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ABSTRACT

Scaling up VoIP: Transport Protocols and
Controlling Unwanted Communication Requests

Kumiko Ono

Millions of people worldwide use voice over IP (VoIP) services not only as cost-effective

alternatives to long distance and international calls but also as unified communication tools,

such as video conferencing. Owing to the low cost of new user accounts, each person can

easily obtain multiple accounts for various purposes. Rich VoIP functions combined with

the low cost of new accounts and connections attract many people, resulting in a dramatic

increase in the number of active user accounts. Internet telephony service providers (ITSPs),

therefore, need to deploy VoIP systems to accommodate this growing demand for VoIP user

accounts. Attracted people also include bad actors who make calls that are unwanted to

callees. Once ITSPs openly connect with each other, unwanted bulk calls will be at least

as serious a problem as email spam. This dissertation studies how we can reduce load both

on ITSPs and end users to ensure continuing the success of VoIP services.

From ITSPs’ perspective, the scalability of VoIP servers is of importance and concern.

Scalability depends on server implementation and the transport protocol for SIP, VoIP sig-

naling. We conduct experiments to understand the impact of connection-oriented transport

protocols, namely, TCP and SCTP, because of the additional costs of handling connec-

tions. Contradicting the negative perception of connection-oriented transport protocols,

our experimental results demonstrate that the TCP implementation in Linux can maintain

comparable capacity to UDP, which is a lightweight connection-less transport protocol. The

use of SCTP, on the other hand, requires improving the Linux implementation since the

not-well-tested implementation makes a server less scalable. We establish the maximum

number of concurrent TCP or SCTP connections as baseline data and suggest better server

configurations to minimize the negative impact of handling a large number of connections.



Thus, our experimental analysis will also contribute to the design of other servers with a

very large number of TCP or SCTP connections.

From the perspective of end users, controlling unwanted calls is vital to preserving

the VoIP service utility and value. Prior work on preventing unwanted email or calls has

mainly focused on detecting unwanted communication requests, leaving many messages or

calls unlabeled since false positives during filtering are unacceptable. Unlike prior work,

we explore approaches to identifying a “good” call based on signaling messages rather than

content. This is because content-based filtering cannot prevent call spam from disturbing

callees since a ringing tone interrupts them before content is sent.

Our first approach uses “cross-media relations.” Calls are unlikely to be unwanted if

two parties have previously communicated with each other through other communication

means. Specifically, we propose two mechanisms using cross-media relations. For the first

mechanism, a potential caller offers her contact addresses which might be used in future

calls to the callee. For the second mechanism, a callee provides a potential caller with

weak secret for future use. When the caller makes a call, she conveys the information to

be identified as someone the callee contacted before through other means. Our prototype

illustrates how these mechanisms work in Web-then-call and email-then-call scenarios. In

addition, our user study of received email messages, calls, SMS messages demonstrates the

potential effectiveness of this idea.

Another approach uses caller’s attributes, such as organizational affiliation, in the case

where two parties have had no prior contact. We introduce a lightweight mechanism for

validating user attributes with privacy-awareness and moderate security. Unlike existing

mechanisms of asserting user attributes, we design to allow the caller to claim her attributes

to callees without needing to prove her identity or her public key. To strike the proper

balance between the ease of service deployment and security, our proposed mechanism

relies on transitive trust, through an attribute validation server, established over transport

layer security. This mechanism uses an attribute reference ID, which limits the lifetime and

restricts relying parties. Our prototype demonstrates the simplicity of our concept and the

possibility of practical use.
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Chapter 1

Introduction

Over the past decade, voice over IP (VoIP) communication has rapidly evolved into an

essential application owing to its low cost and service extensibility. VoIP communication

initially started as services within an enterprise network as well as low-cost long distance

and international calls. It has expanded to accommodate a large number of users over

the Internet, to provide interconnection services to the public switched telephone network

(PSTN) and cellular networks, and to offer unified communication tools with other services,

such as video conferencing, instant messaging, presence, and Web services. It is expected

to further grow by mobile phone devices supporting mobile broadband technologies, such

as the 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) [3GPP,

2011]. This evolution of VoIP communication has led to a sharp rise in call volume and

the number of users. VoIP users have included not only humans but also computers that

typically play recorded messages for various purposes, such as notification, marketing, and

surveys. This human and computer behavior currently works well within closed networks,

where a limited number of VoIP service providers or Internet telephony service providers

(ITSPs) connect with each other based on business alliances. However, this behavior will

degrade once ITSPs openly connect each other, resulting in certain VoIP users exploiting

its low service cost and easy usage to make unwanted bulk calls for commercial gain. With

the future deployment of large-scale open VoIP systems, the issue of incoming unwanted

calls will worsen than unwanted bulk email or email spam [Andersson et al., 2007], which

has caused major problems in the Internet. Therefore, scalability of VoIP communication
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Large-scale VoIP System
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Figure 1.1: An overview of challenges to manage vast traffic

services and its resilience to unwanted calls are of vital importance and concern.

Figure 1.1 shows an overview of challenges to manage a vast amount of VoIP traffic

both on VoIP servers operated by ITSPs and on VoIP users, specifically callees. From

ITSPs’ perspective, the challenge is how to scale up their VoIP system. In general, system

scalability is achieved by distributing load across multiple servers [Katz et al., 1994]. To

determine how many servers are needed to build a scalable system, it is important to

identify capacity and performance of a single server. To provide VoIP services, the Session

Initiation Protocol (SIP) [Rosenberg et al., 2002] is widely used as the signaling protocol

to set up and tear down a communication session. SIP user agents (UAs) negotiate media

information, such as a voice codec, the IP address, and the port number, in the Session

Description Protocol (SDP) [Handley et al., 2006], which is attached as a body content in a

SIP message. The SIP UAs then establish not only a voice communication session, but more

generally, real-time communication sessions between them. SIP can easily extend services

by adding a header field or a body content including the SDP to a message, similar to

Hypertext Transfer Protocol (HTTP) [Fielding et al., 1999] and email messages [Resnick,

2008]. Thus, it is vital for ITSPs to measure capacity and performance of a large-scale

SIP server. On the other hand, from the perspective of VoIP users, the challenge is how

to reduce load at callees by controlling unwanted calls. Since most of callees are humans,
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it is important to enable callees to receive all important calls without being disturbed by

unwanted calls.

1.1 The Need for Reducing Load on SIP Servers: Under-

standing the Impact of Transport Protocols for SIP

Many ITSPs limit the transport protocol supported by their SIP servers despite that the SIP

specification allows users to choose any transport protocol from connection-less lightweight

transport protocols such as User Datagram Protocol (UDP) [Postel, 1980] and connection-

oriented reliable protocols such as Transmission Control Protocol (TCP) [Postel, 1981] and

Stream Control Transmission Protocol (SCTP) [Stewart, 2007], depending on their service

requirements or network conditions. Without comprehensive quantitative analysis, it has

been widely considered that a large-scale SIP server should offer users only UDP, since the

SIP server needs only a single socket to communicate with all the users without maintaining

connection state. If a SIP server offers TCP or SCTP connections to users, a large number

of connections imposes additional processing costs on the SIP server. As a result, more SIP

servers are required to accommodate the same number of users than for UDP and to keep up

with the corresponding number of user registration and call requests. However, the number

of additional servers is unclear; thus, many ITSPs hesitate to support TCP and SCTP.

There are other practical reasons for not supporting SCTP. It is more heavyweight, less

capable of network address translator (NAT) and firewall traversal, and less supported by

SIP entities. According to the report from SIP interoperability test (SIPit) event [Sparks,

2011], only eight percent of SIP implementations supports SCTP, whereas most of them

support both UDP and TCP.

However, there exists a clear demand for supporting connection-oriented protocols from

the service requirements of VoIP users, conflicting with the support avoidance by ITSPs.

For additional services and security, a SIP message includes SIP extension headers and/or

cryptographic signatures, resulting in exceeding the path maximum transmit unit (MTU).

Thus, TCP or SCTP segmentation is needed to transmit a feature-rich SIP message. Addi-

tionally, to protect messages between a user and the SIP server, a SIP message needs to use
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Transport Layer Security (TLS) [Dierks and Rescorla, 2008], which allows a SIP application

to invoke security along the signaling path. Thus, in order to fulfill the service and security

requirements of VoIP users, it is crucial that ITSPs understand how the transport proto-

col affects SIP server performance in order to provision their server resources for service

deployment.

Our goals are to identify the impact of the use of TCP and SCTP on the performance of

a SIP server and to suggest better configurations that minimize any negative effects. Our

approach is to experimentally analyze the maximum number of concurrent connections,

data transfer latency, and sustainable request rate by identifying bottlenecks in the step-

by-step manner using three servers: an echo server, a simplified SIP server, and a full SIP

server.

We hypothesize that, despite additional costs of processing a large number of connec-

tions, using TCP is not harmful since TCP implementations have been well developed and

deployed for scalable HTTP servers [Kegel, 2006]. On the other hand, we suspect the impact

of using SCTP is larger than that of using TCP for two reasons. First, the SCTP data struc-

ture is more complicated since SCTP was originally designed to carry a telephony signaling

protocol, Signaling Systems No. 7 over IP [Coene and Pastor-Balbas, 2006], which requires

failover capability. Second, SCTP is a relatively new design, resulting in implementations

that have not yet been well tested.

We expect that providing the quantitative analysis of the impact of using TCP or

SCTP could help ITSPs re-provision their server resources for their server deployment.

Consequently, users would be able to select any transport protocol among UDP, TCP, and

SCTP depending on their services or network conditions. Based on these hypotheses, this

thesis intends to quantify the impact of using a connection-oriented transport protocol,

TCP or SCTP, on the capacity and performance of a SIP server.
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1.2 The Need for Reducing Load on Callees: Controlling

Unwanted Calls

Receiving unwanted calls is a long-standing problem in the PSTN, but an IP-based infras-

tructure is more vulnerable to unwanted calls owing to its low cost of user accounts and

connections. In a small network where users suffer from few unwanted calls, simple filtering

mechanisms based on a caller identifier (ID), such as white-listing and black-listing, work

satisfactorily to determine whether or not to accept incoming calls. Additionally, law en-

forcement, such as the national Do-Not-Call registry [Commission, 2005], is fairly effective

in deterring those who place commercial calls without callees’ consent.

However, large-scale VoIP communication services diminish the effectiveness of these

efforts. There is clear evidence that the problem has become more significant; regula-

tions [FCC Robocalls, 2012] have been tightened against autodialed or pre-recorded mes-

sages, so-called robocalls. Caller-ID-based filtering, which is the most common solution,

becomes ineffective since callees often receive good calls from legitimate callers but carrying

unknown or blocked caller IDs. Law enforcement is ineffective for international calls origi-

nating from countries beyond jurisdiction. A good call is desirable by callees, as defined in

Section 6.4. Examples of these good calls include confirmations of appointments, reserva-

tions, or deliveries, and recorded notifications of flight delays or school closing on a snowy

day. These good calls, therefore, are often mistakenly labeled as unwanted calls at a call

filtering system since their caller IDs are not found in the callee’s white list, a list of contact

addresses to accept calls, as illustrated in the center of Figure 1.2. In addition, authenticated

caller IDs are not always provided in VoIP calls through different networks. For example,

international calls or calls through a VoIP–PSTN gateway sometimes have no authenticated

caller ID. That is, simple caller-ID-based mechanisms are limited in applicability.

The callee’s white list generally contains the addresses from his contact list or ad-

dress book, which is populated by contact addresses of people connected by strong social

ties [Granovetter, 1973], such as family members and friends. The white list is also updated

by outgoing communication history. For business use, the white list usually links to a di-

rectory service located on an Lightweight Directory Access Protocol (LDAP) [Sermersheim,
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Figure 1.2: An overview of the classification of incoming calls

2006] server. For either use, however, the white list does not usually include the addresses

of persons or organizations connected by weak social ties, such as friends of a friend. When

people whom are connected by weak social ties place calls for the first time, their calls are

often filtered out since their caller IDs are not found in the callee’s white list. This is called

the introduction problem.1 To mitigate this introduction problem, some systems forward

these calls to a voicemail server, rather than rejecting them. However, this is not a desirable

solution because it requires callees to check them later and delays notifications.

Our goal, therefore, is to develop more sophisticated mechanisms to help callees identify

good calls from persons or organizations connected to the callee even by weak social ties.

Callees are assumed to be consumers rather than business users, who include call centers

1This term is commonly used but not precisely defined. We define the introduction problem as a problem

with assessing a communication with a stranger. A person determines if the stranger is worth establishing a

communication with, namely, worth introducing himself or being introduced to. If the stranger can provide

the person with a thing indicating that the communication has enough value to be initiated, the problem is

solved. This problem occurs in all means of communications: in-person and over networks, such as phone

calls, email, or instant messaging (IM). Since IM services typically assess incoming messages simply by

looking the origin ID up on a recipient’s white list, the messages from good strangers cannot reach the

recipient.
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needing to accept calls from potential customers.

We hypothesize that a significant fraction of incoming good calls carries a caller ID which

is not found in the recipient’s address book. We also hypothesize that unwanted calls usually

originate from persons or organizations whom the callee has never met before.2 In contrast,

good calls originate from person or organizations who have had contact directly or indirectly

with the callee before making a call in order to know the callee’s contact address. We focus

on this prior contact which has been established through other communication means, such

as a Web transaction, or through a common friend whose social graphs overlap. Thus, this

thesis proposes a new mechanism using cross-media relations as proof of prior contact. As

a supplementary mechanism, this thesis also proposes that call acceptance decision is based

on a user’s attributes without necessarily validating the users’s identity. We expect that

these new filtering mechanisms could help recipients easily prioritize incoming calls.

1.3 Thesis Outline and Contributions

The goal of this thesis is to reduce load both on SIP servers and on callees. This thesis

consists of two parts. Part I (Chapter 2 - 4) presents the measurement to quantify the impact

of using connection-oriented transport protocols on the performance of a SIP server. Part II

(Chapter 6 - 8) proposes additional filtering mechanisms to facilitate controlling unwanted

calls.

The following outlines this thesis and contributions.

Chapter 2 provides a brief overview of a SIP server and transport protocols for SIP.

It also reviews related work for a large-scale TCP server and SIP server measurement. It

defines the capacity requirements for a large-scale SIP server.

Chapter 3 quantifies the impact of using TCP and SCTP by the measurement of an

echo server, eliminating the impact of SIP operations. It details the cost of using TCP

from the kernel perspective and identifies the bottleneck on the 32-bit kernel [Ono and

Schulzrinne, 2008b]. It also measures the effects of SCTP features related to the capacity

and performance of a server, and recommends configurations for minimizing the negative

2The exception is unwanted calls originating from compromised machines.
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impact of using SCTP, using a one-to-many socket for both clients and server [Ono and

Schulzrinne, 2008a]. By pointing out a few issues in the Linux source code, the measurement

contributes to the Linux community towards improving the SCTP Linux implementation.

Chapter 4 analyzes the impact of using TCP by the measurement of a SIP server,

specifically a SIP registrar. By comparing to the results of the echo server measurement

in Chapter 3, it identifies TCP byte-streaming as being responsible for the reduction of

the throughput using TCP although the degree of the impact depends on the SIP server

implementation. It also suggests accelerating message parsing when discarding SIP messages

under high loads in order to slow dropping the success rate. It examines the effect of SCTP

being message-oriented using a simplified SIP server, namely, a SIP front-end server which

only performs message parsing, but fails in identifying the effect. This failure indicates the

message orientation benefits SIP server performance under high loads only.

Chapter 6 defines good calls (or messages), justifying the principle of our two approaches,

controlling unwanted calls by identifying good calls is more effective than detecting call

spam. It gives an overview of solution space of preventing unwanted email and calls, dis-

cussing the limitations of caller-ID-based filtering.

Chapter 7 proposes our first approach using cross-media relations as evidence of prior

contact, to help callees identify good calls [Ono and Schulzrinne, 2009a; Ono and Schulzrinne,

2009c]. This approach uses a new SIP header, Sender-References, to convey an additional

piece of information, cross-media relations in a SIP message, which is proposed to the

IETF [Ono and Schulzrinne, 2009b]. Our prototype demonstrates proof of concept, using

Web-then-call and email-then-call. It presents a user study of incoming email messages,

calls, and short messaging service (SMS) messages to test the concept and indicates the

potential effectiveness of this approach [Ono and Schulzrinne, 2011b].

Chapter 8 presents our second approach using a user’s attributes without knowing the

user’s identity [Ono and Schulzrinne, 2011a]. Our prototype demonstrates proof of concept

and the simplicity of the implementation and deployment. It compares the functionality

and lines of code with an existing anonymous attribute certificate, U-Prove [Paquin, 2011],

and demonstrates the design concept, simplicity.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter provides the background and a summary of related work in the field of SIP

server performance measurement that focuses on comparing the impact of transport pro-

tocols, such as UDP, TCP, and SCTP. We examine the transport protocols defined in the

SIP specification, discussing their current status of implementation and deployment. They

are followed by a brief overview of TCP and SCTP, focusing on the features affecting server

performance. We then proceed to explain SIP servers, focusing on what the differences

between SIP servers and HTTP servers are, and how large our target SIP server is for

our measurement. After decomposing factors affecting SIP server performance, we finally

provide earlier work on performance improvement of a large-scale server using TCP and on

SIP server measurement.

2.2 SIP Specification of Transport Protocols

SIP is the signaling protocol to set up and tear down a real-time communication session

such as voice. SIP is a request-response protocol in ASCII text format. By adding a

header field or a body content to a SIP message, it can easily extend services, such as a

different media session, instant messaging, presence, privacy, and security features. The

SIP specification with its extension [Rosenberg et al., 2005] allows SIP entities to choose
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a transport protocol from UDP, TCP, and SCTP, per hop. When using UDP, SIP makes

use of its timers and retransmission mechanisms for reliability. It mandates UDP and TCP

implementation, but implementing TCP for SIP UAs was optional in the earlier version

of the specification [Handley et al., 1999]. It has changed to mandatory to implement in

response to a demand for handling large SIP messages exceeding the Ethernet MTU.

