underutilized servers S is determined. This is a subset of
all servers in S with a utilization higher than 0% and lower than 70% for all
resource types. The collection of applications of which features are allocated
on a server s € S is represented by app®™ (s).

2. The currently allocated applications are evaluated based on the cost feature
configuration used to allocate them. For every application a € A, the relative
cost of their resource configuration can be computed by comparing their
minimum and maximum resource demand. This results in a scalar value
where 0 represents an application allocated using minimal resources, and 1
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represents the maximum possible resource demand, making the application
use more resources than needed. A set of applications A”**C5 containing
the two highest cost applications is then created.

3. Using the A™ezCst and S collections the final application set A is deter-
mined. This is done by, for every server s € s, building a collection of
applications app®™(s) U A™2*C°st Qut of all of these collections, the col-
lection containing the fewest applications that results in the highest number
of freed servers is chosen as A.

4.6 Evaluation Setup

4.6.1 Evaluated algorithms

Based on the formal model discussed in Section 4.4, two algorithms can be designed
using Integer Linear Programming (ILP). These algorithms were implemented
using the CPLEX [33] solver, which is capable of optimally solving ILP problem
formulations. The following algorithms were implemented:

e The ILP-based Feature Placement Algorithm (FPILP) is based on the formal
model presented in the previous section without any considerations for the
number of migrations. This algorithm yields an interesting baseline for the
lowest possible cost. The results achieved by this algorithm may however
not be practical as it does not take migration counts into account.

e The ILP-based Dynamic Feature Placement Algorithm (DFPILP) makes use
of the iterative approach discussed in the previous section to determine a
solution for the feature placement problem. As discussed, it first minimizes
the cost, then the instance count increase, and finally the resource shift
migrations.

We compare these ILP-based algorithms to the DFPA presented in the previous
section.

4.6.2 Simulation parameters

For our evaluations we base ourselves on an application use case containing three
applications. We evaluate the algorithms for two scenarios with a varying datacen-
ter load. Within the scenario, we use applications defined by the feature model
presented in [5], containing the features of three applications: document processing,
medical communications and a medical information management application. In
total, this model defines 49 different features. Within the evaluations, we make use
of a uniform server configuration with a 3GHz CPU and 4GB of memory. Every
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server is assigned an energy cost of 1. As previously mentioned in Section 4.4,
this energy cost is not necessarily a direct cost but rather a cost defined by the
management system.

Application feature configurations are generated at random by randomly se-
lecting features to include and exclude. For every application, a random cost of
failure is chosen within the set {2, 4, 8, 16, 32}, representing the idea that some
applications may have a much higher cost of failure than other. The application
demand determined based on the application features and configuration is multi-
plied with a variable that is randomly chosen using a uniform distribution in the
interval [0.1, 10], ensuring there is a variation in application load. Feature failure
costs are determined by defining essential features associated with services that
must continue functioning, even if the rest of the application fails. If the essential
feature is included and correctly provisioned a minimal service is delivered to
the end users. If not all of the features can be placed correctly, and placement
of an application fails, this minimal service should still be provided. A failure
cost out of the set {2,4,8,16,32,64} is assigned for all essential features. Like
for the application fail costs, this value indicates that the costs of feature failure
may vary greatly depending on client demands. The maximum feature failure cost
is higher than the maximum application failure cost as failing this feature causes
the interruption of critical services, while merely failing the application causes a
service degradation.

A schedule is generated to determine when applications are started and stopped.
To achieve this, a very large number of applications is generated and shuffled
randomly. This ordered list of applications represents the order in which the
applications are added. To ensure the datacenter does not become overloaded,
as the total resource load of all of the generated applications greatly exceeds the
total capacity of the cloud, we define a maximum datacenter resource load. If
instantiating an application would result in exceeding the maximum datacenter
load, an other application is first chosen to be removed. The resulting schedule will
ensure that the datacenter is not overloaded, and will ensure that the application
start events would always be accepted by an application request filter as described
in Section 4.3. To choose the application to instantiate, first, the applications are
stored as a list a; where the order of applications is determined by the order in
which they were instantiated. The index of the application to be removed is then
determined using a Gaussian probability with u = n and 02 = n/2, with n the
number of applications that are instantiated. This ensures that very long running
applications and very new applications have a smaller probability of being removed,
which corresponds to client behavior: if an application has been running for a tenant
for a very long time, it is a reliable client and there is a lower probability of him
leaving, and if a tenant is very new, the application is often used for a period of
time while its usefulness is determined and it is thus not stopped very quickly.
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Figure 4.13: Total placement cost in an underloaded datacenter. Every iteration represents
an application start or stop event. The quality achieved by the DFPA heuristic is the same as
that achieved by the optimal FPILP algorithm.

The first scenario represents an underloaded datacenter, with a maximum load
of 90% for all datacenter resources. This results in an “easy” placement with a low
probability of failed placements occurring, which ensures the cost should be almost
entirely caused by server use costs. To ensure the ILP-based algorithms can function,
the number of server remains limited to 50. In a second scenario, a maximum load
of 110% is chosen. In this overloaded datacenter scenario, placement becomes
more complex, as more applications will fail to be placed. As this higher maximum
load causes the number of applications that are active at any time to increase, the
number of servers was reduced to 40 to ensure the ILP-based algorithms could
compute solutions acceptably fast. For both scenarios 10 simulations were executed
and the results were averaged.

4.7 Evaluation Results

4.7.1 Underloaded datacenter

Figure 4.13 shows the total cost throughout the simulation for the three solvers
for the underloaded datacenter. In this scenario, there is no significant difference
between the performance of the DFPA heuristic and the FPILP algorithm, which
always results in the optimal total costs. The DFPILP algorithm, which is based
on multiple ILP optimizations performs worst, as it tolerates a slight decrease in
solution optimality to reduce the number of migrations. Averaging the cost between
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Figure 4.14: The number of instance migrations for every iteration of the dynamic
placement algorithms in an underloaded datacenter. The number of IC migrations of DFPA
is much lower than that of the FPILP algorithm which is unaware of migrations and slightly

higher than that achieved by the DFPILP algorithm.
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Figure 4.15: The amount of CPU resources that are moved between instances in subsequent
algorithm invocations in an underloaded datacenter. The DFPA places applications while
resulting in very few CPU load migrations, even when compared to the DFPILP algorithm.
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iterations 50 and 200 (after the start up period of the evaluation), we observe that
the DFPA heuristic on average only results in a cost that is 0.4% higher than the
optimal cost.

Comparing the number of instance migrations, shown in Figure 4.14, we observe
that the FPILP which does not take migrations into account results in very high
numbers of migrations, making it unusable in dynamic scenarios where applications
are started and halted at runtime. Both the DFPA heuristic and the DFILP algorithms
result in fewer instance migrations. Due to the higher cost observed previously,
the DFPILP algorithm is capable of achieving fewer instance migrations than the
DFPA heuristic. When the load shift is compared, shown in Figure 4.15, the FPILP
algorithm again performs worst. Here, the DFPA heuristic outperforms the DFPILP
algorithm, migrating noticeably less resources between servers in consecutive
algorithm invocations. Compared to the non-dynamic FPILP algorithm, the DFPA
algorithm results in a 77.5% reduction in IC migrations and a 96.5% reduction in
resource shift migrations.

From this, we conclude that the DFPA performs well in an underloaded data-
center scenario: it achieves a similar cost to the optimal FPILP, but results in much
less load shift and instance count migrations. Compared to the iterative ILP-based
DFPILP algorithm it results in a lower total cost, and less resource shift at the cost
of a slightly higher number of instance migrations.

4.7.2 Overloaded datacenter

The total cost of the algorithms in the overloaded datacenter scenario is shown in
Figure 4.16. Generally, the performance of the DFPA heuristic remains similar
to that of both the FPILP and DFPILP algorithms, but there are multiple outliers
where performance decreases and a higher cost occurs. Usually, these peaks are
temporary and they decrease in the next iterations. Table 4.2 shows variation of the
total cost throughout the evaluation data points (using all entries between iterations
50 and 200, thus taking only the data points into account where the datacenter is
fully utilized). Based on this information we observe that in 95% of the algorithm
invocations a cost similar to that of the ILP-based algorithms is achieved. In the
remaining cases, a performance notably worse than the ILP-based algorithms is
observed. On average, the DFPA heuristic on average only results in a cost that is
2.8% higher than the optimal cost. The results for instance count migrations and
load shift are comparable to those shown for the underloaded datacenter as can be
observed in Figures 4.17, and 4.18. Comparing the non-dynamic FPILP algorithm
to the DFPA heuristic, we observe a 92.7% reduction in IC migrations and a 96.1%
reduction in resource shift migrations.

Based on our evaluation, we observe that the DFPA algorithm achieves good
results in an underloaded datacenter scenario, but performs less consistently in an



DYNAMIC FEATURE PLACEMENT

125

50
45
40
35
30
25
20 /
15 /
10 +/

Total Cost

100
Iteration number

200

Figure 4.16: Total placement cost in an overloaded datacenter. The cost of the DFPA is less
consistent than that of the ILP-based algorithms: at times the same quality of the FPILP
algorithm is achieved, but often spikes in cost occur that are only solved in subsequent

iterations.
Algorithm  50th pct  95thpct  98th pct  99th pct
DFPA 39 48 52 58
FPILP 39 42 42 43
DFPILP 40 44 44 45

Table 4.2: An analysis of the distribution of the total cost of the algorithms. The percentiles
were determined using all of the entries between the 50th and 200th iteration.
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Figure 4.17: The number of instance migrations for every iteration of the dynamic placement
algorithms in an overloaded datacenter. The DFPA results in slightly more IC migrations
than the DFPILP algorithm, and significantly less migrations than the FPILP algorithm.
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Figure 4.18: The amount of CPU resources that are moved between instances in subsequent
algorithm invocations in an overloaded datacenter. Like in the underloaded datacenter
scenario, the DFPA algorithm results in very few CPU load migrations.
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overloaded datacenter scenario. In practice, it is however best to use an access filter
that does not permit datacenter overload, as otherwise some application components
are bound to fail, making the DFPA an interesting approach as it does not make
use of ILP formulations, making it scale much better than the FPILP and DFPILP
algorithms.

4.8 Conclusions

A challenge in contemporary cloud platforms is that it is difficult to create and
manage highly customizable applications while still achieving resource sharing
through multi-tenancy. In this chapter we presented the concept of dynamic feature
placement, an approach where customizable applications are composed using
multiple interacting components and where individual application components can
be shared between multiple applications and end users. The presented models and
algorithms were designed to take into account dynamic scenarios where applications
are started and stopped through time, taking migrations between the various steps
into account.

We presented two new algorithms: the DFILP algorithm, an iterative ILP-
based algorithm, and the DFPA heuristic. We analyzed the performance of the
algorithms comparing them to a static optimal algorithm that is unaware of service
migrations. In our evaluations, we found that adding migration-awareness to the
management algorithms reduces the amount of instance migrations by more than
77% and reduces the load moved between instances by more than 96%. Despite
this, the heuristic DFPA algorithm results in a cost that is on average less than 3%
more than the optimal cost.
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The Feature-Based Binary (FBB) approach introduced in Chapter 2, and used in
Chapters 3 and 4 to build feature placement algorithms focuses on how multi-tenant
SaaS is managed at runtime. This chapter focuses on how FBB applications can
be designed, and presents an overarching management architecture consisting of
both a development and execution platform. We analyze how feature models can
be used during application development in addition to their runtime use which has
been elaborated on in previous chapters. To this end, we introduce the concept of
a development feature model, which is designed during application development,
and analyze how this feature model can be converted into a runtime feature model.
This approach makes it possible to use feature modeling throughout the different
stages of the application life-cycle: development, customization and deployment.
We specifically focus on how development feature models can be automatically con-
verted into runtime feature models ensuring a one-to-one correspondence between
features and services exists.
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5.1 Introduction

While the adoption of cloud technologies is on the rise, limitations prevent their
uptake in some markets. Current cloud frameworks do not support the creation
of highly customizable Software-as-a-Service (SaaS) applications that retain the
multi-tenant nature of these applications, where a single application instance is
shared between users. This is especially difficult if both functional and Quality of
Service (QoS) variation are required. An approach where changes are statically
compiled into the application could be used to run such applications on a cloud,
but this would lead to the generation of different applications for clients, loosing
the cost-advantages offered by multi-tenancy. Furthermore, the cloud management
software would still need extensive support for QoS management to ensure varying
non-functional application requirements are met.

To develop customizable applications, Software Product Line Engineering
(SPLE) techniques are often used. The software is modeled as a collection of
functionalities, which are referred to as features. An application can then be created
by combining these features. As it is possible for some features to require other
features, or for some features to conflict with others, relations between features must
be modeled as well. Feature modeling can become an integral part of the software
development process, where code modules, configurations and Aspect-Oriented
Programming (AOP) [1] aspects can be created that realize specific features. These
feature models can then be used to communicate and configure variability in
applications for clients [2]. They can also be used in the deployment process [3],
using a Service-Oriented Architecture (SOA) approach where individual features
map to services, and in the management and provisioning of these services, using a
feature placement algorithm [4] that takes feature relations into account to determine
where services implementing these features are placed.

Feature models are suited for many different phases in the life cycle of cus-
tomizable applications, but maintaining a single feature model that can be used in
each of the different phases can be complex, or even impossible. In particular, the
representation of information in feature models, as they are specified during appli-
cation development are not suited as an input for resource allocation algorithms,
such as feature placement algorithms. This restriction either forces developers
to work using cumbersome restrictions, increases development complexity as a
conversion between a development model and a runtime model must be determined,
or complicates feature-aware management of multi-tenant applications.

We present an approach where a logical feature model is defined and configured
during development using existing SPLE techniques. When the service is deployed,
a runtime version of the feature model is generated, together with a mapping
between the development feature model and this runtime feature model. Services
can then be allocated with the feature placement techniques we described in [4],
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Figure 5.1: Runtime resource allocation for applications based on a logical feature model.

using this runtime feature model as an input. These steps are shown in Figure 5.1.
In this chapter we describe a system architecture for developing and managing
such applications, focusing on the role of feature models within the management
system, and on how a mapping between development and runtime feature models
can be realized. To evaluate the presented approach, we use the application cases
of the CUSTOMSS [5] project. Within the scope of this project a platform for
developing and managing highly customizable cloud applications will be designed,
with a focus on applications in the domain of document processing, medical infor-
mation management and medical communication systems. We find that, using the
presented conversion, development models can be kept significantly smaller than
runtime models, while the overhead introduced by the transformation remains low.
In the next section we will discuss related work. In Section 5.3 we will discuss
SPLE approaches for the development of SaaS applications. Subsequently, in
Section 5.4 we will discuss the management architecture, and the role of feature
modeling in it. We will elaborate on the conversion between feature models in a
development and an runtime context in Section 5.5, after which we will evaluate the
approach in Section 5.6. Finally, in Section 5.7, we will discuss our conclusions.

5.2 Related work

Within the domain of SPLE, a distinction is commonly made between problem-
space and solution-space feature models, with mappings between the two [6, 7].
Our approach is complementary and adds an additional model, a runtime problem
model, which is used to manage feature-based services. The runtime model is built
using basic transformations applied on the development model, and is validated
using a logical representation of feature relations, similar to those used in [8].
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Recent work has been done in the field of service workflow variability. [9]
focuses on how product lines spanning different organizational domains can be
integrated, assuming each of the domains offers varying services. We on the other
hand focus on how a single domain can offer these variable services. Closely
related, in [10], a policy-based framework for publishing customization options
of web services is proposed, enabling clients to build their own customizations.
This work however focuses on the specification of variable applications, while we
focus on the implementation and runtime aspects of developing customizable SaaS
applications.

An approach to build variable SaaS applications is proposed in [11]. To achieve
this, the authors however focus on configuration-based changes. We on the other
hand focus on customization changes by using a SOA application development
approach, making it possible to achieve greater customizability. Design-time
variability management of SOA applications is discussed in [12] and [13]. We
focus on how these development configurations are managed at runtime. The
SOA approach in this chapter is similar to that proposed in [14], where a single
application consisting of different components is proposed. Our approach, using
different service instances is however more flexible, as it ensures services can have
different, and sometimes incompatible dependencies.

A framework for native multi-tenancy is presented in [2]. In this work, se-
curity, isolation and software variability are considered. The authors focus on
customization through configuration, laying the responsibility for managing the
complexity of variability with the developer. Our approach on the other hand
supports true customization changes using multi-tenant instances. Furthermore,
the feature model conversion discussed in this work can be used to simplify the
variability management done by the developers.

From a cloud management perspective, the described platform ensures un-
derlying service instances are abstracted, effectively building a Platform-as-a-
Service (PaaS) where entire services are managed at a higher level, as discussed
in [15]. Many such platforms exist, both commercially and in literature. Our
approach can be used to extend existing PaaS platforms, ensuring high-variability
applications can be built on top of these platforms.

5.3 Variable Software as a Service development

SPLE techniques are often used to develop highly customizable applications. The
variability in applications is modeled as a collection of features, where every feature
represents a functionality of an application. These features are then related in a
feature model. By including a collection of features in an application, and excluding
other features, a specific configuration can be created. If this configuration is valid
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Mandatory Optional

“ If the parent is selected ‘“ If the parent is selected

the child must be selected the optional children can

as well. be selected.
Mandatory (A, B) Optional(A4, B)
Mandatory (A4, C) Optional(4,C)
Alternative Or

If the parent is selected ' If the parent is selected

exactly one of the child ' at least one of the child
nodes must be selected. nodes must be selected.
Alternative(A, {B,C}) Or(A,{B,C})
Excludes Requires

: The selection of one node The feature can only be

{ ¢ | makes it impossible to se- | ¢ | selected if the required

lect the other. feature is selected too.
Excludes(4, B) Requires(B, A)
Excludes(A4, C) Requires(C, A)

Table 5.1: Graphical representation of feature models, description of relations, and formal
representation.

according to the relations defined in the feature model, it can be used to specify a
variant of the software application.

Features can depend on each other, they can be incompatible with each other,
or they can relate in different ways. To make the complexity of feature models
manageable, they are often specified in a hierarchical way [7, 8], where features
have parent features and can only be included in an application when the parent
feature is selected. These hierarchical feature models can be represented graphically,
for which we use the notation as used in [16].

Four hierarchical relations, defined in Table 5.1 are typically used: mandatory,
optional, alternative and or. In the table, we also define two additional relations that
can occur between arbitrary features, making it possible to express more complex,
non-hierarchical feature relations: the excludes and requires relations.

The different relations can be expressed logically using basic propositional
calculus, where in a configuration for a software variant a feature in an application
is either included (the value corresponding to the feature is assigned value 1) or
excluded (the corresponding value is 0). The logical definition of the different
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Relation Conversion
Mandatory(A, B) A+ B
Optional(A, B) B— A
Alternative(A,{B,C}) A+ BVvC
—(BAC)
Or(A,{B,C}) A—BvC
Excludes(A, B) -(ANAB)
Requires(A, B) A— B

Table 5.1: Conversion of feature model relations to logical statements.

relation types is shown in Table 5.1.

At this point, we need to make a distinction between configuration and cus-
tomization changes [11]. Configuration changes do not impact the code of appli-
cations, and are caused by changes in configuration files or application metadata.
An example of a configuration change is the logo that should be displayed for
branding an application. Customization changes impact the code of an application,
and change the code that must be executed. The inclusion of a feature that adds
encryption to a process is an example of a customization change.

To enable the configuration of SaaS applications, existing techniques can be
used [11]. Customization of SaaS applications can be achieved by splitting an
application into separate services, that work together to realize the functionality of
the application using a SOA [3, 4]. In this approach, every feature that leads to a
customization change is realized by associating it with a multi-tenant service.

Figure 5.2 illustrates a feature model where all features are linked to a code
module and a placement configuration. The placement configuration can be used to
add additional restrictions that are to be taken into account when placing the service
on infrastructure, for example ensuring that the feature can only be placed within
the local datacenter or on a high-reliability instance. It is possible for two features
to have the same code module, but a different placement configuration, resulting in
different non-functional run-time behavior, as illustrated for the features e and €’.

Formally we introduce a relation codeMap that contains the relations between
a feature and its linked code, and a relation configMap that links a feature to
its placement configuration. For the feature model in Figure 5.2, the expression
codeMap(a, a.jar) links the feature a with its code module, and the expres-
sion configMap(a,Default) indicates the feature is placed using the default
placement configuration.

Within this chapter we will make a distinction between development feature
models, which contain all variation types, and runtime feature models that retain
only customization changes. During runtime, the specified configuration changes
are added as application metadata.
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Figure 5.3: The system architecture.

5.4 System architecture overview

A general overview of the system architecture is shown in Figure 5.3. The system
consists of two major components: a development platform, and an execution
platform. These platforms are connected by means of a service repository. This
component contains information of the currently deployed services, the work-flows
that must be executed, and quality rules concerning these work-flows.

In the next sections we will give a general overview of both platforms, followed
by an in-depth discussion of the management platform. Finally, we will discuss the
role of feature models in the application architecture.

5.4.1 Development platform

The development platform contains a service development Integrated Development
Environment (IDE), which can be used to develop customizable applications. It
allows the development of multi-tenant services, and provides the required feature
modeling tools to build the application feature model. The IDE also provides a
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testing environment where the functionality of individual services and composed
applications can be evaluated.

A second part of the development platform is the configuration and deployment
interface. This component can be used by either tenants or in-house vendors to
create composed applications. This component is also responsible for testing the
final service composition, as not all combinations can be tested during development.
Should any tests fail, feedback concerning the configuration will be reported to the
developers.

5.4.2 Execution platform

The execution platform is built using three layers. At the base there is a cloud
platform layer, which contains an existing Infrastructure-as-a-Service (IaaS) or
PaaS platform, and forms the foundation on which the execution platform is built.
On top of this, a feature management layer manages the services allocated on the
infrastructure. These services implement features selected in the application feature
model, and can be used by multiple end users, and in multiple feature compositions.
It is the responsibility of the feature management layer to ensure that the right server
instances are created on the correct locations, given expected QoS requirements.
Finally, a process management layer responds to individual user requests. When a
request enters the system, a process, making use of feature instances, is instantiated
and executed. The process management layer manages a work-flow, composed
of the services that are controlled by the feature management layer and running
on the cloud platform. Services are chosen by the process management layer, and
updated during workflow execution based on monitoring information, ensuring the
requested QoS is achieved.

5.4.3 Execution platform components

The execution platform, shown in Figure 5.4, manages and coordinates the commu-
nication between multi-tenant feature instances. The feature instances are executed
on a cloud platform. By using a combination of these feature instances in a work-
flow, a complete service can be constructed.

In the feature management layer, a service allocation engine is responsible for
placing these feature instances on the cloud platform. The information stored in
the service repository is used as an input for a feature placement algorithm [4],
which returns a placement indicating which features are executed on which servers,
and the amount of resources allocated to each of these features. A monitoring
component collects input from the various components in the system, and is used to
determine when the service allocation engine should reallocate services.

The process management layer consists of four components:
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Figure 5.4: A detailed overview of the components in the execution platform.

e A load balancer is used to balance incoming requests, and forwards requests
to a runtime service manager.

e The runtime service manager stores the location of different service compo-
sitions. It also maintains a register of services that are reserved for executing
work-flows. This information enables the component to predict when QoS
requirements risk being violated.

e A service composition generator is used to create and adapt service com-
positions. This component is used to generate a work-flow, and to bind
concrete services to separate steps in the work-flow. This component is
QoS-aware, and can dynamically update the composition based on feedback
of the runtime service manager to ensure the QoS demands of the work-flow
are met.

e An orchestration engine service is a multi-tenant service, running on the
cloud platform, that contains a process execution engine. This service uses
this execution engine to coordinate the different feature instances, combining
them to create the desired process.

5.4.4 Role of feature models in the application architecture

Feature models of application are key resources at several points in the architecture:

e During development, the features of the application are modeled, and code
and configuration information is associated with the feature model.
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e During the specification of applications, a salesman or client fills in the
feature model, specifying the features that are included in the application.

e During deployment and execution, the feature model of an application is
used to determine an optimal placement of the service by solving a feature
placement problem [4].

While, logically, these different phases make use of the same feature model, the
view on this feature model is different:

e The developer sees the entire feature model, and links code modules to
specific features.

e Salesmen are only interested in the changes that are externally visible. Im-
plementation issues should be hidden. It is preferable to display the choices
using a wizard-like interface as mentioned in [2], or using staged configura-
tion [17] allowing the client to gradually fill in the feature model based on
simple choices, without requiring a view on the entire software architecture
or feature model.

e At runtime, only customization changes matter, and configuration changes
can be completely removed from the feature model. A mapping between
features and services must exist. At runtime it is impossible for features
impacting the implementation of other features to exist, as only one service
can be linked with a given feature. If features impacting others exist, the
runtime mode must contain two separate versions of the impacted feature:
one where the change is included, and one where it is not.

The properties of the three different feature model types are shown in Table 5.2.
Within the subsequent sections, we focus on how the conversion between develop-
ment feature models and runtime feature models can be implemented.

5.5 Feature model conversion

During development, all application features are included in the feature model.
These features can imply both configuration changes and customization changes.
At runtime, only customization changes should be considered, as configuration
changes do not impact the feature model at a code level. Part of the feature model
conversion is thus the removal of configuration changes from the runtime feature
model.

A specific property of the feature placement algorithm is that it expects features
to be linked to a code module and configuration. When two features share the
same code but different configurations, for example a single-tenant and multi-tenant
version of a component, this implies that both are considered as different features.
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Development External Runtime
Feature Feature Feature
Model Model Model
Customization v v v
changes
Configuration v v
changes
Features change other v v
features
Wizard configuration v
interface
Implementation v
details hidden
Contalps 1nstance 1n- v v
formation

Table 5.2: Properties of the different feature model types.

A similar problem is the static addition of AOP aspects: when a feature causes
the addition of an aspect to a set of components, the management system must
ensure that two versions of the component are created as features, one with, and one
without the modifications. This kind of behavior can be required when dynamic
weaving of aspects would negatively impact the quality properties of the changed
feature instances, decreasing the quality of other work-flows that make use of this
modified feature. We call the creation of modified features, based on development-
time features but statically including specific changes, either to the code modules
or to the placement configuration, feature expansion.

We will define techniques for turning a development feature model, D, into a
runtime feature model, R, by applying the two aforementioned transformations.
We will also define a mapping between the two feature models, to represent how
features selected in the development model correspond to those in the runtime
feature model. This is represented using a mapping relation Map : D — R that
maps features from one model to the other.

Initially, before any transformations take place, D = R, and Map contains for
every feature f the relation f — f, mapping every feature from the development
feature model to its corresponding feature in the runtime feature model.
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Figure 5.5: Elimination of empty mandatory features.

5.5.1 Removal of configuration changes

Removal of configuration changes is easy to achieve by simply turning the chosen
feature into a dummy feature with nothing associated with it. This empty feature
has no code nor placement information associated with it, so it will not be placed
by the feature placement system. The inclusion of this empty feature only impacts
the application metadata, ensuring the configuration change is realized.

Using these empty features ensures the logical relations of the feature model
with respect to the feature are retained, but it also adds useless features to the feature
placement process, increasing its computational cost. Transforming feature models,
and thereby removing these useless features, the performance of the placement
algorithm can be improved. It is however important that the transformed model is
logically equivalent to the original model, implying not all empty features can at
all times be removed. We call the process of removing redundant empty features
feature elimination.

5.5.2 Feature elimination

Specific transformations can be used to, in some cases, eliminate empty features
created by the removal of configuration changes discussed above. The elimination
of mandatory empty features is shown in Figure 5.5, and is applicable whenever an
empty feature e has a mandatory child n (as shown in the figure), or when a node n
has a mandatory empty child e.

Formally, this transformation replaces any mappings referring to e in Map
with references to n. The mapping e — e is for example replaced by e — n. In
the runtime feature model R, all references to e in the relations are replaced by
references to n. Finally, the effects of including e to the application metadata are
added to n. The logical correctness of this transformation follows directly from the
logical definition of Mlandatory, which in this case ensures that e <> n.

A second transformation, the or elimination, is shown in Figure 5.6. This
transformation can be used to eliminate empty features in Or constructs, if the
empty features are themselves parent in an Or relation. The equivalence between
both constructs shown in the figure follows directly from the fact that from n <
e1Vea, e1 <> aj Vas, and e1 <+ a1 Vasg, one can deduce that n <+ a1 Vas Vby Vbs.
In the runtime model R, all Excludes and Requires relations referring to any
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Figure 5.6: Elimination of empty or features.

of the removed nodes, are removed, and replaced by an equivalent relation for each
of the children.

Applying the or elimination, unlike mandatory elimination, does remove infor-
mation, as it becomes impossible to select the features e; in a development model,
as no corresponding feature in the runtime model remains. This limitation is taken
care of by introducing a set of artificial features. This set represents features that
are logically needed for the structuring of the model, but that can not be selected.
These features are also removed from Map.

The or elimination as presented here can be generalized for arbitrary amounts
of children. An identical transformation can be used, where all Or relations are
replaced by Alternative relations.

5.5.3 Feature expansion

It is possible that, in the development feature model D, the inclusion of a feature
a changes the implementation of other features, ensuring either the code module
linked to the feature changes, or causing the placement configuration of the feature
to change. This approach can be used to add, for example a security feature: this
can cause changes to the service implementation and can add server placement
restrictions.

We introduce a construct FeatureChanges(a, f), which can be used in the
D model, indicating that the addition of a feature a changes the implementation of
a feature f. Within the R model, this relation can not exist, and must be removed.

