19 research outputs found

    Prototyping a peer-to-peer session initiation protocol user agent

    Get PDF
    The Session Initiation Protocol (SIP) has in recent years become a popular protocol for the exchange of text, voice and video over IP networks. This thesis proposes the use of a class of structured peer to peer protocols - commonly known as Distributed Hash Tables (DHTs) - to provide a SIP overlay with services such as end-point location management and message relay, in the absence of traditional, centralised resources such as SIP proxies and registrars. A peer-to-peer layer named OverCord, which allows the interaction with any specific DHT protocol via the use of appropriate plug-ins, was designed, implemented and tested. This layer was then incorporated into a SIP user agent distributed by NIST (National Institute of Standards and Technology, USA). The modified user agent is capable of reliably establishing text, audio and video communication with similarly modified agents (peers) as well as conventional, centralized SIP overlays

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Publish/Subscribe Gateway for Real-time Communication

    Get PDF
    Tässä diplomityössä esitellään yhdyskäytävä, jolla voidaan yhdistää IP-verkot ja informaatiokeskeiset julkaisu/tilaus-verkot toisiinsa sekä mahdollistaa niiden käyttäminen rinnakkain. Internetin arkkitehtuuria on ehdotettu uudistettavaksi siten, että nykyisestä ns. isäntäkeskeisestä mallista siirryttäisiin informaatiokeskeiseen malliin. Eräs projekti, jossa tätä tutkitaan, on PURSUIT, jossa tietoliikenne perustuu julkaisu/tilaus-malliin. Projektissa on otettu huomioon myös tämän uuden arkkitehtuurin käyttöönottaminen Internetissä. Tähän liittyen tässä diplomityössä on suunniteltu yhdyskäytävä, joka muuntaa IP-liikenteen julkaisu/tilaaja-pohjaiseksi ja päinvastoin. Muunnos voidaan tehdä SIP-protokollaa käyttäville puheluille sekä IP-monilähetystä hyödyntäville multimediavirroille. Yhdyskäytävän avulla operaattorit voivat hyödyntää verkossaan informaatiokeskeisen mallin ominaisuuksia sekä siihen liittyviä mekanismeja, kuten tilatonta monilähetystä, ja verkon käyttäjät puolestaan voivat edelleen käyttää IP-yhteyksiä ja -sovelluksia. Työssä kuvataan, yhdyskäytävän toiminnallisuudet, jotka mahdollistavat SIP-istunnon alullepanemisen, parametrien neuvottelun, media-istunnon käynnistämisen sekä istunnon ylläpitämisen ja katkaisemisen julkaisu/tilaus-verkon ylitse. Työssä on myös suunniteltu SIP-rekisteriöintipalvelinsovellus, joka hoitaa käyttäjien rekisteröinnin, puheluiden uudelleenohjaukset sekä käyttäjien liikkuvuuden. Lisäksi kuvataan yhdyskäytävään sisältyvä mekanismi, jolla multimedian virtauttaminen monilähetyksenä on toteutettu. Yhteyskäytävä vastaa tässä tapauksessa monilähetysryhmien luomisesta ja purkamisesta sekä istuntoihin liittymisestä ja poistumisesta. Yhdyskäytävän suunnitelman lisäksi diplomityössä kuvataan prototyypin toteutus sekä arvioimme järjestelmän vastaavuutta työssä määriteltyihin vaatimuksiin. Lisäksi analysoimme järjestelmän suorituskykyä ja liikenteen määrää istuntojen eri vaiheissa, sekä vertaamme näitä tuloksia IP- ja julkaisu/tilaus-verkkojen välillä.This thesis proposes a design of a gateway, which connects IP and publish/subscribe networks together, enabling their co-existence, for example, during an IP to pub/sub migration phase. There is a proposal to revise the architecture of the present Internet, from "Host-Centric Networking" to a new concept called "Information-Centric Networking (ICN)". One of the ongoing projects in this field is the PURSUIT project, which uses the publish/subscribe paradigm as a basic communication model. Since the proposal from the PURSUIT project has gained quite much interest recently, the next step is to consider the process of deploying the new Internet architecture. This thesis focuses on gateway's mechanism to transparently convert IP-based end-to-end traffic to the publish/subscribe based and vice versa, in order to support voice communication using Session Initiation Protocol as well as multimedia streaming over multicast. The main idea of our design is to allow operators to utilize the features of Information-Centric Networking, while home users or companies can still use legacy IP connectivity and applications. In this scenario, the operators will gain benefits from new solutions, e.g., stateless Bloom-filter based multicast forwarding in the pub/sub network. We describe the gateway's functionalities to handle SIP session initialization, parameters negotiation, media session establishment, as well as maintaining and terminating the session over the publish/subscribe network. This includes a design of a pub/sub based SIP registrar for taking care of user registration, call redirection, and mobility. Moreover, we also discuss the mechanism to support multimedia streaming over multicast. Our gateway is responsible for group establishment, session joining and leaving, and eventually group termination. In addition to our design, we describe an implemented prototype, and evaluate the system's functionalities according to the requirements of this thesis. After that, we analyze the performance of the design and implementation, traffic density during different phases of both SIP and multicast sessions, and finally compare the call setup duration between IP and pub/sub networks