Although each SIP message used for basic VoIP services is approximately 500 byte

long, the size of a SIP message grows as a SIP UA supports many extensions. When a

SIP UA supports many media types and their codecs, additional services, and/or security,

it generates a large SIP message, especially for the INVITE request, including additional

media information, SIP extension headers, and/or cryptographic signatures. As a result, a

feature-rich SIP message grows beyond the Ethernet MTU of 1,500 bytes.

To deliver a message exceeding the MTU size at a link layer, using UDP is less desirable

since it needs to rely on network layer segmentation, namely, IP fragmentation. IP frag-

mentation degrades network transmission performance [Kent and Mogul, 1987]. Similar to

TCP or SCTP segmentation, IP fragmented packets are not reassembled until they reach

the final destination. However, unlike TCP or SCTP segmentation, if one of the fragments

is lost, all fragments including successfully transmitted need to be retransmitted. Thus, a

SIP UA sending a large message should rely on TCP or SCTP segmentation rather than

IP fragmentation.

2.3 SIP Implementation and Deployment of Transport Pro-

tocols

Actual implementations, however, according to the reports from the SIP interoperability

test (SIPit) events, conform only loosely to the constraint mandating TCP in the SIP spec-

ification. In the SIPit19 event held in October 2006 [Sparks, 2006], all 90 implementations

that participants brought supported UDP, whereas only 82 percent of them supported TCP.

Supporting SCTP was much smaller, six percent. Two years later, a few TCP and SCTP

implementations were added [Sparks, 2008]. Yet, a majority of implementations have pre-
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ferred UDP.1

Many ITSPs have also favored using UDP over TCP, in a user-to-server scenario, to

build and operate large-scale VoIP systems. They claimed that a SIP server should only

accept UDP messages from users; otherwise, handling a large number of TCP connections

imposes additional burdens on the SIP server and would significantly diminish server scal-

ability. Consequently, many ITSPs hesitate to support SIP UAs using TCP despite the

demand for handling large SIP messages. Once they are provided with comprehensive

quantitative analysis of the cost of using TCP and SCTP for their system, they ought to

re-provision server resources for service deployment. This thesis aims to provide provision

and deployment guidelines by measuring the impact of using TCP and SCTP.

2.4 TCP and SCTP Features Affecting Server Performance

This section briefly describes TCP and SCTP features that potentially improve SIP server

performance. Table 2.4 compares message and connection handling of UDP, TCP, and

SCTP. SCTP offers features of both TCP and UDP; similar to TCP, it is connection-

oriented and reliable, but at the same time, similar to UDP, it supports one-to-many style

sockets, which enable to send and receive from multiple remote endpoints via a single socket,

and message-orientation.

2.4.1 Connection Orientation

Using a connection-oriented protocol incurs the cost of handling connections including setup

delay. In some cases, however, it helps SIP UAs enable to receive a call request. When

a SIP UA is behind a network address translator (NAT) or firewall, using TCP makes it

easier to traverse the equipment than using UDP. Once an internal host (i.e., a SIP UA)

actively establishes a TCP connection with an external host (i.e., a SIP proxy server), a

NAT maintains address and port binding or a firewall keeps the state of the connection in

order to allow bidirectional messages over the TCP connection. Similar to TCP, a bidirec-

1The recent SIPit summary reported that TCP implementations outnumbered UDP, but the total number

of implementations considered, 25, was much smaller. [Sparks, 2011]
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UDP TCP SCTP

Support of a message

exceeding MTU

No Yes Yes

Message-oriented Yes No: Byte-stream Yes

Connection-oriented No Yes, established in three-

way handshake

Yes, established in four-way

handshake

Socket corresponding

to remote endpoints

One-to-any One-to-one One-to-one or one-to-many

Support of keep-alive

to test reachability of

the remote endpoints

N/A Yes, but disabled by default Yes

NAT binding/firewall

state lifetime

short long long

Table 2.1: Comparison of message and connection handling among UDP, TCP, and SCTP

tional message flow over UDP is supported by a NAT or firewall, but the binding or state

expires more quickly. Based on the lifetime of NAT bindings of the current implementa-

tions, a SIP UA using UDP needs to update the NAT binding or the firewall state with a

frequency approximately 30 times higher than using TCP, as defined in the SIP Outbound

mechanism [Jennings et al., 2009]. Using UDP, therefore, is undesirable not only for SIP

UAs behind NATs or firewalls, but also for a SIP proxy server that may be flooded with

periodic messages for updating NAT bindings or firewall state.

The update frequency of a NAT binding and firewall state for SCTP is likely to be as

low as that for TCP although few NATs and firewalls have supported SCTP so far [Hayes

et al., 2008; Hatonen et al., 2010].

2.4.2 One-to-Many Sockets for SCTP

SCTP provides two socket interfaces, one-to-one and one-to-many, to represent a connec-

tion, which is called an association in SCTP, between two endpoints. While a one-to-one

socket allows existing TCP applications to be easily ported to SCTP, a one-to-many socket
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enables two SCTP features different from TCP.

First, similar to UDP, using a one-to-many socket enables a single socket to receive mes-

sages from multiple associations. As Figure 2.2 shows, a server using a one-to-many socket

can create a new association without invoking the accept() system call. Consequently, us-

ing a one-to-many socket can drastically reduce the number of sockets for a server, although

maintaining a large number of associations is still required.

Second, a client using a one-to-many socket, as shown in Figure 2.3, can utilize piggyback

setup in order to reduce the setup delay of the SCTP four-way handshake. Figure 2.1 depicts

the four-way handshake using a signed cookie to enable the server to accept the SCTP INIT

message without maintaining any state. This is a countermeasure to the SCTP INIT or the

TCP SYN flooding attack, which is a form of denial of service (DoS) attacks attempting to

exhaust memory resources for connections on the server. This four-way handshake requires

one more round trip time (RTT) than the three-way handshake in TCP. Thus, the piggyback

setup option intends to mitigate the additional RTT of the SCTP handshake by bundling

user data into the COOKIE-ECHO message. It is worth noting that piggybacking data on

the TCP ACK message does not mitigate setup delay since it can be used over an established

connection only.

Therefore, using a one-to-many socket potentially benefits both server and client. At

the same time, however, it potentially decreases server request throughput by sharing a

single socket with multiple associations. A server using a one-to-many socket sends and

receives messages from all associations through a single socket buffer. It demultiplexes

received messages by four tuples: source and destination IP addresses and ports. This

processing is similar to UDP, but sent messages are kept longer than for UDP since they

cannot be removed until the SCTP ACK has been received. As a result, the send buffer may

be exhausted at high request rates. This potential impact of sharing a single socket buffer

on data transfer latency is investigated by the measurement described in Section 3.5.2. The

effect on the number of sustainable associations is described in Section 3.5.1, and the effect

of the piggyback setup on mitigating setup delay is in explained Section 3.5.3.
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2.4.3 Message Orientation in SCTP

SCTP, similar to UDP, preserves message boundaries so that an application can easily

determine whether or not a message has been delivered in full through the socket application

interface (API). This message orientation allows to an application to retrieve and parse a

single message more efficiently than a TCP byte-stream, which requires to determine the

end of a message by parsing the SIP Content-Length header field. Message parsing, however,

is necessary for SIP operations regardless of transport protocol. Thus, the benefit of SCTP

being message-oriented appears to be negligible, which is examined by the measurement

described in Section 4.5.1.

2.5 SIP Servers

SIP is a request-response protocol and has been used in a client-server architecture, similar

to HTTP. When SIP servers accept TCP messages, both SIP servers and HTTP servers

face similar impact on server performance using TCP. However, major differences exist

in service architecture and TCP connection lifetime. It is worth noting that these two

types of servers closely resemble each other when HTTP servers are used for real-time

communication [Alvestrand, 2011].

2.5.1 Service Architecture

SIP servers consist of three logical functions: a registrar for collecting user location or

contact addresses, a proxy for forwarding request and responses, and a redirect server for

resolving the address of a callee or diverting a request to another server. A proxy operates

in either of three modes: stateless, transaction-stateful, or dialog-stateful. A stateless

proxy forwards messages without maintaining any transaction state or generating a 100

Trying response. A transaction-stateful proxy maintains transaction information while a

transaction exists, for example, from the instant that it receives a SIP INVITE request to

responding with a 200 OK response. A dialog-stateful proxy maintains the dialog or call

state machines for the duration of a call. Proxy servers for ITSPs mostly operate in a

transaction-stateful or dialog-stateful mode to offer services, such as call admission control
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Figure 2.4: SIP edge servers in SIP trapezoid model

based on the codecs in the SDP [Marshall, 2003].

Figure 2.4 illustrates a typical SIP service architecture in SIP trapezoid model where the

signaling path between a caller and the callee involves two proxy servers. To be reachable,

the callee, Bob, needs to send the registrar a SIP REGISTER request including the IP address

he is currently using. When a caller, Alice (sip:alice@atlanta.com), makes a call to Bob

(sip:bob@biloxi.com), she sends a SIP INVITE request to a proxy server that is responsible

for the atlanta.com domain. The proxy then forwards the request after resolving the service

name of the biloxi.com domain to the IP address using DNS or other translation means. The

proxy server at the biloxi.com domain finally forwards the request after looking up Bob’s

contact address that the registrar for the same domain collected. This message direction at

the last hop distinguishes SIP from other communication servers like polling-based email2

or Web servers. A SIP UA receives a request from its inbound SIP proxy server. Since it

involves looking up user location to process inbound messages, a proxy server is typically

co-located with a registrar for the same domain. Such a server is often referred to as a SIP

edge server.

This SIP edge server setting is preferred by UAs under two practical scenarios, located

2Push email services are similar to SIP. For example, using IMAP IDLE or NOTIFY [Leiba, 1997;

Gulbrandsen et al., 2009] requests enables the IMAP server to send a notification message to a client.
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behind a NAT or firewall and needing a secure channel. One scenario is the case where a SIP

UA resides behind a NAT and needs to receive a SIP request from the proxy, as described

in Section 2.4.1. The NAT traversal is made possible if the SIP UA keeps refreshing the

NAT binding that was created upon its registration.

Another scenario is the case where a SIP UA needs to receive a SIP request protected

with Transport Layer Security (TLS) or Datagram Transport Layer Security (DTLS) with-

out establishing a new security session as the server, which requires its X.509 public key

certificate (PKC). If the UA maintains and reuses a TLS connection or a DTLS security

association (SA) established upon its registration, the UA can avoid requiring its PKC for

a new TLS connection or DTLS SA initiated by the proxy. A similar situation happens

when a SIP UA intends to reuse an Internet Protocol Security (IPSec) SA between the UA

and the registrar without re-entering its user credential such as a one-time password.

Thus, it is useful for SIP UAs under these practical considerations, regardless of trans-

port protocol, to maintain a connection or binding between a UA and the registrar and

reuse it between the UA and the proxy. Consequently, SIP edge servers consisting of regis-

trar and proxy functions have been widespread for both small-scale and large-scale ITSPs.

In this thesis, we simply call a SIP edge server a SIP sever.

2.5.2 Long Connection Lifetime

The SIP specification and its SCTP extension recommend a persistent TCP connection and

SCTP association, similar to HTTP/1.1 [Fielding et al., 1999]. However, a SIP server, on

behalf of users, needs to maintain idle connections longer than HTTP. This requirement

comes from the nature of real-time communication and practical considerations. SIP UAs

need to wait for arbitrary incoming call requests through the server. If they are behind a

NAT or firewall, or intend to use a secure connection with the server, they need to keep the

connection open, as explained in Section 2.5.1. In fact, typical HTTP server implementa-

tions close idle connections more quickly than SIP severs do. For example, the default idle

timeout for Apache 2.4 [Apa, 2012] is five seconds while the default configurations for the

Kamailio SIP Server 3.2 (previously called OpenSER) [Kam, 2011] are 120 seconds for a

TCP connection and 180 seconds for an SCTP association. Although these configurations
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cab be adjusted based on the requirements for server performance and services, these longer

timeout values indicate that SIP servers need to maintain longer connections with UAs.

2.6 Capacity Requirements for a SIP Server

A single server does not have to accommodate the whole user population of an ITSP.

Each ITSP provisions their server resources based on the baseline capacity data per server.

Our measurement goal is to provide the baseline capacity data of a large-scale SIP server,

especially the additional cost of using TCP or SCTP. Thus, it is unnecessary to define

precise capacity requirements for a large-scale server. However, a rough estimate of the

requirements is needed to prepare our measurement environment and evaluate the results.

Traditionally, a call server or central office in the PSTN has been sized by three pa-

rameters: the number of users to be connected, maximum call traffic that can be handled,

measured in erlang,3 and maximum processing capacity for call attempts in busy hour call

attempts (BHCAs) [Schmidt and Lopez, 1999]. Are these three parameters still useful for

sizing a SIP server? The following paragraphs examine each parameter.

The number of users is still the key factor in determining the server capacity since SIP

operations involve looking up user information, such as contact addresses for registration

and routing. Furthermore, a SIP server accepting connection-oriented transport protocols

needs to maintain a persistent connection per user, as described in Section 2.5.2. Thus, the

capacity of a SIP server depends on the size of the user population it needs to accommodate.

Traditional call traffic is less important since a SIP server needs to process not only

call traffic but also a large volume of messages for other purposes such as registering user

location, maintaining connections, and extended services (e.g., instant messaging). Call

traffic in the PSTN has been modeled with call duration and inter-arrival times as an

exponential distribution [Bellamy, 2000]. Many researchers have attempted to characterize

VoIP traffic, but it is still under investigation [Jiang and Schulzrinne, 2000; Dang et al., 2004;

Birke et al., 2010]. A traditional call holds network facilities, such as a trunk line, for the

duration of a call, whereas a VoIP call only consumes memory to maintain dialog state

3One erlang of carried traffic refers to a single resource being occupied continuously.
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on a SIP proxy server operating in a dialog-stateful mode, as described in Section 2.5.1.

A SIP proxy server in other modes, namely, transaction-stateful or stateless, ignores the

dialog state. Instead, a transaction-stateful proxy server maintains transaction state, which

usually lasts for a short time period on the millisecond or second time scale. The exception is

a transaction that involves human interaction. For example, the INVITE-200 OK transaction

in unanswered call scenarios is likely to be long. Yet, the lifetime of the state of both a

dialog and transaction is shorter than the TCP connections or user location information

maintained on a SIP server. Thus, neither call holding time nor the transaction time

considerably affects the SIP server capacity.

Another crucial factor in sizing a SIP server is maximum processing capacity for call

attempts and other types of messages. Assuming a user population of 100,000, the average

call duration is 3 minutes and 0.1 erlangs based on traditional call traffic model [Bellamy,

2000], the request rate in BHCA is 200,000 BHCA (= 100,000×0.1×(3,600/180)), which

corresponds to 55.6 requests/second. On the other hand, observing real VoIP traffic at two

ITSPs, one having 2,000,000 users [Birke et al., 2010] and another having 100,000 users,

a relatively smaller user population [Baset et al., 2010], their peak call request rates were

lower, 21.7 and 15 requests/second, respectively. Higher traffic was reported for registration

and updating NAT bindings or firewall state at the smaller ITSP. Periodic messages for

registration every 50 minutes and NAT binding update every 15 seconds were observed

since most SIP messages were transmitted over UDP.

If SIP UAs use TCP or SCTP instead of UDP, the interval of NAT binding update

messages can be longer, every 14 minutes [Jennings et al., 2009]. Even if a SIP UA directly

connects to a SIP server, it sometimes needs to keep a TCP connection protected using

TLS by sending the TCP or SIP keep-alive messages to the SIP server, as described in

Section 2.5.1. The interval of TCP or SIP keep-live messages is two hours or longer [Braden,

1989] or 95 - 120 seconds [Jennings et al., 2009], respectively. However, it is impossible and

unnecessary for the SIP server to examine the situation of each SIP UA. For whatever the

purpose of periodic messages, NAT binding update or the TCP or SIP keep-alive, SIP UAs

send similar messages consisting of zero or four byte payload data to the SIP server. Thus,

the SIP server needs to support the most frequent message type, namely, SIP keep-alive
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Required values

User population 300,000

Number of concurrent connections 300,000

Sustainable call request rate 167 requests/second

Sustainable registration request rate 104 requests/second

Sustainable keep-alive request rate 3,158 requests/second

Table 2.2: Requirements for a SIP server

messages, in terms of CPU usage.

In summary, for server sizing purposes, key factors are sustainable request rates for call,

registration, and SIP keep-alive messages, in addition to the size of the user population.

Table 2.2 summarizes the capacity requirements for a SIP server in our measurement.

The number of users is determined based on our discussion with a telecommunication car-

rier and our observation of high-capacity call servers in the market such as Lucent’s 5E-

XC [Alcatel-Lucent, 2002] and Siemens EWSD [Siemens, 2007]. A large-scale SIP server

needs to support approximately 250,000 - 300,000 users. These values are more than twice

the size of the user population for the ITSP whose traffic was observed, but agree with the

operational value that is used by ITSPs. ITSPs usually provision their resources based on

the operational upper bound, which is calculated by approximately halving the technical

upper bound [WIK, 2000]. Given the user population, 300,000, the following sustainable

request rates are calculated. Sustainable call request rate, 167, is calculated based on the

traditional call traffic model, assuming 0.1 erlangs and three minute call holding time. For

registration, each user is assumed to update its contact addresses every 48 minutes, which is

80 percent of the default registration lifetime, one hour. For maintaining TCP connections,

assuming the worst-case scenario, all UAs send keep-alive messages every 95 seconds. It is

worth noting that this keep-alive request rate, 3,158 requests/second, is the largest among

all request rates, but is still much lower than UDP, which requires a four times higher

request rate because of the shorter NAT binding lifetime.
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2.7 Components Affecting Server Performance

Our study focuses on the impact of transport protocols on SIP server performance. Con-

ventional SIP server performance has been measured to determine the cost of SIP oper-

ations [Cortes et al., 2004]. Several experiments compare sustainable request throughput

and other metrics for a SIP proxy server using UDP and TCP, and estimate the penalties

of using TCP [Salsano et al., 2002; Nahum et al., 2007]. However, such comparison often

fails to determine where the throughput reduction factor exists, either the transport pro-

tocol implementation in the operating system or a server application implementation, or

both. We decompose server processing which affects performance in order to clarify what

a common pitfall is.