The FeatureChanges relation is converted in the runtime feature model by
creating two features f’ and f,. The mapping codeMap(f, ¢) in R is replaced
by a mapping codeMap( f’, ¢) and an additional mapping codeMap( f,, c,) is
added. In this case, c, represents the code where the change caused by the feature
f has been included. The configMap relation is changed similarly.

When the FeatureChanges(a, f) relation is included, this implies that three
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Figure 5.7: Feature expansion when it is applied to a subtree.

relations must hold in the runtime feature model:

ahf e f (5.1)
—~aAf e f (5.2)
—f < afa A ﬁf/ (5.3)

Equation (5.1) expresses that if the feature f and a are selected, the f, feature,
which links to the code modified by the feature a must be selected too. Equa-
tion (5.2) ensures that if a is not selected, but f is, the feature f/ without the code
will be added. Finally, we ensure that, if the feature f is not selected, neither f, nor
/' is selected using Equation (5.3).

The FeatureChanges(a, f) relation can be expressed by combining the
relationships described in Table 5.1. For clarity, the logical relations as described in
Table 5.1 are also included.

Or(f, {f', fa}) fe 1V fa (5.4)
Excludes(a, f') =(a N f) (5.5)
Requires(f,,a) fa—a (5.6)

It can be proven that, together, these three relations are equivalent to the
FeatureChanges relation, which can thus be expressed using these basic re-
lations. This enables us to express this concept in a feature model that supports only
a limited amount of relations between features. The feature expansion approach is
illustrated in Figure 5.7, where a feature a impacts an entire subtree.

It is of note that the newly created features f/ and f, are not referenced in the D
feature model, making them part of the set of artificial features as discussed earlier,
making them candidates for or elimination.
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5.5.4 Feature model conversion algorithm

The techniques described above are combined into a feature model conversion
algorithm, which we use to convert between development and runtime feature
models. The algorithm takes a development feature model as an input, and first
applies feature expansion. The amount of features in the expanded feature model is
then reduced using feature elimination, resulting in the runtime feature model.

This feature model conversion algorithm is implemented within the service
repository of the architecture discussed in Section 5.4, where it bridges between the
development feature model and the runtime feature model.

5.6 Evaluation Results

We evaluated the algorithm to convert runtime feature models to runtime feature
models using three feature models of applications used in the CUSTOMSS project.
These applications are in the field of Document Processing (DP), Medical Informa-
tion Management (MIM) and Medical Communications (MC).

Figure 5.8 shows the feature models of a MC application, in the various stages
of the algorithm. The feature names have been replaced by numbers, where every
feature is represented using the same number throughout the different images.

Figure 5.8a shows the development feature model of the application. For
this model, Feature 21 impacts Feature 6, 9, 12, 15, and 18. This is noticeable
after expansion, as shown in Figure 5.8b, where these features have new children,
related to Feature 21 using Excludes and Required relations. Finally, after the
elimination stage, some features are removed, lowering the total depth of the feature
model, as shown in Figure 5.8c.

Feature expansion increases the amount of features, while feature elimination
again decreases the present features in the runtime model. This is shown in Fig-
ure 5.9, where the feature counts for the three applications after the different phases
are shown. We make a distinction between empty features, filled features and a
total feature count.

Filled features are features linked to code and configuration, and are thus
required during the deployment process. Empty features are only used to structure
the feature model, and yield overhead during the placement. The increase of the
amount of filled features during the feature expansion phase can not be prevented,
and is indicative of why the transformation is useful: otherwise this variability needs
to be managed during development. The increase in empty features is however not
desirable, but as seen in the bar chart, this overhead significantly diminishes due to
the feature elimination stage.

It is of note that the most significant increases in feature counts occur in the
Document Processing application, where some features are impacted by multiple
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Figure 5.8: The feature model of a Medical Communication application in the development
stage, after expansion and in the runtime stage.
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Figure 5.9: The features present in the models of the Document Processing (DP), Medical
Information Management (MIM) and Medical Communications (MC) applications in the
different feature expansion phases.

features, exponentially increasing the amount of variations. Most of the excess
empty features created in this process are again removed in the feature elimination
process. The exponential increase in features does however indicate a need for limit-
ing the use of the discussed approach to those features that can not be implemented
using alternative approaches, and maximally using configuration-based approaches
for handling variability.

The execution speeds of the different algorithm phases were determined for
the different application feature models. The results, shown in table Table 5.3,
were determined using 1000 executions on an Ubuntu server with Intel Core 2
Duo T9400 CPU and 4GiB of memory. The results show that both algorithm
phases can be executed fast, the actual execution speed is mainly influenced by the
number of features generated.

To evaluate the impact of the transformation on the management complexity,
we used the expanded and runtime feature models as input for the feature placement
algorithm discussed in [4]. We considered a scenario containing 100 applications
and servers. As seen in Table 5.4, where average times and percentiles are shown
for 100 executions, placement consistently executes faster for the runtime models.
For the MC and MIM cases the execution duration decreases by +5%, while for
the DP model a reduction by £17% is observed.
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Phase Model Time (ms) o
Document Processing 3.56 2.19

Expand Medical Information Management 0.32 0.47
Medical Communications 0.16 0.37
Document Processing 3.42 1.19

Eliminate Medical Information Management 0.34 0.47
Medical Communications 0.13 0.34

Table 5.3: Execution speed of the different operations.

Input Model AVG o 99 pct 98pct 97pct 50 pct

DP Expanded 2.19 031 275 274 2.71 2.20
DP Runtime 1.81 027 233 2.26 2.26 1.79
MIM Expanded 2.09 0.34 2.66 2.65 2.65 1.91
MIM Runtime 198 035 256 2.54 2.52 1.84
MC Expanded 208 038 272 2.67 2.64 2.00
MC Runtime 1.98 034 257 2.56 2.56 1.77

Table 5.4: The execution time of the feature placement algorithm for different models. Times
are measured in seconds.

5.7 Conclusions

We presented a software architecture for the development, execution and manage-
ment of highly customizable SaaS applications, and described how SPLE techniques
and feature modeling can be utilized within this framework, focusing on how feature
models are used at different stages in the software life cycle. The proposed feature
model conversion algorithm can be utilized to convert development feature models
to runtime feature models, increasing maintainability and expressiveness of devel-
opment feature models. The transformation can be executed fast, in the order of
a few milliseconds, and techniques are proposed to significantly limit the overhead
of empty features that is added during the transformation, improving the execution
speed of placement algorithms by 5 to 17% depending on the application case.

The proposed approach does come at a cost when features exist that are impacted
by many different features, as an exponential amount of feature variations has to
be created. This can however be remedied by only using this approach when it is
impossible to resolve the variability using other techniques, such as configuration
changes or AOP techniques.

In future work, we will extend the execution platform, which uses the fea-
ture model conversion and feature placement algorithms, and develop a process
management layer enabling QoS aware composition of services.
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Addendum

The management and runtime platforms mentioned as future work in the conclusions
of this chapter were partially implemented within the scope of the CUSTOMSS
project using two separate proof-of-concepts focusing on different aspects of the
project. Appendix B discusses how a medical communications platform was
partially migrated to one of these platforms.

Proof of equivalence

Due to space constraints, the equivalence of the relations in Equations 5.1, 5.2 and
5.3, and the relations in Equations 5.4, 5.5 and 5.6 was omitted in Section 5.5.3
of the paper on which this chapter is based. For completeness, we now show a
detailed formal proof of this equivalence. The FeatureChanges(a, f) relation is
equivalent to the following logical equations:

anfofa (5.1)
—aNfe f (5.2)
-f < afa Af’ (5.3)

For convenience, we define Rels(a, f), which is equivalent to the relations
defined in Equations 5.4, 5.5 and 5.6:

Or(f,{f’, fu}) fe 'V fa (54
Excludes(a, f') =(a N f) (5.5)
Requires(f,,a) fa—a (5.6)

We prove this equivalence using natural deduction with the Fitch notation. The
proof is split up into two separate parts, first showing that Rels(a, f) follows
from FeatureChanges(a, f) and subsequently showing the reverse. From this,
it follows that Rels(a, f) <> FeatureChanges(a, f).
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FeatureChanges(a, /) — Rels(a, f):

1 FeatureChanges(a, f) Assumption
2 7 ANfe fa (1), definition FeatureChanges
3 —aNf+ f (1), definition FeatureChanges
4 —f < fa AN f! (1), definition FeatureChanges
5 fe-(fan-f) @,z ye ey, e
6 fe faVvyf 5), ~(zANy) <~z V-y o
7 anf Assumption
8 7 (7), A elimination
9 I’ (7), A elimination

10 —a A f (3), <> eliminiation

11 —a (10), A eliminiation

12 1 (8, 11), L introduction

13 =(an f) (7-12), — introduction

14 fa Assumption

15 7 A f (2), <+ elimination

16 a (15), A elimination

17 fo—a (14-16), — introduction

18 Rels(a, f) (6, 13, 17), definition Rels

From this we can conclude that FeatureChanges(a, f) — Rels(a, f) using
implication introduction.
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Rels(a, f) — FeatureChanges(a, f):

S O 0 N N N R WD =

[\ T O R NS B (O R e e e e e e Y e T e
W N = O O 0 NN N KR W

f'V fa

anf

alNfe fa

Assumption

(1), definition Rels
(1), definition Rels
(1), definition Rels

Q) zeye ey (zAy) & xV-y

Assumption
Assumption

(6), A elimination

(7, 8), A introduction
(3,9), L introduction
(7-10), — introduction
Assumption

(11, 12), A introduction
(5, 13), <+ elimination
(6), A elimination

(14, 15), L introduction

(12-16), = introduction, ~—x < x

Assumption

(4, 18), — elimination
(18), V introduction
(2, 20), +> elimination

(19, 21), A introduction

(6-17, 18-22), +» introduction
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24 —a A f
35 ||

26 f

27 f'V fa
28 f

29 7

30 fa

31 a

32 1

33 f!

34 f

35 f

36 VL
37 f

38 a

39 anf'
40 1

41 -a

42 —a A f
43 —a A f f
44 FeatureChanges(q, f)
Errata

Assumption

(24), A elimination

(24), A elimination

(2), +» elimination

Assumption

(28)

Assumption

(4), — elimination

(25, 31), L introduction

(32), L elimination

(27, 28-29, 30-33), V elimination
Assumption

(35), V introduction

(2, 36), +> elimination
Assumption

(35, 38), A introduction

(3, 39), L introduction

(38-40), — introduction

(37, 41), A introduction

(24-34, 35-42), <> introduction
(5, 23, 43), definition FeatureChanges

Figure 5.7 shows the use of an Alternative relation when expanding the feature
model, while the text references an Or relation instead. Both options are correct,
as the additional relations in the FeatureChanges(a, f) relation prevent both
options from being selected, even when they are related only using an Or relation.

In this case, the Alternative relation is semantically clearer. It however intro-
duces redundant logical constraints. The Or relation results in a logically equivalent
result, with fewer logical constraints, which is why Or relations were used in the

evaluation.
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Some services use physical devices, terminals and servers that are installed at the
customer’s site. While the servers can be migrated to a remote environment during a
cloud migration, locally installed devices must remain on-site. This implies that the
communication between the various components must pass over the Internet, and
can therfore no longer be isolated in a private subnet that is specifically dimensioned
for its purpose. The client network is however not necessarily designed for these
network flows, making it essential to determine how these networks are impacted
when the service migration is executed, and when subsequent changes are made to
the service. In this chapter we focus on how the impact of service workflows can
be determined, ensuring service workflows do not negatively impact each other’s
execution. In particular, we determine an impact analysis strategy to evaluate the
degree to which a given set of service workflows can be guaranteed in a given
network topology. This impact analysis framework is designed as an access filter to
be used in conjunction with the Feature-Based Binary (FBB) approach discussed in
the previous chapters, validating whether sufficient network capacity is available
before FBB applications are accepted and deployed.
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6.1 Introduction

Many service providers install and maintain servers and physical devices on a
customer’s site to provide a service. These devices and servers work together,
executing workflows that provide the service. When the service must be upgraded
the devices must be replaced. Sometimes, the servers have hardware failures or
have insufficient processing power, and must be replaced as well. This implies
the service provider must dispatch technicians to carry out these changes on-site,
making upgrading and maintaining the service offering costly for large customers,
and prohibitively expensive for smaller customers. An example of such a service
can be found in medical communications, where terminals are installed in hospital
rooms and physical management servers are installed in the hospital. These devices
are installed and maintained by a third-party service provider.

Traditionally, the on-site devices have been single-purpose, and built specifically
to provide a small set of functionality. Currently, there is a trend to migrate to more
generic devices, that can support a larger collection of features, and that can be
mass-produced. This ensures the service offering can be updated without the need
to replace any devices, and makes it possible to activate additional features at a
later time. By moving management infrastructure to cloud environments rather than
customer-site servers, it becomes easier manage and upgrade the service offering.
This also makes it possible to make use of multi-tenancy for the management system,
sharing a single management system instance between multiple clients. This can fur-
ther lower the costs of providing services, as in such a system there no longer has to
be a dedicated management instance running at all times for every individual client.

Offering multi-functional hardware and operating them using cloud computing,
makes it easier and cheaper to upgrade the offered services, add new functionality,
or to enable new services for customers. This in turn makes it possible to offer these
services to smaller customers, for whom the cost of upgrading would have been
prohibitive. This approach however also has an important downside. Originally, the
devices, servers and network were specifically dimensioned to provide a specific
service in a controlled environment. In this new configuration three major changes
occur: 1) the load on the local network depends on the selected services, which
can be changed during the system runtime, 2) as services may make use of cloud
infrastructure, some service workflows must pass over a larger part of the customer
network, and finally 3) as the configuration is done remotely, it is possible to deploy
new services at runtime, without the need to visit the customer to install new servers
or other devices. New services with varying network impacts can be rolled out more
frequently, and these changes impact a larger part of the customer network. Because
of this, it is important to create an access filter that can determine the impact on
existing deployed services before new services are initialized, or upgraded. This
problem is illustrated in Figure 6.1.
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(a) In a network where all services are local,  (b) By migrating multiple services to a
the network communication is restricted to a  remote cloud environment, the strain on
small part of the network. (The thick red lines  the client network increases as services
represent the service communication flows.) are no longer constrained to a small part
of the network.

(c) Migrating services to a cloud makes it
easier to upgrade them or to add new
services as fewer changes are needed
on-site. (In this figure, the dotted blue

line represents a newly instantiated
service.)

Figure 6.1: An illustration of the impact on a client network of service instantiations,
migrations and changes.

For the considered cases the bottleneck is, both in terms of server capacity
and network bandwidth, assumed to be in the customer network and the uplink
between the customer network and the cloud environment. This assumption is made
because the on-premise network and uplink typically have lower bandwidth than
the network within the datacenter, even more so if high-bandwidth cloud instances
are used, e.g. Amazon Cluster Compute Instances [1].

We refer to the problem of determining the impact on the network of deploying
services as the Network-Aware Impact Determination (NAID) problem. We con-
sidered this impact analysis problem for the specific use case where services may
either not fail at any cost, or when they are continuously processing information [2].
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This implies that services may only be activated if all service workflows can be
activated at the same time. When it is rare for all services to be active at the same
time, this is an excessive requirement, and greatly limits the number of services
that can be permitted on a network. In such a case it would be preferable to support
resource sharing within the network, ensuring more services can be activated. This
makes it possible to activate more services on the network, but it may also cause
resource conflicts. Therefore, an approach is needed where resource sharing is
maximized while at the same time the number of resource conflicts is minimized.
In this chapter, we present Shared Resource Network-Aware Impact Determina-
tion (SRNAID), an extension to NAID which can be used to hierarchically structure
workflows and achieve fine-grained control over resource sharing. We also propose
a prioritization mechanism based on the NAID model to ensure important flows do
not fail in case such resource conflicts occur.

In this chapter, we focus on network-aware impact analysis with support for
resource sharing. We address three research questions: 1) How can resource sharing
be incorporated when determining impacts of service workflows on a network
during service deployment? 2) How can the resource conflicts occurring due to
the sharing of resources be addressed at runtime, ensuring important services are
impacted minimally? 3) How does the proposed approach perform, both in terms
of service failures and in terms of performance? To this end, we first describe
a SRNAID model for determining the impact of adding services with support
of network and server resource sharing. To add more fine-grained control over
the resource sharing, we define an approach where workflows are grouped in a
hierarchy, and where resources are shared at multiple levels of this hierarchy. We
then evaluate the SRNAID model using two use cases: a use case based on a
Medical Communications (MC) application deployed in a hospital setting and a use
case containing a varied collection of generated workflows.

While we focus on a medical communications use case in a partial cloud
migration scenario, the designed algorithms can also be applied to general commu-
nications use cases, for instance in access control and home automation systems,
and in scenarios where data is stored client-side due to compliance rules while
(part of) the processing is done in a remote datacenter. Furthermore, the algorithms
described may also be of use in multi-cloud deployment scenarios, and as a request
admission filter in network function virtualization deployments.

In the next Section, we discuss related work. Afterwards, in Section 6.3, we
discuss the basic NAID problem, which we extend to incorporate support for
resource sharing in Section 6.4. In Section 6.5 we describe the conflict mitigation
used to resolve resource conflicts during the simulation. The simulation setup
is described in Section 6.6, and the results of our evaluations are presented in
Section 6.7. Finally, we state our conclusions in Section 6.8.
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6.2 Related work

Our approach to impact analysis is based on the use of network flow problems [3].
Multi-commodity flow problems [3] are a specific class of network problems that
can be used to model various network-problems. Because of this, multi-commodity
problems are commonly used in network management for solving various problems
such as network routing problems [4—6], virtual network allocation [7], and design
of fault-tolerant networks [8]. These approaches however work on the network
level, and focus on routing flows from one network node to another. We on the other
hand add service information to the input network, and focus on service-to-service
routing: only the service that is executed matters, not where this service is executed,
as long as server resource constraints are respected.

In our previous work [2], we have described a similar network impact analysis
framework. In this chapter, we extend the presented approach and algorithm to
incorporate support for network resource sharing, significantly reducing the amount
of bandwidth needed to accept multiple services and thus increasing the number
of services that can be provisioned on a given network. In this chapter we also
propose a hierarchical model to better structure and control the various groups
of services between which resources are shared, improving the quality compared
to a flat resource sharing approach. The conflict resolution algorithm, which is
described in this chapter and is used in the evaluation of the resource sharing aware
algorithm, also makes use of the NAID algorithm described in [2].

Our approach differs from service selection as discussed in [9], where the
authors describe an approach for selecting third-party services, such as cloud infras-
tructure, based on cost and other quality metrics, which focuses on the viewpoint of
a client requiring the best-fitting service. We by contrast focus on the viewpoint of
a service provider, who needs to select which services can be provided to a client
based on the client’s network and server capacities.

The approach described in this chapter has similarities with the application
placement problem [10]. Application placement is used to determine the location
of applications within networks [10-12] or clouds [13-15], taking into account
the demand for each application. Application placement is used to coordinate
applications. This work however focuses on the coordination of service workflows,
rather than the management of individual services. In [16] network-aware placement
of services is discussed, but the focus is the management of datacenters with specific
layouts, so the techniques discussed cannot be directly applied to customer networks.
Furthermore, the system assumes bandwidth is the only limitation, ignoring CPU
limitations. Our approach however incorporates CPU limitations and can be applied
to varying network layouts. In [11] and [17], an application placement algorithm
based on a conversion to a network problem is discussed, but the physical network is
not taken into account. Our work by contrast specifically focuses on the underlying
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network.

Our approach further differs from application placement approaches as we
assume that the services are already placed. We rather focus on determining which
service workflows can be successfully executed, given a specific configuration.
Thus the approach discussed in this work can be used in conjunction with existing
application placement techniques, the application placement techniques being used
to determine the service locations, and the SRNAID algorithms to determine the
achievable workflows taking into account these service locations. As our techniques
can be used to determine bottlenecks, it could also be used to enrich existing
placement techniques. Alternatively, it would be possible to extend the described
formal model using decision variables to signify instantiation of services on servers
to directly use it as an application placement system, but this is not the focus of this
chapter.

The NAID problem is similar to the service matching problem [18]. As in [19],
we assume the service specification is known, but while the authors relax the
capacity limit to achieve a polynomial time algorithm, we on the other hand focus
specifically on these capacity constraints. By focusing on whether the required
capacity for offering the services is present in the network, rather than on which
specific service instances are used within the compositions, we similarly achieve
polynomial time algorithms.

The problem we describe is the opposite of network dimensioning [20, 21] prob-
lems. Network dimensioning is used to determine the required network capacities
for a given collection of services. Rather than dimensioning the network to be able
to use a given number of services, we focus on determining the services that can be
executed given a fixed network configuration. It would be possible to modify the
model to use it to determine the minimal required network bandwidth for a given
collection of services, and we use this approach to generate difficult problems in
our evaluations. This is however not the focus of this chapter, and does not make
it possible to incorporate network survivability, an important aspect for network
dimensioning problems.

There are also similarities to the capacity assignment problem [22, 23], where
network capacity is assigned to services within networks. We however do not focus
on how capacities are divided, but rather on whether there is sufficient capacity at
any point in time to provide the service. Additionally, we also consider both the
services themselves, and the servers on which they are executing, ensuring there is
both sufficient network and service capacity.

6.3 Network-Aware Impact Determination

NAID can be used to determine the impact of workflows on each other. In this
context, a workflow is defined as a chain of communicating services between which
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Figure 6.2: The NAID problem as a flow network. Each service-server arc in the Figure
consists of two directed edges, while network arcs can either be bidirectional edges or two
directed edges (this is e.g. useful for an uplink where download and upload capacities

differ).

there is network demand. We have described the NAID problem and proposed
various algorithms in our previous work [2]. In this section we present a brief
summary of the basic NAID model. Some notational changes are introduced
compared to our previous work to enable a more consistent presentation in the
remainder of the chapter where we extend the model to support resource sharing.

We model the NAID problem by transforming the input into a graph problem
where both servers and services are represented as nodes within the graph. This
makes it possible to model the problem as a variation of the multi-commodity flow
problem [4]. An advantage of this approach is that this problem can be solved
using a Linear Programming (LP) solver, which as opposed to using Integer Linear
Programming (ILP) solvers, do not result in exponential execution time complexity.
Additionally, using an LP model, it becomes easier to make modifications to the
model, e.g. to support non-linear service configurations. Within the graph, servers
are interconnected based on their physical topology. Services are connected to
servers on which they are running using two directed edges to represent incoming
and outgoing streams of data to the service. We note that in this approach, routers
and switches can be represented as server nodes on which no services are running.
An example network is shown in Figure 6.2.

When services communicate, there is a network flow between both, where one
service is the source of the flow, while the other is the sink. A network flow from the
source service to the sink service is then determined. This flow will always move
over at least one server, even when both the source and sink service are running on
the same server. When the services are running on different servers, the flow moves
over the physical network between the servers on which the services are running.
In the example in Figure 6.2, a flow between services a; and as must always move
over the physical network (e.g. a; — s1 — S2 — a2), while a flow between a; and
a3 does not have to move over the physical network as both nodes are hosted on
server s3, but the flow still moves over the server on which the services are running,
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Figure 6.3: An illustration of the effect of adding workflows on the guaranteed network
share of workflows.

resulting in the flow a; — s3 — as.

The NAID problem focuses on the available network capacity for services, and
the amount of capacity that can be guaranteed for services. Figure 6.3a shows an
illustrative workflow between services a; and ay for which 100% of the capacity
can be guaranteed at all times. Adding a second flow, as illustrated in Figure 6.3b
shows the impact of adding a second flow: in this example, only 50% of the network
demand of both services can be guaranteed at all times. This guaranteed network
share is formalized as the value z, a value that is commonly used for this value in
multi-commodity flow literature. This z value represents the share of the demand
that can be guaranteed for all workflows within the network. We define a separate
zy value for every workflow, making it possible to determine the percentage of
the demand for a specific workflow w that can be guaranteed within the given
network and service configuration. Whether or not a z,, value of less than 100% is
acceptable for workflows such as those in Figure 6.3b depends on multiple factors:

e If one or both workflows may gracefully degrade, e.g. by reducing video
quality if scalable video sources are used, or if delays are acceptable, a lower
z value may be permitted.

e [f the demand for the workflows fluctuates through time, it may be the case
the probability of both requiring their maximum demand at the same time is
small. In this scenario, resource conflicts could still occur, but depending on
the probability of these conflicts occurring and their consequences the risk
may be acceptable.

o If two workflows are guaranteed to never occur at the same time, e.g. as both
use the same device at the same time for different purposes, there will never
be a problem. While statically it is impossible to guarantee 100% capacity for
both workflows in this scenario without taking this information into account,
there will in practice never be resource conflicts making the configuration
acceptable.
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Figure 6.4: An illustration of the SRNAID problem input and output. The inputs and outputs
of the NAID algorithm are similar, but NAID does not take workflow relations into account,
making it incapable of sharing resources between workflows resulting in lower achieved
network guarantees.

Making it possible to support these types of workflow interactions is an im-
portant motivation for the development of the SRNAID algorithm presented later
on in the chapter. The inputs and outputs of the SRNAID and NAID algorithms
are illustrated in Figure 6.4. In the remainder of this section we will formalize the
NAID algorithm and model. In Section 6.4 we will then describe the SRNAID
algorithm that extends the NAID model, taking workflow relations into account.

6.3.1 Base model: determining service workflow network im-
pact

The NAID model contains a collection of nodes A that are either server nodes,
contained in a subset S or application services .A. These nodes can be connected
using either directed edges, contained in the set D, or bidirectional edges, contained
in the set B. These bidirectional edges are implemented as two directed edges,
and for every edge b € B, there is a corresponding edge cor(b) € B’, the set of
corresponding edges. Together, these three collections of edges are contained in a
collection of edges &.

A collection of service workflows WV is defined. Every workflow w € W is
represented as a chain of services and demands, where each service implements
a part of the workflow functionality. The workflow starts from an initial service,
a’ and goes to the next service until a final service a is reached'. The bandwidth

Note that an additional initial service ag is defined. The initial service ag is the same for all
workflows, and is used to ensure that each service requiring CPU resources has an input flow, which is
used to model CPU load constraints shown further on in this section. For more information concerning
the initial service we refer to [2].
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demand between two services is defined by the variable d;; , 1, which is specified for
every pair of services a}’, a}, ; within the workflow as illustrated in Equation (6.1).
Each pair of services within the workflow becomes a separate network flow going
from a source to a sink node, which is referred to as a commodity within the
multi-commodity flow problem.

dg'y dy s dy

w:a0—>a§”2>a§”—>~-~ R g (6.1)
The approach used to determine the demand between two services of a workflow,
d%— 11, 18 shown in Equations (6.2) and (6.3), and is dependent on a rate between
incoming and outgoing flows, r2%*(a) which is defined for every service a.
YweW 1 dy, =d" (6.2)
YweW 1 dj;q =dj_q ;X rf;ft(a;“) (6.3)
The optimization objective is to maximize the share of workflow demand that
is allocated. That is, for every workflow w € W there is a decision variable
zw € [0, 1] which indicates which share of the demand for workflow w that can be
provided. If, for a workflow w, z,, = 1, it means that the capacity demanded by it
is available to it all of the time. If, on the other hand a lower z,, value occurs, such
as 0.5 it means that only 50% of the demand can be guaranteed at all times. This
is not necessarily a problem as mentioned in the previous section: NAID does not
take resource sharing into account, causing there to potentially be more resources
available at runtime. If varying demands during runtime cause more resources to
be available, or if the workflow is capable of scaling back resource requirements,
the problem may be mitigated at runtime. The objective of the optimization is
to maximize these z,, values, resulting in the maximum possible quality. This is
formulated using the following optimization criterion:

max 3 2, (6.4)

The model defines decision variables f(e, ¢), representing the network flow over
an edge e € £ for a commodity ¢ € C. Using these edge flows, the net flow for a
specific node and commodity combination can be determined. This net flow is the
sum of all incoming flows minus the sum of all outgoing flows, and is shown in
Equation (6.5). For nodes that are not a source or sink, these net flows should be
zero, as no flow may be lost within the network. For source nodes there is a negative
flow as there is more outgoing flow than incoming flow. Similarly, sink nodes have
a positive net flow. Every commodity flow has an incoming flow that is equal to
the demand for the commodity, represented as d(c) which can be calculated as
explained previously, multiplied by the share of the total workflow that is achieved,
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which is represented by z,,. This is expressed in the flow conservation constraints
shown in Equation (6.6).

VneN :VeeC :f(n,c) = Z £((m,n) Z t((n,m),c) (6.5)

(m,n)e€ (n,m)e€
—zy X d(¢) If n source of ¢
VneN :VeeC:f(n,c) =4 z, xd(c) Ifnsinkofc (6.6)
0 Otherwise

Edges between servers are subject to a network link capacity constraint ex-
pressed in Equation (6.7) and Equation (6.8) for directional and bidirectional edges
respectively. These capacities can be measured using existing bandwidth estimation
approaches [24-26] and are used as an input for the model. Edges between servers
and services represent the execution of a service on a server, and are subject to a
CPU capacity constraint, which is determined for every server. This constraint is
shown in Equation (6.9); note that only directed edges need to be taken into ac-
count here as service-server edges are always directed. In this expression, rCP Y(a)
represents a ratio converting the used network bandwidth to a measure of CPU use.