    An interoperable and secure architecture for internet-scale decentralized personal communication

    Get PDF
    Interpersonal network communications, including Voice over IP (VoIP) and Instant Messaging (IM), are increasingly popular communications tools. However, systems to date have generally adopted a client-server model, requiring complex centralized infrastructure, or have not adhered to any VoIP or IM standard. Many deployment scenarios either require no central equipment, or due to unique properties of the deployment, are limited or rendered unattractive by central servers. to address these scenarios, we present a solution based on the Session Initiation Protocol (SIP) standard, utilizing a decentralized Peer-to-Peer (P2P) mechanism to distribute data. Our new approach, P2PSIP, enables users to communicate with minimal or no centralized servers, while providing secure, real-time, authenticated communications comparable in security and performance to centralized solutions.;We present two complete protocol descriptions and system designs. The first, the SOSIMPLE/dSIP protocol, is a P2P-over-SIP solution, utilizing SIP both for the transport of P2P messages and personal communications, yielding an interoperable, single-stack solution for P2P communications. The RELOAD protocol is a binary P2P protocol, designed for use in a SIP-using-P2P architecture where an existing SIP application is modified to use an additional, binary RELOAD stack to distribute user information without need for a central server.;To meet the unique security needs of a fully decentralized communications system, we propose an enrollment-time certificate authority model that provides asserted identity and strong P2P and user-level security. In this model, a centralized server is contacted only at enrollment time. No run-time connections to the servers are required.;Additionally, we show that traditional P2P message routing mechanisms are inappropriate for P2PSIP. The existing mechanisms are generally optimized for file sharing and neglect critical practical elements of the open Internet --- namely link-level security and asymmetric connectivity caused by Network Address Translators (NATs). In response to these shortcomings, we introduce a new message routing paradigm, Adaptive Routing (AR), and using both analytical models and simulation show that AR significantly improves message routing performance for P2PSIP systems.;Our work has led to the creation of a new research topic within the P2P and interpersonal communications communities, P2PSIP. Our seminal publications have provided the impetus for subsequent P2PSIP publications, for the listing of P2PSIP as a topic in conference calls for papers, and for the formation of a new working group in the Internet Engineering Task Force (IETF), directed to develop an open Internet standard for P2PSIP

    A Decentralized Session Management Framework for Heterogeneous Ad-Hoc and Fixed Networks

    Get PDF
    Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.The invention of the phone has radically changed the way people communicate, as it allowed persons to get in contact instantly no matter of their location. However, phone communication has been confined for decades to a fixed location, be it one's own house or a phone boot. The widespread affirmation of cellular technologies has had for fixed telephony a similar impact that the invention of the phone has had on communications years before. With mobile phones, people are enabled to talk with each other anytime and anywhere. Internet has also revolutionized the way people communicate. E-mails have soon become one of the Internet killer applications. Later on, instant messaging, popularly known as chatting, has gained huge consensus among net surfers. Only recently, the use of the Internet for voice communication is becoming mainstream, and the so called Voice over IP (VoIP) applications (Skype is probably the most famous for the masses) are becoming common use. Despite its popularity, Internet still suffers from the inherent limitations that affected early telephony: it is fixed. The usage of Internet on the move still does not constitute the easiest and most satisfactory user experience, due to capabilities and limitations of the access technology, terminals, services and applications. Efforts for mobilizing the Internet are ongoing both in the industrial and in the academic worlds, but several bricks are needed to build the wall of mobile Internet. This dissertation provides one of these bricks, describing a solution that allows the deployment of multimedia applications (chat, VoIP, gaming) in mobile environments. In other words, this dissertation gives solutions for facilitating ubiquitous Internet-based communication, anytime and anywhere. The vision that we want to become true is that Internet must become mobile in the same way as fixed telephony has become mobile thanks to the cellular technology. More than this, we do not want that users are limited by the presence of an infrastructure to communicate with each other. In order to achieve this, we present solutions to deploy Internet-based services and applications in environments where no support from servers is available. In other words, we enable direct device-to-device, user-to-user Internet communication. Our contribution is mainly focused on the steps needed to establish the communication, the so called session establishment or signaling phase. We have validated our signaling framework by building a chat application that utilizes its features and works in server-less environments. The custom server-less solution does not prohibit to connect at the same time with the Internet, so that one can engage in a chess game using direct communication with a person in the proximity while having a chat in progress with a friend using standard Internet services. The challenge that we had to face is that Internet services and applications are usually built implying support from a centralized server. In order to deploy direct user-to-user Internet services, while maintaining interoperability with mainstream services, we had to enhance native Internet services to work without infrastructure support, without sacrificing interoperability with standard Internet applications. To conclude, we have placed our brick on the still yet to be completed wall of mobile Internet. Our hope is that one day, thanks also to this brick, everybody will be able to enjoy Internet-based applications as easily as now it is possible to use mobile telephony services