1. Processing the transport protocol by the operating system.

This includes maintaining the state machine of a connection and passing messages to

and from applications.

2. Processing sockets or connections by an application using the socket APIs.

3. Processing application-protocol-specific operations by an application including mes-

sage parsing.

SIP operations consist of handling SIP request and responses and managing user

location addresses into a database. They optionally include user authentication as

well as managing the transaction state and the dialog state.

4. Processing security functions by the operating system (e.g., for IPSec) or an applica-

tion (e.g., for TLS or DTLS), if needed.

The choice of a transport protocol clearly affects the first two components implemented

by the operating system and by an application. The choice also affects part of the third com-

ponent, message parsing, since transport protocols frame messages differently, as described

in Section 2.4.3. A common pitfall in performance analysis is to confuse the cost of these first

two types of processing. Processing TCP connections by an application depends on which

system calls the server implementation invokes, and how. It is difficult to separate the cost



CHAPTER 2. BACKGROUND AND RELATED WORK 23

for these two types of processing from the measurement results of SIP server performance.

For example, the results obtained by profiling CPU cycles apparently identify the operating

system as being responsible for the reduction of the throughput, but that was due to the

inefficient handling of TCP connections in a SIP server implementation [Nahum et al., 2007;

Ram et al., 2008]. To avoid this pitfall, our measurement proceeds in stages to clarify the

real impact of the transport protocol. We next review related work: the improvement of

TCP server performance in general, SIP server measurement, and the improvement of SIP

server performance.

2.8 Scalable Servers Using TCP

Since TCP has been widely used for popular protocols, such as HTTP, building scalable

servers using TCP is a long-standing research topic while using SCTP is relatively new.

The performance of the network I/O has been drastically improved by scalable mechanisms

such as the epoll() system calls [Libenzi, 2002] for Linux systems and the kqueue()

system call [Lemon, 2001] for BSD systems. Upon being notified of events by the operating

system using conventional mechanisms (e.g., the select() system call), an application

that instructs the operating system to wait for events on a set of file descriptors needs to

walk through the entire set in order to find events. In contrast, these new mechanisms

enable the application to efficiently retrieve events from an adjusted set of file descriptors

on which events occurred. As a result, using the new mechanisms reduces the number of file

descriptors and the memory usage for them. The Linux scalability effort project [Nagar et

al., 2004] demonstrated that an HTTP server can sustain a high throughput for 100 active

connections while maintaining 60,000 idle connections. Kegel [Kegel, 2006] described the

configurations related to the network I/O and event delivery to support more than 10,000

clients for a large-scale HTTP server.

We built our measurement servers based on these techniques. We used the epoll()

system calls to wait efficiently for events on a large number of sockets and lifted the system

limit of the number of sockets. Our challenge is to identify the impact of TCP connections

and SCTP associations on a server that needs to handle more users by an order of magnitude.
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2.9 SIP Server Performance

Measurement

Many measurement efforts have been undertaken to analyze SIP server performance, albeit

mostly using UDP or a small number of TCP connections. Several analyses compared the

cost of SIP operations on a SIP proxy server using UDP and TCP [Salsano et al., 2002;

Nahum et al., 2007; Ram et al., 2008]. The performance penalties of using TCP varied

according to the server implementations. The sustainable request throughput ratio of using

UDP to using TCP ranged from 1.8 to 2.8 for the basic SIP call setup and teardown and

from 1.1 to 1.8 for the basic SIP operations with validating user authentication. Thus,

adding procedures on the SIP server reduces the impact of using TCP on the request

throughput ratio. Our measurement focuses on the SIP registration without validating user

authentication or any other procedures in order to provide baseline performance data that

can be used for comparing transport protocols.

A few measurement efforts have been conducted using a large number TCP connections

assuming one connection per user. The most relevant experiments were conducted by She-

myak and Vehmanen [Shemyak and Vehmanen, 2007]. They emphasized the advantage of

using the epoll() system calls on an HTTP server, and claimed that their SIP server could

maintain 100,000 TCP connections. They also pointed out the CPU bottleneck by handling

SIP REGISTER requests as keep-alive messages for both using TCP and UDP. However, the

assumption of using REGISTER requests, which usually involve database access, is not ap-

propriate for keep-alive purposes except mobile phone settings. This thesis estimates the

impact of receiving four byte message of the SIP keep-alive mechanism [Jennings et al.,

2009] based on the measurement result of the cost of handling TCP FIN requests, which

contain zero payload.

Another relevant investigation was performed by Shen and his colleagues [Shen et al.,

2010]. They compared sustainable call request rate in different proxy roles (e.g., inbound

or outbound) using UDP and multiple TCP connections. The differences for proxy roles

imply the costs of opening and closing TCP connections, which reduce the sustainable

request throughput by a factor of 1.7 - 4.1. They also found an implementation problem in
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their server implementation causing TCP to perform poorly. Their measurements covered

all proxy roles, but the reason for the wide range of the cost of using TCP is not clear.

Our measurement provides more details of the cost of using TCP, identifying the impact of

using TCP each on our echo server and on the SIP server.

Many studies on SCTP server performance have compared using SCTP with TCP server

performance. However, most benchmark used services sending a large message like file

transfer. A few studies performed using SIP, but mostly demonstrated the effect of using

SCTP in a proxy-to-proxy scenario. This is a natural consequence since SCTP was designed

for a connection between servers. Camarillo and his colleagues [Camarillo et al., 2003]

compared UDP, TCP, and SCTP for a small number of connections between SIP proxy

servers to evaluate performance in a congested network, comparing the impact of packet

loss and delay, not CPU load. In contrast, our measurement compares these three protocols

in a user-to-server scenario since some SCTP features potentially benefit the performance

of a SIP sever maintaining a larger number of connections with users.

SIP Server Performance Improvement

Among SIP operations, message parsing and string manipulation are major factors in de-

termining request throughput. To improve performance, Janak [Janak, 2003] suggested

limiting message parsing to several selected header fields and selected components with

these header fields. Cortes and his colleagues [Cortes et al., 2004] compared four SIP

server implementations using UDP, demonstrating the processing times of these two factors

dramatically differed among these four implementations. Our SIP server has already imple-

mented limited message parsing. This thesis proposes further accelerating message parsing

when only the SIP method type matters, such as for the purpose of prioritizing messages

at high loads.

Software architecture for a scalable SIP server has been studied by comparing server

performance using UDP. Singh and Schulzrinne [Singh and Schulzrinne, 2005] compared

the performance of sipd, a SIP sever our laboratory developed, for different software archi-

tectures: event-based, thread pool, and process pool. They suggested that the process pool

model has the best performance in terms of response time. Additionally, they proposed a
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two stage architecture, where servers at the first stage dispatch messages to multiple servers

at the second stage in order to improve concurrency and reliability. Our SIP server mea-

surement uses the same SIP server implementation, sipd, but in the thread pool model.

This thesis discusses the impact of the transport protocol on SIP server performance, not

the impact of the software architecture.

SIP Server Benchmark

SIPstone [Schulzrinne et al., 2002] is a benchmark tool set which our laboratory developed.

This tool measures sustainable request rates of SIP registar and proxy using UDP and

TCP. This tool also provide CPU usage, memory usage, and the transaction response time.

For our measurement, we added TCP connection configurations to this tool so that each

emulated user client can establish a separate TCP connection to the server under test

(SUT), and select to close or maintain the connection. While earlier measurement efforts

used SIPstone, relatively recent ones used SIPp [Gayraud and Jacques, 2010], an open source

benchmark tool, including SIPstone features. This benchmark is included in a benchmark

package, SPECsip Infrastructure2011 [SPEC, 2011]. Although SIPp can generate TCP

messages, the benchmark package allows to send only UDP messages to the SUT. Metrics

standardization [Davids et al., 2011] has been in progress in the IETF. They do not limit

the transport protocol to use. The maximum registration rate in the draft is the same as

the sustainable request rate of a registrar in our measurement.
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Chapter 3

Understanding the Impact of

Using TCP and SCTP on Echo

Server Scalability

3.1 Introduction

This chapter describes echo server measurement using a connection-oriented transport pro-

tocol, either TCP or SCTP. An echo server is simple and often used as the first example of

socket programming. Our echo server responds to an echo client with a copy of a received

message without any message parsing. Since the echo server minimizes the impact of the

application, the measurement results help us better understand the impact of using TCP

or SCTP on server performance. Our goal is to provide enough details from a kernel per-

spective to understand the cost of handling TCP connections or SCTP associations and the

bottleneck. Our measurement results show the upper limit of concurrent TCP connections

on a 32-bit commodity server in Section 3.4, indicating its potential capacity to meet our

requirements for a SIP server described in Section 2.6. On the other hand, our SCTP mea-

surement (Section 3.5) demonstrates the effect of using a one-to-many socket and points

out a few implementation issues in Linux that make it difficult to accommodate a large user

population.
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Transport Goals of measurement Metrics

protocol

TCP To understand - Maximum number of concurrent connections

- Cost of establishing connections - Memory usage

- Cost of maintaining connections - CPU utilization

SCTP To understand - Setup and transaction response times

- Cost of establishing connections

- Cost of maintaining connections

- Effect of one-to-many sockets

- Effect of piggyback setup

Table 3.1: Measurement goals and metrics

3.2 Measurement Goals and Metrics

Table 3.1 shows our goals and metrics for the echo server measurement. Our measurement

first focuses on handling TCP connections to determine if the SUT has the potential to meet

the capacity requirements for a large-scale SIP server described in Table 2.2, especially the

maximum number of concurrent connections. Our measurement then compares the setup

time, transaction response time, and CPU utilization to UDP. This comparison intends to

identify the impact of a large number of TCP connections: establishing and of maintaining

TCP connections. Our measurement finally compares the same metrics in different config-

urations of the SCTP socket styles for the server and clients to examine the effects of using

a one-to-many socket and piggyback setup described in Section 2.4.2.

3.3 Experimental Setup

3.3.1 Server Under Test

The server under test (SUT) ran on a dedicated host equipped with Pentium IV 3 GHz

32-bit dual-core CPU and 4 GB of memory. The SUT ran Linux 2.6.23 configured with the

default virtual memory (VM) split of 1G/3G, where the kernel space was 1 GB and the user

space 3 GB. The kernel space was temporarily expanded to 2 GB by modifying the VM
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split for measuring the maximum number of concurrent connections. The measurement for

TCP and SCTP was performed in 2006 and 2007, respectively.

The system parameters were configured to allow a large number of concurrent TCP

connections or SCTP associations. The upper limits of the number of file descriptors per

system, per process, and per user were raised to 1,000,000. Specifically for SCTP, the

following parameters were also modified. To use a one-to-many socket with a large number

of associations, the socket buffer size was expanded to approximately 4 MB. To disable the

SCTP keep-alive mechanism, the keep-alive interval was increased from the default interval,

30 seconds, to 360 seconds, which was longer than our test duration. By disabling this

keep-alive mechanism, we eliminated the unnecessary cost of handling keep-alive messages

to focus on our measurement in a user-to-server scenario. The SCTP keep-alive mechanism

was originally designed for carrying a telephony signaling protocol, SS7 over IP, between

servers in order to achieve robustness using server redundancy.

Our echo server consisted of a single process and single thread. To maximize server

scalability, it used the epoll() system calls described in Section 2.8. The echo server kept

connections open until the echo clients requested to close them or the measurement ended.

Upon socket creation, the echo server modified the following socket options. The Nagle

algorithm [Nagle, 1984] was disabled to eliminate unnecessary delay when sending multiple

small messages. To disable the SCTP keep-alive mechanism for one-to-one sockets, the

disable flag was set. For one-to-many sockets, it needs to specify an association ID; thus,

we simply expanded the keep-alive interval on the system explained above.

3.3.2 Echo Clients

Our echo clients ran on up to ten hosts with Pentium IV 3 GHz 32-bit CPUs and 1 GB of

memory running Redhat Linux 2.6.9. These hosts communicated with the SUT over a 100

Mb/s Ethernet connection at light load. The RTT measured by the ping command was

roughly 0.1 milliseconds (ms).

For each echo client, the following system parameters were configured to allow a large

number of concurrent TCP connections or SCTP associations. The range of ephemeral

local port was expanded to 10,000 - 65,535 so that each client could have 55,535 concurrent
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connections. The upper limit of the number of file descriptors per process was also raised

to 60,000. Similar to the SUT, the SCTP keep-alive mechanism was also disabled for all

echo clients.

Each echo client consisted of a single process and a single thread. The echo client

sent an approximately 500 byte message over a separate TCP connection to the SUT, and

maintained or closed the connection according to the specified configuration. For SCTP

measurement, the echo client sent an approximately 1,600 byte message to provide the

baseline measurement data for the message orientation test described in Section 4.5. When

comparing the setup and transaction response times between TCP and SCTP, the TCP

measurement was performed again using approximately 1,600 byte messages.

3.4 Measurement Results Using TCP

This section first provides the measurement results of the echo server using TCP, the max-

imum number of concurrent connections and memory usage. This section then shows the

setup and response times and CPU utilization to estimate the impact of opening, maintain-

ing, and closing a large number of TCP connections.

3.4.1 The Maximum Number of Concurrent Connections

Figure 3.1 shows the memory usage as a function of the number of TCP connections estab-

lished and maintained for the echo server. This result indicates that overall memory usage

increased linearly with the number of concurrent connections until the number of connec-

tions reached approximately 419,000 in the default VM split configuration of 1G/3G, where

the kernel memory space was 1 GB and the user memory space was 3 GB. Three different

request sending rates, 200, 2,500 and 14,800 requests/second, had no significant impact on

either of overall or socket buffer memory usage. At any of the three request rates, memory

usage for TCP socket buffers was less than 20 MB. By expanding the kernel memory space

to 2 GB and shrinking the user memory space to 2 GB, the maximum number of connec-

tions rose to 520,000 connections. At or above each maximum number of connections, the

server halted. Thus, we can deduce that the bottleneck in our measurement is the amount
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Figure 3.1: Memory usage as a function of the number of TCP connections for echo server

of kernel memory for TCP connections as long as these connections remain, not the amount

of socket buffer memory, which is dynamically allocated depending on the request rate and

the message size. By dividing the overall memory usage by the number of connections, the

memory footprint per TCP connection turns out to be 2.27 KB. This bottleneck has been

confirmed by investigating the usage of the slab cache, which is a memory implementation

in Linux for frequently allocated and deallocated objects, as described in Appendix A.1.

Therefore, the results of the memory usage measurement confirm that each TCP con-

nection requires 2.27 KB of the slab cache and the bottleneck of sustainable concurrent

connections is the amount of allocatable kernel memory for the slab cache. These results

demonstrate that the echo server with the default VM split configuration can meet the

design requirement of the number of concurrent connections described in Section 2.6. The

maximum number of connections established in our measurement is approximately 140

percent of our design target of 300,000 connections. Since SIP and database application

processes consume memory in each user space, these measurements also identify the bot-

tleneck of the kernel memory space and demonstrate that a SIP server can fulfill the size

requirement of the user population by a large margin.
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Figure 3.2: Response times for echo server as a function of the number of concurrent TCP

connections

3.4.2 The Cost of Establishing and Maintaining TCP Connections

Section 3.4.1 explained that the amount of memory used by establishing or maintaining a

TCP connection is 2.27 KB. The request rate or message size does not significantly affect

memory usage. This section looks at the other metrics of the cost of establishing and

maintaining a TCP connection, namely, setup and transaction response times and CPU

utilization.

Figure 3.2 plots the setup and transaction response times as a server establishes new

connections at 14,800 connections/second and accumulates them. While the echo server

accumulates TCP connections until approximately 419,000, the elapsed times for the TCP

three-way handshake remain constant at less than 0.2 ms as the “handshake” data points

show and the transaction response time remains constant at around 0.3 ms for the “send-

recv” data points show. Thus, opening a TCP connection adds less than 0.2 ms in our

measurement environment to the transaction response time, and maintaining connections

imposes no cost in terms of the transaction response time.
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Figure 3.3: Average transaction response times (left axis) and peak CPU utilization (right

axis) for echo server

To provide the CPU utilization for opening and closing TCP connections as the baseline

measurement data for the SIP server measurement in Section 4.4, Figure 3.3 compares peak

CPU utilization and the average transaction response times for the following three TCP

configurations and UDP.

Transaction-based TCP Each client creates a new TCP connection before starting a

transaction: sending a message to the server and receiving a message copy in return.

After the transaction, the client closes the TCP connection.

Persistent TCP with open Each client creates a new TCP connection before starting a

transaction. The client keeps the TCP connection open after the transaction.

Persistent TCP Each client sends and receives a message using a pre-established TCP

connection with the server. The client keeps the TCP connection open after the

transaction.

The differences between the transaction-based TCP and persistent-TCP with open con-

figurations indicate the cost of passively closing TCP connections. The differences between
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two types of persistent TCP configurations indicate the cost of passively opening TCP con-

nections, matching the results of setup and transaction response times shown in Figure 3.2.

Therefore, passively opening and closing TCP connections costs a negligible percentage

of CPU time at 2,500 requests/second since the CPU times of three TCP configurations are

similar. As the request rate increases, the cost of opening and closing TCP connection also

increase. They cost approximately 14 percent of CPU time each at 14,800 requests/second,

which is significantly above the design requirement described in Section 2.6. Consequently,

under the request rates of the design requirement, CPU overhead for opening and closing

TCP connections does not limit the scalability of the echo server and is not anticipated to

limit the scalability of the SIP server.

It is worth noting that neither TCP nor application-level keep-alive messages were sent

in our measurement. We roughly estimate the cost of these keep-alive mechanisms on CPU

utilization based on the results in Figure 3.3. If either server or client enables the TCP

keep-alive mechanism and maintains a TCP connection more than the shortest keep-alive

idle timeout, two hours [Braden, 1989], it sends a TCP keep-alive message. A SIP server

may activate the TCP keep-alive mechanism, but SIP UAs do not have to use the TCP

keep-alive mechanism since they often make use of the SIP keep-alive mechanism for their

purposes, as described in Section 2.4.1. Thus, we assume that only the SIP server activates

the TCP keep-alive mechanism with two hour idle timeout. If the server sends all of 300,000

clients keep-alive messages, the sending rate turns out to be 41.7 requests/second and the

receiving rate is similar. At this low rate, the additional CPU utilization is negligible since

the TCP keep-alive messages in Linux have no data like the TCP FIN messages and the cost

of passively closing TCP connections on CPU time at 2,500 request/second was negligible.