Yee DNS xS Zf(e,c) < cap(e) (6.7)
ceC
Ve € BNS xS: > fle,e)+ Y f(cor(e),c) < cap(e) (6.8)
ceC ceC
VseS: Y ( CPU(q) x Zf((s,a),c)) < CPU, (6.9)
(s,a)eD ceC

Workflows are a sequence of different execution steps: the incoming flow in a
service is processed, and results in an outgoing flow from the service that is sent
the next service. This is expressed in the workflow chain relation constraint shown
in Equation (6.10).

Vw € Wit (al) x £((s,a¥), c¢') = f((a¥, s), ) (6.10)

The service-server edges may only be used to provide flow going to the specific
services, and may not be used for any other services. Because of this, two additional
constraints, Equation (6.11) and Equation (6.12) are added to restrict respectively
outgoing and incoming flows. In this formulation, a; and a, represent the source
and the sink service of the commodity c.

VeeC:VYae A:Vs e S:1{((a,s),c) =0 (unless a = ay) (6.11)
VeeC:Vae A:Vse S :{((s,a),c) =0 (unless a = ag) (6.12)

An additional artificial service, aq is also added to ensure all workflows have
an input flow. This is needed to correctly specify the CPU capacity constraint. As
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this service is artificial, the flow for any workflow commodity (ag, a,,) which
starts in this service may not pass over server-server links. To enforce this, the
constraint in Equation (6.13) is added for all e € £ of the type (s1, s2) € S?, and
all commodities ¢ € C' for which the flow starts in aqg.

VeeC:V(s1,82) €S xSt f((s1,82),¢) =0 (6.13)

For performance reasons, we only consider the CPU constraints for servers
active within the customer network, and not for physical devices or cloud nodes.
This is possible as the considered physical devices are built to provide a limited
collection of specific services, thus they are designed to be capable of providing
these services. Within the cloud, additional computational capacity can be requested
on-demand when insufficient resources are present.

6.3.2 Non-workflow service graphs

Within this chapter we focus on service workflows. In practice, coordinating
services can however not always be represented as linear workflows, and arbitrary
service configurations may need to be supported. These configurations can be
represented as a graph where the nodes are services and the edges are the capacity
demands between the services. For this reason, we refer to them as service graphs.
A workflow is a service graph where a source and sink node have one outgoing and
one incoming edge respectively, while all other nodes have both an incoming and
an outgoing edge. Thus, service graphs are a generalization of the service workflow
concept.

The approach discussed previously can be extended to support such configura-
tions: in the model, it is possible to create multiple flows from a single source node,
which is all that is needed to add support for arbitrary service graphs. Table 6.1
shows how three service graphs can be represented within the flow based model:
the workflow (as presented in the previous section), a graph where one service
interacts with multiple services, and a star service graph. The same approach can
be used to represent more complex non-linear service graphs.

In general, these service graphs can be defined by defining a r9%*(s,, s5) vari-
able for all services s, and s; that are connected in the service graph. This variable
specifies the network demand between the two services. As illustrated in Table 6.1,
this value can then be specified based on the incoming flow within the service s,.
If multiple flows enter a service, the outgoing flow can either be specified based
on one of the incoming flows, or the sum of the incoming flows. Arbitrary service
graphs can therefore be supported by the model. Within the evaluations in this

chapter we however focus specifically on linear service workflows.
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Service graph Flow specification Defining Variables
dor = d d
S —>5y—m5y—ms, 1,27 do1 X ?#Z(Sl) ?#Z(Sl)
2,3 = di2 X 17" (s2) o (52)
34 = d23 X 133" (s3) ot (s3)
do1 = d
S1—>S;—>S ,
T di2 =do,1 x 9 (s1) oyt (s1)
Sy da3 = dy g X 194 (s2, 53) 9 (s2,53)
dog = dy2 X 124 (82, S4) 24 (82, S4)
doo=d d
S| <«—S;,—>S ’
! ’ ’ do1 = do,1 X t94 (52, 51) 24 (sz,51)
Sy da3 = dog X 194 (s2, 53) % (s2, 51)
do,g = do2 X 194 (59, 54) 2% (s2, 54)

Table 6.1: An illustration of how various service graphs can be represented within the
Sflow-based model. The defining variables column shows which input variables are needed to
characterize the flow.

6.4 Shared Resource NAID

The model discussed in the previous section is useful in a context where service
workflows are continuously transmitting or in contexts where a very high reliability
is needed. For many use cases, not all services will be active at the same time,
making it preferable to support resource sharing. This ensures more services will
be allowed to be deployed, at the risk of resource conflicts occurring. In this section
we discuss how resource sharing can be added to the NAID model by allowing
workflows to partially ignore each others resource requirements. First, we will
discuss network resource sharing, and subsequently we will discuss server resource
sharing. In both cases we will make use of a hierarchical specification of services,
where similar service workflows are grouped together. This hierarchical approach
makes it possible to group workflows with similar properties together making it
much easier to specify the relations between workflows, and making it possible
to have fine-grained control over the degree by which workflows may ignore each
others resource requirements.

6.4.1 Adding resource sharing: network edge sharing

To achieve network edge capacity sharing, we make use of two major changes
to the previously specified NAID model: 1) capacity constraints are expressed
per workflow and per edge, rather than just per edge, and 2) to achieve a finer-
grained control over the sharing of network capacity, the workflows are grouped in
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(b) Network edge capacity sharing on different
(a) Workflows are grouped hierarchically specified levels.
hierarchically.

Figure 6.5: Hierarchical capacity sharing between edges ensures more capacity is available
for individual workflows than physically present. The various workflows within a group
share resources based on the characteristics of the group, such as the probability of
occurring at the same time.

a hierarchy.

Within the NAID model, edge capacities are expressed using Equation (6.7).
This expression is equivalent to Equation (6.14), where it is expressed for every
workflow. By then adding an overprovisioning factor OF, as illustrated in Equa-
tion (6.15), a rudimentary system for sharing resources on edges can be defined.
When OF = 1, no network resource sharing will occur, ensuring that the network
is overprovisioned and that all resources will be able to be executed at the same
time. If OF < 1 sharing of network capacity between service workflows occurs.

Vee&: Z f(e,c) < cap(e) (6.7)
ceC
VeEE,wGW:Zf(e,c) < cap(e) — Zf(e,c’) (6.14)
cew ' gw
VeGE,wEW:Zf(e,c) < cap(e) — OF x Zf(e,c’) (6.15)
cEw ' ¢w

Using this approach, OF determines the degree to which other services are
taken into account during optimization. An OF of O ensures that all other flows
are ignored, while an OF of 1 results in the original equation of the NAID model
where all workflows are fully taken into account and no sharing of resources occurs.

This approach is however not sufficient as all workflows are treated equally,
offering only limited control. In practice different workflows can have different
characteristics and probabilities of interfering with each other. To resolve this, we
define a hierarchy containing workflows and groups of workflows. The leaves of this
hierarchy are the workflows themselves, while inner nodes of the hierarchy group
various workflows or other nodes together. An example is shown in Figure 6.5a,
in this example a group g; contains three workflows w1, ws, and ws, group g
contains two workflows, and the root group g, contains two groups g; and gs.
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Every element of the hierarchy is assigned an individual capacity for every edge,
and resource sharing occurs within individual groups. This concept is illustrated in
Figure 6.5b, and makes it possible to control the process of resource sharing for
every service and on multiple levels.

Formally, we define a collection of hierarchy nodes H that contains both all
workflows, contained in the collection VV, and all groups, contained in a collection
G. Each group G € G can contain multiple workflows or flow groups. Every h € H,
except for the root, is contained in exactly one group, creating the hierarchy. For
the example in Figure 6.5a this results in the following collections:

W = {w1, wa, w3, wy, w5}
G = {{w1, wa, w3}, {wa, ws}, {{wy, wa, w3}, {ws, ws}} }

To make use of capacity constraints per group, we first define the capacity
assigned to a workflow on an edge. This is shown in Equation (6.16) for directed
edges and in Equation (6.17) for bidirectional edges.

VeED,wGW:cap(aw):Zf(e,c) (6.16)
cew

Ve € B,w € W : cap(e,w) = Z (f(e,c) +f(cor(e),c)) (6.17)
cew

We also define a new decision variable cap(e, g) for all groups g € G and all
edges e € D U B. Finally, a constraint is defined for every group in the hierarchy,
linking the capacity assigned to its children to its own capacity. For this we use an
expression based on that of Equation (6.15), but rather than defining it for the total
set of commodities C it is used within individual groups. The resulting expression
is shown in Equation (6.18). This expression makes use of a factor O Fz which
is defined within a group. Every group can be assigned a different O F; value,
depending on characteristics of the group.

VG egG, heGecDUB:
cap(e, h) <cap(e,G) — OFg x Z cap(e,h’)  (6-18)
h'eG\{h}

As mentioned previously, the workflows and groups form a hierarchy. The root
group, G, has a capacity which is limited by the edge capacity. This is expressed
in Equation (6.19). Additionally, a constraint to ensure the final capacity remains
larger than that used for individual workflows is also added. This constraint, shown

in Equation (6.20) ensures that no individual flow can ever be larger than the
network edge capacity.

f(e, G,) = cap(e) (6.19)
Ve e C : f(e,c) < cap(e) (6.20)
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6.4.2 Adding resource sharing: server capacity sharing

The server resource formulation which is included for all s € S can be reformulated
in a similar way to the transformation of network capacity limits. For this we first
define an expression er U(s, w) which, for a workflow w € W, determines the
CPU load on the server:

LY (s,w) = Y (r%PU(a) XZH(&@)»C))

(s.a)e€ c€w

By modifying the NAID model CPU constraint, Equation (6.9), to incorporate
this LEPY formulation, Equation (6.21) can be obtained. This formulation is
similar to that shown previously in Equation (6.21), and like in the previous section,
an overprovisioning O F factor can be added as expressed in Equation (6.22).

VseS: Y <r§LPU(a) Xy f((s,a),c)) < CPU, (6.9)

(s,a)e€ ceC

VseS: Z (rglPU(a) X Z Zf((s,a),c)) < CPU;

(s,a)€E weW cEw
VseS: Z Z <rgLPU(a) X Zf((&a),c)) < CPU;
weW (s,a)e€ cEw
VseS: Y LY(s,w) < CPU,
weWw
VseS:VweW: LY (s,w) <CPU,— > LPY(s,u’) (6.21)
w’ eW\{w}
VseS:YweW: LY (s,w) < CPU, — OF x Z LEPY (s,u")
w’ eW\{w}

6.22)

Analogous to how this was done in the previous section, we can now define this
constraint for hierarchically specified groups. For every group G € G and every
server s € S we define a new decision variable L“FV (s, ) representing the CPU
capacity assigned to a group. The capacity of the root group G, is defined as equal
to the CPU capacity of the server:

LCPY(s,G,) = CPU, (6.23)

We now add flow group capacities and an overprovisioning factor, O F¢, for
every group, similar to how this was done in this in Section 6.4.1. The resulting
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constraint is shown in Equation (6.24).

VG eG,heG,seS:

LCPY(s,h) < LY (s,G) — OF ¢ x Z LEPU (s, 1)) (6.24)
h'€G\{h}

6.5 Runtime conflict management

When resources are shared between workflows, and the above SRNAID algorithm
is used to determine whether services are allowed to be deployed, it is possible for
resource conflicts to occur. These resource conflicts occur when, at a given time
during the execution, there is more demand for resources than there are available.
How these resource conflicts are handled depends on the services and workflows
themselves, and these conflicts can be handled in multiple ways: 1) the workflows
may execute in a reduced quality mode (e.g. by using lower bitrate video and audio),
2) the workflow execution may be delayed until there is sufficient capacity for its
execution, or 3) the workflow may fail causing it to not be executed at all. Only
the last two approaches can be used generically, and often delaying workflows may
cause unacceptable delays causing them to fail as well. Therefore we focus on the
last scenario. Often, some workflows are more important than others, making it
important to develop a strategy for dynamically failing less important workflows
to prevent these more important flows from failing. Whenever a new workflow is
started, the system state must be reevaluated: it must be determined whether the
workflow can be added to the system, or whether it conflicts with already existing
workflows. If there is a conflict this must be resolved. To achieve this, we make
used of a modified NAID algorithm which is used in a workflow addition algorithm.

6.5.1 Adding quality levels: class-aware NAID

An important part of the conflict mitigation algorithm is a class-aware NAID
algorithm. This algorithm is based on the NAID model without resource sharing
outlined in Section 6.3, but incorporates the concept of a workflow class, indicating
the importance of the workflow. We refer to this algorithm as NAID*. By
associating a class with workflows, we can prioritize the execution of important
workflows compared to other, less important, workflows.

With every workflow w € W we associate a value class(w) which represents
the quality level or importance of the flow. A workflow with a low class value
is deemed more important than a workflow with a higher class value, with the
highest workflow quality level being 0. The N Al D* algorithm takes one additional
parameter compared to the regular NAID algorithm: w,c.,, the workflow which is
the newest workflow to be added to the system. Additionally, a collection of new
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constraints, shown in Equation (6.25), is added:
Yw € W : class(w) < class(Wnew) = 2y = 1 (6.25)

This constraint ensures that, all workflows of the same or higher priority will be
fully provided, and only lower-quality workflows may still fail. When running the
N AID* algorithm, there are three possible outcomes:

1. Every z, value is 1. This implies all of the requested workflows can be
provided.

2. Some z,, values are less than 1. In this case some lower-priority workflows
can not be provisioned correctly, but all of the workflows of the quality of
Whpeqw and all workflows of higher quality can be fully provisioned.

3. The resulting model is infeasible and no configuration can be determined.
This implies that it is impossible to provide the workflows of the current
quality level and higher quality, and that at least one of these flows must be
removed. In a runtime scenario where the N AI D* algorithm is executed
iteratively this is an interesting case, as if at a given point in time the result
of NAID* execution is infeasible, and at the previous point it was feasible
the infeasibility can be traced back to the last added workflow wy, ¢y

Note that this algorithm does not take resource sharing into account as only
workflows that are active at a given point in time are taken into account.

6.5.2 Workflow addition algorithm

To add workflows to a given configuration, Algorithm 8 is used. The algorithm
takes as input a set of active workflows, and a new workflow that is to be placed,
and returns three possible values: 1) OK, which indicates that the workflow can
be added without impacting the active workflows; 2) F'ail, which indicates that
the workflow can not be added, as it would negatively impact high-priority active
workflows; and 3) Abort(abortedFlows), which indicates that the workflow can
indeed be added, but that to do so the returned set of lower priority workflows must
be aborted, causing those workflows to fail.

The doPlace function first solves the N AI D* algorithm which was mentioned
in the previous section. If the N AI D* formulation is infeasible, this implies that it
is impossible to achieve a configuration where all workflows with the quality level
of new and higher are successful, even if all lower quality flows are eliminated.
Thus, the new flow may not be added and F'a:l is returned.

If NAID* succeeds, the workflows for which z,, < 1 are determined. If there
are none, OK is returned and the algorithm finished. If some workflows fail, the
conflict will have to be mitigated. These failed flows are stored in the set fail. At
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Data: active: Set of currently active workflows

Data: new: New workflow to be placed

Result: Return state

1 Solve N AID* for workflows active U {new};

2 if Infeasible then

3 | return Fail;

4 else

5 failed < flows for which z; < 1;

6 if failed = () then

7 | return OK;

8 else

9 abortedFlows « mitigateConflict(active, new, failed);

10 return Abort(abortedFlows);

11 end

12 end
Algorithm 8: The doPlace function. The algorithm can return three states: O K
indicating the new workflow it can run; F'azl indicating the new workflow can not
run; and Abort(abortedFlows) indicating the new flow can run, but that some
active flows, those contained in the set abortedF'lows, must be aborted to do so.

this stage it would be possible to return all the failed workflows and abort their
execution, which would result in a feasible configuration. This configuration could
however be suboptimal in two ways: 1) it could occur that multiple workflows are
not entirely successful in the N AI D* solution, but that removing only a single flow
is sufficient to achieve a feasible configuration; or 2) it may be possible to resolve
the conflict by aborting lower-priority flows than those present in the set fail. For
these reasons a separate mitigateConflict function is defined.

Algorithm 9 shows how resource conflicts are mitigated. First, the algorithm
tries to resolve the conflict by removing the workflow that achieves the lowest
zw value, referred to as worst, and trying to place that workflow with doPlace,
assuming all other workflows, including the new one, are active. This can result in
two possible responses?:

1. Abort: It is possible that the recursive call leads to a list of failed flows that
must be aborted. By aborting these flows a feasible configuration can be
determined.

2. Fail: This implies that workflow worst can not be placed in the configura-
tion. We then retry adding the original workflow new using doPlace, but
remove workflow worst from the active set of workflows.

2The exit state OK of the doPlace function can not occur here as otherwise conflict mitigation
would not have been initiated in the first place.
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Data: active: Set of currently active workflows
Data: new: New workflow to be placed
Data: failed: The flows that failed in a previous placement
Result: fail: The workflows that must be removed to yield a feasible
configuration
1 worst < workflow with lowest z; in failed;
2 reversedState < doPlace(active U {new} \ {worst}, worst);
3 if reversedState = Abort(aborted Flows) then
/+ A feasible configuration exists by removing
the selected set of workflows */
4 return abortedFlows;
5 else if reversedState = Fail then
/+ The workflow worst is incompatible with
higher-class workflows, it must be completely
removed */
6 restrictedPlace < doPlace(active \ {worst}, new);
7 if restrictedPlace = Abort(abortedFlows) then
/* Aborting the resulting flows and worst
results in a feasible configuration */
8 return abortedFlows U {worst};
9 else if restricted Place = OK then
/+ By removing worst a feasible configuration

was reached */
10 return {worst};
1 end
12 end

Algorithm 9: The mitigateConflict function used to determine the set of work-
flows that are to be removed to resolve a resource conflict.
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6.5.2.1 Addition algorithm termination

The doPlace function makes use of the mitigateConflict function and vice versa,
creating a recursive structure. To ensure the execution always terminates, we con-
sider two values associated with every invocation of doPlace and mitigateConflict:
class(new), the class of the newly added workflow, and |active|, the number of
elements contained within the set active.

We first note that, if mitigateConflict is invoked from doPlace, the same
active and new as used in the doPlace invocation are used, so we can focus
specifically on the mitigateConflict function. The doPlace function is invoked at
two points in mitigateConflict:

e The doPlace invocation on Line 2 tries to place the workflow worst. As
worst had a z; value less than 1, this implies worst has a lower priority than
new, and thus a higher class, as otherwise N AID* would have assigned
z; value 1 to it because of the constraint in Equation (6.25). This new
invocation of doPlace thus works on a class of class(worst) > class(new).
The number of workflows that is to be placed, |active| remains the same in
this invocation.

e The doPlace invocation on Line 6 is executed using a set active \ {worst}.
As the resulting set contains one less item, it is of lower cardinality than
in the previous iteration. As the workflow new that is placed is the same,
class(new) remains the same for the invocation.

As the number of workflows that can exists is finite, there is a workflow w,,,.
with the maximal class value class(wy,.) and thus the lowest priority. The min-
imal cardinality of a set is that of the empty set: |(}] = 0. Every invocation of
mitigateConflict either increases class(new) by at least one in the next invo-
cation of doPlace, or decreases |active| by one. As there is an upper limit to
class(new) and a lower limit to |active| the algorithm is guaranteed to terminate
in at most O(a + c¢) steps, where a = |active|, the number of active workflows,
and ¢ = class(w fy,) — class(new), the number of workflow classes that exist that
are higher than that of new.

6.6 Evaluation approach

The algorithms presented in this chapter were implemented using Scala [27], the
models were implemented using the CPLEX [28] LP solver. To evaluate the
approach we make use of two evaluation scenarios, where we evaluate the quality of
the resulting network using discrete event simulation: a Medical Communications
(MC) use case and a randomized scenario.
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Figure 6.6: The network set-up used in the evaluation environment. The environment models
two buildings with multiple floors and a collection of end-user devices on every floor. The
entire set-up is connected to a remote cloud environment.

6.6.1 Medical communications use case

MC applications provide multiple communication services within hospitals and
other care facilities such as nursing homes. While the cloud has many benefits
related to manageability and scalability, a full migration is impossible as the services
depend on locally installed hardware terminals. An important side effect of a cloud
migration is the increasing impact on the client network, which often uses older
hardware and has only limited capacity. Despite this, it is vital that services can
be executed uninterrupted, making it important to determine whether services will
impact each other before they are deployed. For this, we use the SRNAID approach.
The considered MC use case provides three separate services, Nurse Call (NC),
Voice over IP (VoIP) and video. The primary and most important functionality is
NC, which is provided using terminals and buttons installed in rooms that can be
used by patients to call hospital personnel. This important service is subject to
strict quality and compliance rules, but requires only limited amounts of network
bandwidth. VoIP and video are also offered as add-on services, but while they
require significantly more network bandwidth, the impact of failing to provide the
service is less severe. Within this system, various workflows exist to provide the
three services. Each of these workflows represents a single part of the service, e.g.
a patient initiating a NC or a nurse initiating a VoIP call.

To provide the services, three types of devices are installed at the customer’s site:
controllers, handheld mobile devices and terminals. These devices communicate
with each other, and with a remote cloud environment. The customer network layout
consists of two buildings, with different floors. Routers are provided per-floor and
they are connected to a central uplink. The result is a tree-based structure, where
inner nodes represent the network infrastructure and routers, while the leaf nodes
are controllers, handhelds and terminal nodes. The network set-up is shown in
Figure 6.6. For the quality evaluations a small hospital is used with two buildings,
three floors per building, and ten leaf nodes.
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Name Load Start Duration
NC 2 KBps  Exponential Normal
A=1/h  p=1s,0=100ms
VoIP 10 KBps Exponential Erlang
A=1/h 1= 30s, 02 = 505
Video 100 KBps Exponential Erlang

A=1/5h  p=50s, 0% =90s>

Table 6.2: MC evaluation scenario workflows.

Within the system, there are three types of service workflows, which are shown
in Table 6.2. The workflows connect end user terminals with a local controller, and
for compliance and logging reasons a reduced version of the stream is sent to a
cloud-hosted management component. For each of the workflows we determine a
network load, a start distribution and a duration distribution. The start distribution
determines the next time when the workflow will be started, while the duration
distribution determines how long a workflow will require resources once it has been
activated.

The start distribution of each of the workflows is exponential which is chosen
as it describes events that occur continuously and independently at a defined rate.
For NC, the duration of the workflow is normally distributed as this is an automated
process. For the other workflows an Erlang distribution is used, as the distribution
of the duration of VoIP and video workflows are similar to that of phone calls,
for which an Erlang distribution is a good fit. The parameters for the various
distributions are based on input from industry partners. These parameters can
vary based on the type of facility, as e.g. hospitals typically have more frequent
invocations compared to retirement homes.

The service hierarchy used in the SRNAID algorithm contains three levels.
There is the root level root, which contains three groups for the three service types,
NC, VolP and Video. Finally, the three groups each contain all of the workflows
that are defined for the respective services.

6.6.2 Generated use case

We also consider a second use case containing a larger variety of different randomly
generated workflows to determine how the algorithms behave when there is a higher
variety in workflows and when data and server intensive workflows interact. In
this scenario, we generate a large collection of workflows which we deploy on
the previously discussed client network. These workflows have random length
and load characteristics, and can be divided into two types: Server Intensive (SI)
workflows that require many server resources and limited network resources, and
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Parameters

Number of workflows 50 of each type

Flow length Chosen using uniform distribution from [2, 8]

Occurence frequency  Exponential distribution. On average « times per in-
terval ¢ with ¢ € [30, 90] minutes.

Duration Normal distribution. g € [10,60] seconds, o = 10
seconds.
Server Intensive Data Intensive

Network demand [1, 50] MBps [10, 500] MBps

Server demand [100, 1000] MHz [10, 100] MHz

Table 6.3: Parameters used in the generated evaluation scenario workflows. Values within
ranges are chosen at random using a uniform distribution.

Data Intensive (DI) workflows that require more network resources and less server
resources.

The parameters used for both workflow types are shown in Table 6.3. Every
workflow is generated with randomized length and resource requirements. For
every service contained in a workflow, the number of nodes on which it may run
is chosen at random using a non-negative normal distribution with mean 1 and
o = 10 ensuring it can only run on a limited number of servers. There is a 30%
probability that a service may be allocated on the cloud, the other nodes on which
the service may run are selected at random from the edge nodes present in the
network. The occurrence frequency of the workflows is exponential and depends
on a parameter « representing the average number of occurrences within an interval
of duration t. The a parameters are equal for all workflows of the same type, and
are thus specified separately for SI and DI workflows, represented as agr and apy.
The time interval ¢ is chosen randomly for every workflow. By modifying the o
parameters, the occurrence frequency of DI and ST workflows can be modified. Half
of the workflows of each type are marked as a high priority workflow, the other
flows are marked as low priority.

Like in the MC scenario, the service hierarchy in the generated scenario contains
three levels. At the top of the tree, there is a level root with contains the SI and
DI service types represented as ST and DI. Finally, these two groups contain the
corresponding workflow instances. This results in three parameters OF ..., OF s
and OF DI-

6.6.3 Simulation approach

The simulation environment contains a collection of start and stop events, that are
queued. A timestamp is associated with each of the events, and they are processed
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in-order. When a stop event is processed, a new start event is generated denoting
when the service is activated next. When a start event is processed, the workflow is
added using the doPlace algorithm explained in Section 6.5, and based on the result
of the algorithm execution the workflow is either added to the set of active services,
the workflow is not started, or other workflows are aborted. Based on the resulting
state, the required collection of start and stop events are generated. The events
can then be analyzed to determine the percentage of workflows that were correctly
executed, that were aborted, and that were not executed can be determined.

The SRNAID problem is used to determine whether services can be added to
the system, and whether their activation could result in problems. To evaluate the
algorithm, we require a difficult problem model, where enough services are active,
and where there is little remaining network capacity, as otherwise there would never
be a conflict: activating a collection of low-bandwidth services in a high-bandwidth
network will never be a problem. Because of this, we use the SRNAID model
to determine a minimally dimensioned network. We achieve this by, rather than
maximizing the achieved z,, values, instead minimizing the total network resources
while every z,, is assigned value 1.

The resulting network resource configuration is the network with the smallest
network capacities that, for the given services, still allows all of them to run.
Using this hardest network, we can then simulate the use of the services for an
extended period of time to determine the amount of violations, which can be used
to determine the number of service workflows that fail. This approach can be used
to determine the worst-case failures: any possible network that is accepted must
have at least the same amount of capacity. If the network has higher capacity, the
services will still be accepted, and failure rates will decrease.

6.7 Evaluation

6.7.1 Quality
6.7.1.1 Medical communication use case

We first evaluate the quality of the SRNAID algorithm by simulating the execution
of a collection of workflows, and measuring the number of resource conflicts that
occur. As mentioned, the networks are dimensioned using a modified SRNAID
execution where network capacities are minimized, resulting in the tightest network
where the regular SRNAID algorithm can still accept all workflows. In the simu-
lation, four parameters can be changed: OF.,ot, OF e, OFyvoip, and OFy4eco-
These values correspond to the overprovisioning factors for the root of the hierarchy
and each of the three services. We also compare our results with a simpler flat,
non-hierarchical approach, where only a single OF' is used. For every parameter
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Figure 6.7: EqualOF: Fail rates using SRNAID in groups with varying overprovisioning
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configuration, three weeks of execution were simulated based on the hospital layout
described in the previous section.

In Figure 6.7, the failure rates are shown in a scenario where all OF factors
are equal. We refer to this scenario as EqualOF. When this OF factor is zero,
all resources are shared, implying every network edge only has enough capacity
to provide for a single video workflow (as video requires most bandwidth). As can
be observed, the failure rate for video flows is extremely high, and there is also a
high failure rate of VoIP calls. This is to be expected: as there is only bandwidth for
running a single video flow, starting any other workflow will cause the video flow
to fail. Despite this very low capacity, there are still relatively few failures for the
critical NC service due to its lower network demand and as the conflict management
ensures it is preferred. As the common OF factor is increased, the number of
failures decreases. Once OF > 0.2, all NC calls succeed, but VoIP failures only
stop once OF > 0.9, and at this point there are still some rare video flow failures.

Another choice of OF values is the FizedRoot approach. This approach is
similar to EqualOF, but the root factor OF,.,.; is assigned value 1. Intuitively, we
can explain the Fixed Root approach as follows: we share resources between ser-
vices of every service type, to ensure less network resources are needed, but assign
a fixed amount of resources to the services themselves to ensure they minimally
interfere with each other. As can be seen in Figure 6.8 the fail rates are noticeably
lower: once the O F values of the three services exceeds 0.3 no more failures occur
in any service.
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Figure 6.9: Flat: Fail rates using SRNAID without hierarchies. OF = x

Finally, we consider a last approach, F'lat, which does not make use of service
hierarchies and considers all services equally, making use of only a single overpro-
visioning factor O F'. The fail rates of this approach are shown in Figure 6.9, and
are similar to those of EqualOF'.
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Figure 6.10: Required bandwidth for the three discussed SRNAID approaches with varying
overprovisioning factors.

The required network capacity for the three approaches is shown in Figure 6.10.
‘We observe that for the same choice of OF' a similar cost is achieved, with the
EqualOF approach requiring the lowest amount of capacity, while the FixedRoot
approach requires most resources. This is to be expected as the FqualOF shares
resources twice, once for level in the hierarchy, while the FizedRoot and Flat
approaches only share resources once. As the OF;,,; = 1 in the FixedRoot
approach, there is slightly less resource sharing compared to the F'lat approach,
which is why it requires more resources. The case where OF,.,,; = OF ¢ =
OFvorp = OFy4e0 = 1 corresponds to the regular NAID approach without
resource sharing; in this case there can be no failure of workflows.