    A hybrid and cross-protocol architecture with semantics and syntax awareness to improve intrusion detection efficiency in Voice over IP environments

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 134-140).Voice and data have been traditionally carried on different types of networks based on different technologies, namely, circuit switching and packet switching respectively. Convergence in networks enables carrying voice, video, and other data on the same packet-switched infrastructure, and provides various services related to these kinds of data in a unified way. Voice over Internet Protocol (VoIP) stands out as the standard that benefits from convergence by carrying voice calls over the packet-switched infrastructure of the Internet. Although sharing the same physical infrastructure with data networks makes convergence attractive in terms of cost and management, it also makes VoIP environments inherit all the security weaknesses of Internet Protocol (IP). In addition, VoIP networks come with their own set of security concerns. Voice traffic on converged networks is packet-switched and vulnerable to interception with the same techniques used to sniff other traffic on a Local Area Network (LAN) or Wide Area Network (WAN). Denial of Service attacks (DoS) are among the most critical threats to VoIP due to the disruption of service and loss of revenue they cause. VoIP systems are supposed to provide the same level of security provided by traditional Public Switched Telephone Networks (PSTNs), although more functionality and intelligence are distributed to the endpoints, and more protocols are involved to provide better service. A new design taking into consideration all the above factors with better techniques in Intrusion Detection are therefore needed. This thesis describes the design and implementation of a host-based Intrusion Detection System (IDS) that targets VoIP environments. Our intrusion detection system combines two types of modules for better detection capabilities, namely, a specification-based and a signaturebased module. Our specification-based module takes the specifications of VoIP applications and protocols as the detection baseline. Any deviation from the protocol’s proper behavior described by its specifications is considered anomaly. The Communicating Extended Finite State Machines model (CEFSMs) is used to trace the behavior of the protocols involved in VoIP, and to help exchange detection results among protocols in a stateful and cross-protocol manner. The signature-based module is built in part upon State Transition Analysis Techniques which are used to model and detect computer penetrations. Both detection modules allow for protocol-syntax and protocol-semantics awareness. Our intrusion detection uses the aforementioned techniques to cover the threats propagated via low-level protocols such as IP, ICMP, UDP, and TCP

    Designing and prototyping WebRTC and IMS integration using open source tools

    Get PDF
    WebRTC, or Web Real-time Communications, is a collection of web standards that detail the mechanisms, architectures and protocols that work together to deliver real-time multimedia services to the web browser. It represents a significant shift from the historical approach of using browser plugins, which over time, have proven cumbersome and problematic. Furthermore, it adopts various Internet standards in areas such as identity management, peer-to-peer connectivity, data exchange and media encoding, to provide a system that is truly open and interoperable. Given that WebRTC enables the delivery of multimedia content to any Internet Protocol (IP)-enabled device capable of hosting a web browser, this technology could potentially be used and deployed over millions of smartphones, tablets and personal computers worldwide. This service and device convergence remains an important goal of telecommunication network operators who seek to enable it through a converged network that is based on the IP Multimedia Subsystem (IMS). IMS is an IP-based subsystem that sits at the core of a modern telecommunication network and acts as the main routing substrate for media services and applications such as those that WebRTC realises. The combination of WebRTC and IMS represents an attractive coupling, and as such, a protracted investigation could help to answer important questions around the technical challenges that are involved in their integration, and the merits of various design alternatives that present themselves. This thesis is the result of such an investigation and culminates in the presentation of a detailed architectural model that is validated with a prototypical implementation in an open source testbed. The model is built on six requirements which emerge from an analysis of the literature, including previous interventions in IMS networks and a key technical report on design alternatives. Furthermore, this thesis argues that the client architecture requires support for web-oriented signalling, identity and call handling techniques leading to a potential for IMS networks to natively support these techniques as operator networks continue to grow and develop. The proposed model advocates the use of SIP over WebSockets for signalling and DTLS-SRTP for media to enable one-to-one communication and can be extended through additional functions resulting in a modular architecture. The model was implemented using open source tools which were assembled to create an experimental network testbed, and tests were conducted demonstrating successful cross domain communications under various conditions. The thesis has a strong focus on enabling ordinary software developers to assemble a prototypical network such as the one that was assembled and aims to enable experimentation in application use cases for integrated environments
    corecore