Even though the server needs to manage TCP keep-alive state and repeat sending the

keep-alive message up to nine times in Linux if clients are unreachable or the response

packets are lost, the cost of CPU utilization is still low at that low rate. In addition

to CPU time, this TCP keep-alive mechanism needs memory to store connection state,

but this memory footprint is much smaller than for a TCP socket. On the other hand, the

sustainable request rate required for SIP keep-alive messages is much higher, approximately

3,200 requests/second, as shown in Table 2.2. If a SIP server can process SIP keep-alive
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messages, each consisting of two sets of carriage return and line feed (CRLF) [Jennings et al.,

2009] as efficiently as the TCP FIN messages, the cost of processing SIP keep-alive messages

is less than 14 percent, estimated based on the cost of passively closing TCP connections

at 14,800 request/second was approximately 14 percent of CPU time, as explained above.

Thus, the cost of maintaining connections, which mainly affects CPU time, depends on the

request rate of the SIP keep-alive messages.

3.5 Measurement Results Using SCTP

This section describes the measurement results of the echo server using SCTP, compared

to those of using TCP shown in Section 3.4. This section also investigates the effect of the

one-to-many style socket to find better SCTP configurations that minimize the overhead of

SCTP functions for a server.

3.5.1 The Maximum Number of Concurrent Connections and the Effect

of One-to-Many Sockets

Table 3.2 compares the maximum numbers of SCTP associations and TCP connections that

can be established on a single server and the memory usage per SCTP association or TCP

connection.1 The numbers were measured by increasing associations or connections on the

echo server until the system yielded an out-of-memory error for sockets. The maximum

number of SCTP associations is only 17 - 21 percent of the TCP limit. Contrary to the

expectation that using a one-to-many socket can reduce the memory footprint per SCTP

association, the reduction barely makes a difference in comparison to approximately 2 KB

required by each TCP connection.

Even though the server using a one-to-many socket only needs to create a single socket,

the SCTP association-related data structures consume four times the amount of memory

for the socket, as shown in Appendix A.2. Several SCTP-specific data objects suffer from

approximately 3 KB of internal fragmentation since they are allocated from general purpose

1Although the message size sent from the echo clients was approximately 1,600 bytes, larger than that of

using TCP, this difference did not affect the memory usage per association, as explained in Section 3.4.1.
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SCTP TCP

Socket style on server One-to-one One-to-many

Number of associations/connections 74,680 90,607 419,019

Ratio 0.17 0.21 1.00

Memory usage per association/connection 11.12 KB [3.93 KB]* 8.90 KB [1.83 KB]* 2.05 KB

* After reducing the number of entries in a TSN map to 256

Table 3.2: Maximum numbers of concurrent associations/connections and memory usage
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slab objects. A general slab object, unlike a data-specific slab object, is allocated only in

increments of powers of two. Furthermore, the sctp association structure, which is the

largest among SCTP-specific data objects, consumes 8 KB and the dominant sub-member

of the sctp association structure accounts for 4 KB. This sub-member stores a transmis-

sion sequence number (TSN) map, which traces received TSNs to support unordered data

delivery and selective ACK. Thus, to cut down the memory footprint of association-related

data, it is crucial to reduce the size of the TSN map.

A simple and easy way to reduce the memory usage is to adjust the TSN map size

depending on the requirements of handling unordered data delivery.2 A large size of the

TSN map is unnecessary for SIP signaling, especially between a SIP UA and a SIP server for

two reasons. First, a single SIP message is split into at most a few SCTP segments. Second,

a SIP UA usually exchanges requests and responses with another SIP UA via SIP servers in

an interactive manner; thus, it does not send multiple SIP requests without waiting for their

responses. Although SIP signaling between SIP servers, where SIP messages are aggregated

and transmitted over a small number of SCTP associations, needs to support unordered

data delivery, a small size of the TSN map is sufficient for SIP signaling. Thus, by reducing

the TSN map size to 256 entries, we could drastically reduce the memory footprint per

SCTP association using a one-to-one socket, as shown in Figure 3.4. As a server maintains

more associations, the memory footprint per association using a one-to-many socket falls to

a smaller amount. When a server maintains 90,000 associations, for example, the memory

footprint per association is 1.83 KB, which is even less than that of TCP value, as shown in

Table 3.2. Thus, by removing unnecessary memory allocation, using a one-to-many socket

could be very effective in increasing the maximum number of concurrent associations to

fullfil the design requirement of a large-scale SIP server, as described in Section 2.6.

2 The memory usage of the TSN map was radically reduced by replacing a byte map with a bit map

that can dynamically grow and shrink. This improvement has been incorporated in the Linux kernel 2.6.27

released in October 2008.
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SCTP TCP

Socket style on server One-to-one One-to-many

Setup style Regular Piggyback

Setup (ms) 0.34 0.84 0.38-170.91 [0.34]a 0.17

Transaction (ms) 0.54 0.65-34.14 [0.53]a 0.48

Total (ms) 0.88 0.84 1.03-205.05 [0.87]a 0.65

a After replacing a linear search with a hash table lookup

Table 3.3: Setup and transaction response times for SCTP and TCP

3.5.2 Data Transfer Latency and the Effect of One-to-Many Sockets

To identify how sharing a single socket buffer in a one-to-many socket slows down data

transfer latency, the setup and transaction times were measured and compared among

three SCTP configurations and TCP. This measurement also intend to identify how much

piggybacking data in the handshake can reduce the overhead of the SCTP four-way hand-

shake.

The setup time of an association is the elapsed time from the instant that the echo

client invokes the connect() system call to returning from it, as described in Figures 2.1

and 2.2. The transaction time is the elapsed time from the instant that the echo client

invokes the sendmsg() system call to send an approximately 1,600 byte message to its

invoking the recvmsg() system call to receive a copy. The echo server received the requests

at 2,500 requests/second from our echo clients and accumulated the SCTP associations

or TCP connections until the number reached 50,000. Table 3.3 compares the setup and

transaction times of the two SCTP socket styles and TCP for the echo server.3

While the values using SCTP one-to-one sockets and using TCP remained constant, the

setup and transaction times for the echo server using a one-to-many socket grew linearly

with the number of associations. The peak CPU utilization was approximately 25 percent

for all SCTP configurations while it was less than ten percent for TCP.

3These results were slightly larger than the results in Figure 3.3 due to different measurement conditions,

the message size and network traffic.
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To investigate the reason for this linear increase corresponding to the number of associ-

ations using a one-to-many socket, we traced the kernel source code and found that, when

receiving the INIT and COOKIE-ECHO messages, an unscalable search algorithm, a linear

search, was used to look up a matching association by endpoint. That search always failed

when the server received these two messages requesting new associations. Because of using

a linear search, using a one-to-many socket increased the setup time as a function of the

number of associations linked to a single socket. In addition, when the server sent a mes-

sage, the sctp sendmsg() function in the kernel called a lookup function which performed

a linear search. This linear search increased the transaction time, but not as drastically as

that in the setup time. Unlike the setup time, this association search always succeeded and

took a variable amount of time depending on where the matching association was stored

in the list of associations. Thus, both setup and transaction times could be improved by

replacing it with a hash table lookup since the linear search clearly caused the cost of using

the one-to-many socket.

After replacing the search algorithm,4 the setup and transaction times remain constant

at 0.34 ms and 0.53 ms, respectively, as shown in brackets in Table 3.3. This replacement,

therefore, eliminated the differences in the setup and transaction times between these two

SCTP socket styles. Although we suspected using a one-to-many socket would reduce server

request throughput in Section 2.4.2, the measurement using the improved implementation

shows no negative impact of sharing a single socket buffer with a large number of asso-

ciations. When using a one-to-many socket, all the server needs to do is to expand the

buffer size of send and receive sockets to handle concurrent requests and responses to a

large number of associations.

3.5.3 The Effect of Piggyback Setup

As Figure 2.3 shows, the piggyback setup mechanism intends to mitigate the overhead of the

SCTP four-way handshake by reducing an additional RTT to half. Table 3.3 compares the

setup, transaction, and combined times among the SCTP regular setup, SCTP piggyback

4This fix on the association lookup function has been included in a patch for the Linux kernel 2.6.24-rc3

released in November 2007.
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SCTP TCP

Messages Regular setup Piggyback setup Messages

s: sent, r:received (ms) (ms) (ms) s: sent, r:received

s:INIT 0.00 0.00 0.00 s:SYN

r:INIT-ACK 0.14 0.14 0.09 r:SYN, ACK

s:COOKIE-ECHO 0.01 0.01 0.01 s:ACK

r:COOKIE-ACK 0.13 0.23b

s:DATAa 0.00 N/Ac 0.00 s:DATA

r:DATAa 0.37 0.26d 0.34 r:DATA

Total 0.65 0.64 0.44

a Since DATA was 1,600 bytes long, it was fragmented into two packets. The

elapsed time is between sending the first fragment and receiving the second frag-

ment.

b The COOKIE-ACK message was received before the client sends the second seg-

ment of DATA.

c DATA is piggybacked on the COOKIE-ECHO message. In our measurement, a

fragment of DATA is piggybacked.

d This indicates the elapsed time between receiving the COOKIE-ACK message and

DATA.

Table 3.4: Elapsed times between messages for SCTP and TCP
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setup, and TCP. This comparison indicates that using piggyback setup slightly reduced the

combined time, but still took longer than TCP by 0.19 ms in our measurement environment.

To investigate the reason that the piggyback setup was not very effective in reducing the

overhead incurred by the SCTP fou-way handshake, we measured the elapsed time for each

RTT by monitoring the time stamps of sent and received packets from the network using the

tcpdump program on our echo client.5 Table 3.4 shows an interesting result that the elapsed

time between sending COOKIE-ECHO and receiving COOKIE-ACK grows by 0.1 ms beyond

that of the SCTP regular setup. Therefore, in spite of reducing the elapsed time between

receiving COOKIE-ACK and receiving a message copy by 0.11 ms, the overall effect of using

the piggyback setup is slight in our measurement environment. Since the COOKIE-ECHO

message piggybacking a user data exceeded the path MTU, the message was segmented into

two packets. The increase in the elapsed time of processing the COOKIE-ECHO message

might be caused by its partial delivery, but we failed to identify the reason. Table 3.4 also

shows that the SCTP setup using a state cookie, which is meant to protect against the INIT

flooding attacks, is more expensive than basic TCP setup, which processes no cookies in

the default configuration. Thus, the results indicate that the configuration option of a state

cookie for TCP would be expensive. All in all, the effect of using piggyback setup was slight

in our measurement so that the SCTP four-way handshake still causes longer setup delay

than for the TCP handshake. Yet, using piggyback setup is recommended since the effect

of reducing RTTs would be larger in a wider area network where SIP services are typically

deployed.

3.6 Conclusion

Our echo server measurement has demonstrated that a large-scale SIP server using TCP can

potentially be built with a commodity machine, but not for SCTP. Under our target traffic

model, we can conclude that the impact of using TCP on the scalability of the echo server

is relatively small since it only includes the setup delay for the TCP three-way handshake,

5These elapsed times were smaller than the values in Table 3.3 since they were monitored on a network

interface. Thus, they excluded processing times for the echo client application.
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690 MB of kernel memory for 300,000 concurrent TCP connections, and CPU time for

processing SIP keep-alive messages.

The more connections are needed, the more kernel memory space is needed. However,

installing more physical memory for a 32-bit kernel does not help since the kernel process

can only handle 4 GB of memory including the user space. The only way to increase the

kernel space for a 32-bit kernel is to modify the memory split to 3G/1G, where the kernel

space is 3 GB at the expense of the user space. This is, however, not recommended since

SIP applications require memory usage corresponding to the number of users. Instead of

modifying the memory split, it is better to switch to a 64-bit kernel.6 Once the kernel

can support more than 4 GB of memory for a 64-bit kernel, the bottleneck would move to

other factors, such as CPU utilization or the maximum number of file descriptors, which is

currently 1,048,576.

Persistent TCP connections are useful for SIP UAs to avoid unnecessary setup delay, to

enable NAT or firewall traversal, and to keep security associations. However, while a SIP

server keep connections open, CPU utilization grows with the request rate of the SIP keep-

alive messages sent from SIP UAs. Compared to UDP, the cost of the keep-alive messages

would not be higher since the interval of the messages from SIP UAs using TCP is four times

longer. Our rough estimate based on the cost of closing TCP connections indicates that

the cost of supporting the SIP keep-alive messages may result in negligible and even if the

request rate increased to the UDP rate, approximately 14 percent of the CPU utilization.

We leave the measurement and analysis of the impact of the SIP keep-alive messages for

future work.

This echo server measurement has shown how using SCTP impacts server scalability

and performance by evaluating the effect of SCTP features, namely, one-to-many style

sockets and piggyback setup. Using a one-to-many socket was expected to increase the

number of sustainable associations by reducing the number of sockets, but the measurement

6 The 64-bit Linux kernel on the AMD64 CPU supports 256 TB (= 244) of virtual memory where the

kernel space is half of that, (i.e., 128 TB). Before a 64-bit system has become prevalent, using a custom

Linux kernel such as RedHat Enterprise Linux [RedHat, 2007] was the sole solution. It had supported a

4G/4G VM split taking advantage of a 36-bit address space on the Intel Pentium Pro or later systems [Intel,

1996].
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results denied. The echo server capacity decreased to one fifth of that using TCP because

of a large amount of association-related data. Furthermore, the echo server performance

dropped. The setup and transaction times increased with the number of associations. By

reducing the capacity for accepting packets out of order, memory footprint per association

using a one-to-many socket could compete with memory footprint per TCP connection. By

replacing a linear search with a hash table lookup, the setup and transaction times could

remain constant.

Using the piggyback setup slightly decreased the combined time of the setup and trans-

action in our measurement environment so that the effect was not enough to compete with

the time for TCP since handling a signed cookie is expensive. Although the effect was slight

in our measurement, the effect of reducing a RTT by piggyback setup would be larger in a

wide area network.

Therefore, using a one-to-many socket and piggyback setup is recommended. The SCTP

kernel implementation in Linux is far less mature than the TCP implementation; thus,

there is still significant room for improvement in the efficiency of handling a large number

of associations.
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Chapter 4

Understanding the Impact of

Using TCP and SCTP on SIP

Server Scalability

4.1 Introduction

Chapter 3 has identified the impact of using TCP and SCTP on our echo server. The

SUT using TCP can potentially fullfil the capacity requirement for a large-scale SIP server,

whereas the SCTP Linux implementation has room for improvement before it is suitable to

build a large-scale server. This chapter describes the performance measurement of a SIP

server using TCP, which intends to identify the additional impact of using TCP on a SIP

server by comparing the measurements to the results of the echo server measurement. Our

measurement focuses on SIP registrar performance since the message exchanges are similar

to the echo server measurement; thus, the way of using the socket APIs is similar. Based

on the results of the registrar test, we discuss the applicability for estimating the impact of

using TCP instead of UDP on SIP proxy performance. On the other hand, we perform the

measurement using SCTP on a SIP front-end server instead of a full SIP server since the

echo server measurement demonstrates that the SCTP Linux implementation is not ready

for performance tests. Our measurement focuses on identifying the effect of SCTP being
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Transport

protocol

Server type Goal of measurement Metrics

TCP SIP server To understand the impact of - Sustainable request rate

using TCP on SIP operations, - Memory usage

namely, the REGISTER-200 OK - CPU utilization

transaction - Transaction response time

SCTP SIP front-end To understand the effect - Transaction response time

of message orientation

Table 4.1: Measurement goals and metrics

message-orientated instead of byte-streaming.

4.2 Measurement Goals and Metrics

Table 4.1 shows the goals and metrics for our SIP server measurement using TCP and a

SIP front-end server measurement using SCTP. For SCTP, our measurement uses our SIP

front-end server, which only performs message parsing. For example, when receiving the

SIP INVITE request, the SIP front-end server parses the message and responds to a SIP

UA with a 200 OK response without involving any other SIP operations, such as database

lookups.

To determine the additional cost of using TCP on a SIP server, we measure the response

time for the SIP REGISTER-200 OK transaction, memory usage, and CPU utilization for a

SIP registrar with three TCP connection configurations by comparing these results with the

echo server measurements under the same conditions. We also measure sustainable request

rate with the success rate of handling requests.

To identify the effect of SCTP being message-orientated, we compare the setup and

transaction response times using the SIP front-end server among UDP, TCP, and SCTP.

We also compare them with the results of the echo server measurement to determine the

cost of message parsing.
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4.3 Experimental Setup

4.3.1 Servers Under Test

The system and configurations were the same as the measurement environment for the echo

server described in Section 3.3. The SUT ran Linux 2.6.23 on a dedicated host equipped

with Pentium IV 3 GHz 32-bit dual-core CPU and 4 GB of memory. The SIP server under

test was sipd [Lennox et al., 2002], which had been developed in our laboratory. Sipd used

a single process and multiple threads for high concurrency. 300,000 user accounts were

registered in a database using MySQL 4.1.22. Our SIP front-end server which implemented

only parts of SIP message parsing consisted of a single process and single thread like the echo

server. The measurement for TCP and SCTP was performed in 2006 and 2007, respectively.

4.3.2 User Clients

Similar to the SUT, the systems for user clients and their configurations were the same as

the measurement environment for the echo clients described in Section 3.3. The clients ran

on up to ten hosts with Pentium IV 3 GHz 32-bit CPUs and 1 GB of memory running

Redhat Linux 2.6.9. These hosts communicated with the SUT over a 100 Mb/s Ethernet

connection at light load. The RTT measured by the ping command was roughly 0.1 ms.

Sipstone [Narayanan et al., 2002], a SIP benchmark test suite including a SIP UA emulator

was used for the SIP server measurement. We added functionality to sipstone to enable

TCP connection configurations.