When combined with the failure rates, we can conclude that the hierarchical
approach using fixed O F}.,.:, Fixed Root, performs best, requiring only between
10 and 12MBps of network capacity to function without any failures, while the F'lat
and EqualOF approaches both require 18MBps of network capacity to achieve
similar results. The latter network capacities are only slightly less than the required
network capacity for the algorithm without resource sharing, which is 19MBps. For
the considered cases, the Fized Root approach requires 42% less resources than an
approach without resource sharing, while still achieving similar qualitative results.
The FizedRoot approach also requires 38% less resources compared to the F'lat
and FqualOF approaches to achieve similar results.

Using hierarchies to increase control of the resource sharing can thus greatly
increase the number of services that can be allowed on a system, while at the
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Figure 6.11: The required total network bandwidth for varying OF parameters in the
generated scenario (O Fyoot = x, OFs; = OFpr = y). Markings show where workflow
failures occurred during any of the simulation runs (DI, SI or balanced) due to insufficient
network capacity.

same time also increasing the quality these services can achieve: the FixedRoot
approach both needs less bandwidth and achieves better quality results than the
Flat approach where no service hierarchies are used. The choice of parameters
in the hierarchy is important, as evidenced by the worse results of the EqualOF
approach.

6.7.1.2 Generated use case

We evaluate the SRNAID algorithm using the generated use case for various service
frequencies aps and agy to determine the effect of the distribution of server and
data intensive workflows. We consider three scenarios: (1) a Server Intensive (SI)
scenario (ag;r = 9, apyr = 1), (2) a Data Intensive (DI) scenario (ag; = 1,
apr = 9), and (3) a balanced scenario (ag; = 5, apy = 5). In the first scenario,
SI workflows activate on average 9 times every time interval while the DI workflows
only activate once every time interval. In the second scenario, the opposite happens
while in the final scenario both workflow types activate on average 5 times during
every time interval.

In Figure 6.11, the total network cost for various OF}.,.t, OFpr and OFgy
combinations is shown. The markings show the OF values where any of the
workflows failed during the simulation for any of the three scenarios (DI, SI or
balanced). We observe that increasing O F}.,,; has a limited impact on both cost and
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Figure 6.12: Failure rates of DI workflows in the DI, SI and balanced scenarios using a
heavily underprovisioned network (OFp;r = OFs; = 0).

quality compared to increasing OFp; and OFs;. Using OFp; = OFg; = 0.3 no
failures occur in any of the simulations, irrespective of the chosen OF.,,;. With
OFpr = OFgy = 0.2 failures still occur sporadically, but only for DI workflows in
the DI scenario (with a failure rate of less than 1%). For lower OF values, failures
occur frequently for DI workflows in all scenarios. SI workflows only fail during
simulation in the cases where OFp; = OFg; = 0.

Figure 6.12 compares the workflow failure percentages for the three scenarios
for a heavily underprovisioned network with OFp; = OFg; = 0 where failures of
every workflow type occur. We observe that the SI workflows generally have lower
failure rates compared to DI workflows, and that high priority workflows fail less
frequently than low priority workflows. The SI scenario results in the lowest failure
rate for all workflow types, while the DI scenario results in the highest number of
failures. As was shown in Figure 6.11, increasing the OF values quickly reduces
the failure rates until no failures occur during simulation.

Without resource sharing, 67GBps network capacity is needed for provisioning
all workflows. Using resource sharing, a significant reduction in resources can
be achieved resulting in a total network demand of 32GBps without any failures
during simulation, resulting in a capacity reduction of +52% compared to an
approach without resource sharing. If infrequent workflow failure is tolerated, the
total network capacity can be further reduced to 26GBps resulting in a capacity
reduction of +61% compared to an approach without resource sharing.

This evaluation shows that the model can incorporate both network and server
resource demand. It is however clear that network constraints are more stringent
and result in more failures than server resource constraints. This is not surprising,
as when there is sufficient capacity for most DI flows, there will almost always be
sufficient residual network resources for the lower network demand required for the
SI flows, even if the services used in the workflow are allocated further apart. This
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Figure 6.13: The execution speed of the SRNAID algorithm for varying network edge
capacities. The SRNAID parameters are chosen based on the results of the quality
evaluation: OF oot = 1, and OFnc = OFvoerp = OFyideo = 0.3. 40 iterations per
data point.

implies that, as long as there is a service where the service may run, wherever it is
located within the network, there is likely to be sufficient network capacity between
them for these workflows.

6.7.2 Execution speed

The execution speed of the SRNAID algorithm was evaluated using a server with
dual-socket quad-core Intel Xeon L5420 processor and 16GB RAM. The base
evaluation setup is the same as the that of the MC use case, but we incrementally
increase the number of leaf nodes, resulting in an increase of active workflows.
We make use of the FixedRoot approach as this yields the highest quality at the
lowest resource requirement. The O F factors for the SRNAID algorithm are thus
chosen as follows: OF,,,: = 1,and OF ¢ = OFyo1p = OF ;400 = 0.3.

The results of this evaluation are shown in Figure 6.13, where the performance
of the SRNAID algorithm is shown for increasing numbers of workflows. The
SRNAID algorithm is executed four times, for input problems with varying edge
capacities in {10!,102, 103, 10 K Bps}. These varying capacities can impact the
problem complexity, as it is easier to find a good solution if much network capacity
is present. We incrementally increase the number of terminals per floor, which
results in an increase in the number of possible workflows.
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It can be seen in the Figure that the execution time of the algorithm increases as
the number of workflows increases. The algorithms with limited network capacity
(10! and 10? KBps) require more time to run than the algorithms with higher
network bandwidths (10* KBps) as it is more difficult determine a result that
respects all of the constraints. This is especially noticeable for the scenario where
there is 10 KBps network capacity is available: for smaller numbers of workflows,
there is sufficient capacity making it perform similar to the case where there is 10*
KBps of network capacity per edge. As the demand increases due to the increasing
number of workflows, network capacity becomes a bottleneck, causing it to then
start behaving like the problems with less available bandwidth.

‘When 500 workflows are active, the evaluations with more available bandwidth
require only 16% of the execution time of the lower bandwidth algorithms. This
difference can be explained, as when more bandwidth is available, it is much easier
for the ILP solver to find a solution where every workflow can be completely
executed. When there is insufficient bandwidth, it becomes more difficult to find the
optimal solution, maximally satisfying the amount of allocated capacity. This is an
interesting property, as when the SRNAID algorithm is used as an admission filter,
it will mainly be used to validate the configuration: there will usually be sufficient
capacity to execute all workflows, resulting in more favorable execution speeds. The
worst-case performance will only occur in highly bandwidth constrained scenarios.

6.7.3 Algorithm scalability

As observed from Figure 6.13, the performance of the SRNAID algorithm is best
when there is sufficient network and server capacity for all of the service workflows,
making the impact analysis run faster. This has interesting consequences: if a
workflow is deployed in a scenario where there is sufficient capacity, the SRNAID
algorithm will finish quicker resulting in limited overhead. If there is less capacity,
the algorithm will need more time to run. Thus, the SRNAID results in limited
overhead if there is sufficient capacity, and only requires more execution time when
it is actually important to run it to ensure there will be no service failures.

It is also important to note that the impact analysis is a step that is executed
when new services are instantiated, a process which currently takes multiple days,
making the process less sensitive to time constraints. A final consideration is that
applying network impact analysis is more important for smaller client deployments,
where the quality of the networks tends to be lower. In these cases, the number
of workflows is usually limited to =100 workflows. These factors make the long
algorithm execution duration not prohibitive for the algorithm’s use.

Despite these considerations, it is desirable to improve the scalability of the
SRNAID algorithm to make it possible to obtain faster feedback. To improve
the scalability of the approach when larger networks are used, it is possible to
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segment the input network, decomposing the problem network in separate networks,
and statically dividing overlapping components between the networks. For the
evaluation scenario, this can be easily done by considering both buildings within
the simulation separately, leaving only the cloud uplink as a shared edge between
both subproblems. Due to the symmetry in the problem model, the capacity of this
shared edge can be divided equally between both subproblems. We will refer to this
algorithm as the SR SPLIT algorithm. Two variants of the SR SPLIT algorithm can
be discerned: SR SPLIT,.,, where the SRNAID algorithm is invoked sequentially
on the subproblems, and the SR SPLIT),,,, algorithm where both algorithms are
executed in parallel on separate computation nodes. This approach is generally
applicable to all input networks, but simulations may be needed to determine an
optimal division of shared edges between subproblems if the input network is not
symmetrical.

Figure 6.14 compares the execution speed of the SRNAID algorithm with that
of SR SPLIT,, and SR SPLIT ;.. For this scenario, both SR SPLIT algorithms
execute faster than the SRNAID algorithm, with the SR SPLIT,,, algorithm need-
ing about half the time to run compared to the SR SPLIT,., algorithm. The latter is
to be expected as the network was split into two parts.

The impact on the total network requirement, calculated as discussed in Sec-
tion 6.7.1 is negligible for this scenario: only 0.035% more network capacity is
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needed. The impact on the shared edge itself is however larger: there, a capacity
increase of 4.6% is observed, which implies that for these edges there will need
to be 4.6% overprovisioning compared to the SRNAID approach. Splitting the
network into more subnets further increases parallelism and reduces the subproblem
size, and is expected to further increase the execution speed if needed. As in such
a scenario there are more shared edges, the amount of resources needed by the
algorithm to accept a service configuration will however further increase.

6.8 Conclusions

In this chapter, we discussed how resource sharing can be incorporated when deter-
mining impacts of service workflows on a network during service deployment by
defining a model that allows service workflows to partially ignore other workflows.
By hierarchically specifying groups of workflows, fine-grained control over the
resource sharing can be achieved, increasing the quality of resulting configurations.
We also specified a runtime conflict management algorithm that can be used to re-
solve resource conflicts when resource conflicts occur during runtime. By assigning
a priority to different workflows, the successful execution of important workflows
can be ensured. We found that, when suitable hierarchy parameters are determined
through simulation, the presented hierarchical SRNAID algorithm requires +42%
and £52% less resources than an approach without resource sharing for two evalu-
ation use cases, without any workflow failures occurring during runtime. We also
discussed how the scalability of the algorithm may be improved.

We focused on the application of the SRNAID algorithm as an admission filter,
where it is used to determine whether services with high-availability requirements
can be provided on a given network. In the future, the SRNAID approach could
also be used for a what-if analysis, determining which additional hardware and
network resources are required for providing a service, making it easier accurately
predict the cost of implementing additional or new services. In future work, the
presented model can also be adapted for resource allocation, determining which
servers and devices are responsible for which services.
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Addendum

As mentioned in the conclusions, this model could be extended to be used for
resource allocation. This is partially expored in Chapter 7, where resource allocation
is discussed in network environments. The model in Chapter 7 uses a similar model
to the model presented in this chapter for resource allocation. It does not however
make use of a hierarchical structuring of network flows for performance reasons.
The model in Chapter 7 could easily be adapted to include the presented hierarchies
if the use case requires it.
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Customizable Function Chains:
Managing Service Chain Variability in
Hybrid NFV Networks

H. Moens and F. De Turck
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Network Functions Virtualization (NFV) is an upcoming paradigm where network
functions are virtualized and split up into multiple building blocks that can be
chained together to provide a network service. Often, a service chain can be
allocated in different ways, making use of different physical or virtual Network
Functions (NFs), and resulting in varying quality of service and deployment costs.
In this chapter, we present Customizable Function Chains (CFCs) which model the
services within a service chain and their variability, and present algorithms that
can be used to deploy these services on NFV-based networks, making it possible to
take service chain variability into account during the management of these service
chains. This chapter builds on the Feature-Based Binary (FBB) approach presented
in Chapter 2 and the feature placement algorithm presented in Chapters 3 and 4,
and applies these concepts to NFV-based networks. The network model presented
in this chapter bears resemblance to that presented in Chapter 6. The objective
of the model differs however: the model in Chapter 6 is intended to be used as a
request access filter, while the model presented in this chapter is used to allocate
resources once requests have been accepted within the network.
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7.1 Introduction

Using Network Functions Virtualization (NFV), Network Functions (NFs) can be
migrated from costly hardware appliances to dynamically allocated virtualized
instances deployed on generic servers using cloud technologies. This migration
from Physical Network Functions (PNFs) to Virtual Network Functions (VNFs)
increases network flexibility and scalability, as these virtualized instances can be
instantiated and scaled on-demand using cloud scaling technologies. A Service
Function Chain (SFC) [1] describes the various NFs and how they interact to
provide a complete network service. While there are many similarities to cloud
resource allocation, the NFV architecture is designed to be used within entire service
provider networks, and not just within datacenters. In datacenters, high-capacity
and high-speed networks are used to interconnect servers, making the specifics of
the underlying network less important. In NFV deployments in networks outside of
the datacenter, the importance of network constraints such as bandwidth and latency
however increases. This is particularly important when NFs can be executed in
multiple locations in the network, e.g. in multi-cloud scenarios, where multiple
datacenters are present, or when physical devices spread throughout the network
are part of the provided network service.

In practice, the more expensive dedicated hardware often performs faster and
more efficiently than virtualized instances, even though the latter are more flexible.
As dedicated hardware is currently widely deployed, it is likely that hybrid NFV
deployments will be common, where part of the NFs are provided by PNFs while
others are provided using VNF instances. This also makes it possible to use an
approach analogous to a cloud burst: in an “NFV burst”, a base load is handled
by physical hardware (the private cloud in a cloud burst scenario), while variation
in load is handled by dynamically instantiating VNFs (the public cloud in a cloud
burst scenario). This approach is illustrated in Figure 7.1. For these reasons, NFV
management systems should support hybrid NFs that can be instantiated using both
VNFs and PNFs.

When multiple PNFs or VNFs provide a similar functionality, there may be
slight functional or qualitative differences. A software router or firewall may e.g.
support newer protocol versions or more modern functionality than older, physical
devices, but they may also be slower. In some cases, the functionality of NFs may
also overlap. It may e.g. be possible to configure a Deep Packet Inspection (DPI)
NF to offer firewall functionality. For some SFCs these differences could be more
constraining than for others, meaning they must always make use of specific NFs,
while other SFCs definitions could be more flexible, allowing for the use multiple
different physical or virtual NFs with varying quality characteristics. This flexibility
makes it possible to choose the most cost-efficient service chain configuration at
runtime. Therefore it is important to model these potential variations, and take them
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Figure 7.1: An NFV burst scenario: physical hardware is fully utilized by a base load, while
spillover is handled by utilizing on-demand VNFss.

into account during the resource allocation process. This also makes it possible
to model a degraded, lower quality fallback version of the SFCs for when service
failures occur.

To manage NFV services that support both PNFs and VNFs, and to model
service chain variability, a network and service-aware NFV management system
must be developed. This management system should allow for the existence of
both physical and virtual NFs, and should also take into account SFC variability.
The management system can then make use of this information to minimize costs
resulting from resource ultilization and service failures.

In this chapter, we introduce Customizable Function Chains (CFCs), an ex-
tension to SFCs that takes service chain variability into account, and define a
management approach that is capable of deploying CFCs in hybrid NFV net-
works. To model CFC variability, we make use of Software Product Line Engi-
neering (SPLE) [2] concepts. SPLE techniques are often used to develop highly
customizable software, of which multiple variants can exist. Using this approach,
the software is modeled as a collection of features, that can be included or excluded.
By selecting and deselecting features, different software variants can be created.
Thus, a CFC not only specifies the used NFs and their interconnections, but also
a feature model describing the relations between the NFs. To allocate CFCs on a
network, we present a Customizable Function Chain Placement (CFC-P) model,
which we compare to a Service Function Chain Placement (SFC-P) model which
does not take variability into account. We then evaluate both models in a simulated
service provider network.

In the next section, related work is discussed. In Section 7.3 we discuss an
architecture for hybrid NFV resource management. Next, in Section 7.4 we describe
how CFCs can be modeled and specified. We describe a model for CFC resource
allocation in Section 7.5. In Sections 7.6 and 7.7 we discuss the evaluation setup
and results. Finally, in Section 7.8 we state our conclusions.
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7.2 Related Work

Resource allocation in NFV networks has some similarities to application placement
approaches used within datacenters and clouds [3], specifically to network-aware
application placement. Multiple publications [4—10] focus on either allocating
collections of Virtual Machines (VMs), or on adding network-awareness to data-
center resource management algorithms. These works, however, focus specifically
on Infrastructure-as-a-Service (IaaS) clouds where VMs are allocated within data-
center networks, meaning that often only datacenter-specific network topologies
and hardware are considered. Therefore, these approaches are not suited for Wide
Area Network (WAN) deployments, where a mix of general purpose hardware
and dedicated hardware is present. This chapter contrasts with general datacenter
management and application placement approaches by its focus on NFV resource
allocation without any restrictions on the underlying network topologies, and its
support for heterogeneous hardware. We define service chains that can contain
NFs, which are managed by the service provider, and VMs, which are managed
by clients. In addition, we also focus on how variability of the deployed service
chains can be modeled and managed, making it possible to specify generic network
services that can be implemented in multiple different ways at runtime.

SFC-P and CFC-P are also related to the problem of virtual network embedding
in software defined networks [11]. Virtual network embedding focuses on how
virtual network requests, in the form of a collection of VMs and their intercon-
nections can be deployed on physical networks. In this chapter we extend this
embedding approach by defining a model that makes it possible to specify both
VM requests and service requests, the latter resulting in service provider managed
services that may be shared between multiple tenants. We also incorporate the
notion of hybrid networks containing both physical devices offering services and
virtualized services. Similarly, [12] focuses on deployment of virtual network
functions in pure NFV environments, while we also consider a hybrid environment
where dedicated hardware for providing services is present. The work presented in
this chapter further contrasts with existing network embedding approaches as we
also define the concept of service chain variability, making it possible to reconfigure
services at runtime to reduce management costs or to handle service degradations
when insufficient resources are present.

The NFV Management and Orchestration specification [13] supports the defi-
nition of both PNFs and VNFs, respectively using Virtualised Network Function
Descriptor (VNFD) and Physical Network Function Descriptor (PNFD) elements in
the VNF Forwarding Graph Descriptor (VNFFGD). While this approach supports
the specification of services containing both PNFs and VNFs, there is no generic
NF description element that defines the common functionality of network functions,
meaning that no hybrid NFs can be specified. The specification also has no support
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for the specification of service chain customizability. In this chapter, we focus on
how hybrid NFs and service chain variability can be modeled and managed.

SPLE can be used to develop customizable Software-as-a-Service (SaaS) appli-
cations [14—18], but the focus of these works is generally on how these applications
can be developed and configured, and on not how they can be managed. In this
chapter, we use these principles to model runtime service chain variations. Using
this approach it is possible to specify multiple valid service chain configurations.
This enables the management system to determine the included NFs at runtime,
making it possible to reconfigure service chains to reduce costs or to manage service
degradations.

This work extends our previous work [19], where we introduced an approach
for SFC resource allocation in hybrid NFV networks. While this approach makes it
possible to support both PNFs and VNFs within NFV networks, this only works
when both services are identical, limiting its applicability. In this chapter, we
introduce CFCs, which make it possible to specify the variability of service chains,
solving this limitation. To manage CFCs, we introduce CFC-P, after which we
compare the performance of CFC-P with that of SFC-P, which is based on the model
from [19]. In addition, we present the architectural framework in which SFC-P and
CFC-P can be used, and show how hybrid NFs and CFCs can be specified.

In our previous work on the management of customizable SaaS applications [20—
22], we have developed an SPLE based approach for developing and managing
customizable multi-tenant SaaS applications. The work focuses on managing small
numbers of highly customizable applications within the context of a single cloud
datacenter, which is achieved by splitting them up into components, and managing
them using a Service-Oriented Architecture (SOA). We however focused on the
allocation of these multi-tenant components within a single cloud datacenters, where
devices are homogeneous, and where the underlying network is less important due to
the high network capacities and low latencies. In this work, we use also use an SPLE
based approach to model CFC variability, which we use to support customizability
within a single service chain, but we add support for network-awareness, which
is needed in WAN networks. Furthermore, we generalize the approach making it
possible to deploy both VMs and NFs on networks containing hosts and physical
network devices.

7.3 NFY resource management architecture

Figure 7.2 shows a high-level overview of the NFV resource management system
architecture, which consists of two subsystems. A CFC provisioning system is
responsible for allocating and managing CFCs by determining where and how
CFCs are allocated, after which it configures the NFs and routing system. A CFC
runtime system is responsible for ensuring network packets are routed to the correct
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Figure 7.2: A high level architectural overview of how a hybrid NFV resource management
system can be constructed.

NFs. Both subsystem respond to different network requests: CFC requests are
requests for the network service that must be routed to the correct NFs by the CFC
runtime system, while CFC allocation requests are requests for the allocation and
instantiation of a new network service that are handled by the CFC provisioning
system.

CFC requests are handled using the CFC runtime system, which makes use of
the following components:

¢ A request routing system must be used to route incoming CFC requests and
subsequent network messages to the correct NFs. Existing Software-Defined
Networking (SDN) controllers such as OpenFlow [23] may be used for this.

e The physical network functions implement the functionality of a NF using
physical hardware.

e The virtual network functions implement the functionality of a NF using
virtualized service instances, which are allocated using VMs deployed within
a datacenter.

Incoming CFC allocation requests are handled by the CFC provisioning system.
This provisioning system which is responsible for determining how CFCs are
deployed, and allocating the requested NFs using physical or virtual NF instances.
In Section 7.4 we specify how CFCs and NFs should be modeled. Once the
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management system receives CFC allocation requests, they are handled by the
following components:

e The hybrid resource allocation system is a central component in the mana-
gement architecture. This component receives incoming CFC requests and
allocates the required NFs on the network. Depending on the CFC variability
and the definition of the used NFs, the NFs may be allocated either using
PNFs or VNFs. CFC-P is used by this component to determine how and on
which PNFs and VNFs the CFCs are deployed.

e The service resource mapping system is used to maintain a mapping be-
tween server resources and service resources. NFs provide resources that
are specific to the provided service, such as e.g. the number of requests
per second (rps) that the service can provide. While PNFs offer such ser-
vice resources, this is harder for VNFs, as VM resource requirements are
expressed in terms of server resources such as CPU and memory. To correctly
provision resources, it is important that the management system is aware of
the amount of server resources that are needed to provide a given amount of
service resources. Therefore, for every VNF an accurate mapping between
server and service resources is needed. The service resource mapping system
is responsible for storing this mapping and updating it by monitoring the
resource use of deployed VNFs.

¢ A monitoring system is needed to monitor the performance of the various
NFs and the network, ensuring the quality of the deployed CFCs is guar-
anteed, and enabling the hybrid resource allocation system to re-allocate
resources when changes in resource demand or other problems are detected.

7.4 Modeling CFCs and NF's

A SFC defines a request for a complete network service which may be composed out
of multiple NFs, and defines a service graph which shows how the NFs interconnect.
To allow SFCs to define a large variety of network services, we assume that a client
requesting it may also provide VMs that are part of the service chain. These client
VMs must then be allocated on a host as part of the SFC allocation process. An
SFC therefore contains a collection of network asset requests which can either be
for VMs, or for NFs. These NF requests should then in turn be allocated using
either a PNF or a VNF.

The key difference between client VM requests and NF requests is that a VM
that is part of an SFC is managed by the client who requests the service chain, while
a VM that provides a VNF is provided and managed by the service provider. The
provider-hosted VNFs can therefore be shared between multiple clients. Requested
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Figure 7.3: Network asset allocation approaches.

Relation Definition

Mandatory (p, ¢) If parent feature p is selected, child feature
c must be included as well.

Optional(p, ¢) The feature ¢ may only be selected if p is
selected.

Alternative(p, {c1,ca,...,c,}) When p is selected, exactly one of the fea-
tures ¢; must be selected.

Or(p,{c1,c2,...,¢n}) When p is selected, at least one of the
features c; must be selected.

Requires(f1, f2) For feature f; to be included, f> must be
included as well.

Conflicts(f1, f2) If f1 is included, fo must not be included.

Table 7.1: The relation types used to structure feature models.

network assets may be allocated in three different ways depending on their type
(illustrated in Figure 7.3): (1) client VMs must be deployed on physical server
nodes, (2) NF requests can be allocated on PNF nodes, and (3) alternatively NF
requests can be allocated on a VNF instance which is itself allocated on a physical
server.

A CFC extends the SFC concept by defining a feature model instead of a
service graph, making it possible to specify multiple alternative versions of a
network service. A feature model defines a collection of features and their relations.
A feature represents a single functionality which can be included in the service
chain. The service chain itself is then composed by including and excluding features
while taking their relations into account. This makes it possible to create multiple
related service chains with differing functionalities using a common model. The
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Figure 7.4: An illustration of a feature model containing six features. The features a, d, e,
and £ are physical features that are associated with NFs. Including one of these features
causes the corresponding NF to become active. Arrows indicate the resource load on NFs
and network links between NFs caused by the inclusion of features. This is referred to as the
resource and network impact of a feature. The feature b impacts the resource load of N F,,
but does not itself include it, as the NF is already included by the inclusion of feature a.

various relations that can be defined between features are listed in Table 7.1 and
an example feature model is shown in Figure 7.4. Features within the model are
structured hierarchically, and are combined using four hierarchical relation types:
Mandatory, Optional, Alternative, and Or. Within the hierarchy, a feature may
only be included if its parent feature is included. The root node of the feature model
must always be included. To increase the expressiveness of the models, we also
consider two non-hierarchical relation types: Requires and Conflicts.

When modeling CFCs using a feature model, we assume that every requested
asset is associated with a feature within the feature model. The feature model will
then be used to determine the valid NF and VM combinations, and their network
and resource demands. The inclusion of a feature may result in the inclusion of
specific asset requests, impact the resource load of NFs and VMs, or result in an
increase of the network demand between NFs and VMs. Within the feature model
we discern two types of features: physical features and virtual features. A physical
feature is directly associated with a specific asset request. Including the physical
feature will therefore cause the associated NF or VM to be instantiated. Virtual
features are not directly associated with a NF, but may still impact the configuration
of NFs and VMs, and therefore their resource demand. They may also be used to
add structure to the feature model. Figure 7.4 shows an illustrative feature model
containing six features that map to four different NFs. Any SFC can be trivially
converted into a CFC by creating a feature model containing all asset requests and
only mandatory relations, making CFCs a superset of SFCs.

A hybrid NF can be specified within a CFC using two different approaches.
Either a single NF, which can be allocated on either a VNF or on a PNF instance,
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a PNF using an Alternative relation. The CFC is aware of the existence of different NF
implementations and may e.g. specify features that are dependent on one implementation.

Figure 7.5: An illustration of how hybrid NFV scenarios can be modeled using CFCs.

can be defined. Alternatively, separate VNF and PNF instances may be defined,
which are explicitly linked to the feature model using an Alternative relation. Using
this model-based approach, no overarching hybrid NF is needed. Both approaches
are illustrated in Figure 7.5. While both approaches can be used to represent
hybrid NFs, they have different advantages and disadvantages. The feature model
based approach ensures the CFC is aware of the various hardware and software
NF implementations. This increases the model complexity, and consequently the
number of possible configurations, but also makes it possible to define features that
depend on a specific NF implementation. Using hybrid NFs, the complexity of
the feature model decreases, but the model itself does not contain any information
pertaining to the various NF implementations. Consequently, hybrid NFs are
preferred when the physical and virtual implementations of the NF behave similarly
and offer identical functionality, while the more complex feature model based
approach may be needed otherwise.

7.5 Function chain resource allocation

We construct the CFC-P model in two steps. First, we describe an approach for
allocating SFCs in hybrid NFV networks. Subsequently, we extend the SFC-P
model and add awareness of service chain customizability by adding a feature
model.
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Symbol Description

G The graph G = (N, E) representing the network.
N The nodes within the network. This collection can be partitioned into
a set of computational nodes N and a set of PNF nodes NP.
E The edges within the network.
Ei™  The edges that are incoming in node n € N.
Eout The edges that are outgoing from node n € V.
C(e)  The bandwidth capacity of an edge e € F.
NF The collection of all NFs that exist within the model.
re The resource types that are available on anode n € N, or the resource
types provided by a NF n € AF.

C7(n)  The resource capacity of a node or NF n. For computational nodes,
v € TVM _ For PNF nodes offering an NF type s, v € I'*. A VNF of
an NF type s provides C7(n) resources of types v € I'®.

NC,,  The cost of using a node n € N during resource allocation.
NC?  The cost of using resources of type v € I' onnode n € N.

Table 7.2: Model parameters: network and service specifications.

7.5.1 General model parameters

Both the SFC-P and CFC-P models require information about the topology of
the network, and information about the PNFs and server nodes. These common
parameters are shown in Table 7.2. The network is represented as a graph G =
(N, E), consisting of a collection of nodes N that represent physical network nodes
and edges F between these nodes. We assume that these edges can be either
bidirectional or unidirectional. Incoming and outgoing edges from a node n € N
are represented by E°™ and E2“! respectively, and every edge e has a capacity C'(e).
A node can be any device in the network, such as network switches, computational
nodes on which VMs can be deployed, or PNFs such as e.g. routers, hardware
firewalls, or access points. We make a distinction between computational nodes,
contained in V¢, and PNF nodes NP that offer a specific NF.

A collection of NFs that can be provisioned using either PNF nodes or VNFs
allocated on computational nodes must be defined. This set, NJF should contain
all of the NFs that can be allocated. Nodes n offer multiple types of resources,
which are contained in the set I'". The types of resources contained in this set are
dependent on the type of the node: if a node is a computational node it will offer
server resources, while if it is a PNF node it will offer service-specific resources.
Similarly, for any NF s € NF the offered service-specific resource types are
contained in the set I'®.