4.4 Measurement Results Using TCP

4.4.1 The Impact of Using TCP on SIP Operations

To examine the impact of SIP message processing and SIP operations including database

lookups, we compare with the previous measurement using the echo server. Figure 4.1

compares the response times for the SIP REGISTER-200 OK transaction including the setup

times and CPU utilization at 2,500 requests/second between the SIP server and echo server

measurements described in Figure 3.3. The SIP REGISTER-200 OK transaction has the same
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Figure 4.1: Average transaction response times (left axis) and peak CPU utilization (right

axis) at 2,500 requests/second for echo server test and REGISTER-200 OK test

number of messages between the server and the clients as the echo server measurement. Both

REGISTER request and 200 OK response were approximately 400 byte long while the echo

server used messages approximately 500 byte long.

The increases indicate the cost of SIP operations and the difference in the software model

of the two servers since the number of messages and transactions are the same. Interestingly,

despite the fact that the SIP operations are the same for the four configuration, the increases

of the response times differ by 0.4 - 1.2 ms for the four configurations while the increases of

the CPU times are comparable at 15 - 18 percent. For example, the cost of establishing a

new TCP connection, which is indicated in the difference in the transaction response time

between the two persistent TCP configurations, is 0.4 ms on the SIP server, while it is 0.2

ms on the echo server. Thus, we deduce that these increased response times are caused by

the difference in the software model of the two servers: the echo server uses a single process

and a single thread model, while the SIP server runs a single process and multiple threads

in a thread pool model. This difference in the software model is the natural consequence

of the difference in server applications between the SIP server and the echo server. SIP
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Figure 4.2: Transaction response times as a function of the sending rate for REGISTER-200

OK test for TCP and UDP

servers need to perform SIP operations, which are heavier than creating a message copy on

the echo server, and achieve high performance with concurrent threads or processes. The

sipd software model uses multi-threads in the thread pool model before improving server

performance using the process pool model [Singh and Schulzrinne, 2005]. Sipd assigns

available threads from a thread pool to waiting tasks in a queue. All the tasks for handling

SIP request or response messages are processed in this manner except a task for reading a

socket buffer and parsing a message over TCP. This task is processed by a thread that is

generated upon request, not assigned from the thread pool, since the task lasts longer and

may exhaust threads in the thread pool.

Similar to the response times, sustainable request rates also differ across the four con-

figurations, namely, the three TCP configurations and the UDP setting. Figure 4.2 com-

pares the transaction response times at various request sending rates at 100 percent success

rate. The sustainable request rates are 2,900, 3,300, 4,100, and 5,300 requests/second each

for the transaction-based TCP configuration, for the persistent TCP connections with the

handshake processing, for the persistent TCP connections, and for UDP. These sustainable
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Figure 4.3: Success rate, CPU usage and memory usage for persistent TCP

Figure 4.4: Success rate, CPU usage and memory usage for UDP
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request rates are at least 27 times higher than the server design requirement described in

Table 2.2.

Whereas below 1,600 requests/second, the differences in the transaction response times

remain constant, above that, the differences grow substantially. Interestingly, when the SIP

server started to fail to handle SIP requests, the system resources had not been exhausted.

As shown in Figures 4.3 and 4.4, for the persistent TCP configuration and UDP, CPU

utilization was still below 40 percent and the usage of physical memory in resident set size

(RSS) and virtual memory in virtual size (VSZ) was below 200 MB and below 800 MB,

respectively. The results of the transaction-based TCP and a variant of the persistent TCP

including opening TCP connections were similar although no charts are presented. Much

earlier than exhausting CPU utilization or memory resources, sipd dropped requests based

on the number of tasks waiting in the thread queue. When the number of the waiting tasks

exceeds a pre-configured number, sipd invokes its overload control function to drop tasks.

The sipd warning messages reported that the overload control function dropped 83 percent

of requests for the persistent TCP configuration and 10 - 28 percent of requests for UDP.

Thus, we have determined the bottleneck of sustainable request rate is the length limit of

the thread queue, rather than memory usage or CPU utilization. More tasks and/or longer

tasks required for handling TCP messages decrease the sustainable request rates.

Furthermore, the success rate for persistent TCP dropped precipitously at the load

limit, whereas the rate for UDP gradually decreased. The difference between persistent

TCP and UDP in dropping the success rate was caused by the difference in the timing of

invoking the overload control function between TCP and UDP. Sipd determines if it can

handle a UDP message immediately after parsing the first line of the message, enough to

sort messages into requests and responses. It favors SIP responses over SIP requests under

high loads. On the other hand, sipd first fully parses a TCP message by a thread generated

upon request, not assigned from the thread pool, and then detects an overload in the thread

queue. This difference is caused by the message orientation of these transport protocols.

Since TCP does not preserve message boundaries, a receive buffer may contain only part of

a SIP message or multiple SIP messages. Sipd needs to determine the end of a message by

parsing the Content-Length header field. This suggests that if sipd can accelerate message
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parsing over TCP, especially under high loads, the message parsing can be performed by a

thread from the thread pool, resulting in a success rate can drop gradually, similar to UDP.

To sort SIP messages, for example, to prioritize SIP responses or BYE requests, which

have fewer subsequent messages under high loads, reading the first line of a received TCP

stream can help accelerate determining the SIP message type. This message parsing without

determining the end of a message does not properly work all the time, but is likely to parse

the first line of a message especially at a SIP edge server, where messages are distributed

over a large number of connections. Even if sipd fails in sorting messages, such as dropping

a fragment of a message or multiple messages at once, it would be permissible under high

loads.

It should be noted that this measurement experiment does not identify the cost of the SIP

keep-alive messages, but implies that the SIP server needs to process the messages, which

contain only four bytes, but arrive at a rate 3,000 requests/second, without overwhelming

the thread queue or generating new threads for them. A possible solution is that a dedicated

thread peeks at the size of a received message to dispatch tasks by distinguishing the keep-

alive messages from regular SIP messages.

4.5 Measurement Results Using SCTP

4.5.1 Data Transfer Latency and the Effect of Message Orientation

Our SIP front-end server measurement focuses on the effect of SCTP offering messages

rather than byte-stream. We anticipate that a small effect, as described in Section 2.4.3.

Being message-oriented enables an application to easily retrieve a single message from a

receive buffer. Upon invoking the recvmsg() system call, an application can determine

whether or not a message has been delivered in full by checking the message MSG EOR flag.

If the message has been delivered in full, the SIP front-end server can read a single message

without finding the Content-Length header field, unlike for TCP.

First, to identify the elapsed time for parsing a 1,600 byte message by comparing to

the results of the echo server measurement shown in Table 3.3, we measured the setup and

transaction times for the three SCTP configurations in addition to TCP transaction-based
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Figure 4.5: Setup and transaction times for SIP front-end server

setting and UDP setting, when the SIP front-end server received the SIP INVITE messages

at 2,500 requests/second from the echo clients. Each message was approximately 1,600 byte

long, resulting in two packets fragmented by SCTP or TCP segmentation, or IP fragmen-

tation. Figure 4.5 depicts the results of this measurement using the SIP front-end server.

Comparing the transaction times between two measurements indicate that the elapsed time

for message parsing is only 0.01 - 0.06 ms per message. We then compare transaction times

of TCP and the SCTP one-to-many socket configurations shown in Figure 4.5 to see the

benefit to efficient message parsing at 2,500 request/rate. No difference between the trans-

action times of TCP and the SCTP is found. Thus, unfortunately, this measurement was

unable to see the benefit of SCTP being message-oriented since the cost of the message

parsing is negligible and does not affect server performance at the 2,500 request/second.

However, the benefit of SCTP being message-oriented will be seen under high loads or

in a proxy-to-proxy scenario where a TCP connection aggregates messages from multiple

users. As Section 4.4.1 describes, SCTP being message-oriented, similar to UDP, allows the

SIP server to easily sort messages without determining the message size specified in the SIP

header. Thus, being message-oriented will contribute to gradual dropping requests at high

loads. Similarly, in a proxy-to-proxy scenario, SCTP being message-orientated allows the
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SIP sever to dispatch tasks without message parsing whereas TCP streams requires mes-

sage parsing to dispatch tasks. Thus, being message-oriented may contribute to promoting

concurrent processing. We leave the measurement to identify the sustainable request rate

for SCTP for future work.

4.6 Applicability of SIP Registrar Measurements for Esti-

mating the Impact of Using TCP or SCTP on a SIP

Proxy Server

We have thus far presented the measurement of the SIP server, specifically, a SIP registrar.

It processes the REGISTER-200 OK transaction requiring database access. Unlike the REG-

ISTER request, a SIP proxy server needs not only to receive the INVITE request as a SIP

UAS but also to forward it to the adjacent proxy or the destination user as a SIP UAC.

Thus, a SIP server plays a double role as UAS and UAC. Additionally, the proxy server

needs to handle more subsequent SIP messages and more transactions if the server mode is

transaction-stateful. If the server mode is dialog-stateful, handling dialogs is added. How-

ever, the choice of the transport protocol is independent of transaction or dialog state on

the server.

Given that these additional processes on the SIP server, we discuss how to estimate

the impact on the SIP proxy server using our results. Since the number of adjacent proxy

servers is relatively small, the connections to other proxy servers does not affect the number

of concurrent connections. However, the role as a UAC on the SIP server makes the server

unscalable if the SIP server needs to actively establish connections to end users. The

maximum number of concurrent connections on the SIP server as a UAC to end users drops

to approximately 60,000 because of the range of ephemeral ports, which are assigned only

for TCP clients. Thus, it is recommended that the SIP server keeps connections to end

users open in order to avoid the limitation of ephemeral ports.

Besides shrinking the upper limit of concurrent connections, the double role of UAs

incurs approximately twice the cost of opening and closing TCP connections that have been

identified in the echo server measurement in Section 3.4.2. If the SIP server detects the
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connection timeout at the application level, the server needs to actively close the connection.

For the cost of maintaining connections, we roughly estimated the cost of processing the

SIP keep-alive messages based on the cost of the TCP FIN messages because both messages

have similar payload sizes and receiving each message is notified the SIP server application.

Because of the shorter message and simpler operation, at most 14 percent of CPU time

is needed at 14,800 requests/second, which is much lower than approximately 80 percent

of CPU time for the SIP keep-alive mechanism using REGISTER requests [Shemyak and

Vehmanen, 2007]. However, we do not have any similar measurements to estimate the cost

of managing the connection timeout.

The number of messages per call depends on the messages during the call. If four

mid-call requests, PRACK, ACK, UPDATE and BYE, are exchanged, the request rate rises

to 835 requests/second (= 167×5). Thus, the SIP proxy server requires five times more

than the request rate or transaction rate of registration. In a worst-case scenario where

each transaction requires a new connection and the double role of UAs doubles the cost of

handling the connection, the server needs to handle the SIP REGISTER requests at 1,670

requests/second. As Section 4.4.1 shows, the sustainable request rate for transaction-based

TCP configuration is 2,900 requests/second. Therefore, the SIP server will have capacity

to handle the required request rate although the sustainable request throughput ratio of

using UDP to using TCP is 1.8.

To see whether this estimate is close to the actual performance, we conducted the SIP

INVITE-200 OK test where UAs establish and close a dialog exchanging the INVITE, 100

Trying, 180 Ringing, 200 OK, ACK, BYE, 100 Trying, 200 OK requests and responses through

the proxy server. This test contains eight messages and three transactions, which is fewer

than five transactions used for the estimation. Our measurement demonstrates that the SIP

server can handle 700 calls/requests for the transaction-based TCP configuration while it

can process 900 calls/requests for UDP. The sustainable request throughput ratio decreases

to 1.3 since the additional cost for SIP operations mitigates the impact of the transport

protocols.
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4.7 Conclusion

Our measurement and analysis have shown that using TCP on the SIP server does not

increase the impact of using TCP identified by the echo server measurement under our

target traffic model described in Table 2.2. However, at high loads, the impact of using

TCP on the SIP server is caused by the difference in message orientation, which is negligible

at low loads. The impact of message orientation on server performance depends on the server

implementation.

In our SUT, sipd, a longer task of retrieving a SIP message over TCP affects the number

of threads and their lifetime per message, resulting in a lower sustainable request rate and

a steeper drop of the success rate for the persistent TCP configuration than for UDP. We

recommend using persistent TCP connections that can achieved the minimum impact of

using TCP. The request throughput ratio of using UDP to using TCP is 1.3 (= 5,300

: 4,100). In real deployment of a SIP server, user authentication and other features are

added, resulting in further lowering the impact of using TCP on the sustainable request

rate. Consequently, the major impact of using TCP for a large number of connections turns

out to be the memory footprint per connection.

To minimize the impact of retrieving a SIP message over TCP, we suggest that a SIP

server accelerates message parsing for a limited purpose, namely, message sorting to pri-

oritize certain SIP messages at high loads. Although our measurement does not cover the

handling of the SIP keep-alive messages, the SIP serve should handle these messages, which

have a distinct message size for each, as a special case to minimize the impact of using

TCP. For future work, we leave the measurement to identify the impact of maintaining a

large number of connections for SIP, namely, handling the SIP keep-alive messages, short

messages at a high rate and managing connection timeout.

For SCTP, our measurement focused on identifying the effect of being message-oriented

using the SIP front-end server, but failed. As discussed above, the advantage of being

message-oriented is not observable until the request rate increases and 0.01 ms difference

in processing time matters to server performance. We also suggest the SCTP measurement

to compare the sustainable request rates to identify the impact of using SCTP as an area

for future study.
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Chapter 5

Guidelines on Transport Protocols

This chapter provides guidelines that our measurements yield for those who implement

transport protocols and for those who design the protocols. In our measurements, we

found a few issues in the Linux SCTP implementation, but they potentially arise in any

implementations or transport protocols. Thus, we generalize our insights and provide the

following guidelines.

5.1 Implementation Guidelines

• The implementation of a transport protocol should support possible scenarios more

than that are considered by its original design.

Even if SCTP was originally designed to be used in a server-to-server scenario where

a relatively small number of servers connect each other, the implementation should

consider a user-to-server scenario where a server connects with a large number of users

as well as a server-to-server scenario.

• The implementation of a transport protocol should carefully choose data structures

from static and dynamic, examining whether the variables are determined under dy-

namic conditions, such as network congestion, or relatively static conditions, such as

server provisioning.
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5.2 Transport Protocol Design Guidelines

• Having both functionalities of UDP and TCP, supporting message segmentation and

preserving message boundaries attract large-scale SIP servers.

There are a few forms of both functionalities of UDP and TCP, such as reliable

datagram transport protocol [Partridge and Hinden, 1990]. SIP, which often exchanges

messages exceeding the path MTU, is desirable to segment a message by transport

layer, avoiding IP layer fragmentation. At the same time, if the transport protocol

preserves message boundaries and each message is smaller than a received buffer, a

large-scale SIP server can achieve high throughput.

• If a transport protocol supports a smaller set of functionality in the default configu-

ration, it attracts more applications.

SCTP supports many types of functionality in addition to supporting message seg-

mentation and preserving message boundaries. This adds complexity in the default

configuration, such as the keep-alive mechanism. If it allows applications to more

easily use a minimal set of functionality, such as supporting message segmentation

and preserving message boundaries, SCTP could be easily deployed.



58

Part II

Controlling Unwanted

Communication Requests



CHAPTER 6. DEFINITIONS, BACKGROUND, AND RELATED WORK 59

Chapter 6

Definitions, Background, and

Related Work

6.1 Introduction

Unwanted calls (e.g., calls from telemarketers, charities or pollsters) have not caused as

serious a problem as unwanted email, the so-called spam. However, there is clear evidence

that the problem becomes more significant; regulations [FCC Robocalls, 2012] have been

tightened against autodialed or pre-recorded messages, so-called robocalls. Receiving un-

wanted calls not only disturbs callees with the ringing, it might also incur a cost to them if

they are charged for receiving calls (e.g., minute-based mobile phone services in the U.S.).

Thus, people are less tolerant of receiving unwanted calls than unwanted email messages. To

control receiving unwanted calls, this thesis explores new ways to identify good calls rather

than detecting unwanted ones. We define calls that are important or at least sufficiently

important to warrant answering the phone as good. The approach to identifying good calls

can make it easier for recipients to prioritize incoming calls or messages.

We first present definitions that are used throughout this Part. We then provide an

overview of the ways that people trust each other in real life to motivate a discussion of the

ways of identifying good calls or messages. We proceed to categorize incoming calls and

messages, and define good calls or messages. We give an overview of the solution space for

preventing unwanted email message and calls, and review previous work and current prac-
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tice, focusing on alternative approaches to detecting unwanted or identifying good messages

or calls. We finally analyze caller-ID-based filtering, which is the most common solutions

to the problem, pointing out the limited availability of caller-ID authentication and the

limitation on use of caller ID as a user attribute.

6.2 Definitions

We define the terminology that is applicable throughout Part II (Chapter 6 - 8).

Communication Endpoint ID (CEID) is an identifier of an endpoint which partici-

pates in a communication session through any communication means, such as phone call

including VoIP, email, or instant messaging. It is often called a contact address. It is

a phone number for phone services and an email address for email. When the signaling

protocol for VoIP or instant messaging is SIP, the CEID is called SIP address-of-record

(AoR). A CEID is typically issued and assigned by a communication service provider to

its user. However it is sometimes assigned to a device, such as a phone number assigned to

a landline or a mobile phone device. When the endpoint acts as the originator, the CEID

is specifically called an origin ID. For the recipient, it is called a destination ID.

Origin ID is an instance of a CEID and identifier of a person who initiates a communica-

tion, such as making a call or sending an email message. The origin ID of a call is called

a caller ID, and that of an email message is called a sender ID, which is typically set in

the From header field.

Black-listing is a method of blocking a communication request, such as calls or messages.

This method is based typically on a caller ID or sender ID or the network address of a

sender in a list, which is called a black list.

White-listing is, in contrast to black-listing, a method of accepting a communication

request based on a origin ID or the network address of a sender in a list. This list is called

white list.

Weak social tie is a relationship between two parties who are not regularly communi-

cating, but have previously had a communication or an interaction [Granovetter, 1973].
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The interaction may occur through a third party trusted by both parties. For example,

acquaintances are connected by weak social ties, while friends are connected by strong

social ties.