Every node n € N has a resource capacity C7(n) for each of its offered
resource types v € I'". For every node, a usage cost NC,,, and a node resource use
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cost NC') can be specified. The former cost is incurred whenever a node n is used
in an allocation, while the latter is incurred for every resource used on a node (e.g.
a cost incurred for every CPU core used in a cloud node).

7.5.2 SFC-P

To be able allocate SFCs, they must first be specified. The required parameters
for this are shown in Table 7.3. A collection SFC contains all service chains that
must be allocated within the network. A service chain C' € SFC consists of a
collection of asset requests, where the requested asset can either be an NF or a VM.
The NF and VM requests of an SFC C are contained in the RV'(C') and RV (C)
collections respectively. All asset requests in an SFC are grouped in the collection
R(C) = RVM™(C) U RNF(C). The collection R contains all asset requests in the
model, aggregated over all of the service chains in SFC.

The resource demand of an asset request r is represented by D7(r), and is
specified for all resources vy € I'" that are provided by the requested asset. The
network demand between requested VMs and NFs is represented by D(r1, 72) for
any two asset requests (r1,72) € R? that are part of the SFC.

When an SFC C can not be allocated because there is insufficient network or
server capacity it may not be allocated. In this case, a service failure cost FC¢ is
incurred, which represents a management cost associated with this failure.

Symbol  Description

SFC The SFCs that must be allocated on the network.

R(C) The asset requests that are part of service chain C' € SFC. RV (C)
contains only the VM requests, while RV (C) contains the NF
requests. R(C) = RVM(C)u RNF(C).

R A collection containing all of the asset requests of all service chains
in SFC. RVM and R™V¥ contain only the VM and NF requests
respectively.

D7(r) The resources of type v needed for a request r. This request can
either be an NF request or a VM request.

D(rq,72) The network demand between asset requests 71 and ro. The collec-
tion D contains all pairs of asset requests between which there is
network demand.

FCe The cost of failing to allocate any of the services of a service chain

C e SFC.

Table 7.3: Model parameters: SFC-P.
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7.5.2.1 Resource management constraints

We define a binary decision variable, M, that determines whether an asset request
r € R is allocated on anode n € N. If a service request may not be allocated on
a given node, M, = 0. An integer decision variable IC; specifies the number of
times that an NF s € ACF is instantiated on a computational node n € N¢. We use
an integer variable as we assume that it is possible for there to be multiple instances
of the same VNF on a single physical node. If this is not desired, an upper bound
of 1 can be specified for the IC; variable preventing this. Using these decision
variables, and the parameters specified previously, a capacity constraint can be
defined. Equation (7.1) shows the capacity constraint, which specifies that the total
resource use U (n, y) for all nodes n € N and resources v € I'" should be less than
the resource capacity C7(n) of the node. The total resource use is computed as
shown in Equation (7.2), and is specified separately for server nodes and physical
nodes. For server nodes, the total amount of used resources is composed out of
the resources used for handling VM requests, represented as U"'? and shown
in Equation (7.3), and out of the resources used to allocate VNFs, represented as
UVNE (shown in Equation (7.4)). For physical nodes, only the resources used used
by the allocated NFs need to be taken into account, as shown in Equation (7.5).

YneN:Vyel™:U(n,v) <CY(n) (7.1)
UVM(n,y)+UVNF(n,5), ifne N
U(n, ) = (1.2)
(n.7) {UPNF(n,W), if n € NP.
U™ (n,y) = Y My xD(r) (7.3)
reRVM
UYNE(n,y) = > IC; x D(s) (7.4)
SENF
UPNF(n,y) = Y M) x D(r) (7.5)
reRNF

It is important to ensure that the IC? decision variables take on the correct
values. This is done using Equation (7.6), which ensures that the number of
instances on a node, IC?, offers sufficient service resources for the VNFs that
are allocated on the node. This equation makes use of the total available service
resources 77 (s, n) and the total needed service resources N7 (s, n) on the node.
The expressions for 77 (s,n) and N7 (s, n) are shown in Equations (7.7) and (7.8)
respectively.
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VneN:Vse NF:Vyel?*:T7(s,n) > N7(s,n) (7.6)
TV (s,n) = IC; x CV(s) (7.7)
N7(s,n)= Y M} xD(r) (7.8)

reRNF

When there are insufficient resources, it may be possible that not every SFC
will be allocated. We define the binary decision variable ®© which takes on value 1
if the service chain C' € SFC is allocated and O otherwise. Equation (7.9) is used
to ensure that a function chain is allocated when all of its requests are.

VC € SFC:Vr e R(C): Y M, = ¢ (7.9)

neN

7.5.2.2 Network constraints

To add network-awareness to the model, the flow between two requests (1, r2) €
R? over the edges e € E of the network is modeled using a collection of binary
flow decision variables F'(e,ry,r2). If F(e,r1,r2) = 1, the edge e is used for the
flow (r1,72), otherwise the value of this decision variable must be 0. These flow
variables are subject to a flow conservation constraint, shown in Equation (7.12).
For all nodes except the source and sink nodes, the incoming flow must equal the
outgoing flow. For the source node, the flow must exceed the out flow, while for the
sink node the opposite holds.

OUT (n,ry,ra) = M2 + Z (e,r1,72) (7.10)
ecEQut

IN(n,ri,rs) = M + Z Fle,r1,72) (7.11)
ecEin

V(ri,r2) € D:Vn € N :
(7.12)
OUT (e, r1,12) = IN(e,71,72)

Two additional constraints, shown in Equations (7.13) and (7.14) are added to
make sure there is no incoming flow in source nodes or outgoing flow in sink nodes.
Finally, a capacity constraint, expressed in Equation (7.15), is needed to ensure that
the total flow over an edge does not exceed the available edge capacity.
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V(ri,my) € D:VYne N : M + Z F(e,ri,m) <1 (7.13)
ecEgut
Y(ri,r2) € D:Vn e N : M)* + Z F(e,r,m2) <1 (7.14)
ecEin
Vee E: Z F(e,r1,7m2) X D(r1,7m2) < C(e) (7.15)
(’I”l,’l“g)ED

7.5.2.3 Optimization objective

The objective of the model is to minimize the total cost of the SFC allocations.
This cost is composed of a resource utilization cost, CR, and a management cost
associated with the failure to provision resources for an SFC, CF. Combining both
costs, the optimization objective can be specified as shown in Equation (7.16).

min (CR + CF) (7.16)

The resource utilization cost is composed out of two costs: a static node use cost
and a linear node resource use cost. The static node use cost is incurred whenever
a node is used to allocate any asset. Therefore, this cost can be e.g. utilized to
represent the energy cost of instantiating a node. By contrast, the linear node
resource cost incurs a cost for every resource used on the node. This cost therefore
increases as the resource utilization on a node increases, and may e.g. be used to
incur a cost for every CPU core used in a datacenter. The complete utilization cost
computation is expressed in Equation (7.17). In this definition, the binary decision
variable U, is used to determine whether a node n is used. Equation (7.18) ensures
that U,, takes on value 1 as soon as anything is allocated on the node n.

CR=> U, xNCy+ Y U(n,7) x NC} (7.17)
neN ~yern
YneN:VreR:U, > M) (7.18)

When insufficient network or hardware resources are present to accomodate all
requests, some SFCs will fail to be allocated. Such service interruptions should be
prevented, but if this is not possible, the cost of these failures should be minimized.
Therefore, a service failure cost is associated with every SFC, and when it is not
allocated this cost is incurred. Equation 7.19 shows how the total service failure cost
can be computed. Note that this cost is a management cost, which may be defined
by the management system based on SFC Service Level Agreements (SLAs) and
previous SFC behavior (e.g. if the service has previously achieved high availability
a short failure may be tolerable resulting in a lower cost of failure).

CF= Y FCcx(1-9°) (7.19)
CeSFC
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Symbol Description

CFC The CFCs that must be allocated on the network.

Feo The feature model of a service chain C € CFC. This model
contains a collection of features f € F¢ and also defines the
relations between these features.

F, gh” This collection contains the physical features in the feature model
of service chain C' € CFC, i.e. the features that are directly linked
to an asset request.

FI} (fs)  The feature resource impact I} (fo) defines the impact on the
resource requirements for feature f, when feature f; is included.
FI¢ (fs,f:) The feature network impact FIy, (fs, f;) defines the impact on
the network demand between source associated with feature f

and the sink linked with feature f;.

FCe The cost of failing to allocate the entire service chain C' € CFC.

FC’é The cost of failing to provide a single feature f € F¢ that is part
of a service chain C' € CFC.

Table 7.4: Model parameters: CFC-P.

7.5.3 CFC-P

The general concepts of SFC-P can be extended to support CFCs. The parameters
specific to the CFC-P are shown in Table 7.4. The general parameters specifying
network and service information, listed in Table 7.2, are still required. As the CFC-P
extends the SFC-P, all of the SFC-P parameters from table Table 7.3 must also be
defined, but they are no longer inputs to the model as they are either transformed
into decision variables, or alternatively the associated values are determined based
on the CFC-P parameters.

A collection of CFCs is provided in the set CFC. Every service chain C € CFC
has an associated feature model F. This feature model contains a collection of
features, f, and defines the relations between these features. The resource demand
for a feature, and the network demand between features is dependent on which
features are included. When a feature f; is included, it may impact the resource
demand for another feature f> for a resource type y using a given feature resource
impact F'I ;]1 (f2). The feature may also impact the network demand between two
features f, and f;, resulting in a feature network impact FI¢, (fs, ft).

To be able to extend the SFC-P model, all of its parameters must be defined.
First, the feature models must be linked to asset requests. This is done by linking
physical features to asset requests, as explained in Section 7.4 and illustrated
in Figure 7.4. Physical features, contained in the set F2'", are linked to asset
requests. For a physical feature f € ]-'g’ 'Y the matching asset request is defined
as f . Using this mapping, the collection of all asset requests can be determined:
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Relation Constraint
HardSelected(f) (I>JC: = ¢
Mandatory(f,c) CIDJC: = ¢
Optional(f,c) <I>J(5 > o¢

; C _ oC c c
Alternative(f,{ci,c2,...,cn}) @F = + ¢, +-- + O
Or(f,{ci,ca,...,cn}) ¢ <07 + 8, + -+ 07

Vi:O...n:q)?Z(I)g
Conflicts(f1, f2) @% <1- @g’;

Requires(f1, f2) @% < <I>]€2

Table 7.5: The constraints associated with the various feature model relations.

R(C) = U, Fou f. The demand D7 (r) for requests and the network demand
between these requests D(rq, r2) are redefined as decision variables. The network
demand decision variables are only defined if any feature exists that impacts the
network between both requests. Finally, the chain fail cost F'C¢ is redefined as the
cost of completely failing the service chain, while a newly defined feature fail cost
FCé represents the cost of failing to provide a specific feature f.

For every CFC, a valid feature configuration must be determined. This is done
by adding constraints for all relations that are contained in the feature model. These
constraints make use of binary decision variables <I>?, which are used to express
whether the feature f is included in service chain C. Table 7.5 shows how all
relation types can be modeled. The HardSelected( f) relation is used to express
that the CFC can only be included if the feature f is included. This is e.g. always
used for the root of the feature model. When a feature should be included, but
may fail in some cases, a feature fail cost should be assigned to it. As shown
in Equation (7.20), CFC features may only be included when the CFC itself is
included.

VC € CFC :Vf € Fc : 99 > of (7.20)

When physical features are included in the CFC, the linked asset request must
be included. This is shown in Equation (7.21). The demand for these asset requests
is dependent on the features that are included. Equation (7.22) shows how the
feature resource impact is used to compute the demand for a given feature.
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VO e CFC:Yf e FEM Y MI = of (7.21)
neN
VC € CFC:Vf eFEM iy e T/
D(fy= 3 % x FI}(f) (7:22)
J'€Fc

7.5.3.1 Network constraints

The network demand, like the demand for asset requests, is dependent on the
features included in the CFC. Equation (7.23) shows how the network demand can
be computed using the feature inclusion variables.

YO € CFC Y(fs, f)) € (fg’w)2 vyers .
D(fo fr) = > ®F x FI(f, fr) (1.23)

f€Fc

By using a feature model, there can be multiple possible feature configurations
for a CFC, resulting multiple possible sets of included asset requests. This com-
plicates the SFC-P flow conservation constraint (Equation (7.12)) as it depends on
the source and sink nodes being both included or both excluded. To resolve this,
a binary decision variable F'A(rq, ) is specified which expresses whether a flow
between two asset requests 71 and 7y is active. Equation (7.24) ensures the F/A
variables take on the correct value. Using these variables, the flow conservation
constraint can be redefined using Equations 7.25 and 7.26.

VC € CFC :Vf € FEM :V(s,t) € (Fe)? -
FIf(fo, fi) # 0 — ®F < FA(fs, fr) (1.24)

Y(ri,me) € D:Vn e N :
OUT (n,r1,r2) < IN(n,ri,r2) + (1 — FA(r1,72)) (7.25)
IN(n,ri,me) < OUT(n,r1,7r2) + (1 — FA(r1,72)) (7.26)

7.5.3.2 Optimization objective

In CFC-P, the cost of failing specific features is separated from the cost of failing
the entire service chain. Because of this, the failure cost is redefined as shown in
Equation (7.27). This cost is composed of the cost for failing to allocate the entire
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CFC (i.e. at least the HardSelected features), and the separate costs for failing
to allocate individual features.

CF= Y [|FCcx(1-0%+ Y FCLx(1-9%) (7.27)
CeSFC feFe

7.6 Evaluation Setup

The SFC-P and CFC-P models were implemented as an Integer Linear Program-
ming (ILP) using the IBM Ilog CPLEX ILP solver [24] and Scala [25]. Note
that the CFC-P model as specified in this chapter contains multiplications of bi-
nary decision variables with binary and continuous decision variables, making the
model quadratic instead of linear. We linearized these operations by replacing them
with logically equivalent linear equations that make use of intermediary decision
variables, ensuring both models are implemented as pure ILPs.

We compare the two optimal ILP-based algorithms implementing the SFC-P
and CFC-P models, and also compare their performance with time-limited versions
of the ILPs. While during a normal execution, CPLEX will continue until a provably
optimal solution has been found using simplex and branch and bound algorithms,
the time-limited CPLEX invocations stop the execution of the optimizer after a
given execution duration, and return the highest quality feasible result. This results
in a suboptimal result, but guarantees a given execution duration, making it more
feasible to use these algorithms within a dynamic management system.

We consider a connectivity service where a source and sink node are inter-
connected. This connection may be direct, but optionally, the packets may be
intercepted and analyzed. This analysis can be achieved using a firewall, or alterna-
tively using a DPI service. As a DPI service requires more computational resources,
a sampled DPI service where a fraction of the requests are analyzed using DPI and
the other packets are analyzed using a regular firewall can be supported as well.

NoFilter

~ Firewall NF
ConnectivityService ~Routing NF
FullDPI ~DPI NF

SplitFirewall
Splitter

Figure 7.6: Connectivity service feature model and associated NF's.

SampledDPI



214 CHAPTER 7

Dnet
source > sink

(a) Direct connection between source and sink.
DS

Firewall
Service

Dnet Dnet

source >

sink

Y

(b) Firewall service.

(1-a)D®

(1-G)DnEt Firewall (1-(1)Dnet
Ds Service

Dnet .
source ——— > Routl.ng sink
Service
DPI
aDnet Service aDnet
oD*®
(c) Sampled DPI service.
DS
Dnet Dnet
- DPI -
source > Sarvice > sink
(d) Full DPI service.

Figure 7.7: An illustration of the various possible connectivity service CFC configurations.
D™ represents the network demand while D* represents the service demand. o represents
the fraction of requests that must be sent to the DPI service.

A feature model for the connectivity CFC is shown in Figure 7.6, together with
the associated services. Figure 7.7 shows the alternative CFC deployments that this
feature model results in. Service resource demand and service network demand are
represented by D™°* and D? respectively, and can vary for different applications.
Table 7.6 shows the resource and network impacts that the inclusion of features
within the model result in. Note that, while the DP I feature results in the inclusion
of the DPI service, the load on this service depends on how the service is instantiated
(i.e. as a full DPI service or as a sampled DPI service). The structure of this model
makes it possible to create open variation points [14], that leave some variability
decisions undecided when the CFC is specified, allowing the management system
to decide at runtime how the service chains are deployed. Using this approach,
a service chain requiring only sampled DPI can be implemented using either the
FullDPI feature or the SampledDPI feature when only the DPI feature is
selected. This can potentially result in a reduction of the number of instances when
there is sufficient capacity on existing DPI NFs, as then this DPI instance could be
used instead of routing and firewall NF instances.
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Feature Impacts Demand
FirewallOnly FirewallOnly D?
SampledDPI Splitter D?

DPI a x D?
SplitFirewall (1 —a) x Dnet
FullDPI DPI D?
NoFilter source — sink Dret
FirewallOnly source - FirewallOnly Dnet
FirewallOnly — sink Dnet
SampledDPI source — Splitter Dnet
Splitter — DPI a x Dmet
Splitter — SplitFirewall (1—a)x D"
DPI — sink a x Dnet
SplitFirewall — sink (1 —a) x D¢t
FullDPT source — DPT Dret
DPT — sink Dret

Table 7.6: Resource and network impacts in the connectivity service scenario. D* represents
service demand (in rps), D™ represents network demand, and o represents the share of
requests that require DPI.

Type Selected Excluded

Firewall FirewallOnly -

StrictFirewall FirewallOnly NoFilter

SampledDPI  DPI NoFilter

FullDPI FullDPI NoFilter

StrictFullDPI  FullDPI,DPI NoFilter, SampledDPI,

FirewallOnly

Table 7.7: Evaluation CFCs.
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We use multiple instances of the connectivity CFC within the evaluation sce-
nario. Five different CFC types are defined. These types differ in the selection and
exclusion of specific features, and are shown in Table 7.7. Selected features should
be included in the CFC. If a valid feature model configuration exists where the
selected features are not included, this model configuration is however permitted,
while a cost of failing the selected feature is incurred. Excluded features may never
occur in a valid configuration of the CFC. These types result in two firewalled
connectivity services, one where the firewall may be disabled during short periods
of time due to service overload, and one where this may not occur, and three DPI
services, one using sampled, one with full DPI with fallbacks, and one without
fallbacks. The source and sink nodes are chosen randomly from a set containing all
of the edge nodes of the network and a VM using 4 cores and 8GB of memory. This
causes the majority of services to represent an interconnection of two sites, while
some will represent the connection of a remote site with a cloud-hosted VM. For
CFC and feature failure, a random management cost in the set {8, 16, 32, 64, 128}
respectively {4, 8,16, 32,64} is chosen, reflecting that failing to provide a degraded
service is generally worse than failing to provide part of the service chain function-
ality, and that some services or features may be significantly more important than
others resulting in much higher failure costs. Network demand is chosen uniformly
between 10 and 1000Mbps, while service demand is chosen uniformly between
100 and 1000 rps. These demands are multiplied with a multiplier m, making it
possible to change the application load throughout the evaluations. For sampled
DPI, 10% of the requests are handled by the DPI NF.

The evaluation network is shown in Figure 7.8, and represents a small service
provider, containing 27 edge nodes, 9 switches, 4 core routers, a hardware firewall,
a small cloud datacenter, and three smaller edge datacenters which are located
closer to the edge nodes. We also consider three variants of this network: one
without edge clouds, one pure NFV variant (i.e. without PNFs) and a pure NFV
network without edge clouds. The network hardware specifications used during the
simulation are shown in Table 7.8, while the specifications of the used VNFs are
shown in Table 7.9.

The experiments were conducted on a HPC cluster running Scientific Linux 6.1.
Every compute node contains dual Intel Xeon CPU E5-2670 octo-core processors,
and 64GB of physical memory. For the CFC-P and SFC-P an entire node was used'.
The time limited algorithm versions were limited to a single CPU core and 12GB
of memory. All experiments were repeated 30 times.

I'The execution time was limited to 72 hours on a complete node if no provably optimal solution was
found, which occurred for 5 entries in total.
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Figure 7.8: The evaluation network contains a backbone network and multiple edge nodes
that are interconnected using switches. A cloud and hardware firewall are present in the
network and accessible from the backbone network. Smaller edge clouds, that are located
close to the edge nodes are also present in the network.

Parameter

Value

Network link capacity
Cloud uplink capacity
Cloud CPU

Cloud memory

Cloud core use cost

Edge cloud CPU

Edge cloud memory

Edge cloud core use cost
Hardware firewall capacity
Hardware router capacity

10 Gbps
20 Gbps
1000 cores
100000 GB
0.1

100 cores
10000 GB
0.2

50000 rps
100000 rps

Table 7.8: Evaluation network hardware parameters.

VNF CPU Memory Provided resources
Routing VNF 1 core 100MB 1000 rps
Firewall VNF 1 core = 100MB 1000 rps
DPI VNF 1 core 500MB 100 rps

Table 7.9: Evaluation VNF specification.
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Figure 7.9: Total failure cost comparison for increasing network and service demand.
Values averaged over 30 iterations.

7.7 Evaluation Results

7.7.1 Total cost comparison

We compare the total cost making use of an evaluation scenario containing 5
instances of every CFC type shown in Table 7.7, and making use of the four
network variants discussed in the previous section. Figure 7.9 shows how the
total service failure costs compare for the various evaluation networks when the
multiplier m is varied. In all results, CFC-P consistently results in a lower total cost
than SFC-P. This is to be expected, as the CFC-P model extends SFC-P, meaning
any solution for the latter is also a solution for the former. Therefore, an optimal
solution for the CFC-P model will return a result with an identical or lower cost
than the SFC-P solution. In all three scenarios, the total cost is dominated by the
cost of failing to allocate service chains and features.

Figures 7.9a and 7.9b show two hybrid NFV networks, one where edge clouds
are present, and one where they are not present. In both scenarios, network capacity
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Figure 7.10: Server use cost comparison in network-constrained evaluation scenarios.
Values averaged over 30 iterations.

becomes a bottleneck when m increases. When multiple clouds are present in a hy-
brid NFV network (Figure 7.9a) the benefits of CFC-P compared to SFC-P are lim-
ited, only resulting in marginal decreases in the cost. This is the result of the many
cloud and PNF nodes spread throughout the network, resulting in many alternative
ways to allocate the various service chains using SFC-P. As the cloud nodes are
spread throughout the network, there will be limited network capacity, leaving little
capacity for adding degraded network flows that the CFC-P could succeed in placing.
Because of this, the CFC-P solution is unable to significantly reduce the total cost,
as sufficient network capacity is needed to support the degraded fallback services.
When no edge clouds are present however (Figure 7.9b), a clear difference between
CFC-P and SFC-P costs can be observed. In this scenario, the SFC-P algorithm is
severely restricted in how the various service chains are allocated, while CFC-P
can improve the total cost by changing the feature configuration of the CFCs and
partially allocating the service chain, causing it to fall back to a degraded service.
Comparing the results for a hybrid NFV network with those for a pure NFV
network we find that, in pure NFV networks, the difference between CFC-P and
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Figure 7.11: A breakdown of the failures occurring during the evaluation scenario by CFC
and failure type. For every CFC, the failure rate averaged over the entire evaluation
scenario is shown. A distinction is made between service chain failures (SF), which lead to a
complete service outage, and feature failures (FF), which result in service degradations.
(mel0...4])

SFC-P can be observed both when edge clouds are present, as shown in Figure 7.9c,
and when there are no edge clouds, as shown in Figure 7.9d. As in the hybrid
scenario, the difference between CFC-P and SFC-P is more pronounced when no
edge clouds are present.

Figure 7.10 shows the evolution of the server utilization cost in the same
scenario. We observe that CFC-P and SFC-P result in indistinguishable server use
costs when no failures occur. Once the load becomes high enough to start causing
failures, the server use cost of CFC-P becomes higher than that of SFC-P. This
shows that CFC-P is better able to fully utilize the server capacity, which results
in the corresponding lower cost of failure discussed previously. This difference
becomes more pronounced for the network environments that do not have edge
clouds.

Figure 7.11 analyses the service chain and feature failures, and shows the
average failure rate of every CFC for the various network scenarios. For CFC-P,
this failure rate is split into a service chain failure percentage and a feature failure
percentage. When a service chain failure occurs, the features of the service fail
as well. For the SFC-P, only the service chain failure percentage is shown, as
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Figure 7.12: Server use cost comparison of in an underloaded scenario containing only
SampledDPI and StrictFullDPI CFCs in the pure NFV network.

it does not support partial service chain failures. We observe that, for the CFCs
where service degradation is possible (Firewall and FullDPI), the number of feature
failures exceeds the number of service chain failures, often resulting in more
feature failures than there are failures of the entire service chain in SFC-P. This is
particularly noticeable for the Firewall CFC, which rarely fails completely, but is
frequently degraded to a lower quality version. This is caused by the fact that this
CFC can fall back to using the NoFi1ter feature, which is very easy to allocate,
as it does not require an intermediary service and therefore is more flexible in how
the service chain is routed. For services that can not fall back to a lower quality
version, a lower failure rate is observed compared to SFC-P. This is caused by an
increase in resource capacity due to the partial failures of the services that can fall
back to a lower quality service.

7.7.2 Server use costs

While most of the evaluation CFCs can be instantiated in different ways, most of
these configurations incur a feature failure cost. Because of this, CFC-P will avoid
using these CFC configurations, unless there is insufficient capacity which causes
this to become impossible. The SampledDPI CFC can however be implemented
using either the Ful1lDPTI or SampledDPI features without incurring any cost.
When an underutilized DPI NF is present within the network, workload for the
SampledDPI CFC can be moved to it, reducing the load on Firewall and Routing
NFs. This can in turn reduce resource consumption and the server use cost.
Figure 7.12 shows this effect for a scenario containing 10 SampledDPI CFCs
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and 10 StrictFullDPI CFCs in the pure NFV network. As the DPI NF within the
evaluation scenario can only handle a limited number of requests per second, this
behavior is only observable for low m values. When there is a low load on the
system, server use cost reductions of up to 20% are observed when CFC-P is used
instead of SFC-P.

7.7.3 Time-limited heuristics

We compare the performance of CFC-P when its execution is time-limited using
multiple different time limits. Figure 7.13 shows the results of this comparison
for the hybrid NFV network and the pure NFV networks. We observe that longer
execution durations lead to higher quality results. Despite this, a close to optimal
quality can be achieved after one minute of computation for lower demand multi-
pliers. For higher demand, longer computations may be required. For m < 2, the
heuristic finds a solution which costs less than 5% more than the optimum. For
higher multiplier values results within 20% to 30% are found in ten minutes. For
the networks without edge clouds, which are not presented, the algorithms finish
noticeably quicker: after one minute a solution within +5% of the optimal result is
found, and after five minutes, the optimal result is found in all cases.

7.8 Conclusions

In this chapter, we introduced the concept of CFCs, a service chain modeling
approach that extends SFCs by taking into account service chain variability. CFCs
make it possible to model complex service chains in NFV networks that can be
allocated in multiple alternative ways, e.g. using either physical or virtual NFs, or
using different NFs with differing quality or functionality. This makes it possible to
choose the best service implementation at runtime, reducing hosting costs, or to fall
back to a degraded service when insufficient resources are available. We described
how CFCs can be modeled and managed, and presented a formal CFC-P model
that can be used to allocate CFCs on service provider networks.

We compared the CFC-P model with a SFC-P model which allocates SFCs, and
therefore does not support service chain variability, using a connectivity service
scenario executed in a simulated service provider network. In this scenario, CFC-P
was shown to consistently result in a lower cost, indicating that taking variability
into account during service chain placement can improve the quality of network
services. CFC-P reduces costs in two ways: (1) by better handling service failures,
making it possible to manage reduced quality versions of a service, resulting in cost
reductions up to 15% depending on the scenario; and (2) by more efficiently using
resources when low instance utilization occurs, showing server use cost reductions
up to 20%.
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Figure 7.13: Total cost comparison of time-limited CFC-P in the hybrid and pure NFV
networks.
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Conclusions and research perspectives

In this dissertation, several contributions to the field of cloud and network mana-
gement were presented. The central research question in this dissertation is “How
can application and service customizability be handled in multi-tenant cloud and
network environments?”. This question was addressed by detailing the following
contributions: (1) an approach for modeling and managing customizable Software-
as-a-Service (SaaS) applications by using a feature-based approach, which achieves
multi-tenancy by composing applications based on multi-tenant service compo-
nents, was detailed; (2) datacenter management algorithms that can be used to
solve the feature placement problem which is used to allocate resources for cus-
tomizable SaaS applications cost-efficiently were presented and evaluated; and (3)
network-aware algorithms that can be used for resource management and as an
access filter were developed. These contributions are summarized below, followed
by a description of future perspectives.

8.1 Contributions

8.1.1 An approach for modeling and managing customizability
of multi-tenant SaaS applications

In this dissertation, the Feature-Based Binary (FBB) approach for managing and
provisioning customizable SaaS applications was introduced and evaluated. This
approach, described in Chapter 2, splits an application into separate, multi-tenant
components, from which the application is composed using a Service-Oriented
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Architecture (SOA). Each of these components realizes part of the application, and
therefore application customization can then be achieved by connecting different
components. As every component out of which the application is composed can be
shared between multiple tenants, a high degree of multi-tenancy can be obtained,
while individual tenants can still receive a highly customized product.