Good call or message is a call or message that is legal and desirable by recipients. A

good call or message is important, or at least sufficiently important to answer or receive.

Cross-media relation is a relation between two parties that has been established through

different means of communication when these parties are about to initiate a new commu-

nication. This cross-media relation is represented as evidence of the prior communication.

Web-then-call is a cross-media relation between two parties of a call. These parties have

had prior contact through a Web transaction. Many variants, including Email-then-call,

have similar definitions.

Weak secret is a piece of information to prove a prior communication. The information

is sufficiently confidential to identify a good call or message.

Principal is an entity whose identity can be authenticated [ITU-T, 1995]. In an attribute

validation service, a principal is authenticated by an attribute validation server to issue an

attribute credential. In the context of sending an attribute credential in a communication

request, the principal acts as the originator, namely, the caller of a call or the sender of a

message.

Relying party is an entity who relies on the data in a certificate or a credential in making

decisions [ITU-T, 1998]. In an attribute validation service, a relying party uses someone’s

attributes to assess the risk of accepting a communication request. In the context of

receiving a communication request, the relying party acts as the recipient or callee.

Issuer is an entity which issues an attribute credential or assertion for the principal. An

issuer also validates the attribute credential or assertion upon a relying party’s request.
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6.3 Ways People Trust Each Other

To explore possible ways to identify good communication requests, we review how people

trust each other in real life. People establish interpersonal relationships based on how

they have interacted with each other, physically or electronically. Especially, if a party has

“the willingness to be vulnerable to the actions of another party based on the expectation

that the other will perform a particular action important to the trustor, irrespective of the

ability to monitor or control the other party” [Mayer et al., 1995], a trust relationship is

established. Thus, trust relationships between individuals are established based on both

interactions between them and the expected risk of the peer’s actions.

In most cases, two parties in a trust relationship have previously interacted directly with

each other. However, in some cases, they have had no prior direct interaction with each

other. Instead, the party may have had indirect interactions that involved an organization

or a third-party individual in order to determine the trustworthiness of the other party.

Since the risk of accepting communication requests is usually low, a relatively lower level

of trust is often sufficient to identify desirable communication requests.

The following sections focus respectively on the case where a trust relationship is the

result of a direct interaction, and on the case where the trust relationship is not the result

of a direct interaction. In each, we discuss how these relationships can be represented

electronically and how they can be used to determine the trustworthiness of communication

requests.

6.3.1 Trust Relationships Based on Direct Interactions

In the simplest case, trust relationships are based on direct social interactions, which can

be divided into two groups based on how often people communicate with each other.

The first group of individuals, which is typically of limited size, consists of those who

regularly communicate with each other. In most cases, these people know each other per-

sonally and are connected by strong social ties, which are determined by “a combination

of the amount of time, the emotional intensity, the intimacy, and the reciprocal services

which characterize the tie” [Granovetter, 1973]. Examples of people connected by strong
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social ties include family members, friends, and close colleagues. The second group, which

is much larger, consists of people who occasionally interact with each other. This group

includes casual acquaintances, colleagues, and business contacts. The social ties for people

in this group are weaker and the trustworthiness may be lower than for those in the first

group.

People in either group are electronically represented as contact addresses stored in the

address book of the person under consideration. While the likelihood of a member of the

second group appearing in the address book is lower, they are often listed in social media

services as friends within one degree of separation. To identify communication requests

from people in these two groups, filtering based on origin ID (i.e., caller ID or sender ID)

has been widely used. This filtering requires origin ID authentication. In addition, origin-

ID-based filtering is used for detecting and blocking unwanted calls or messages, so-called

black-listing.

This thesis analyzes the limitations of caller-ID-based filtering using address books (Sec-

tion 6.7). This thesis also proposes easier ways of collecting contact addresses from the

second group using cross-media relations (Section 7.5).

6.3.2 Trust Relationships without Direct Interactions

It is also possible for trust relationships to be established without the existence of prior

direct personal communication (i.e., one-on-one communication). In this case, trust rela-

tionships are established using transitive trust through a trusted individual or organization,

and/or on their own experience. We divide these trust relationships into the following,

often overlapping, categories: using extended social graphs, experience-based, affiliation-

based, credential-based, based on evaluation by a trusted third party, behavior-based or

appearance-based, and location-based. We also describe how people limit the potential risk

of the other’s actions. Although our analysis is based on separate categories, it is worth

noting that, in practice, people trust each other in one or more ways.
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Using extended social graphs

A person often trust persons whom his trusted person trusts, for example, friends of a friend

or colleagues of a colleague. These people are listed in social media services as friends with

two degree of separation in the extended social graphs. Additionally, they might be found

in the destination IDs of email or SMS messages that are received from their friends or from

the mailing list they subscribe to.

Section 7.5.1 proposes a way of encouraging users to publish their addresses in social

media without privacy concerns. Friends of a friend based on the destination IDs of email

messages are examined in our user study of incoming email messages described in Sec-

tion 7.10.

Based on experience

People determine the trustworthiness of others based on their own experience. For example,

customers who have had good shopping experiences with shops (e.g., online shopping sites

or local grocery stores) trust the owners or sales persons, even though the customers do

not personally know them. This type of trust is the basis of reputation services, such as

customer rating system.

This thesis discusses how individuals can use their experience on online activities, such

as online shopping via a Web transaction, as cross-media relations described in Chapter 7,

in order to determine whether a communication request is sufficiently important to answer.

This thesis, however, does not discuss how to use a reputation service since it is difficult to

determine the trustworthiness of the provider of the reputation service and the reviewers.

Based on affiliation

People often trust employees or students who belong to a trusted enterprise, school, or

organization based on their affiliations. The trust relationship beween a person and an

organization is based on the organization’s reputation or based on the person’s experience.

In the latter case, the trust relationship can be regarded as a form of experience-based trust

relationship.
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A person’s affiliation is considered his attribute. Affiliations can be represented as

attribute credentials, certificates, or assertions. Although a person’s affiliation is sometimes

represented as an origin ID, such as the domain part of an email or SIP addresses, it is

only useful when the user account management policy of a communication service provider

is trusted.

Section 6.8 discusses the limitations on the use of origin ID as a user attribute, em-

phasizing the difficulty in authenticating caller IDs. Chapter 8 proposes a simple way of

validating a caller’s attributes without having to authenticate the caller’s identity or the

caller ID, in order to identify good communication requests.

Based on credentials

Affiliation-based trust relationships can be generalized into credential-based trust relation-

ships. People often trust each other based on credentials that are issued by an organization

they trust.

Holding a credential, such as certificates or licenses, or the data on them, such as

person’s age attested by a driver’s license is an attribute of the holder. Thus, similar

to affiliation-based trust relationships, attribute credentials represent the concept of trust

based on credentials.

Chapter 8 proposes a mechanism of validating a caller’s attributes without having to

authenticate the caller’s identity or CEID.

Based on evaluation by a trusted third party

Similar to using extended social graphs, people often trust each other based on evaluation,

such as rating or reputation, by a trusted third-party organization. For example, employers

do background checks to confirm that prospect employees are not convicted criminals. An-

other example is the case where landlords examine tenant applications based on their credit

score. Other examples include the cases where people rate enterprises, such as restaurant

ratings or the Better Business Bureau (BBB) ratings. These real-life examples indicate that

the cost of determining trustworthiness increases with the risk caused by potential actions

by the other party. Thus, this evaluation, together with affiliation-based or credential-based
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examinations, is often used for determining trust worthiness.

To assess the sender domain of email messages, accreditation services have been pro-

vided with the DomainKeys Identified Mail (DKIM) signature [Hansen et al., 2009]. As

an extension of assessing the sender domain, vouching services for the content in the email

message are being proposed [Hoffman et al., 2009]. Since ratings and the related context

can be seen as a variation of a user’s attributes, they are represented as attribute certificates

or assertions, similar to affiliations and credentials.

Based on behavior or appearance

People sometimes trust each other based on behavior or appearance especially when they

do not have any other information about the other party. For example, people may trust

neighbors who are well-dressed and greet them with a smile. They may trust those who are

in the uniforms of police, safety guards, and even parking attendants. However, this type of

trust is fraught with danger of mischaracterization in both directions. People subjectively

judge other’s behavior or appearance by their values including prejudice, which are the

outcome of their experiences. On the other hand, fraudsters and confidence tricksters

who are well-dressed attempt to trick people. It is difficult to detect fraud only based on

appearance when they pretend to be an official person to gain trust from people. Thus, the

behavior or appearance of others is less helpful to trust others; rather, it is often useful for

suspecting and distrusting others.

Statistical analysis of content or sender behavior for email messages or calls falls into this

category. Similar to real-life examples, statistical analysis is useful for detecting unwanted

communication requests rather than good requests.

As Section 6.4 explains, this thesis explores approaches to identifying good communica-

tion requests, rather than detecting unwanted requests.

Based on location

People occasionally trust others based on a physical location. For example, people may

trust others who live in the same neighborhood, or who work within the same building, by

assessing what their social status or professions might be as a consequence. Additionally,
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people may trust those who are waiting at a bus stop based on their immediate location

since this location implies that they might be knowledgeable about a given bus’s schedule.

Thus, location can be seen as a translation of the affiliation or the behavior of the other

party. Unless physical location is certified by a trusted entity, location-based trust is prone to

mischaracterization, similar to the previously explained behavior-based or appearance-based

trust relationships. This is because the immediate location is often a transient attribute of

a person that only provides indirect evidence for the person’s attributes, such as affiliations.

Limiting the risk by physical location or legal division

As explained above, physical location is, in general, insufficient information to take a high

risk of another party’s actions. Nonetheless, it is useful for limiting the amount of risk

taken, especially in the context of online transactions or communications. People may want

to ensure that the involved parties or organizations are physically reachable and in their

jurisdiction in case they need to be prosecuted.

Limiting the risk by involving a trusted third party

Typically when the predicted risk of other party’s action is high, people trust the other

party by limiting the risk by involving a trusted third party. For example, people ask to

open locks for their cars or homes, if needed, to a bonded locksmith, which is provided

binding insurance. Rather than being used by itself, this limitation is usually used together

with other trust relationships.

Although the outcome of a communication may expose recipients to financial or other

types of loss, the risk of accepting a communication request itself is relatively low. Thus,

limiting risks is usually not required for controlling unwanted communication requests.

6.4 Good Calls or Messages

Tables 6.1 and 6.2 categorize incoming calls and messages, respectively, into two groups

depending on recipient’s preferences: unwanted and desirable. Unwanted calls or messages

can be further divided into two groups: harmful and annoying. Harmful calls or messages
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Definition: 
Good messages/calls

6

Callee’s 
preference Call spectrum Examples

Scope of 
existing 

mechanisms

Scope 
of this 
thesis

Unwanted

Harmful Threats
Fraud

Unwanted

Harmful
Fraud ✓

Unwanted
Annoying

Telemarketing 

  Originating from callers within jurisdiction
  Originating from callers beyond jurisdiction

✓

Unwanted
Annoying

Calls from charities
Calls from pollsters
Prank calls
Wrong numbers

Unwanted
Annoying

Calls triggered by past transactions, but not interested 

any more

Desirable

Less important Less important calls, but sufficiently important to answer ✓

Desirable
Important

Important calls carrying an unknown caller ID
Important calls triggered by past transactions

✓Desirable
Important

Calls from business partners, customers
Calls from family, friends, coworkers

✓ ✓

Table 6.1: Categories of incoming calls

Definition: 
Good messages/calls

7

Recipient’s 
preference

Message 
spectrum Examples

Scope of 
existing 

mechanisms

Scope 
of this 
thesis

Unwanted

Harmful

Threats
Viruses
Fraud: ID spoofing, phishing
Commercial messages: Abusive content

Unwanted

Harmful
Fraud
Commercial messages: Abusive content

✓

Unwanted

Annoying

 Commercial bulk messages
   Originating from senders within jurisdiction
   Originating from senders beyond jurisdiction

✓
Unwanted

Annoying
 Newsletter triggered by past transactions, but not interested  

 any more

Desirable

Less important  Less important messages, but sufficiently important to open ✓

Desirable
Important

 Important messages triggered by past online transactions
 Important messages carrying an unknown sender ID ✓Desirable

Important
 Messages from business partners, customers
 Messages from family, friends, coworkers

✓ ✓

Table 6.2: Categories of incoming email messages
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include threats and fraud. Specifically for message, viruses are also included. Annoying calls

have a wide range of calls, from telemarketing calls violating regulations, to various types

of legal calls. These legal calls include telemarketing with the callee’s consent, calls from

charities and pollsters, but not limited to them. They also include calls that are triggered

by past transactions or relationships, but are unwanted by the callee who finds them to

be no longer of interest or value of them. Prank or wrong number calls are also unwanted

by callees. Therefore, even if existing spam prevention mechanisms – typically designed to

detect fraud and telemarketing calls – can perfectly detect these types of calls, some types

of annoying calls reach the callee and require immediate attentions by the ringing. In this

case, characterizing fraudsters or telemarketer’s behavior does not help callee identify legal

calls that the callee is not interested any more. Thus, we focus on identifying desirable

calls, rather than detecting unwanted ones.

We call legal and desirable calls or messages good. Good calls are important to callees

or at least sufficiently important to warrant answering the phone. Filtering calls using

an address book has been commonly used, but it cannot identify good calls carrying an

unknown caller ID. Thus, this thesis addresses the issues of unwanted calls by identifying

good rather than detecting unwanted calls.

It is worth noting that the definition of spam is unclear and legislations against spam

vary from country to country [FTC, 2003; CRTC, 2010]. This thesis does not define the

term spam, but uses this term when describing existing mechanisms for preventing unwanted

email messages or calls.

6.5 Preventing Unwanted Communication Requests: Calls

and Email

This section reviews existing techniques for preventing unwanted calls and email messages.

We first provide an overview of the solution space. The solution space is rather large,

as described in Figure 6.1. There is no panacea for preventing unwanted communication

requests; thus, an ensemble of solutions is needed.

To understand the cost balance between the senders and recipients, we divide the so-
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Preventing unwanted email and calls

Legal

Charge 
for calls/
messages

Federal 
regulations

Individual recipient Group of
recipients

Anomalous traffic patterns

Caller/sender ID, domain name black-listing

State laws Asking additional 
procedures of unknown 

caller/sender IDs 

Burden on senders Burden on recipients

Solution space

Technical

Service providersIndividual 
sender

Service 
providers

FinancialTechnical

Domain-content 
voucher authorization

Content-based filtering

Domain name 
authorization

Asking retry of 
unknown servers 

IP address black-listing

Caller/sender ID, domain name white-listing

Domain 
name 

signature

Resending 
if needed

Domain- 
content 
voucher

Obtaining 
consent 

from 
recipients

Informing 
recipients 
of caller/
sender ID 

To identify good

To detect unwanted

Asking recipients 
for their consent 

Figure 6.1: Solution space of preventing unwanted calls and email

Goal: Additional filtering 
conditions

Good
(accept at 
the entity)

[ Filters ]

Unwanted 
(block 

permanently or 
temporarily)

Unsure if 
unwanted 

or not 

Outgoing messages/calls Incoming messages/calls

Outbound server Inbound server Recipient/callee

Suspect message 
folder/voicemail server

Unsure if 
good or not

Inbox/
ring

Inbox/
ring

Figure 6.2: Conceptual model of filtering messages or calls on outbound server, inbound

server, and recipients
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lution space into two categories, based on which entity is burdened. The burden placed

on the sender or caller side consists of technical, financial, and/or legal ones. The more

techniques for identifying good messages and calls (represented in white boxes) are added

on the recipient side, the higher cost for spammers to pretend the senders of good commu-

nication requests is added to the sender side. However, adding more techniques, especially

based on sender ID or caller ID, for detecting unwanted messages or calls (represented in

black boxes) does not increase the cost for spammers to circumvent blocking techniques –

spammers can pick a new sender ID or caller ID.

Both on the sender side and the recipient side, the burden on is placed on individual

recipients and/or service providers. Specifically for recipients, they sometimes collaborate

with each other in preventing unwanted messages. For both sides, the technical burden

includes not only the computational cost by machines, and also the cost of procedures by

humans.

Burden involves filtering techniques, which are divided into two types of filtering. One

filtering type is to determine whether or not to accept a request, for instance, white-listing.

Another is to determine whether or not to reject a request, for instance, black-listing. None

of filtering mechanisms can categorize all requests perfectly. Thus, a set of filtering mecha-

nisms is typically needed on the outbound servers, the inbound servers and the recipients or

callee, as shown in Figure 6.2. The outbound servers, except dedicated senders of unwanted

email or calls, need to block them to keep their reputation, not being considered the source

of spam.

The goal of this thesis is to propose additional tools while taking into account the cost

balance between the sender and recipient sides. Ideally, these solutions should place the

cost of sending unwanted messages or calls on the sender side only. However, it is almost

impossible to find such solutions since whether or not a message is unwanted often depends

on the recipient’s preference or decision. Thus, placing some burden, namely, a mechanism

for preventing unwanted messages or calls, on the receiver side is inevitable. Furthermore,

it is desirable that the mechanism assigned on the recipient should ultimately benefit the

recipient, in addition to preventing unwanted messages or calls. This motivated us to study

solutions for identifying good messages or calls, making it easier to prioritize them, rather
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than detecting and blocking unwanted ones.

The following sections review existing mechanism for detecting unwanted email or calls,

and for identifying good ones.

6.5.1 Detecting Unwanted Email or Calls

This section reviews existing techniques for preventing unwanted email messages or calls

that have designed for detecting and blocking them, discussing whether the techniques for

email are applicable to calls or not.

According to a report from a consortium of service providers [Group, 2011], approxi-

mately 90 percent of incoming messages at MTAs were blocked as spam or virus using black-

listing and content-based filtering in 2011. The report indicates that detecting unwanted

email messages, especially by servers, works quite effectively. Most existing techniques aim

for detecting email or calls that are unwanted by many recipients, not by each recipient.

This section uses the term spam to describe unwanted email or calls without considering a

recipient’s preference.