This dissertation presented management algorithms to allocate resources for
FBB applications in Chapters 3 and 4. These management algorithms were then
framed within an application development and runtime platform in Chapter 5. This
approach makes it possible to manage customizable, multi-tenant SaaS applications
throughout their development, customization, and deployment using a feature
modeling approach. To this end, algorithms are developed that can be used to
automatically convert development feature models to runtime feature models, which
can be used by the algorithms presented throughout this dissertation.

8.1.2 A resource allocation approach for managing customiz-
able SaaS applications within datacenters

To manage customizable FBB SaaS applications in cloud datacenters, specialized
resource management algorithms were presented. In Chapter 3, the feature place-
ment problem was introduced. The feature placement problem extends the generic
application placement problem, which is used to determine where applications
are allocated within a datacenter, and takes the relations between application com-
ponents into account. To achieve this, the feature placement algorithm is made
aware of the application customizability by making use of a feature model. This
dissertation presented a formal mathematical model, defining the feature placement
problem, and presented multiple heuristic algorithms that can be used to quickly
solve the problem.

The analysis in Chapter 3 solves the static feature placement problem, and finds
a solution for allocating a collection of applications at once. In practice, applications
may start and stop at various times, and their load may change through time,
often making it necessary to use dynamic management algorithms. In Chapter 4,
dynamic feature placement is introduced, which limits the number of migrations,
making it suitable for use in dynamic management scenarios. When compared to a
static management approach, it was shown that the dynamic algorithms reduce the
number of migrations needed by 77%. The heuristic algorithms built to solve the
dynamic feature placement problem, which were based on the approach presented
in Chapter 3, achieve results that on average cost less than 3% more than the optimal
cost in the evaluation scenarios.
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8.1.3 Network-aware modeling and management algorithms for
inter-cloud network environments

Focusing only on scaling managing applications within a datacenter, and ignoring
the networks connecting the cloud to the end user and networks interconnecting
clouds, could cause failures due to insufficient network capacity. This was addressed
in Chapter 6, where an access filter was designed, and in Chapter 7, where feature
placement concepts were extended, making it possible to use them to allocate
resources within wide area networks.

The access filter presented in Chapter 6 works by modeling the service and net-
work resource utilization within networks. By structuring the service chains formed
by SaaS applications hierarchically, a resource sharing approach was achieved.
This makes it possible to model the way in which services are executed in parallel.
For the two evaluated use cases, it was shown that the developed hierarchical algo-
rithm required +42% and +52% less resources than an approach without resource
sharing, without any workflow failures occurring during the executed simulations.

Chapter 7 focuses on server provider networks, and shows how the feature
placement approach introduced in this dissertation can be used in wide area net-
works. The focus on hybrid Network Functions Virtualization (NFV) makes the
approach applicable for both traditional networks and NFV networks, making it
possible to allocate customizable service chains containing multiple services and
Virtual Machines (VMs) in these networks. The approach is shown to offer benefits
compared to an approach which does not support variability, both when service
failures occur due to insufficient resources, and when resource utilization costs
can be reduced by efficiently making use of service variability. In addition, this
approach makes it possible to define network services more generically, deferring
customization choices until services are deployed.

8.2 Future perspectives

Using the approaches developed during this dissertation, it becomes possible to
migrate highly customizable applications to cloud environments, and to develop
novel customizable SaaS offerings. This enables service providers to benefit from
the various advantages that clouds offer, such as increased flexibility and easier
application management. This also makes it possible to offer the provided services
at a lower cost, enabling service providers to sell these applications to clients for
whom the cost would previously have been prohibitive.

The network-aware variability management approach in particular can be uti-
lized to support complex services that can be provided using both physical hardware
and virtual services. This approach makes it possible to use physical hardware in
networks more cost-efficiently, by ensuring the hardware is fully utilized while
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spillover is handled by virtualized instances. This also offers a cheaper migra-
tion path to NFV, as existing physical hardware can be used in conjunction with
virtualized service instances.

8.2.1 Advanced variability modeling

The feature modeling approach used within this dissertation is based on a limited
set of hierarchically structured relations. This hierarchical approach was already
extended in Chapter 5 by introducing additional, non-hierarchical relations to
increase the expressiveness of the feature models. Creating additional relations
and additional ways to specify feature models can make it easier to specify some
application configurations, for which otherwise complex and unwieldy feature
models would be needed. In general, the approach used in this dissertation can be
extended to support any feature modeling approach which can be expressed using
logical operations.

Additional feature model flexibility could also be added by modifying the
feature impact concept used throughout this dissertation. Feature impacts are used
to determine the impact of the inclusion of features on the resource load of services
and networks, and are expressed using scalar values. This approach ensures that
a feature is either included or excluded, and that if the feature is included its
impact is counted accordingly. When feature models are used to model application
failure however, failing to provide resources for features incurs a failure cost. In
these cases, it may be beneficial to consider partial feature failures, where features
themselves are only partially allocated. Then, only a portion of the failure cost
could be incurred, while only a portion of the feature impact is incurred. While
similar behavior can be achieved by adding additional features to the models, this
would result in a significant increase of complexity, both in the specification of the
feature models and in their management. It would therefore be useful to add the
concept of partial feature failure to the models and algorithms.

8.2.2 Federated management of customizable SaaS

In practice, network communication often traverses multiple administrative domains
owned by different service providers. The proposed management approach dis-
cussed throughout this dissertation focuses on the point of view of a single service
provider, who is in charge of managing, customizing and deploying the application.
In this approach, the capabilities of other network and service providers are not
taken into account. Instead, they are abstracted, and replaced by basic nodes, i.e. a
cloud provider is replaced by a single node in a network management scenario, and
a network service provider is similarly replaced by a single edge. This is why the
network is not taken into account in Chapters 3 and 4, why the connection between
access router and cloud is replaced by a single link in Chapter 6, and why the
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datacenters are replaced by a single node in Chapters 6 and 7. Using this approach
decreases the functional requirements for service providers, and ensures only one
network domain must be aware of the SaaS variability, while the other domains can
be managed using standard management approaches.

Limiting the awareness of service customizability to a single domain also limits
the potential cost savings to this domain. In the future, it may be beneficial to
make multiple domains aware of application customizability. Using this approach,
multiple domains could cooperate, sharing the application customization informa-
tion, and enabling them to cooperate to determine a cheapest configuration for a
SaaS. Alternatively, the SaaS feature model could be split up into smaller segments,
which are distributed to the various service providers who each provide their part
of the service, while a single service provider remains in charge of providing the
complete service.

8.2.3 Resilient management of customizable SaaS

Services provided using networks and clouds make use of various networked
devices. Failure of any of these devices, or the links between them, may cause
service interruptions. While the algorithms designed throughout this dissertation
can react to these failures by determining new resource allocations that result in a
low cost, there will still be a period of time between this failure and the time when
the service is restored, impacting service quality.

When hardware failures are frequent, or have a significant impact, it would
be beneficial to add failure protection to the management algorithms. Failure
protection proactively reserves network and server resources to protect against
failures. When hardware failure is detected, these backup paths are then already
configured, making it possible to recover more quickly.

8.2.4 Streamlining the configuration process

In the presented approach, feature modeling is used throughout application de-
velopment, customization and runtime. The disadvantage of orchestrating the
customization process using feature models, is that this could make the clients
aware of the structure of these internal models. Such an approach makes the process
of requesting applications more complex than for non-customizable applications.
This can be resolved by letting the configuration be handled by a service provider
employee instead of by the client, or by creating a wizard-based configuration
interface which is linked to the feature model.

Alternatively, the required features could be determined based on the chosen
application capabilities. By analyzing the desired service configuration, it is possible
to determine the functional capabilities that are needed to provide the applications.
Hence, the features that are capable of providing these capabilities could be derived
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automatically. Using this approach, the configuration process could be streamlined
and simplified, making it easier for clients to request changes to the provided
service.

8.2.5 Containerization

This dissertation focuses mainly on the management of customizable applications
of which the components are contained in VMs, which make use of hardware virtu-
alization to emulate a computer system. In recent years, the concept of operating-
system-level virtualization has been gaining popularity as an alternative to hardware
virtualization. In this approach, multiple software containers are deployed on a
single, shared host operating system. This approach has different advantages and
disadvantages compared to the more traditional approaches like hardware virtual-
ization. On one hand this approach is slightly less flexible, as a container may put
constraints on the used underlying operating system, and it is harder to isolate the
containers from a performance and security point of view. On the other hand, the
overhead of containers is smaller, and it is easier to scale them when demand varies.

These properties make it interesting to study how software containers could be
used in conjunction with the VM-based approaches presented in this dissertation.
Due to their more limited security and performance isolation, they may not be
suitable to fully replace VMs in all cases. Sometimes, the quicker scaling and lower
overhead of containers could however potentially reduce costs in a feature-based
approach. Software containers could, for example, be used specifically to host
rarely used features to reduce their overhead.

8.2.6 Managing the Internet of Things

The Internet of Things (IoT) envisions a world where a huge number of smart
devices are interconnected, creating new and innovative ways for these devices to
interact. Offering services in these highly heterogeneous environments will however
be challenging: there may be multiple versions of a device offering similar but not
the same functionality, or a service may need to be able to function both with and
without some devices. In addition, computations which may be too complex to
run on the low-powered devices, may be executed on different devices within the
network: some can be done on the devices themselves, alternatively they can be
executed on a cellphone, on set top boxes, or remotely using (edge) clouds.

The concepts developed during this dissertation deal with service variation, and
could be applied to the IoT use case. Specifically, the network-aware customization
management concepts could be applied to define and manage complex services in
these heterogeneous environments.
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As the requirements and scale of cloud datacenters increase, scalable management
of the cloud is needed. Centralized solutions, like the ones presented in Chap-
ters 3 and 4 are limited in their scalability. In this appendix a general approach
is introduced for using centralized cloud resource management algorithms in a
hierarchical context, increasing the scalability of the management system while
maintaining a high placement quality. This approach can be used to improve the
scalability of the feature placement algorithms when their performance becomes
too slow due to their centralized nature. The proposed method uses aggregation
and decoupling techniques to generate input values for a centralized application
placement algorithm, which is executed in all management nodes of the hierarchy.
The evaluation results show that a solution, within 5% of the optimum placement
when using the centralized algorithm, can be achieved hierarchically in less than
25% of the time needed for execution of the centralized algorithm.
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A.1 Introduction

In recent years the adoption of cloud computing has increased greatly. The increas-
ing scale of clouds complicates management, which leads to to scalability issues of
the management system itself, compromising the scalability of hosted applications.
Centralized management systems are being replaced by distributed management
infrastructures, that are often fully decentralized, lacking a full overview of the
system, and making it more difficult to achieve a global optimum.

Our previous theoretical work [1] indicates that a hierarchical structuring of
control nodes enables good sharing of context, information of the current state of
the system, with a relatively small communications cost, while at the same time
having a high scalability.

In this appendix, we investigate how centralized algorithms can be modified
to work in large-scale environments by using a hierarchical management system.
The different levels of the hierarchy have a different view of the system, with
highest-level controllers having an overview of the system based on aggregated
values, increasing the scalability of a hierarchy compared to a purely centralized
solution. To this end, we evaluate how centralized solutions for one specific problem,
the cloud application placement problem, can be incorporated into a hierarchical
management system.

One of the key challenges in cloud management is quickly adjusting application
resource allocation in the face of changing demands, and doing this in a scalable
way. Determining which servers in the cloud need to execute which applications
is done by means of solving the application placement problem. This problem is
NP-hard, and many different solutions have been proposed [2-5].

Currently the two common approaches to application placement are centralized
and fully decentralized solutions. In centralized solutions, a controller gathers moni-
toring information, calculates an optimal placement, and enforces the configuration.
These algorithms tend to be highly complex and slow to execute, which makes
scalability an issue. Decentralized approaches on the other hand optimize using
only local information, leading to suboptimal placement.

Our results demonstrate that a hierarchical approach leads to scalable and fast
cloud application placement, as the structure scales better than the centralized
approach, and has a higher-level overview of the total system compared to the
fully decentralized model. A generic template for using centralized application
placement algorithms in a hierarchical fashion is presented, based on information
aggregation and decoupling of management levels. The aggregation and decoupling
techniques demonstrated in this appendix will enable the use of various centralized
algorithms in a hierarchical fashion, greatly increasing scalability of existing cloud
management solutions.
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In the next section, we will discuss related work. Afterwards, in Section A.3 we
will give an overview of the system architecture. Section A.4 contains a generalized
formal description of the application placement problem. Following this, we discuss
the hierarchical management itself in Section A.5, where both the creation of a
management hierarchy and the modification of centralized algorithms to function in
the system are described in-depth. In Section A.6 we evaluate the proposed solution.
Finally, Section A.7 contains our conclusions.

A.2 Related work

Much work has been done concerning the application placement problem. Most of
the work can be divided into two categories: centralized and fully distributed.

One of the first articles on the subject of application placement was published
in 2003 [5]. A solution is generated centrally using linear programming and
genetic algorithms. The solution is more geared towards consolidation of datacenter
resources rather than dynamic cloud provisioning in large scale clouds, as is the
case here. Our solution is designed to scale where centralized solutions no longer
function, be it because of CPU limitations, which would be the bottleneck when
using linear programming, or bandwidth bottlenecks, which would occur when
using genetic algorithms.

Multiple centralized solutions have been proposed [2, 6-8], and many of the
algorithms use similar principles. The centralized solution proposed in [2] uses
multiple min-cost max-flow problems to generate a suitable solution and has a
complexity of O(n?:%), better than older solutions. The algorithm was further
expanded in [8], yielding slightly better performance and results. As centralized
solutions have access to all information concerning managed nodes, the placement
quality is generally very good. These solutions work well for smaller datacenters,
but do not scale well for large datacenters. Our solution uses centralized algorithms
on clusters which are limited in size, leading to a much higher scalability at a cost
to placement quality due to the smaller overview of the system resources.

A distributed peer to peer system, used for cloud management was demonstrated
in [9]. In this solution, every node contains a database of management information,
which is selectively flooded towards other nodes. This ensures every node has the
relevant information for its management, but due to its design, no single node has a
full overview of the network. In our work, we focus specifically on a subproblem,
the application placement problem, and we examine how application placement can
be made to scale while maintaining a global overview.

In [3] a fully decentralized approach is used, based on a gossip-protocol. Here
individual nodes manage themselves and continually exchange information. Nodes
continually improve their configuration by exchanging information and shifting
load between them. It is shown that this leads to an optimal configuration if memory
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constraints are omitted. This decentralized approach has a very high scalability, but
convergence to an optimum is slower when compared to the centralized approach,
and as each step leading to a configuration causes the migration of applications,
these steps are expensive. Another decentralized approach, proposed in [4] uses an
economical approach in which every actor tries to maximize its own gain. In doing
s0, a good global solution is obtained, but like all fully decentralized solutions there
is no higher-level overview of the network. In contrast to these fully decentralized
solutions, ours executes application placement on different hierarchy levels in which
higher-level nodes have better overview of the system and are able to achieve good
placement quality, while still maintaining good scalability.

While most application placement approaches are based on CPU and memory
requirements, [10] executes application placement based on the physical location
and bandwidth requirements of the servers, trying to put as many application
components as possible close to each other and taking into account the physical
system configuration. The solution is based on a central placement manager of
which multiple, synchronized instances can exist. It combines properties of both the
centralized approach and decentralized approaches, but needs much synchronization
between management node instances. In this appendix we propose a management
system in which the different management nodes are more loosely coupled, needing
only limited amounts of communication between nodes.

Hierarchical techniques in provisioning were used in [11], but this system is
dependent upon hierarchical application and system descriptions and executes place-
ment using only bandwidth information. By contrast, our solution uses hierarchies
for the management itself without needing additional descriptions.

Automatic hierarchical node ordering in peer to peer systems was demonstrated
in [12]. TreeP is used to hierarchically structure nodes in peer to peer systems,
mainly used to structure object lookup, and its structure is inspired by that of
B-Trees. Each node can occur at multiple levels in the tree. Our solution uses a
similar approach, but has different goals and thus uses a different structure. We use
dedicated management nodes, without strict ordering. Because of this our solution
can grow and recover faster, as no node ordering is needed in our management
system.

A.3 System Architecture

The cloud computing datacenter consists of multiple servers. All the servers have
two applications installed on them: a cloud environment, such as OpenNebula,
and management middleware, the functionality of which will be explained later in
this section. Most of the servers are execution servers, used to execute application
instances. Some servers are used by the management system to control the exe-
cution servers. These servers, used to manage the cloud system are management
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Figure A.1: The system components on management and execution servers

servers. They execute a dedicated management application in their cloud environ-
ment instead of regular applications. This approach allows every server to be either
a management server or an execution server, enabling dynamic scaling of the mana-
gement system itself. The servers of the datacenter are connected hierarchically,
where the execution servers act as leaves and the management servers are nodes of
the management tree.

The different system components are shown in Figure A.1. Each server in the
system contains a server manager. This is a lightweight middleware component,
responsible for maintaining a relationship with the servers parent, gathering manage-
ment information and sending it to the parent management server. Its main function
is abstracting the cloud infrastructure present on the server. As this component is
present on all servers, it can also be used to increase robustness of the system by
monitoring its parent, and initiating leader election should one of the management
nodes fail. A cache of neighbours, nodes with which the server has communicated
with recently, can be used to reconnect to the management system.

A second component, the hierarchy controller is only present on management
servers and gathers service performance information of their children. These
children are either application servers or other controllers. The controller executes
application placement based on the locally present management information. It also
aggregates it and forwards it to its own parent. The parent node executes application
placement on a higher level, determining which clusters execute which applications,
and how much of each application to execute.

This hierarchy controller, unlike the server manager is a heavyweight compo-
nent, which is executed like the other applications in the cloud (e.g.: in the case
of OpenNebula as a Virtual Machine (VM)). It is responsible for executing the
application placement algorithm. As every server in the cloud can be used as a
controller, the management system itself can scale when needed and can be made
more reliable.

The server manager and hierarchy controller form the backbone of the architec-
ture, but to enable full cloud functionality, additional supporting components would
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Symbol Description

A The set of all applications.

S The set of all servers.
r The various resources considered by the system.
Ra The resource availability of the various servers. Ra determines the
available amounts of resource r on server s.
Rd The resource demand of the applications. Rd), is a value containing
the demand of application a for resource 7.
M The placement matrix, M , contains the amount of resource r allo-
cated to server s for application a.
T Resources for which the demand is strict. They have a fixed demand
per-instance and without this amount the placement is invalid.
Iy Resources for which the demand is loose. The goal of the manage-
ment system is to maximise loose demand fulfilment.
Rd, Resource demands for loose resource types.

Rd, Resource demands for strict resource types.

Table A.1: Symbols

be needed: An application request router, responsible for routing successive appli-
cation requests to application instances and session management, an application
image repository containing images of the various hosted applications, and a policy
repository containing placement restrictions. In this appendix we focus on the
application placement problem itself, so these components were not implemented.

A.4 Formal Problem Description

The application placement problem itself has previously been described formally
[2—4, 9]. In this section we formally describe and generalize common inputs and
outputs of centralized application placement algorithms [2, 8, 10]. An overview of
the symbols used here is shown in Table A.1.

A cloud consists of a set of servers S on which a set of applications A are
executed. The cloud management system considers a set of multiple resources
types I', such as memory, CPU and bandwith. For each resource type r € T, every
server s € S has available resources Ra’,, and every application ¢ € A has a
resource demand Rd],. A centralized application placement algorithm takes a set
of inputs and delivers as output a placement matrix M. For application a, server
s and resource 7, M , contains the amount resource 7 to allocate on server s for
application a.

The inputs generally contain server resource information Ra, the current place-
ment M’, and application resource demands Rd. When it comes to resource
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demands, we differentiate between two resource types which we shall call strict
and loose. The set of strict resources I'y C I' contains demands that are invariable
and per-instance, such as memory use, and in some instances bandwidth. Loose
demands I'; C T, such as CPU requirements and sometimes bandwidth, are total
demands. The goal of the application placement problem is to optimize the fulfil-
ment of loose requirements, while respecting the strict application requirements.
Generally, strict requirements of applications are considered fixed for every appli-
cation whereas loose requirements are variable [7]. Strict resource demands are
indicated by Rds, loose resource demands by Rd;.
The complete specification of the application placement function is:

applace : Ra x Rdy x Rd; x M' = M

A.5 Hierarchical management

In this section we will describe the hierarchical management structure. First we
will describe the management hierarchy itself, after which we will explain how the
centralized algorithm is used in individual management nodes.

A.5.1 Hierarchical Management Structure

A hierarchical management node organisation is dynamically created by executing
“add node” operations for each of the servers to add them to an existing management
hierarchy. As more nodes are added, the hierarchy will automatically restructure
itself. The structure of the management hierarchy is inspired by that of B-Trees [13].
B-Trees are datastructures, used mainly for ordering large amounts of data. The
most important characteristics of B-Trees are the large number of children for every
node and an equal depth of tree leaf nodes. Every node in a B-tree, except for the
root, contains between n and n/2 entries. The root itself is allowed to have any
number of nodes between 0 and n.

In the hierarchical management scenario, less restrictions are needed as the
hierarchy is only used to structure nodes, and not to order them. Adding nodes can
be realised simply by adding them to any controller at the lowest level. Deleting
execution nodes can be done trivially, whereas deleting management nodes is
achieved by performing a leader election amongst its children. Furthermore, we
change the restrictions at the root node: an imbalanced tree is allowed, but only at
this level. This enables us to require a higher minimum node count in the root than
in a regular B-Tree, as using a dedicated server to manage only a small number of
child servers would be a waste of resources.

As controllers gain more and more children, the execution time of applace
continually increases. Eventually the execution time exceeds a given threshold,
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indicating that the node is overutilized. In the reverse case, if execution time gets
too low, network delay overhead becomes a bigger concern than applace execution
time, which indicates the node is underutilized. By executing applace for various
server counts the number of children causing overutilization and underutilization can
be determined. These values are C,,;,, and C,,,4z. If Cpriiny < C’g‘” , splitting and
merging of nodes can be achieved using basic B-Tree operations. If C,;,, > %
techniques used in variations on B-Trees can be used where n nodes are considered
and split into n 4 1 nodes (as opposed to splitting a single node into two nodes in

regular B-Trees).

The splitting of overutilized nodes is illustrated in Figure A.2. A node n;
chooses a node n; € children(n;), which it adds to children(parent(n;)) it then
chooses half the nodes remaining in children(n;), which it adds as children to n;.
The opposite situation is demonstrated in Figure A.3, where an underutilized node
is deleted and its children are added to its neighbours.

In a bootstrap scenario server managers connect to each other and execute
leader election to determine the root of the management hierarchy. Once this root
is chosen the other nodes can be added to it using a default “add server node”
operation. Nodes can find each other by providing an initial neighbour cache or by
using separate approaches such as the Dynamic Domain Name System.

Because there are only a few restrictions, this structure can be created and
updated swiftly, enabling dynamic restructuring of the management hierarchy.
Furthermore, the equal depth of the various nodes ensures the various nodes at each
level are either all management servers or all execution servers, making the set of
managed servers at each level more homogeneous.

A.5.2 Algorithm Details

We will now demonstrate how the general applace function can be executed in
a hierarchical structure. As servers are grouped hierarchically, each server s has
a parent parent(s) = p, p € S and a set of children children(s) € S, except
for the root control node, which has no parent, and execution nodes, which have
no children. Every management server executes the applace function. We will
now consider a single cluster with management server m, which will execute the
applace function with modified inputs and outputs:

M,, = applace(Ra, Rd,, Rdy, M)

As Rd is generally taken to be static, it can be considered as application
information, available to every management node involved in managing a specific
application, so Rd, = Rd,. M is always present on each management node,
except in bootstrap scenarios where the general bootstrap scenario of the specific
applace function needs to be used. This leaves Ra and Rd;, which need to be
aggregated across the management tree.
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Figure A.2: Solving overutilization by splitting a node and promoting a child node (grey) to
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Figure A.3: Solving underutilization by removing a node and distributing its children (grey)
amongst the node’s peers.

A.5.2.1 Resource availability aggregation

Server resource information Ra at the lowest level can be observed from the child
nodes and can be used directly, so if a child ¢ € children(m) is an execution server,
Raz = Ra; for all resource types r. At higher levels, in every management server,
an aggregated value of child resource information must be determined. Whereas a
single server has a definite resource availability Rag, a cluster of servers does not.
As the placement algorithm can only function using definite values for Ra, a value
must be determined for the clusters by aggregating the values of its children. As a
result, aggregated resource information Ra needs to be determined which indicates
how many resources its parent can realistically expect to allocate on the cluster.
This estimation will have to be revised whenever underutilization of resources or
unrealistic resource allocation occur. For a resource » € I'; and a cluster ¢ an
aggregated estimation Ffaz can be determined:

Ra, = wB + (1 — w)EJe” (A1)
Ef =Cl+U; (A2)
EMe= N Ra, (A3)

nechildren(c)
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The complete estimation is denoted in the first equation, with E'°% an estimate
of available resources that will generally be close, but slightly too low and ™%
an upper bound which will be too high. The actual ratio will be determined by
a weight w, which will be determined experimentally. £"“" is the sum of all
available resources of the children. Finally, £ low combines two values: C7, the
amount of resource r currently allocated in the cluster, and U, an estimate of
the remaining usable space on all servers on which more application instances
can be instantiated:

cr= > ), (A4)

s€children(c) a€A

Ul = (Ra,— > (MD)L,) (A.5)
seY acA
YT ={se SV el,: Ra, — (M))], < min Rd.} (A.6)

Equation A.4 determines the amount of resources allocated by the current
placement matrix. This can be achieved by summing the allocations in the
cluster’s placement matrix for all servers and applications. Equation A.5 is used
to evaluate the remaining amount of free space on the server. To this end, the
remaining resource availability of all servers on which more applications can be
executed, the set Y, are summed.

To determine the set of usable servers Y, minimal strict resource requirements
for all applications are determined. If the resource availability on a server for
aresource r € R is less than the minimal resource requirement, no additional
applications can be instantiated on this server. Therefore, the remaining resources
of this server are not added to the aggregated resource information. This is
denoted formally in Equation A.6.

In a bootstrap scenario there is no current allocation, so C, = 0. Hence,
the first value of Eﬁ‘{}“ will be the sum of all available resources, the same as
ET2* which will cause overallocation of applications on the selected cluster.
The cluster will then place as much of the load as possible, maximizing the
amount of allocated resources. A second execution will have much higher C7,
and severely reduced U, leading to a better second estimate. The value of
C? gives an accurate representation of the current resource allocation. The
value of U only gives an upper bound on possible resource availability. As
the share of U in the estimation decreases significantly after one allocation,
the value of a second estimation will be much more accurate than the initial
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estimation. Consequently, doing multiple placements will increase placement
quality.

A.5.2.2 Demand decoupling

The other input value Rd determines the application demand. Here, lowest-level
clusters gather application demand information and send this to its parent nodes.
Only the root has a total overview of the application demand Rd and schedules
based on this information, so at the root Rd = Rd. These scheduling require-
ments are passed on to its children, who can then start scheduling based on this
information. This method has the disadvantage that all management levels need
to be passed to enable scheduling.

These levels can be decoupled however, by changing the type of informa-
tion passed on between these levels. Application placement yields a placement
matrix M. Instead of directly passing on application demands as per M, two
values are propagated across the tree for every application a: an application share
oq € [0..1], and total application demand D?, for resource r. Server resource
demand can then be calculated as Rd, = o, x D},. At the root level, 0, = 1
for all applications, ensuring the full application demand will be met, leading to
Rd = Rd as expected. The advantage of this approach is that passing on ¢ is
much cheaper than directly using Rd as the latter requires placement calculation
at higher levels, while the former only distributes a single value across the hier-
archy. It allows management nodes to work independently, instantly reacting to
changing demands.

This still requires the highest level of the hierarchy to be aware of every
application that is active in the system, which makes application placement
more expensive as an increase in applications leads to an increase in execution
time. In realistic situations however, not every application needs to be known
at every level as smaller applications can be managed by only a part of the
management tree. We use application delegation to resolve this issue. A ma-
nagement node can delegate an entire application by assigning an application
share of 1 to a specific application on single child. If a parent delegates an
application, the child can remove all of the application’s resources from its
aggregated resource information, and the parent no longer needs to monitor
the application’s performance information and placement. If the child is no
longer able to achieve the required placement, it can delegate the application
upward towards its parent, once again making it responsible for the application’s
management.
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Figure A.4: The origin and destination of the different applace in- and outputs. A single
management server, containing the applace-function, aggregation and decoupling
mechanisms is shown.

A.5.2.3 Overview

In summary, to execute the centralized algorithm, we retain non-varying resource
demand, we aggregate resource availability and we decouple the different mana-
gement levels by using application shares instead of resource demand. Figure A.4
illustrates how the various inputs are combined in a management server. A single
management server is shown, together with its various inputs and outputs.

A.6 Evaluation Results

We modified an algorithm from the literature [2] in a hierarchical fashion. The
original algorithm operates in a centralized fashion with a complexity of O(n?®)
with n the number of servers |.S
increases. The hierarchical use of this algorithm solves these issues by introducing

, causing scalability issues as the server count

clusters grouping servers. The centralized algorithm is then executed on smaller
clusters. We compared the performance of the hierarchical system using multiple
values for C,,,q.. We choose C,,,;,, = % We considered application placement
using memory and CPU as requirements with memory as loose requirement and
CPU as strict requirement.

We used simulation of the cluster to evaluate the centralized and hierarchical
algorithms where parallel tasks were executed sequentially and network overhead
was simulated. Communication overhead between management nodes was simu-
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lated using a Gaussian distribution with mean 30ms and variance 10. Execution
times were measured using a Linux server with an Intel Core i3 CPU (2.93GHz)
with 4GiB of memory.

For every datapoint, multiple (20) random datacenters and sets of applications
were generated, after which the measurements for the different datacenters were
averaged. A random server has a CPU capacity, randomly picked from the set
{1GHz, 1.6GHz, 2.4GHz, 3GHz} and a memory capacity from the set {1GB,
2GB, 3GB, 4GB, 8GB}. A set of random applications A is generated. Individual
applications a are randomly generated by choosing a memory capacity from the set
{400MB, 800MB, 1.2GB, 1,6GB} and allocating a random size 6, € [0..1] to it.
The total application size, © = _ , , can then be used to determine the total
application share %. Using a total CPU load for the entire datacenter Lo pry and
individual application shares, we can then determine the demand for the application
RalPY = Lo pU%". We used w = 0.9 as experiments have shown this weight
yields good results. High weights lead to good estimations giving a higher weight
to £l as discussed in Section A.5.2.1. A weight of 1 would lead to a too low
estimate and would make it impossible to improve on bad allocations.

We evaluated a server and application configuration where application demands
remain static. We evaluate the speed and quality of a single allocation on a datacen-

ter with a heavy load (Lcpy = 1). We measure allocation quality by comparing

— . . MEPY . .
the average application satisfaction @), = % of the different allocation

strategies. Allocation quality is measured by caomparing the desired amount of
resources with the allocated amount of resources. A satisfaction of 1 means all
demands are satisfied. For this test we used an equal number of randomly generated
applications and servers. As our architecture assumes that the management system
itself is executed on a cloud instance, and we work using Lo pyy = 1 achieving
full satisfaction will be impossible as part of the capacity will be consumed by the
management system itself, pushing the centralized algorithm to its limits.

In Section A.5.2.1 we mentioned that the quality of P:az increases as mul-
tiple placements are made. Figure A.5 illustrates the effect of this: subsequent
placements increase in quality until a threshold is reached, after which placement
quality stagnates. The first placement has a relatively bad quality, caused by the low
quality of the initial estimate. The second placement greatly increases placement
quality and after a third placement the quality of the placement has a value near its
maximum. Because of this we will execute hierarchical placement three times in fol-
lowing experiments, leading to a high quality at the cost of higher execution times.

We compared the performance of the centralized approach with that of five
different variants of the hierarchical approach, with C,,4. = 50, Cpuer = 100
and C),q; = 200. The allocation speed of the different techniques is illustrated
in Figure A.6. As we expected, the hierarchical approach executes faster than the
centralized approach. As indicated in Figure A.7, the average satisfied demand of
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Figure A.5: The quality of the allocation after subsequent placement calculations
(Cmaz = 20, |S| = 50). Standard errors are shown as well.

applications is best provided for by the centralized algorithm once |S| > Cpqz-
As long as Cj,q, > |S] the hierarchical approach is the same as the centralized
algorithm. Once branching occurs a tree is formed. This temporarily increases
both placement quality and allocation cost, as the management system repeats the
allocation multiple times. As the datacenter size increases, allocation performance
decreases while the difference between centralized execution times and hierarchical
execution times increases. The higher C', ., the higher the placement quality, but

the slower the execution.

Branching causes two types of performance penalties. As additional servers are
used for the management process, they can no longer be used to execute applications,
decreasing maximum achievable application satisfaction. Furthermore, information
is fragmented by the process, allowing for over- or under-allocation of application

demand on clusters.
The effects of the different performance penalties in the hierarchical approach

are illustrated in Figure A.8. Here we compare the satisfied demand of the cen-
tralized algorithm with that of the hierarchical approach and that of an adjusted
centralized algorithm, where servers used in hierarchical management are kept
idle. In this case we used a management tree with an unrealistically low Ci,q4
to illustrate both types of performance penalties. While the centralized approach
uses all servers but one, where the algorithm itself executes, the adjusted central-
ized algorithm does not use any of the servers used in the management hierarchy.
Because less servers can be used for actual application execution, the achievable
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Figure A.8: Illustration of the management overhead and performance penalties induced by
the hierarchy with a very low branching factor (Cyyee = 10).

placement quality is lower. As the hierarchical placement uses the same servers
as management servers, the adjusted centralized placement offers an upper bound
for the placement quality. The quality difference between the centralized approach
and the adjusted centralized approach (in this specific case £20%) is caused by
the management hierarchy itself and stems from the choice to place the mana-
gement infrastructure on the cloud itself. Not doing so would require a separate
management infrastructure which would be less dynamic. The quality difference
between the adjusted centralized approach and the hierarchical approach is caused
by fragmentation of information and under-allocation. Picking higher a C,,qz
causes performance penalties to decrease significantly while increasing allocation
performance by repeated execution of the allocation algorithm, as illustrated in Fig-
ure A.9, where hierarchical execution at times even surpasses centralized execution
due to repeated executions.

The performance of the hierarchical system is still impacted by the number of
applications, as shown in Figure A.10, where a constant number of applications is
used (JA| = 50) and significantly better performance is achieved. The cause of this
is that the number of applications also has an impact on the performance of the ap-
plication placement algorithm. When considering a first placement, all applications
need to be taken into consideration, leading to very high placement times. After
this, some application responsibilities are delegated to specific instances, decreasing
costs for subsequent placements. This implies that when many applications are in
use, a lower branching factor should be chosen as this leads to more management
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Figure A.11: The maximum number of applications known per node at different management
levels (Craz = 10).

nodes and thus more delegation of applications.

Figure A.11 illustrates the number of applications used in application placement
per level. The graph illustrates the maximum number of applications used in
application placement at a given tree level. The lower this number, the faster
a placement at this level can occur. From the graph, we see that a large part
of applications continues to be managed at the root level, but at lower levels,
significantly less applications are managed per-node. This implies lower-level
nodes can execute placement much faster. This enables the system to react fast
based on local data, swiftly yielding a local solution, while still maintaining a
globally good solution once higher levels have executed application placement.

A.7 Conclusion

In this appendix we presented a hierarchical management system for cloud environ-
ments. Management nodes automatically order themselves in a structure inspired
by that of B-Trees and each node executes a centralized placement algorithm for
which inputs are generated by the management system.

The centralized approach leads to higher placement quality at the cost of higher
execution times. As datacenters scale, the execution time also increases, leading
to slow reactions to changing environments. At this point, using the hierarchical
approach makes sense, as it is much faster and, thus, more scalable. The number of
servers managed by each node has a large impact on the execution speed and on the
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quality of allocation, as it directly influences both the number of servers used in the
management system and the quality of the placement itself. These results are in
accordance with our earlier work concerning hierarchical management. Introducing
hierarchies increases scalability of management systems, and eases distribution of
context, in this instance calculated application demands.

In future work, we intend to study and improve the robustness of the hierarchical
management system. It would also be useful to add adaptiveness to the system by
dynamically restructuring the management tree and adjusting system parameters,
such as branching factor and estimation weights. These adjustments should lead
to improved resource estimates, better resource allocations and faster placements.
We also need to examine how the techniques demonstrated in this appendix can be
applied to other centralized cloud management algorithms.
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In this appendix, a cloud migration strategy is discussed and evaluated. In this
approach, a distinction is made between the steps needed to migrate an application
to a remote cloud environment, and the steps to add multi-tenancy to the migrated
application are discussed. By executing these changes, a client-hosted application
can be converted to a multi-tenant SaaS application. In the generic approach, the
Feature-Based Binary (FBB) approach, which was presented in Chapter 2 is utilized
to model application customization, and the impact analysis strategy presented in
Chapter 6 is used to analyze the impact of the migration. The generic approach
is verified by means of two case studies, a commercial medical communications
software package mainly used within hospitals for nurse call systems and a schedule
planner for managing medical appointments. Both case studies are subject to
stringent security and performance constraints, which need to be taken into account
during the migration.
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B.1 Introduction

Cloud computing is a technology that enables elastic, on-demand resource provi-
sioning. Over the last few years many companies have used clouds to build new
highly scalable systems. However, legacy applications can also benefit from the
advantages of cloud computing, and there is a general trend for moving applications
to a cloud infrastructure, consolidating hardware, saving costs and allowing appli-
cations to react faster to sudden changes in demands. With the recent evolution
of cloud computing [1] and Software-as-a-Service (SaaS) in particular, an elastic,
scalable multi-tenant architecture has gained popularity [2]. Elastic systems are
able to adapt to workload changes by provisioning and de-provisioning resources
in an autonomic manner. With cloud computing, an optimal usage of available
resources is recommended to reduce operating costs, as the infrastructure provider
usually charges for the number of instances used. SaaS is a software delivery model
in which the software and associated data are centrally hosted on the cloud, and
the end-users are typically accessing the software through the browser or by using
a thin client. As the number of clients grows, a scalable architecture for both the
application and data is needed.

Multi-tenancy [3] enables the serving of multiple clients or tenants by a single
application instance. The major benefits include increased utilization of available
hardware resources and improved ease of maintenance and deployment. Without
a multi-tenant architecture, the cost savings using cloud computing are limited
for applications requiring continuous availability, as for every new client (tenant),
a separate Virtual Machine (VM) instance would have to be provisioned. This
instance must then be available at all times, even if it is only used sporadically.
Also, as every tenant has a dedicated instance, some resources would be wasted,
especially for smaller clients. Using a multi-tenant architecture, a SaaS application
could run on few instances that are shared between the different users, and the
number of instances could dynamically grow with the current demand. Smaller
tenants could be co-located on a single instance, minimizing costs and maximizing
resource utilization.

Therefore, when migrating applications to the cloud, it is recommended to adapt
the legacy software to support multi-tenancy. Some changes to the architecture will
be necessary, coming at a one-time cost, but this cost is overruled by the long-term
benefits. Apart from adapting the legacy software for supporting multi-tenancy,
some other changes may be needed to support the migration to a public or hybrid
cloud, as every Platform-as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS)
provider will have its own limitations and possibilities.

In this appendix we propose an approach for both migrating applications to a
hybrid or public cloud, and for adding multi-tenancy to the existing software with a
minimal overhead. We verify our approach using two different case studies of legacy
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medical applications which are migrated to the cloud, and discuss the required
changes. We describe the advantages and disadvantages of moving components of
the software to the public cloud, and evaluate the migration costs.

In the next section of this appendix we will discuss related work. Afterward,
in Section B.3, we will present the approach for both migrating legacy software
to the cloud and adding multi-tenancy. We verify this approach in Section B.4
and Section B.5 using two different case studies. In Section B.6, we discuss our
approach and present our evaluation results. In Section B.7, we state our conclusions
and discuss avenues for future research.

B.2 Related Work

In previous work [4], we described the steps required to migrate an existing .NET-
based application to the Windows Azure public cloud environment, and proposed a
specific approach for adding multi-tenancy to the application. In this appendix, we
propose a generic migration approach for migrating legacy applications to the cloud.
We describe the different steps of our approach in detail, and verify our approach by
means of two case studies. In this appendix we also present an extended discussion
and evaluation based on the results from the two case studies.

An approach for partially migrating applications to the cloud is presented in [5],
together with a model to explore the benefits of a hybrid migration approach. The
approach focuses on identifying components to migrate, taking into account various
rules such as performance and security. We also focus on migration to a hybrid
or public cloud, but extend their approach by going into detail about the complete
migration process, and not only selecting the components to migrate. We also
present an approach for adding multi-tenancy to the application to optimal benefit
from the migration to a public cloud.

When migrating software to the cloud, some choices have to be made. Different
cloud computing service models exist, each having their own advantages and limi-
tations. Figure B.1 provides an overview of the different cloud service models. The
legacy software could for example be fully migrated to a public cloud, or a hybrid
approach could be used. When it comes to public cloud providers, CloudCmp [6]
offers a system for comparing the performance and cost of the different providers.
For the implementation, the authors use computation, storage and network metrics.
For the storage metrics, they selected some benchmark tasks and measured the
response times, throughput, time to consistency and cost per operation.

Cost savings and other organizational benefits and risks of migration to IaaS
are discussed in [7]. We however don’t limit our approach to migrations to an
IaaS provider, but also consider migrations to a PaaS platform. When using an
lTaaS provider, the customer has full access to the operating system, middleware
and runtime, hosted on a virtual machine. On the other hand, when using a PaaS
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Figure B.1: An overview of the different cloud service models used in cloud computing.

provider, the customer only manages the application and data, which brings some
limitations, such as the selected operating system and supported frameworks and
libraries.

In [8] a checklist is presented that can be used to determine whether applications
are compatible with a chosen PaaS provider. The approach is evaluated by three
case studies where a Java application and two Python applications are migrated
to Google App Engine. Three different and representative PaaS platforms are
compared in [9], based on a practical case study, with respect to their support
for SaaS application development. In this appendix, we focus on how complex
applications can be executed on the public cloud, and for our case studies, we go
into detail on migrating two different legacy applications. We don’t limit our work
by determining whether the applications are compatible with the selected provider,
but also describe the different steps required in detail. Furthermore, we describe
how multi-tenancy can be added, making it possible to better utilize individual
application instances.

As our first case study handles a legacy application written in .NET, we selected
Windows Azure to host some components of the legacy software. The migration
of an on-premise web application to Windows Azure is described in [10], together
with a comparison of the application’s performance when deployed to a traditional
Windows server versus its deployment to Windows Azure. While the cloud migra-
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tion of a .NET application requires limited effort, Azure has no built-in support for
multi-tenancy, so it must be added during the migration process. In this appendix,
we discuss both the steps needed to migrate an application to the cloud, and the
steps needed to add multi-tenancy to the application.

To support highly customizable SaaS applications, we use a software product
line based customization approach, which we have previously discussed in [11],
[12], [13] and [14]. In this approach, variability is modeled by defining multiple
features and the relations between them. These features are then associated with
separate code modules that are deployed separately. The application is then com-
posed out of these multi-tenant components, resulting in an application that is both
customizable and multi-tenant. For changes that do not impact the performance
of the application, a multi-tenancy enablement layer can be used, which amongst
others can be used for data isolation, feature management and tenant-specific
customizations [15].

In [16] we focused on the scalability of tenant data in multi-tenant applications
and the impact on the performance of the application. The outcome of this research
is used in [17] to build an abstraction layer for achieving high scalability for the
storage of tenant data. This layer uses data allocation algorithms to determine an
acceptable allocation of tenant data to different databases. The presented solution
can be used for decoupling the databases and the management of tenant data, two
of the steps in the approach presented in this appendix.

B.3 Migration Strategy

In this section, we describe both the steps needed to migrate an existing application
to the cloud, and to redesign the application to support multi-tenancy. We start
this section by briefly describing the concept of multi-tier architectures, a popular
software architecture used by many applications, which we will refer to later in
this section. Next we discuss the different steps of our approach, as summarized in
Figure B.2.

Many applications are designed using a multi-tier architecture, where the appli-
cation is separated into multiple layers. A typical multi-tier architecture consists
of 3 layers: the client layer, the business logic layer and the database layer. We
refer to this basic layered architecture as the 3-Tier architecture. Most layered
applications will have more than 3 layers, as more layers can be easily added to
the architecture if needed. For example, when working with multiple database
instances, an extra data access layer can be added between the business logic and
database layer, responsible for load balancing and selecting the correct instance.
Other architectures are possible, but in the remainder of this section, we will start
from the 3-Tier architecture.
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Figure B.2: A summary of the different steps required to migrate an existing application to
the cloud, and to add multi-tenancy to the application. The different steps are described in
detail in sections B.3.1 and B.3.2.

B.3.1 Cloud Migration

The process to migrate an existing application to a public or hybrid cloud can be
summarized in a few steps, illustrated in Figure B.2a and described below.

B.3.1.1 Selecting Components

The first step during the planning phase should be to select the components of the
software to migrate to the public cloud, as described in [5]. Both components of the
business logic layer and the data access layers can be selected. The selection can
happen based on the quality attributes of the application, to guarantee the required
Quality of Service (QoS) and Service Level Agreements (SLAs). In case the whole
application is being migrated, this step is quite straightforward, but when only
some components of the application are selected, the architecture might need to
be reviewed. Special attention has to be paid to the communication between the
different components, as the communication between the dedicated servers and the
public cloud might need extra security, extra bandwidth, and usage of standardized
protocols. When using a Service-Oriented Architecture (SOA), communication
between the different modules could for instance make use of SOAP or REST over
HTTPS. Possible communication between the client layer and the components of
the business logic layer should also be secured.

Figure B.3 illustrates an example of the possible communication between the
different components after migration to a hybrid cloud. The components are
represented by server instances. Dark arrows denote communication where extra
attention has to be paid regarding security and available bandwidth.
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Figure B.3: An illustrative example of the possible communication between components after
migration to a hybrid cloud. Dark arrows denote communication that should be secured.

B.3.1.2 Determining Provider Compatibility

Apart from selecting the components for migration, some extra changes might
be needed for migrating the application to the public cloud. Every public PaaS
provider will typically have its own limitations and possibilities, so during the
planning phase of the migration, it is best to verify that the provider will support all
features of the software. In case no suitable PaaS provider can be found, an IaaS
provider could also be selected to host some components of the application, but
this again results in more maintenance overhead for the application provider. When
comparing different providers, for example by using CloudCmp [6], the balance
should be made between the advantages of the selected provider and the overhead
due to needed changes to the application. Different public cloud providers should
be considered and evaluated, for example by using a small Proof of Concept (PoC),
and the advantages of using a PaaS provider should also be weighted against the
increased control gained when using an IaaS provider.

B.3.1.3 Determining Impact on Client Network

A side effect of the migration to cloud environments is that communication between
some components of the software might need to pass over the Internet, especially
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when migrating the software to a hybrid cloud. As a result, more traffic bandwidth
at the client network might be required. Before deploying the service, it is important
to perform an impact analysis whenever the client configurations are changed. We
have previously covered this in-depth in [18].

B.3.1.4 Scaling the Application

When an instance is overloaded, extra instances can be added (up-scaling) and
removed (down-scaling) in a few steps. This concept if often referred to as the
elasticity of the (public) cloud. Some public cloud providers offer out of the box
load-balancing and/or scaling, other providers only provide limited load-balancing
possibilities, together with an Application Programming Interface (API) to support
up-scaling and down-scaling from within the application.

When selecting the components to migrate, it is a good idea to take account the
scalability of the application. Components which should be highly scalable could
be good candidates for migration to the public cloud, as the public cloud offers an
unlimited resource pool. The application should also support decoupling of the
components, and handle synchronization and conflicts in data. Possible bottlenecks
should be eliminated, as these could break the whole scalability of the application.
Reviewing the architecture of the application to better support scalability will bring
some overhead, but the advantages on the long term will outweigh this one-time
investment.

B.3.2 Multi-Tenancy

In this subsection, the steps required to add multi-tenancy to an existing application
are discussed. These steps are also summarized in Figure B.2b.

B.3.2.1 Decoupling Databases

As multiple tenants will use the same application instance, each tenant will have
its own application data stored in a shared or dedicated database instance. Using
shared database instances is cheaper, while dedicated databases will lead to better
performance and higher security, but at a higher cost. To connect to the correct
database, a connection string is associated with each tenant. These connection
strings can for example be stored in a shared database.

The application database needs to be decoupled, and support for multi-tenancy
needs to be added to the data tables in case of shared instances. Also, the application
needs to be modified to support dynamic database binding. An extra component
can be added to the application, the data access component, responsible for both
the correct handling and access control of all data requests by the application.
Figure B.4 illustrates a possible architecture of the application after decoupling the
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Figure B.4: Possible architecture of the application after decoupling the databases.

databases. The data access component is added to a new layer, the data access layer,
situated between the business logic layer and the database layer.

For the design of the data access layer, the abstraction layer presented in [17]
could be used. This abstraction layer mainly handles the security and isolation of
tenant data, and the scalability of the database layer. In our approach, we partition
tenant data over multiple database instances based on the tenant. By doing so,
tenants can still store their data in a dedicated on-site database instance, for example
to comply with regulatory policies on data. Partitioning the data based on the tenant
also provides a clear separation of tenant data. For large tenants with a dedicated
database instance, the performance of the database will not be influenced by other
tenants. As the number of tenants using a shared database instance will be limited,
the possible damage due to an information leakage is also minimized. Different
SLAs can be provided, based on the scenario of a dedicated or shared database
instance.

B.3.2.2 Adding Tenant Configuration Database

A new database, which we refer to as the tenant configuration database, needs to
be added to store general information about all tenants. The connection strings
introduced in the previous steps will be stored in this database, together with specific
information and configuration parameters such as billing and contact information,
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Figure B.5: Possible architecture of the application after adding the tenant configuration
interface.

and the selection of features for the tenant as described in Section B.3.2.4. While
this database is shared between all tenants, it only contains minimal information,
and is only accessed sporadically as the information inside this database can be
cached by the application, so it should not become a bottleneck [16] [18].

B.3.2.3 Providing Tenant Configuration Interface

Adding multi-tenancy to the application makes it possible to more flexibly select the
application features used by different clients, as the tenant configuration is stored
in the shared tenant configuration database. It is however also necessary to create
a separate application, the tenant configuration interface, which can be used by
tenant administrators to modify the tenant configuration. This interface will be used
to create, modify and delete tenants in an easy way, and change the configuration
of a single tenant, for example the selection and configuration of features and the
connection string of the tenant.

Ideally, the tenant configuration interface is the only component which has
read/write access to the tenant configuration database, as the legacy application
should only require read access. Figure B.5 illustrates the changes to the architecture
after adding this interface.
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B.3.2.4 Dynamic Feature Selection

An application can have multiple features which will be dynamically loaded at
start-up. As every tenant can have its own selection of features, and a tenant-specific
configuration for these features, a tenant administrator should be able to select and
configure these features using the fenant configuration interface introduced before.
The application itself needs to support the dynamic selection of features. For
example, some features might require additional modules, and the application needs
to support dynamic loading (and unloading) of the corresponding modules. Also,
the user interface of the application might need to be automatically adapted for
the different tenants, based on their configuration, representing the tenant’s feature
selection. The different features might run on the same instance of the application,
or on dedicated machines. In the latter case, feature placement algorithms can be
used to determine the optimal solution. We have previously covered this in [11].

B.3.2.5 Managing Tenant Data, Users and Roles

Every tenant using the application will typically have its own data, users and custom
roles. The users could be stored in a shared common database or in the tenant
database, or the application could support external identity providers. In case the
users are stored in a global shared database, or when an external identity provider
is used, the application could provide single sign-on scenarios. In case the users are
stored in the tenant database, an administrator should be able to create and modify
users and their corresponding roles from within the application. By introducing
multi-tenancy, a tenant administrator role with permissions to create and modify the
tenant configuration using the tenant configuration interface is required, different
from the administration roles within a single tenant. These tenant administrators
can be stored in the shared fenant configuration database and should have limited
access to the multi-tenant application for every tenant if required. The management
of users and roles could be moved to the tenant configuration interface, or could
stay inside the application, depending on the application’s requirement and the
software license model. The question arises how and where to store the tenant data
and the different users and roles. Different approaches are possible, and we have
previously covered this in-depth in [16].

B.3.2.6 Mitigating Security Risks

A major disadvantage of using multi-tenancy is an increased security risk, as by
definition multiple tenants will use the same application instance. These risks can
be mitigated in multiple ways:

e Implementing URL-based filtering of application requests, taking into
account the permissions of the user and tenant. Every tenant can have
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its own URL, for example by having a customized sub-domain. When a
client wants to access the data of a specific tenant, the access module of the
application needs to verify if the authenticated user and its corresponding
tenant have access to the requested data (the requested URL), to eliminate
unauthorized access.

e Separating the tenant configuration from tenant data. Because the tenant
data is stored in a different database instance as the tenant configuration, it is
easier to configure tenant-specific access at the database level. Each tenant
will have its own connection string, and the associated credentials will only
have access to the tenant’s database.

e Offering single-tenant instances of specific components at a higher cost.
If the above methods are not deemed sufficient, tenants with a huge amount
of confidential data can have single-tenant instances at a higher cost. Having
a dedicated instance clearly improves security, as the tenant’s data is not only
virtual but also physical isolated from other tenants. Because the connection
strings are stored separately for each tenant in the shared tenant configuration
database, these connection strings can either point to a shared or dedicated
database.

B.4 Case Study 1: Medical Communications System

B.4.1 Introduction

In this section we verify our presented approach using the case study of a Medical
Communications (MC) system. The MC system is responsible for the correct
functioning of all communication peripherals located in a medical environment.
The central functionality of this system is the nurse call system. The basic concept
of a nurse call system is simple: a call device is located in every room. When a
button is pressed on the device, a message is sent to a controller after which nurses
are notified of the call. This concept can be enhanced by using ontologies and
semantic reasoning to identify the urgency of a call or select the nurses to notify in
a more intelligent way [19] [20] [21].

A nurse call system consists of many different elements, installed within a
hospital. These elements include amongst others 1. end user equipment installed in
the rooms, which patients can use to contact hospital personnel, and terminals used
by the personnel; 2. embedded servers, used to communicate between the terminals
and management servers; and 3. servers for logging, registration and visualization.
Figure B.6 illustrates an example of the architecture of a nurse call system, with the
possible communication between the different components when a patients calls a
nurse shown in arrows.
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Figure B.6: An example architecture of a nurse call system, with the communication between
the different elements when a patient makes a call.

While the center of the MC application is the nurse call system, additional
services, such as intercom, video over IP, access control and other health services
are being offered as well. Currently, the MC system is installed in multiple locations,
ranging from big hospitals to small rest-houses. The cost of installing dedicated
servers, and the corresponding maintenance is quite high. Migrating a part of the
system to the cloud will minimize the cost, by eliminating the need of many of the
dedicated servers, making it possible for smaller hospitals and and rest-houses to
afford the system. However, considering the medical use case, the MC application
is subject to stringent security and performance constraints, which need to be taken
into account when the components to migrate to the cloud are selected.

B.4.2 Cloud migration
B.4.2.1 Selecting Components

The MC software consists of two main components: the device manager and the
administration service. The administration service is the main application, and is
used to manage the different features and devices installed within the hospital. The
device manager is a dedicated hardware box, running different modules mainly
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written in C++ for communicating with the different peripherals installed within the
medical environment. The modules for the different features are dynamically loaded
on start-up, and can be configured from the administration service. Figure B.7a
shows the initial architecture of the application. The device manager and the
different peripherals communicate over Ethernet, using a custom proprietary secure
protocol.

For our PoC, we selected the administration service and its corresponding
database instances for migration to the public cloud. The MC system has a fall-
back mechanism, allowing the device manager to operate standalone in case the
administration service is not available. Because the device manager communicates
directly with the devices, migrating this component to the cloud would be tricky,
as the devices need to operate when no connection to the public cloud is available.
Passing all communication between the device manager and the peripherals over
the public Internet would also result in slow response times, and could make the
system unreliable. However, as most of the processing is done in the devices, a
single device manager will be sufficient to control all devices in a small or medium
environment. If the peripherals could be adjusted to work standalone when the
device manager is unavailable, migrating the device manager could also be an
option in the future, but for this PoC, we started focusing only on decoupling the
administration service.

After adding multi-tenancy to the application and migration to the cloud, a new
component is introduced, the tenant configuration interface. The reviewed architec-
ture after adding multi-tenancy and migration is shown in Figure B.7b. Because
every tenant has its own features, the user interface of the administration service is
automatically adapted for the different clients based on the tenant configuration.

B.4.2.2 Determining Provider Compatibility

As the application is written in .NET, migrating the administration service to
Microsoft Azure seemed like an evident choice. Microsoft Azure [22] currently
offers two roles to choose from when creating an instance, web roles and worker
roles, both based on Windows Server. The main difference between these two is
that an instance of a web role runs IIS, while an instance of a worker role does not.
In addition to the type of instances, Azure offers different sizes for both roles [23].
Table B.1 gives an overview of the different standard instances available on Azure.

Both the administration service and the tenant configuration interface will be
running on an Azure web role. While preparing the application for migration, these
Azure web roles need to be added to the .NET project, and can be tested in the Azure
simulator. When using a third party assembly in the project, this assembly should
be added as a reference to the project, with the Copy Local property set to true. A
nice side effect of this process is that many deprecated libraries were removed or
replaced in the project, making it much easier for developers to locally install the
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Figure B.7: Architecture of the application before and after migration to the cloud and
adding support for multi-tenancy.

Name Virtual Cores Ram
Extra Small (AO) Shared 768 MB
Small (A1) 1 1.75 GB
Medium (A2) 2 3.5GB
Large (A3) 4 7 GB
Extra Large (A4) 8 14 GB

Table B.1: Overview of standard instances on Windows Azure.
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application, as they no longer needed to configure and install third-party products
on a clean environment before being able to compile and test the application.

The SQL databases will be moved to SQL Azure. As a result, the connection
strings inside the application should be altered to point to the SQL Azure instance.
SQL Azure has some limitations regarding a dedicated Microsoft SQL Server, but
for most .NET applications, this shouldn’t be an issue. Once the application is
running correctly in the Azure simulator, the project can be packaged and deployed
onto Windows Azure [24] [25].

B.4.2.3 Determining Impact on Client Network

The traffic between the administration service and the device manager now has to
pass the public Internet, and the internal network is also loaded with traffic between
the device manager and the different peripherals. The total amount of traffic is
depending on the selection of features, as some of the features might require more
bandwidth. Both the internal network as the public Internet connection need to have
sufficient bandwidth to support the MC system to operate. The service described
in [18] was customized to support this PoC, making it possible to predict if a custom
selection of features would be able to run on the client network. For this PoC, the
different topologies of the client networks were implemented statically, but we
introduced the option to easily replace these static topologies by a dynamically
generated topology, which could be generated by tools using existing network
discovery protocols, such as Neighbor Discovery Protocol (NDP) and Link Layer
Discovery Protocol (LLDP).