These techniques use a wide range of inputs, from the network layer address to the

message content. We break down these techniques into the following layers: network,

transport, and application. Especially for the application layer, we further break them

down into message header, content, sender behavior analysis, and adding procedures to be

completed by unknown senders.

Each or a set of mechanisms using the inputs is used as a filtering condition installed

at the outbound mail servers, the inbound mail servers (both called mail transfer agents

(MTAs)) and recipient mail clients, as shown in Figure 6.2. For calls in SIP, filtering systems

work at the outbound SIP servers, the inbound SIP servers, and callees.

Based on the network layer address

Blocking spam email messages based on the source IP address, called IP address black-

listing, is a simple technique that has been commonly used, typically by inbound MTAs.

MTAs look up on the lists of spam source IP addresses and domains, mostly using DNS-

based lists [Jung and Sit, 2004; Levine, 2010]. Open relay MTAs, which allows to send
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messages without sender authentication, had been included in these lists until open relays

became unacceptable and closed [DSBL, 2009].

The benefit of IP address black-listing is that it is lightweight since it can avoid the cost

of handling spam messages at the upper layers, namely, TCP and SMTP. The limitation

of IP address black-listing is that it is effective in blocking spam only from dedicated spam

senders, not from compromised machines, so-called bots, where a large fraction of spam

messages originate [Ramachandran and Feamster, 2006]. Furthermore, as is common with

any listing mechanisms, the effectiveness of this approach depends on how these lists can be

updated, keeping up with the spammers agility. This was observed also by Ramachandran

and Feamster, noting that a fraction of spammers had used short-lived routing information

to evade being traced.

IP address black-listing is applicable to all communication means over IP networks.

However, VoIP servers have been using the opposite approach; accepting traffic only from

a limited number of peers.

Based on the transport layer behavior

As a characterization study for spammers’ transport layer behavior, Beverly and Sollins [Bev-

erly and Sollins, 2008] observed that spammers send a large number of messages to low-

bandwidth networks, leading to network congestion. However, given that the cost of network

bandwidth has been significantly reduced, we are uncertain whether this characteristic still

holds true.

Originators of call spam do not share this characteristic of email spammers, leading to

network congestion because of the following differences in protocols and services. Unlike

SMTP, SIP signaling messages and voice packets can be transmitted over UDP. In this case,

no indicators of network congestion can be observed at the transport layer. In addition, to

deliver their message with acceptable voice quality, originators of call spam have to avoid

congestion for themselves. Furthermore, due to the time-consuming nature of phone calls,

the call volume cannot be as large as email messages. Even robocalls, which autodial and

play pre-recorded or synthesized messages, usually take a few minutes for each call to wait

to be answered and play a message, whereas the senders of email spam can instantly send
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a large number of message copies to multiple destinations.

Based on the application layer inputs from message header fields

Both the Simple Mail Transfer Protocol (SMTP) envelope [Klensin, 2008] and the email

message header fields [Resnick, 2008] include the sender ID of an email message. Based on

the observation that many spammers forge a sender ID of email messages, several mecha-

nisms for verifying a sender’s domain and a sender ID have been proposed and are currently

used [Lyon and Wong, 2006; Wong and Schlitt, 2006; Crocker et al., 2011]. However, these

verification mechanisms intend to identify good senders, rather than to detect and block

senders of spam messages, since spammers can pick a new domain to evade being blocked.

Blocking email messages based on a sender ID has been widely used especially by recip-

ients. However, spammers can pick a new email address even more easily than a domain to

evade being blocked by black-listing. Thus, detecting spam based on a sender’s domain or

a sender ID has become less effective.

Similar to email, detecting and blocking call spam based on a caller ID have been used

as a common solution since it is simple. However, the effectiveness of this solution relies

on the assumption that a caller ID can be authenticated by the callee. Without caller ID

authentication, originators of call spam can evade being blocked using a forged caller ID.

However, caller ID authentication suffers from limitations: for example, a phone number

in the tel URI cannot be authenticated by the callee. The limitations of caller-ID-based

filtering are further discussed in Section 6.7.

Based on the application layer inputs: Content

Content-based filtering has been commonly used to detect spam, both by MTAs and re-

cipients mail clients. For example, a prominent spam filtering tool, SpamAssassin [Mason,

2011] assigns a score indicating the likelihood of a message being spam based on statistical

text analysis [Graham, 2002]. As variants of content-based filtering, the hash of a mes-

sage that has been received and labeled as spam by someone of collaborators is used to

determine whether an email message is spam or not [V. Prakash and J. ODonnell, 2005;

Tobin, 2009].
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Spammers have recently begun to use image attachments and insert different data in

order to have a different message hash as countermeasures to these filtering techniques.

Thus, content-based filtering has become more difficult.

For calls, there is no question that content-based filtering is ineffective since the callees

are reached and annoyed by the ringing tone before receiving the content, namely voice or

video. However, in the case where calls are answered by a machine (e.g., answering machine

or voicemail server), content-based filtering might be effective in detecting spam. Relying on

the observation that many unwanted calls play pre-recorded messages to decrease the cost of

telemarketers, for example, Quittek and his colleagues [Quittek et al., 2007] proposed Turing

tests to detect human communication patterns. However, some good calls from government

agencies or credit card companies are also automated and pre-recorded messages. Moreover,

these tests are likely to annoy human callers.

Based on the application layer inputs: Sender or caller behavior analysis

Statistical analysis of anomalous sender behavior has been explored, which is a relatively

new approach, compared to statistical text analysis. By collaborating with a group of indi-

viduals, anomalous traffic patterns – based on message volume, frequency, file attachment

patterns, and clusters of users who share message copies – are detectable [Stolfo et al., 2006;

Boykin and Roychowdhury, 2005].

On the other hand, anomalous caller behavior has been explored less. This is due to the

fact that call history data, which are called call detail records (CDRs), contain less data.

CDRs typically consist of caller and callee IDs and start and end timestamps, excluding the

information conveyed in other SIP header fields. Additionally, since a call request, unlike an

email message, has only one destination, it is almost impossible to analyze clusters of users

who share a conversation based on call history. Furthermore, the most significant drawback

of CDRs is that the content of voice communication, which sometimes is recorded by a

voicemail server, is not included. The lack of content in communication history makes

difficult offline call classification – spam or not – without the callee’s feedback. Therefore,

in contrast to email spam where their detection performance can be evaluated using public

corpora [spa, 2006; Cormack and Lynam, 2007], statistical analysis of anomalous caller
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behavior cannot be performed as readily.

Although they have not been evaluated using real call history data, several frame-

works of caller-behavior-based filtering that learn from the callee’s feedback have been pro-

posed [Mathieu et al., 2008; Dantu and Kolan, 2005]. Mathieu and his colleagues [Mathieu

et al., 2008] proposed analyzing each caller’s behavior by measuring the number of concur-

rent calls, call attempt rate, the callee’s address patterns found in subsequent call attempts,

and the number of SIP error messages, such as the destination address being not found.

However, it is easy for originators of call spam to avoid being detected at the inbound SIP

server or a group of callees by distributing calls (e.g., randomizing the order of calls) to

multiple inbound SIP servers across service providers. Thus, unless the originating service

provider cooperates, it may be difficult to measure the outgoing call volume, similarities of

callee’s addresses, and error rate. This information may be considered privacy sensitive or

a business secret.

Adding procedures to an unknown sender or caller

Based on the observation that spammers’ MTAs tend to implement minimal functionality

of SMTP, several mechanisms for deterring spammers from sending messages have been

proposed [Harris, 2003; Twining et al., 2004]. Greylisting proposed by Harris [Harris, 2003]

is representative of the deterring approach. In the greylisting mechanism, inbound MTAs

label a sender as unknown if the sender ID of a message is not found in communication log

collecting a pair of a sender and the recipient email addresses. Inbound MTAs respond to

an unknown sender with a temporary error, and if the sender resend the message, receives

it. The deterring approach reasonably places buden on the sender side rather than the

recipient side, but it causes good messages from unknown senders to be delayed.

Delaying the signaling message for good calls is unacceptable for initiating real-time

communication. Thus, the greylisting approach is difficult to apply to calls.

6.5.2 Identifying Good Email Messages or Calls

This section reviews existing mechanisms for identifying good email messages or calls, com-

paring them to our work in this thesis. Unlike spam detection mechanisms, this approach has
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been less explored; we have only forms of origin-ID-based (i.e., sender-ID-based or caller-ID-

based) and consent-based. This section also describes a destination-ID-based mechanism,

although it was designed and used mainly for sorting messages.

Based on the application layer inputs: Sender ID or Caller ID

The most common solution for identifying good communication requests is origin-ID-based

(i.e., sender-ID-based or caller-ID-based) filtering using the recipient’s white list, so-called

address book. A white list is populated with the contact addresses of persons or organiza-

tions that a recipient has ever communicated with.

A white list is useful for identifying good messages or calls if they meet the following

two conditions. One is that the recipient can verify the origin ID authentication. Another

is that the origin ID of good messages or calls is included in the white list beforehand. To

meet the first condition for email, namely, to allow recipients to authenticate a sender ID

from external domains, the DomainKeys Identified Mail (DKIM) signature [Crocker et al.,

2011] has been proposed and is currently widely used. DKIM allows the sender domain

to sign a set of message header fields including the From header field. Recipients as well

as inbound MTAs can verify the sender ID authentication by verifying the signature and

assessing the sender domain name. Similarly, a domain-based authentication mechanism

for calls using SIP, the SIP identity mechanism [Peterson and Jennings, 2006] has been

proposed. However, it is obvious that this domain-based authentication cannot be applied

to a phone number in the tel URI. Even for a SIP address-of-record (AoR) in the SIP URI,

the authentication service is often unavailable because of the lack of ITSP support. This

problem is further described in Section 6.6.

Unless the second condition is met, namely, a sender ID of a good message is not found

on a white list, the message cannot be labeled as good. Since a white list of a single user

contains a relatively small number of contact addresses, it often encounters the introduction

problem.1 Thus, effective use of a white list depends on how a recipient can collect contact

addresses of potential senders beforehand.

To expand white lists leveraging social graphs, Ceglowski and Schachter [Ceglowski and

1See the definition in Section 1.2.
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Schachter, 2004] introduced the way of sharing privacy-aware address book among friends

who exchange email messages. A person sends his friend a message with his hashed address

book attached. When a person receives a hashed address book of a friend, he stores the

address book as contact addresses of friends of the friend. The hashed address book, only

used for filtering purposes, is represented as a Bloom filter [Bloom, 1970], which allows

for space efficient strorage. This concept was introduced before social media services had

emerged.

Currently, many social media services (e.g., Facebook or LinkedIn) visualize a user’s

social graphs with their contact addresses. However, the problem is that users of social

media services cannot share their contact addresses while preserving their privacy. The

users can only select whether or not to publish their contact addresses they can be reached

at. One mechanism introduced in Section 7.5.1 proposes a mechanism for filtering calls

based on hashed contact addresses from a Web site, typically from a social media Web site.

As another way of collecting contact addresses of potential senders, Shacham and

Schulzrinne [Shacham and Schulzrinne, 2007] proposed a new HTTP header that allows

a Web client to collect contact addresses from potential callers. We have incorporated this

work into our mechanism using cross-media relations for calls preceded by a Web transac-

tion, as described in Section 7.5.1.

Instead of collecting contact addresses of potential callers using social graphs, a mech-

anism for providing call history in a communication request was proposed by Balasubra-

maniyan and his colleagues [Balasubramaniyan et al., 2007]. They considered a scenario

where a caller (Alice) talked to her friend (Bob) and wants to make a call to a friend of

her friend (Bob’s friend, Carol). The caller (Alice) provides the callee (Carol) with the call

log data (between Alice and Bob) that is certified by Alice’s outbound SIP server, called

a call credential. The callee (Carol) assesses a call request from an unknown caller (Alice)

based on the call credential, which is evidence of a call between her friend (Bob) and the

unknown person. People usually trust their own communication history more than their

friend’s one. If people need to rely on their friend’s communication history, they usually

verify it by asking their friend, rather than by asking a third-party entity. Our approach

using cross-media relations (Section 7.5) relies on evidence of the callee’s prior contact, not
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an unknown party’s communication history. Our approach uses prior contact though a Web

transaction or email message exchanges, not limited to a call.

As a variant of sender-ID-based filtering, sender-domain-based filtering is often used

based on a list of trusted domains that a recipient configures. This is useful especially

for business-to-business communications where recipients authenticate senders by their or-

ganization (the domain name), rather than by their name (the user part of an address).

This sender-domain-based filtering is effective only in the cases where the callee’s trusted

domains provide communication services and issue the contact addresses for their users.

On the other hand, our proposed mechanism for validating a user’s attributes (Chapter 8)

allows callees to domain-based filtering, not limited to the domain name of a sender ID, but

any domain name the callees trust.

Requiring the consent of a recipient or callee

When the recipient’s inbound MTA or inbound SIP server applies white-listing to identifying

good messages or calls, the server usually holds messages or calls carrying an unknown

origin-ID, rather than immediately blocking them, since no white-lists can perfectly include

all origin-IDs of good messages or calls. For example, EarthLink [EarthLink, 2012] server

hold such messages as suspected messages in a recipient’s message folder. If the recipient

checks these messages and gives permission to receive a future message from its sender, the

server updates the recipient’s white list. A similar example is provided as call screening

services by Google voice [voice, 2012]. However, for calls, a consent request is another form

of unwanted interception for the callee.

In contrast, our mechanism using cross-media relations (Section 7.6), which can be

considered a variant of consent-based framework, does not require an additional call or

message for asking the callee for his consent. Rather, focusing on prior contact, the callee

grants permission to potential callers through different communication means beforehand.

The caller can use a proof of the communication as the callee’s consent.
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Based on the application layer inputs: Destination ID

The way of setting the destination IDs reveals how the sender wanted to send a message and

which address the sender used to reach the recipient. Thus, sorting messages into folders

based on the destination IDs has been common practice. With subaddressing [Murchison,

2008], each email address can include an additional value between the user part and the

domain part with + (e.g., user+coms101@example.com).

We apply this subaddressing mechanism to a SIP AoR in the SIP URI, to identify

good calls preceded by a Web transaction (Section 7.6.1). Because of the syntax similarity

between an email address and a SIP URI, applying subaddressing to a SIP URI is straight-

forward. For a SIP AoR in the tel URI [Schulzrinne, 2004], we borrow the concept of phone

number extensions, which is used for call distribution on a PBX, to the tel URI.

6.6 Limited Availability of Caller ID Authentication to Call-

ees

This section discusses technical and practical problems with authenticating a caller ID from

the callee’s perspective. We start with providing an overview of a caller ID. We then describe

anonymous caller ID services, and proceed to discuss technical and practical problems with a

caller ID authentication mechanism which is current available, the SIP identity mechanism.

6.6.1 Overview of Caller ID

A caller ID used in a SIP call, which is called SIP address-of-record (AoR), is expressed in

one of two schemes: the SIP URI or the tel URI. A SIP URI contains the domain name

of the issuer (e.g., sip:username@example.com), similar to an email address. In contrast,

a phone number with the tel URI scheme includes country and area codes indicating the

geographical location of the originator (e.g., tel:+12121234567).

The geographical location information indicated by the country and area codes has

become more uncertain. Although phone numbers have been typically assigned to landlines

or mobile phone devices, they have become assigned to the users of VoIP services that

offer inter-connection with the PSTN or cellular networks. A VoIP user can pick a phone
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number to be displayed as a caller ID when a call reaches a phone device in the PSTN.

Without a phone number coupled to a VoIP user, a phone number of the VoIP–PSTN

gateway is displayed for the call. Thus, even the country code is unreliable owing to the

global availability of VoIP–PSTN services.

6.6.2 Anonymous Caller ID services

Similar to caller ID blocking services provided in the PSTN, ITSPs offer anonymous caller

ID services [Peterson, 2002] that allow callers to hide their SIP AoRs for privacy reasons.

They sometimes want to avoid getting called back or avoid disclosing the geographical

location implied by the country and area codes of a phone number. Anonymous caller ID

services obviously conflict with caller ID authentication; thus, caller ID authentication fails

to perform.

If an incoming call carries an anonymous caller ID (e.g., sip:anonymous@anonymous.inv

alid), caller-ID-based filtering usually blocks such a call, whether it is a good call or not.

Thus, there is a case where a caller wants to provide a piece of information other than the

caller ID in order to be identified as a good call and to be answered.

6.6.3 Limitations of Caller ID Authentication Mechanisms

Caller ID authentication falis to perform if the originator’s caller ID is replaced with an

anonymous caller ID, as Section 6.6.2 described. The following description, thus, discusses

the cases where an incoming call carries a caller ID which is not an anonymous caller ID.

If a call originates the domain of the ITSP where the callee connects and the callee trusts

its authentication policy, the callee can validate caller ID authentication based on whether

the callee can trust the ITSP’s authentication policy. If a call comes from a different domain,

the callee can authenticate a caller ID using a domain-level authentication mechanism and

using transitive trust. A domain-level authentication for SIP, namely, the SIP identity

mechanism, has been proposed, but has been suffering from the following technical and

practical problems.

Technically, the SIP identity mechanism is available only to a caller ID in the SIP URI,

not to a phone number in the tel URI, since it contains no domain name. Thus, there is no
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authentication mechanisms for a caller ID in tel URI which is available to the callee. If a

call originating the same ITSP as the callee connects and trusts its authentication policy,

the callee relies on a caller ID by checking SIP routing-related header fields, such as a SIP

Via header filed.

Furthermore, the SIP identity mechanism encounters a practical problem even with

a caller ID in the SIP URI. The practical problem throws obstacle to deploy caller ID

authentication services because of the following service conflict. The service conflict occurs

when a session border controller (SBC) [Hautakorpi et al., 2010] exists along in signaling

path. An SBC is an entity that typically manipulates signaling messages based on the

ITSP’s policies, modifying part of signed information, for example, the Contact header field

of a SIP INVITE request in order to hide the ITSP’s network topology.

Unlike calls, email services do not suffer from the difficulties in deploying sender ID

authentication. A domain-level authentication mechanism for email, such as DKIM, has

been supported on many SMTP [Klensin, 2008] servers.