B.4.2.4 Scaling the Application

Azure allows the administrator to configure multiple instances with automatic load
balancing, which will be required as the number of tenants grow. Recently, limited
possibilities were added to Azure for automatic scaling, using the Autoscaling
Application Block [26]. Alternatively, the creation and deletion of extra instances
can be done manually (or in code) by the customer. Some third party products also
exist, like AzureWatch [27], which will handle the scaling automatically, or the
SaaS provider can create a customized system, for example by using advanced load
prediction.

B.4.3 Multi-Tenancy
B.4.3.1 Decoupling Databases

In the initial single-tenant architecture, there is a dedicated relational database
for every instance. The connection string to this database is hard-coded in the
configuration file (Web.config). To support multi-tenancy, we introduced dynamic
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Figure B.8: An overview of the possible communication between actors and the different
components of the medical communications system.

connection strings, stored in the Tenant Configuration Database. The connection
string in the configuration file was replaced by a connection string to this shared
database.

To support both shared and dedicated databases, we added an extra column in
the data tables, holding the identification of the tenant (tenantID). By doing so, the
application itself doesn’t need to know if the database is shared or dedicated, as
multiple tenants can share the same connection string. The Data Access Component
introduced in Section B.3 is now responsible to select the correct tenant’s data, for
example by filtering on the corresponding tenantID.

B.4.3.2 Adding Tenant Configuration Database

The Tenant Configuration Database is introduced to store the general information
about the different tenants. It holds the connection strings for each tenant, together
with some contact and billing information, and the feature selection for the tenant.
As the administration service only needs to get this information at start-up, read-only
access to this database is sufficient for the main application. This also eliminates the
risk of tenants modifying the configuration of other tenants. Figure B.8 illustrates
this by giving an overview of the possible communication between actors and
components within the system.
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B.4.3.3 Providing Tenant Configuration Interface

A new application is introduced, the Tenant Configuration Interface, used by tenant
administrators (like resellers or the application provider) to setup and configure
the different tenants. This application has write access to the tenant configuration
database, but as only tenant administrators have access to this application, there is
no risk of tenants modifying the configuration of other tenants, or even there own
configuration, making their system unusable. For this PoC we didn’t spend to much
time to build a full-blown interface, but in the final version enough time should
be spend building this application, as it is a key component in the multi-tenant
application which can dramatically minimize the time needed to configure and
modify new or existing tenants. The tenant configuration interface was designed
as a web application running on an Azure Web Role, but to mitigate security risks,
this interface could also be developed as an internal mobile or desktop application,
accessing the tenant configuration database through web services.

B.4.3.4 Dynamic Feature Selection

The nurse call feature is the core feature of our MC system, but some other features
are also implemented, for example voice and video calling between different rooms
using Voice over IP (VoIP), and door access control with badges used by the hospital
personnel. The selection of features for a single tenant depends on the available
hardware and peripherals within the hospital, and the available bandwidth of both
the internal and external network. The selection of features and general/technical
configuration is done by a tenant administrator through the tenant configuration
interface, while the tenant-specific configuration of the features can be done by
different tenant users through the administration service. The initial application
(administration service) was designed to support dynamic loading of the required
libraries and modules at start-up. The modules kept running during the lifetime of
the application, but as this application was installed on a dedicated instance with a
lot of available resources, this was not really an issue. Converting the application
to a multi-tenant application however introduced some new challenges. As every
tenant can have its own selection of features, all features might need to be loaded
on the single machine, and if the multi-tenant application is not well designed,
some features might even be loaded multiple times. To overcome this issue, some
changes are needed to the application:

e The required libraries and modules for a specific tenant are loaded as soon as
a user logs in to the administration service.

e Libraries and modules should be loaded only once, and hence can be shared
between different tenants.
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e [oaded libraries and modules should be freed as soon as they are not used
anymore, for example after a timeout, to eliminate the usage of unnecessary
resources.

B.4.3.5 Managing Tenant Data, Users and Roles

As already indicated in Figure B.8, there are a different users and roles used in the
MC system:

e The tenant administrators (application provider, resellers, installers), having
access to the tenant configuration interface. These users and their corre-
sponding roles are stored in the tenant configuration database.

e The tenant users and their corresponding roles (mostly personnel of the
different hospitals. Because every tenant can have its own users and roles,
these are stored in the tenant database.

e The patients don’t really require roles, but are in way guest users of the system.
The peripherals however could count as visualized users with customized
roles, and can also be stored in the tenant database, together with the tenant
users and roles.

B.4.3.6 Mitigating Security Risks

Some of the security risks and a way to eliminate these risks are already described
in the previous steps. To increase the security, we added URL-filtering to the
application, and altered the access module to take into account the requested
URL (and hence the identification of the specific tenant) and the authorized user
and its corresponding tenant ID. The traffic between the device manager and the
administration service and tenant database now passes the public Internet and
is secured by using HTTPS over SSL/TLS. Every tenant can have a dedicated
tenant database, increasing the isolation of data, but this comes at a higher cost.
In practice, big hospitals will typically have a dedicated database, and data from
smaller rest-houses belonging to the same entity (subtenants of the same tenant)
will be co-located in shared databases. This way, we won’t be mixing data from
subtenants belonging to different tenants, and isolation of data is always guaranteed
at tenant level.
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Figure B.9: Pre-migration single-tenant architecture of the medical appointments schedule
planner.

B.5 Case Study 2: Medical Appointments Schedule
Planner

B.5.1 Introduction

As a second case study, we migrated a medical appointments schedule planner
to public cloud environments. This planner is used by both patients and medical
staff to manage their appointments. The software was originally developed as a
single-tenant application. Figure B.9 illustrates the original layered architecture of
the application. The end-users (patients) access the web application through the user
portal, in order to manage their medical appointments. The application is running
on a shared web server, the appointments and patient data are stored in a dedicated
database on a shared database server. Medical staff access the application through
the admin portal in order to approve and review the requested appointments.

As multiple clients started using the software, multiple independent copies of
the software were installed and configured, running different versions, increasing
maintenance complexity. Independent copies were deployed on the same shared
web server and the average load increased over time, resulting in an increase in
page load times due to the large amount of data and the required amount of data
processing by the application. For this case study, we added multi-tenancy to
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the application to optimize the utilization of available hardware resources, and
migrated the application to the public cloud environment in order to centralize
the management and to increase the scalability. We deployed the application on
two different cloud providers in order to compare the performance and the ease of
deployment.

B.5.2 Cloud Migration
B.5.2.1 Selecting Components

The schedule planner consists of two main components: the user portal, used by
patients to request medical appointments, and the admin portal, used by medical
staff to approve and review the requested appointments and to manage their schedule.
Both patients and medical staff can synchronize their appointments to their personal
calendar using one of the available standard calendar formats, and confirmations and
reminders are sent by email or by text message (SMS). Different departments are
using this portal, but a department may only access patient information relevant for
their appointments. Patients on the other hand can browse and request appointments
at the different departments.

For this second case study, we selected the whole application for migration to a
public cloud provider. This application is less sensitive for short downtime periods
as the MC application from the previous case study, as both patients and medical
staff have offline copies of their appointments. Therefore, no additional fallback
mechanism is necessary inside the application.

The legacy application was developed to be used by a single medical department
or an independent doctor (a single tenant), and independent copies of the software
were installed and configured. After adding multi-tenancy to the legacy application,
a single instance of the application is now shared between multiple tenants, and
a new component is introduced, the tenant configuration interface, with a similar
functionality as the interface from the previous case study.

B.5.2.2 Determining Provider Compatibility

The legacy web application is developed using HTMLS5, PHP and MySQL for the
persistent storage of data, and is executed on a shared web server. For evaluating our
approach, we migrated the application to both a PaaS and IaaS environment. We
selected Google AppEngine [28] as PaaS provider as they provide a PHP Runtime
Environment, and Amazon EC2 [29] as IaaS provider. Google AppEngine requires
more changes to the legacy application as it puts more constraints on applications,
while Amazon EC2 requires more maintenance as they provide full control over the
virtual machine.

Migrating an application to Amazon EC2 is straightforward. Amazon currently
offers two types of EC2 instances, the T2 instances which are burstable performance
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Model Virtual Cores Ram
t2.micro 1 1GB
t2.small 1 2 GB
t2.medium 2 4 GB

Table B.2: Overview of the available T2 instance types on Amazon EC2.

Model Virtual Cores Ram
m3.medium 1 3.75 GB
m3.large 2 7.5 GB
m3.xlarge 4 15 GB
m3.2xlarge 8 30 GB

Table B.3: Overview of the available M3 instance types on Amazon EC2.

instances for development environments and early product experiments, and the
M3 instances, which provide a good balance of compute, memory, and network
resources. The different types of T2 and M3 instances currently available are listed
in Tables B.2 and B.3 respectively. For our PoC, we selected a t2.micro instance
running Ubuntu Server 14.04 for both the database and web server. We configured
Apache and MySQL on the instance and deployed the application, and except from
some configuration settings, no changes were required in the application.

Migrating the legacy PHP application to Google AppEngine on the other hand
required multiple changes to the application as summarized in Table B.4. First of
all, as Google offers Cloud SQL instead of MySQL, some changes are required in
the application to connect to the Cloud SQL database instance [30]. The original
MySQL database can be exported to a file using a SQL dump, and this file can
be used to import the data into a new Cloud SQL database instance. The mysqli
extension introduced with PHP version 5.0.0 can still be used to connect to the
database, but the connection string differs from a traditional connection string as
illustrated in [30].

In AppEngine, the local file system that the application is deployed to is not
writable. However, if the application needs to write and read files at runtime,
AppEngine provides a built-in Google Cloud Storage (GCS) stream wrapper that
allows many of the standard PHP file system functions. A PHP application running
on AppEngine can read and write files by using buckets as illustrated in [31]. The
legacy application was developed using the Smarty PHP Template engine [32],
which requires different physical file directories for reading and writing templates
and configuration files. As a result, the Smarty engine needs to be reconfigured to
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Item Description

Relational Data ~ Migrate MySQL databases to Google Cloud SQL and
modify connection strings

Temporary Files Replace local file storage by storage buckets on Google
Cloud Storage

URL Rewriting  Replace mod_rewrite by a custom PHP script providing
similar functionality

Table B.4: Overview of the most important changes for migration to Google AppEngine.

use the GCS for storing the compiled templates and files. One major difference
between writing to a local disk and writing to GCS is that GCS does not support
modifying or appending to a file after closing it. Instead, a new file can be created
with the same name, which overwrites the original. For the Smarty PHP Template
engine however this is not really an issue as it only creates temporary files which
are not modified after creation. Using buckets to store temporary files can have an
influence on the performance of the application. There is no straightforward way to
measure this impact, as local file storage is not supported by Google AppEngine. In
Section B.6 we however do compare the performance of the application running on
Google AppEngine with other environments which are using traditional file storage.

Finally, the legacy application implemented URL rewriting by invoking the
Apache mod_rewrite module. As Google AppEngine does not support this module,
this functionality has to be simulated through the use of a PHP script referenced
from the application’s configuration file (app.yaml) that will in turn load the desired
script, as described in [33]. The overhead introduced by this script is minimal,
as it just parses the requested URI and executes a simple conditional statement.
Google however recommends to rewrite the application to operate without the
mod_rewrite module, but this requires more effort as more changes to the source
code are required.

Once the application is running correctly in the simulated environment of
Google App Engine Launcher (part of the Google App Engine SDK), it can be
deployed onto the public cloud.

B.5.2.3 Determining Impact on Client Network

As the original application was already designed to be accessed over the web, and
the full application is migrated to the cloud, there is no real impact on the client
network after migration to the public cloud.
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Figure B.10: Revised architecture of the schedule planner after adding multi-tenancy to the
application and migration to the public cloud.

B.5.2.4 Scaling the Application

Amazon offers CloudWatch [34] to monitor AWS cloud resources and applications.
This service provides a clear insight in the current demand using different metrics
such as CPU utilization, data transfers and disk usage activity. Application develop-
ers can also create custom metrics, and customize automated actions and alarms.
For a production-ready application on Amazon EC2, CloudWatch can be used to
provide compliance with specific SLA targets, and to handle the automated scaling
of both the computational resources.

Google AppEngine on the other hand has built-in support for high scalability.
An application running on AppEngine can be deployed on multiple instances and
instances are automatically created or removed depending on the current load. No
action is required from the developer, but the developer has more limited control
than with Amazon EC2. During our experiments as described in Section B.6,
multiple instances were automatically created.

B.5.3 Multi-Tenancy

After adding multi-tenancy to the application, the original architecture was slightly
modified. Figure B.10 illustrates the modified architecture after adding multi-
tenancy and migration to a public cloud provider. These modifications are discussed
in detail in the remainder of this section.
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B.5.3.1 Decoupling Databases

In the initial single-tenant architecture, every tenant has a dedicated MySQL
database on a shared database server. In order to support multi-tenancy, we in-
troduced dynamic connection strings, as in the previous case study. All users are
however stored in a single database, separated from the tenant databases. By doing
s0, a single user can access multiple tenants, and multiple copies of the same user
object are eliminated.

As with the previous case study, we added an extra column to the data tables,
holding the identification of the tenant (fenantID). By doing so, the application
supports both shared and dedicated database instances, and multiple tenants can
share a single database. The data access component of the data access layer was
modified to support the dynamic behavior of the tenant databases, and to filter
tenant data based on the tenantID. This filtering is required in order to provide
transparent isolation of tenant data, especially when multiple tenants are sharing a
single database instance.

B.5.3.2 Adding Tenant Configuration Database

The shared Tenant Configuration Database contains general information about
the different tenants, and a connection string to the database instance where the
tenant data is stored. This database is small in size, which is why it is also used
to store the different user objects. However, should this database ever become a
bottleneck, the user data can easily be decoupled from the general tenant informa-
tion, as separate connection strings are used for the user database and the tenant
configuration database. For our PoC these connection strings refer to the same
tenant configuration database instance.

B.5.3.3 Providing Tenant Configuration Interface

A tenant configuration interface was added to the application, used to manage
the different tenants. As in the previous case study, this configuration interface
communicates directly with the tenant configuration database.

B.5.3.4 Dynamic Feature Selection

Tenants can have optional features enabled, for example notifications by text mes-
sages or export options to different calendar formats. A tenant administrator can
configure these features through the tenant configuration interface. The feature
configuration is stored in the tenant configuration database together with the general
tenant information, and both the application’s user portal and admin portal take the
feature selection of the selected tenant into account.
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B.5.3.5 Managing Tenant Data, Users and Roles

The user objects are stored in the shared tenant configuration database, the roles
are stored together with the tenant data in a tenant database instance. This instance
can either be a dedicated database instance or an instance that is shared between
multiple tenants. Relevant medical information belonging to a certain patient is
stored together with the role in the tenant database. By doing so, sensitive patient
data is inaccessible by other tenants, as all data queries are filtered based on the
tenantID by the data access component.

By using a single database instance to store all user objects, multiple roles for
different tenants can be created for a single user object. This allows for a single
sign-on, where the user object is loaded when the user logs in on the application,
and the relevant roles are loaded when the user wants to access one of the tenant’s
restricted pages.

B.5.3.6 Mitigating Security Risks

As mentioned above, sensitive data belonging to a certain patient is stored together
with the user role in the tenant database. As all data queries are filtered by the data
access object based on the fenantID, queries can never return data belonging to
different tenants.

Communication between a client computer and the web server is encrypted,
as all communication uses HTTPS over SSL. This was already the case with the
legacy application.

B.6 Discussion and Evaluation

Moving applications to the cloud and adding multi-tenancy introduces new oppor-
tunities for our presented use cases. First of all, there is the increased flexibility
and elasticity. When the workload on the application increases, new instances can
be created and deployed automatically. Similarly, when the workload decreases,
instances can again be removed. For new customers, deployment times decrease as
there is no need to physically install a new server. By using a PaaS platform instead
of TaaS, there is no need to install, configure and manage the guest OS, further
reducing the deployment times. The hardware maintenance cost is also eliminated
as the virtual machines running in the cloud are automatically migrated when the
hardware fails. Combining multi-tenancy and migration to a public cloud makes
maintenance easier, as the software is deployed centrally, and no on-site interven-
tion is needed, for example to install patches or updates. Adding multi-tenancy to
the application also improves the efficiency of resource utilization, decreasing the
costs, and eliminates the need for installing and configuring independent copies
of the same software, sometimes running different versions of the software. In
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this section, we will highlight some of the major advantages of the migration, and
compare them with the overhead of the migration.

B.6.1 Increased flexibility and elasticity

As the amount of available resources in the cloud is quasi unlimited, application
developers don’t have to worry about selecting the right amount of resources to host
the software. Novel multi-tenant applications can start with a single instance, and
the number of instances can grow as the workload increases. In cloud computing,
elasticity is defined as the degree to which a system is able to adapt to workload
changes by provisioning and de-provisioning resources in an autonomic manner,
such that at each point in time the available resources match the current demand
as closely as possible. In our approach, we have presented some possibilities for
building elastic applications in the step of Scaling the Application. For the two case
studies, we also started with a single instance, and determined the possibilities to
scale the application as the demand grows.

B.6.2 Decreased deployment time

The addition of multi-tenancy to the application and migration to a public cloud
yields a significant decrease in deployment times, especially for new tenants. Ta-
bles B.5 and B.6 illustrate this for the MC software case study by giving an estima-
tion of the needed deployment time for a new tenant, respectively before and after
the migration process.

Before migration, a physical server was installed and configured on-site for
every new tenant, together with the device manager and peripherals. A local copy
of the administration service was installed and configured on the dedicated physical
server together with a SQL Server instance. A total of 6 man-days was required to
perform the installation and configuration of both the server and the device manager
and peripherals.

Task Time
Install and configure on-site server for application 1 day
Deploy administration service on on-site server 1 day
Configure SQL server and initial tenant database 1 day
Configure on-site hardware (device manager and peripherals) 2 days
Verification and testing 1 day

Table B.5: Initial configuration of new tenant before migration: time estimation for the MC
software case study.
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Task Time
Create new tenant and initial tenant database 1 hour
Impact analysis on client network (automated) 1 hour
Configure on-site hardware (device manager and peripherals) 2 days
Verification and testing 1 day

Table B.6: Initial configuration of new tenant after migration: time estimation for the MC
software case study.

Task Time

Deploy administration service on Azure 2 hours
Deploy tenant configuration interface on Azure 2 hours
Create initial databases on SQL Azure 2 hours
Create tenant administrators 2 hours

Table B.7: Initial deployment after migration: time estimation for the MC software case
study.

After migration, the initial configuration time is largely reduced. Only the device
manager and peripherals need to be installed, and the configuration of the device
manager can be done remotely by using the multi-tenant administration service
running on the cloud. As only a new tenant needs to be created, no local copy of
the administration service needs to be installed and configured. An estimated total
of 3.5 man-days are required for the initial setup after migration, mainly for the
installation and configuration of the on-site device manager and the peripherals,
and for full testing.

Migrating the device manager to the cloud could further reduce the deployment
time, but this however introduces additional challenges which were mentioned
before in Section B.4.2.1. For completeness, Table B.7 shows an estimation of the
initial deployment of the application on Microsoft Azure. This initial deployment
needs to be done only once, and not for every new tenant.

B.6.3 Ease of Maintenance

Having the core of the MC software, the administration service, hosted in the public
cloud makes maintenance a lot easier, as installers no longer need to go on-site
to make small configuration changes. Eventually, one could argue that having
VPN connections to the customer sites could also bypass this, but this requires a
VPN setup to the hospitals, or public access to the internal network, which again
introduces some security risks, together with a stable external connection at the
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client side. Having a single multi-tenant application also has the advantage that
every tenant uses the same version of the software, and software updates can be
deployed centrally, for all tenants at once. For installing software updates, a second
instance can be deployed and configured in an isolated environment on the public
cloud, and switched with the current instance once the configuration and testing is
done. Software updates and patches for the device managers can be pushed from the
central administration service, as under normal circumstances, the device manager
has a persistent connection to the administration service and will frequently check
for updates.

For our second case study, the schedule planner, deploying the multi-tenant
application on the public cloud results in similar benefits. Before adding multi-
tenancy to the application, different independent versions were deployed, and
updating and maintaining the application became harder as the number of tenants
grew. After migration to the cloud, only one copy of the multi-tenant application
is running on multiple instances in the cloud, and all tenants are running the latest
software of the application.

B.6.4 Migration Cost

Migrating software to the cloud and adding multi-tenancy to the application comes
at a cost. The architecture and code might need to be changed, and the software
needs to be tested thoroughly. Extra attention needs to be paid to the security
aspect, as the whole application or some components are now hosted remotely. For
the MC software, we spent a total of six man-months to implement the changes
described for in Section B.4. For a production ready application in the cloud, an
estimated additional 14 man-months would be required, as summarized in Table B.8.
The remaining tasks mainly focus on adapting the cloud application to support
the existing SLAs, investigating possibilities for automatic backup and restore,
providing training for installers and full testing.

For the schedule planner, our second case study, only two man-months were
required to implement the changes described in Section B.5, as this application is
less complex than the MC software. Adding multi-tenancy to the legacy application
required a bit less than two man-months. For the migration to Amazon EC2 only 1
day was sufficient, whereas for Google AppEngine a few man-days were necessary
to implement the required changes. For a production ready application in the
cloud, an estimated additional 4 man-months would be required, for finishing the
application and full testing.

B.6.5 Remaining Risks

As some components are now hosted on a public cloud, there is an increased
security risk. For our first cast study, the MC software, extra attention should be
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Task Time

Azure-specific tasks 3 man-months
Explore monitoring options
Define backup and restore strategies
Verify SLA constraints on Azure
Adapt cost model
Administration Service 8 man-months
Improve security of service and features
Make complete mapping for all features
Migrate remaining features to Azure
Add support for newest hardware nodes
Study impact of shared vs. dedicated database instances
Other remaining issues

Impact Analyzer 1 man-month
Support dynamic generated topologies
Other tasks 2 man-months

Training and development courses for developers
Training for installers, retailers, clients
Full testing of application

Table B.8: Tasks to be done for a production ready application in the cloud: time estimation
for the MC software case study..

paid to the new risks introduced by moving the software to the public cloud. A
side-effect of the migration is that the Administration Service is now hosted in
the public cloud, and could become a bottleneck if the number of tenants grows
significantly. Therefore, extra attention should also be paid to the scalability of this
service. For our second case study, the main security risk is due to the addition of
multi-tenancy, so the application need to guarantee isolation of sensitive data, for
example by restricting all queries to filter data based on the fenantID.

B.6.6 Change in Cost Model

Migrating the software to the cloud brings a change in the cost-model of the MC
software. Before the migration, the software and hardware was typically sold as a
single package, including the necessary hardware, licenses for the software, initial
installation and configuration. As most public providers work with monthly fees,
the application provider should adapt the cost-model to reflect this cost model.
Instead of selling a one-time license for the software, the end users can pay a
monthly fee, depending on the size of the tenant, covering the hosting on Azure and
future software changes and updates. The Tenant Configuration Interface can be
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Label Description Estimated cost

local A dedicated virtual machine with 1GB Ram and +20.00 USD/month +
1vCPU, running on a physical Linux server with an one-time infrastructure
Intel Core i7 CPU (2.80 GHz) with 8 GiB of memory.  cost

shared The shared web server on which the legacy 1.82 USD/month
application was running before migration to the public
cloud.

EC2 Amazon EC2 t2.micro instance 14.28 USD/month

AppEngine  Instance running on Google AppEngine depends on usage

Table B.9: An overview of the different deployment environments. The mentioned cost values
are valid at the time this appendix was submitted as an article.

designed to support this cost-model, and could be linked to the financial software.
This change in cost model introduces a new opportunity by expanding the customer
market, as smaller clients (for example small rest-houses) are now able to start
using the software at a lower cost, as the costs of implementing the system can now
easier be spread over time, less hardware is required on-premise, and computational
resources are shared between multiple tenants.

The schedule planner software was already being sold using a license-based cost
model. Adding multi-tenancy and migrating the application to the cloud introduces
no visible changes in cost model. Sales prices could however drop as utilization of
available resources is optimized by adding multi-tenancy to the application, and the
infrastructure cost is reduced by using a public cloud provider.

B.6.7 Performance Comparison

The performance of an application running on the cloud depends on both the
selected cloud provider and the selected instance type. We selected the second case
study, the medical appointments schedule planner, for evaluating the performance of
the selected cloud providers, as this application is fully migrated to the public cloud,
whereas the MC application is only partially migrated, making the performance
depend on more factors such as the on-site client network topology and capacity
and on-site available hardware.

In order to evaluate the performance of the medical appointments schedule
planner, we deployed the application to four different environments, as summarized
in Table B.9. We measured the average page generation time, this is the time needed
for the PHP interpreter to generate the page, for different pages of the application.
This metric does not take into account the network latency, as the generation time
is measured at the server side by the PHP interpreter itself. We also measured the
end-to-end transaction time, this is the total load time as perceived by the client,
as this metric does include the network latency. The schedule planner application
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local shared EC2 AppEngine

Y o Y o Y o Y o

Page1l 0.19588 0.00596  3.20709 0.81836 0.19557 0.00437 6.28543  0.84406
Page2 0.20555 0.00688  3.00282 0.23948 0.19974 0.00372  6.38447  0.91441
Page3 0.02882 0.00216 0.33663 0.03426 0.02183 0.00039 1.38429 0.56244

Table B.10: Average page generation times (in seconds) and standard deviations for 3 test
pages over 50 iterations.
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Figure B.11: A comparison of the average page generation times for 3 test pages over 50
iterations.

local shared EC2 AppEngine

Y o Y o Y o Y o

Pagel 0.39160 0.01721  3.39200 0.74018 0.54840 0.10075 6.68200 0.79333
Page2 0.37520 0.00934 3.11800 0.23113 0.47580 0.08840 7.03000 0.83211
Page3 0.22260 0.00439 0.43580 0.03662 0.40920 0.03746  1.57200 0.56211

Table B.11: Average end-to-end transaction times (in seconds) and standard deviations for 3
test pages over 50 iterations.
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Figure B.12: A comparison of the average end-to-end transaction times for 3 test pages over
50 iterations.

was configured with a custom database based on data from existing production
databases, combining historical data from different tenants over the last 3 years.
We selected three specific pages for this experiment. The first two pages perform
complex merge operations on the tenant data, as these pages were reported by
existing users as being too slow. The third page is a normal page with an average
load time. The experiments were executed on the cloud platforms in January 2015.
Table B.10 provides the measured average page generation times together with the
standard deviations for the selected test pages over 50 iterations, and Figure B.11
illustrates the same results graphically. Table B.11 and Figure B.12 are similar, but
for the end-to end transaction times.

As can be seen from these results the Amazon EC2 Engine provides a good
performance, as it is even faster than the local VM, even though we used the lightest
instance available, a t2.micro instance. The Google AppEngine on the other hand
is rather slow, as it takes up to 7 seconds to generate one of the selected heavy
pages. A possible explanation for this is that PHP support by Google AppEngine
is still experimental, and the engine is not yet optimized for PHP. We however
would like to note that the performance of Google AppEngine has already improved
considerably over the last months, as in September 2014 the similar experiments
were executed, and the same page could then take up to 45 seconds to generate. For
a production ready application in the cloud, Amazon EC2 will however be selected
to host the application, as it currently is a clear winner in the executed experiments.
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B.7 Conclusions

Cloud computing and multi-tenancy allow providers to improve the scalability of
applications while reducing hosting costs. In this appendix, we presented a generic
approach for migrating legacy software to the public cloud, and adding multi-
tenancy to the application. We briefly described the different steps needed to convert
the dedicated application to a cloud application, and the steps required to add multi-
tenancy to the application. We verified our approach using two case studies from
medical software: medical communications software and a medical appointments
schedule planner. For the MC software, we migrated some components to a public
cloud provider, creating a hybrid cloud, whereas for the schedule planner, we did a
full migration of the legacy software to two different public cloud provider.

Migrating an application to the public cloud only requires a limited number
of changes, while the conversion from a single-tenant to a multi-tenant applica-
tion requires more steps as the latter requires limited changes to the application
architecture. These modifications are however necessary to fully benefit from the
opportunities of public cloud computing. We presented a proactive approach by
identifying and eliminating possible future risks, for example by mitigating security
risks and analyzing the architecture regarding its scalability.

In our evaluation, we described the advantages of both the cloud migration and
the addition of multi-tenancy, and took into account the costs of the migration and
remaining risks. After migrating the MC software, the time needed for the initial
creation of a new tenant is strongly reduced (from 6 to an estimated 3.5 man-days,
including the initial setup of the dedicated hardware), and maintenance has become
much easier after migration. The reduction in initial costs and management costs
also enables supporting smaller clients for which the costs used to be prohibitive.
Supporting these additional clients may present new business opportunities in the
long-term.

For scenarios where the performance is critical, different public cloud providers
should be considered and evaluated, and within a single provider different instance
types might exist. For our second use case, Amazon EC2 has a clear advantage over
Google AppEngine for running the schedule planner, and yielded even better results
than a dedicated virtual machine on a physical Linux server. The advantages of
using a PaaS provider should also be weighted against the increased control gained
when using an [aaS provider.

Migrating legacy software to the cloud comes at a cost, and some application
components may need to be modified or rewritten. However, by following the
multi-step migration approach presented in this appendix, the benefits of a cloud
migration could outweigh the costs of implementing the described changes, as can
be seen in the evaluation section of this appendix.
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