6.7 Limitations of Caller-ID-based Filtering

Filtering call systems based on a caller ID have been commonly used, but they are not

always effective for the following reasons. First, caller-ID-based filtering can work properly

only in the cases where caller ID authentication is available. Callees cannot authenticate a

caller ID in the tel URI or blocked for privacy reasons, as discussed in Section 6.6. Caller-ID

based filtering systems, which are usually implemented on a VoIP server, PBX [Hewlett-

Packard, 2010], and/or user clients, first need to validate caller ID authentication in order

to detect caller ID spoofing.

Second, filtering based on a black list, which consists of contact addresses to reject calls,

is less effective for VoIP calls. This is due to the fact that callers can pick a new caller ID

easily and cheaply, similar to an email address. Thus, even if the callee’s black list contains

the contact addresses of unwanted callers and links to a reputation service that gathers IDs

of well-known malicious callers, the effectiveness of black-listing is limited. Consequently,

rather than black-listing, white-listing, which identifies good calls based on caller IDs in a
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white list, plays a large role in preventing unwanted calls.

Third, no list can perfectly include all necessary caller IDs beforehand; thus, the effec-

tiveness of white-listing is also limited. The caller IDs of good calls are not always found

in the callee’s white list. A white list generally contains the contact addresses of persons or

organizations connected to the callee by strong social ties, such as friends or close colleagues,

not the contact address of those who are connected by weak social ties, who have had prior

contact, but do not regularly communicate with each other. The examples of those who

are connected by weak social ties include the callee’s friends in the extended social graphs

of social media Web sites or the call center of an airline company that the callee booked a

flight.

Thus, to determine whether or not to accept incoming calls, simple caller-ID-based

mechanisms are limited in applicability and effectiveness. Our challenge is to develop more

sophisticated mechanisms in order to conquer the difficulty in labeling the following types

of calls:

1. Calls from persons or organizations connected to the callee by weak social ties;

2. Calls from those connected to the callee by strong social ties, but using new, alterna-

tive, or unknown caller IDs, for example, from a temporary location like a hotel;

3. Calls with unauthenticated caller IDs, for example, a SIP URI containing an unau-

thenticated domain or a phone number in the tel URI, which includes no domain

name.

4. Calls with blocked caller IDs, (i.e., anonymous caller IDs).

6.8 Limitations on the Use of Caller ID as a Caller’s At-

tribute

This section describes limitations on the use of caller ID as a caller’s attribute and on the

use of sender ID as a sender’s attribute. As discussed in Section 6.3.2, people often assess

others based on their attributes, not by their identity. Similarly, recipients may assess

communication request based on the originator’s attributes, if available. Thus, this thesis
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explores a lightweight mechanism for validating the originator’s attributes in Chapter 8.

We have observed that part of an origin ID (i.e., caller ID or sender ID) is sometimes useful

in identifying the originator’s attribute, for instance, the domain part in an email address

(e.g., columbia.edu). Based on this observation, the use of an authenticated origin ID as the

originator’s attribute can be considered to be a lightweight mechanism, serving the same

purpose as ours. Thus, prior exploring a new mechanism, we evaluate the use of an origin

ID as the originator’s attribute, focusing on the limitations and problems with that.

Useful attribute in limited cases: Email address or SIP URI Issued by a trusted

domain

A domain name of an origin ID is helpful to indicate the originator’s attribute only when it

satisfies the following two conditions. First, the origin ID must be authenticated by the do-

main and verifiable by the recipient using a domain-level authentication mechanism, such as

DKIM or Sender ID for email, and the SIP identity mechanism for a SIP URI. Second, the

domain must be trusted by the recipient from the viewpoint of user account management

policy, such as an enterprise and a school issuing CEIDs, strictly limited to their employ-

ees and students. Many people greatly benefit from communication services provided by

Internet service providers (ISPs) or application service providers (ASPs). Because of their

open user account management policy, people can easily obtain and keep using their CEIDs,

whether or not their affiliation change. However, at the same time, the domains of their

CEIDs cannot be trusted as attributes of the caller or email sender.

A caller ID in the tel URI (i.e., a phone number in the tel URI) can be authenticated

by the callee only when the call originates from the same domain where the callee connects

and trusts its authentication policy, as described in Section 6.6.3. Under the condition that

a phone number in the tel URI is authenticated, country and area codes in the tel URI

sometimes help identify the geographical location of the landline caller, but have become

less helpful for the following reason. A phone number in the tel URI was originally assigned

to a line for landline or a device for wireless telephone services. However, many ISPs and

ASPs have recently started to offer connection services to the PSTN and to allow their users

to pick their phone number to display on the recipients’ device, wherever their geographical
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location is. Thus, even the country code in the tel URI has become unreliable information

about the caller.

Based on this observation that callees cannot authenticate the caller’s phone number in

the tel URI, we were motivated to propose a mechanism for validating a user’s attributes

without authenticating the user’s identity described in Chapter 8.

One origin ID per communication request

Assume that an originator has multiple CEIDs issued by multiple domains, which indicate

her attributes, affiliations to multiple organizations for instance. If she can include her

CEIDs into a single communication request, she might raise the possibility of being accepted

by the recipient. However, only a single origin ID can inherently be set in a communication

request, namely, the From header field in an email message or in a SIP INVITE request.

Reference integrity problem when using directory service

Even if an authenticated origin ID does not provide sufficient information, recipients might

be look up further user attributes through directory services. However, recipients often

encounter a reference integrity problem. This reference integrity problem arises when a

directory service allows queriers to look up user attributes by the information available to

the public, such as by a user’s last name, not by the user’s email address or SIP AoR.

Additionally, even when a directory service allows queries by a user’s email address or SIP

AoR, but is offered by a third party which is not the issuer of the address, the authenticity of

the information is unreliable. For example, the DoctorFinder2 service provides information

about certified medical doctors. When making a query, a querier cannot use the doctor’s

phone number, but rather needs to the use doctor’s last name, street address or specialty,

which is available to the public. Thus, if a doctor sends an email message or makes a

call that includes such query information and a reference to the DoctorFinder service, the

recipient is not convinced of the certainty of the information.

2This DoctorFinder service is offered by the American Medical Association at https://extapps.ama-

assn.org/doctorfinder/ as of Feb. 1, 2011.
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These problems motivated us to a propose mechanism for validating user attributes

described in Chapter 8.
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Chapter 7

Using Cross-Media Relations to

Identify Good Communication

Requests

7.1 Introduction

Good calls1 carrying an unknown caller ID often originate from persons or organizations

who have had prior contact through a Web transaction or email exchanges, resulting in

the establishment of weak social ties2 to the callee. According to a 2011 New York Times

article [Paul, 2011], many callees now prefer receiving calls preceded by email or text message

exchanges in order to avoid being disturbed even by calls originating from family members

or friends, who are connected by strong social ties. Motivated by these observations, our

study focuses on prior contact as an additional indicator for identifying good calls.

This chapter first presents our hypothesis that prior contact is helpful to distinguish

between good and unwanted calls. It then defines a piece of information exchanged in

prior contact as a cross-media relation and provides an overview of the service architec-

ture where both parties establish a cross-media relation. We distinguish two mechanisms

1See the definition in Section 6.4.

2See the definition in Section 6.2.
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based on the type of information used as cross-media relations, collecting the contact ad-

dresses of potential callers and exchanging a weak secret, which is a proof of prior contact,

provided by a callee. To test the concept of using cross-media relations, we conducted a

user study of incoming email and SMS messages in addition to incoming calls. The user

study demonstrates that using cross-media relations, especially Web-then-email, which is a

relation between two parties who communicate using an email message preceded by a Web

transaction, is potentially effective in identifying a good communication request carrying

an unknown origin ID, namely, sender ID or caller ID.

7.2 Hypotheses

We first hypothesize that a significant fraction of incoming calls are good calls and originate

from persons or organizations connected by weak social ties. Their contact addresses,

similar to callers who make commercial bulk calls or spammers, are rarely found in the

callee’s address book. However, those connected by weak social ties differ from spammers

in that they have had prior contact, either in one or both directions, with the callee through

different communication means. They change the means of communication, typically from

asynchronous to synchronous and from text to voice or video. In contrast, spammers usually

make calls without any prior contact in order to make bulk calls as efficiently as possible.

Thus, we hypothesize that prior contact is a helpful distinguishing feature between good

and unwanted calls.

Based on these hypotheses, this thesis proposes that both parties exchange an additional

piece of information which can be used in future calls as evidence of prior contact.

7.3 Cross-Media Relations

We define a piece of information that can be used for proving the existence of a prior com-

munication as a cross-media relation. If a call is preceded by a Web transaction, the caller

and callee have a relation called Web-then-call. If the call is preceded by an email message,

the relation between the two parties is called email-then-call. Table 7.1 summarizes these

two types of cross-media relations, Web-then-call and email-then-call, which are mainly
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Type Contact addresses of a potential caller A weak secret provided by the

callee

Web-then-call Contact addresses either in plain text or

hashed form

A customized contact address of

the callee

Email-then-call Contact addresses Message ID of an outgoing email

message

Table 7.1: Cross-media relations: Types and information exchanged in prior contact

discussed in this thesis. We distinguish two mechanisms based on the type of information

for each cross-media relation. One type is the contact addresses of a potential caller and

another is a weak secret, which is a proof of prior communication, provided by the callee.

In the case where both parties have established a Web-then-call relation, the callee col-

lects the contact addresses of potential callers either in plain text or hashed form. Hashed

contact addresses are useful for publishing them on the Web site while protecting the po-

tential caller’s privacy. Section 7.5 describes how the callee collects the contact addresses

of potential callers in two scenarios, Web-then-call and email-then-call.

The type of information used as a weak secret varies according to the previous commu-

nication means. To prove a Web-then-call relation, a weak secret is a customized contact

address since no ID for a Web transaction exists. To prove an email-then-call relation,

the message ID of an outgoing email message can be used as a weak secret. Section 7.6

details the ways that both parties share a weak secret in two scenarios, Web-then-call and

email-then call.

7.4 Service Architecture

Figure 7.1 provides an overview of our controlling unwanted requests (CURE) system that

allows callees to collect and look up cross-media relations in order to identify good calls.

Bob, a user of the CURE system, has had contact with an airline call center through a Web

transaction or email message exchanges, for example. He has exchanged a weak secret as
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Figure 7.1: Service architecture of CURE system using cross-media relations

a proof of prior communication and stored it in a database for future calls. While a weak

secret to prove a Web-then-call relation is a customized his contact address, the secret to

prove a email-then-call relation is the message ID of his email message. The database where

these piece of information are stored should be accessible by applications on multiple devices

that Bob uses and, if need, also by an inbound SIP server that queries it on his behalf. Each

application inserts a cross-media relation into the database with corresponding information,

namely, the URL of the Web site or the sender ID and the destination addresses of the email

message.

When Alice, a person from the call center, makes a call to Bob, the call signaling

message, namely, the SIP INVITE request, conveys the information to be identified as a call

originating from someone from the call center. By looking up cross-media relation data in

the database, Bob correlates the incoming call with prior contact to the call center. He

then determines whether or not to answer the call and adjusts his communication stance

accordingly.

All messages for a Web transaction, email exchanges, SIP signaling, and database access

should be protected by security mechanisms such as TLS in order to ensure their confiden-

tiality and integrity.
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7.5 Collecting Contact Addresses of Potential Callers

The more contact addresses of potential callers a callee can obtain beforehand, the more

effectively existing caller-ID-based filtering systems can be used. Our first mechanism, thus,

collects as many contact addresses of potential callers as possible. This mechanism is useful

only when the contact addresses to be used for future calls have been determined and the

number is not too large to store in a person’s buddy list, unlike the list of contact addresses

of all employees in a large enterprise. It is also useful in the case where either a caller or the

callee connects to the PSTN or uses a conventional phone terminal, which cannot support

the enhancements required for the second mechanism described in Section 7.6.

The following sections describe how potential callers provide callees with their contact

addresses in Web-then-call and email-then-call scenarios, respectively.

7.5.1 Scenario 1: Web-then-Call Relations

This study considers two Web-then-call scenarios: one collecting contact addresses in plain

text from a Web site, and another collecting contact addresses in hashed form, especially

the contact addresses of friends from a social media Web site. The advantage of collecting

contact addresses in plain text is that it can be used by existing filtering systems without

adding functionality to them. Many enterprises publish their contact addresses on their

Web site to allow their customers and business partners to continue identifying their calls

in a conventional way.

However, many individuals are unwilling to do so, such as at user profile on a social

media Web site, because of privacy concerns that publishing their contact addresses in

plain text would cause more unwanted incoming calls. This is due to the fact that spammers

usually harvest addresses by exploiting a Web crawler application program [Dodds, 2006].

To relieve their privacy concerns, the CURE system allows potential callers to provide their

contact addresses in hashed form, such as the SHA-1 [SHA, 2002] hash of a phone number

and the URL of the Web site where the hash is to be published. Such a hashed contact

address can be used only for identification purposes. We hypothesize that many users

prefer concealing their routable contact addresses on their profile even to their friends, but
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Figure 7.2: Collecting contact addresses of potential callers in plain text: Web-then-call

being still identifiable at the callee. Thus, the goal of using hashed contact addresses is to

encourage users to publish their contact addresses, even on their public profile Web site.

Collecting contact addresses in plain text

Figure 7.2 illustrates an example of message exchanges in the first Web-then-call scenario be-

tween Alice, a person from an airline call center, and Bob, a user of the airline’s Web server.

When Bob successfully signs up for a service, the airline’s Web server has two options to no-

tify him of the airline’s contact addresses. The first option is to respond with an HTTP 200

OK response carrying the contact addresses in plain text for future communication. These

contact addresses are conveyed in a new HTTP header field, Correspondence-URIs [Shacham

and Schulzrinne, 2007]. To do so, a Web server just needs to have an HTML meta tag,

HTTP-EQUIV [Raggett et al., 1999] consisting of the header field name, Correspondence-

URIs, and a contact address of the Web site, in the header of an HTML page, as described

in Figure 7.3. When a Web server sends the HTML page, it automatically converts the

HTTP-EQUIV tag into the corresponding HTTP header.

The second option is to guide Bob to a site-wide meta information page [Hammer-Lahav
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<html>

<head>

<META HTTP-EQUIV="Correspondence URIs" CONTENT="tel:+18001234567">

</head>

</html>

Figure 7.3: An example of Correspondence-URIs in HTML

and Cook, 2011]. In either option to convey potential contact addresses, the data integrity

of the transaction should be protected by using secure HTTP, or HTTPS (i.e., HTTP over

TLS).

Upon receiving the HTTP 200 OK response, a Web client extension supporting an

additional function for the CURE system extracts the contact addresses, and updates the

database of cross-media relations with the URL of the Web site. To prevent misuse, the

extension prompts Bob for confirmation before updating the database. Additionally, it asks

Bob if the expiry date should be set for the temporary use of the service and when it will

expire. If Alice needs to contact Bob afterwards regarding the service he signed up, she

just needs to make a call to him from one of the contact addresses delivered in the previous

Web transaction. An inbound SIP server for Bob queries the database for the caller ID in

order to determine whether to accept the call.

Collecting contact addresses in hashed form

Figure 7.4 depicts the second Web-then-call scenario, where contact addresses are in hashed

form. Assume that Alice has published her contact address in hashed form on her profile

page on a social media Web site. The hash string is generated by an application at the

Web server using SHA-1 from her contact address in plain text concatenated with the URL

where the address is to be published (e.g., H(tel:+12121234567||URL)). This concatena-

tion prevents hashed contact addresses from being correlated across different Web sites.

Bob, a user of the social media site, retrieves Alice’s hashed contact addresses through a

message body in the HTTP 200 OK response to an HTTP GET request.

When Alice makes a call to Bob, she needs to specify both her contact address in plain
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Figure 7.4: Collecting contact addresses of potential callers in hash format: Web-then-call

text and her hashed contact address published on her profile page in order to be identified

as a person in Bob’s social graphs. A SIP UA conveys her caller ID in the From header field

and the hashed contact addresses in a new SIP header field, Sender-References [Ono and

Schulzrinne, 2009b] with the h-contact type parameter and the SHA-1 hash algorithm. An

inbound SIP server first on behalf of Bob queries the database for the URL corresponding

to the hashed contact address in the Sender-References header field. To verify the hashed

contact addresses, the SIP server computes the hash of the contact address in the From

header field of the received call concatenated with the URL retrieved from the database. If

it succeeds in the verification, it determines whether to accept or decline the call.

7.5.2 Scenario 2: Email-then-Call Relations

Figure 7.5 illustrates that Bob collects Alice’s contact addresses in a vCard [Dawson and

Howes, 1998] attachment to her email message only when he replies to that message. His

reply, except from a compromised machine, is evidence that the original message from Alice

was good.

An additional function on each mail delivery agent (MDA), such as an IMAP [Crispin,
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Figure 7.5: Collecting contact addresses of potential callers: Email-then-call

2003] server, that Bob uses, or a dedicated IMAP client for the CURE system parses email

messages that have been replied to and extracts contact addresses (i.e., email addresses and

phone numbers) in a vCard from them. To determine whether a message has been replied,

checking the IMAP answered flag seems to be efficient, but does not always work. This is

due to the fact that sending or storing the flag is optional to implement, according to the

IMAP specification [Crispin, 2003], and popular implementations does support.3 Thus, the

additional function to the dedicated IMAP client needs to look for a reply and the original

message by tracing the linkage between email messages that can be found in message IDs

in the In-Reply-To and Message-ID header fields.

7.6 Sharing a Weak Secret Generated by Callee

In the second mechanism, the callee provides potential callers with a weak secret as a proof

of prior communication. This weak secret, a piece of information, should be sufficiently

3For example, Thunderbird mailer 3.1 [Mozilla, 2010b] does not send the flag. Gmail [Google, 2011]

IMAP server and its Web mail client do not store the flag.
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Figure 7.6: Sharing a weak secret: Web-then-call

confidential to determine whether to answer a call, which is a relatively low-risk interaction.

Sharing a weak secret between a potential caller and the callee is effective in the following

cases. One is where the previous contact is one-to-many correspondence between the callee

and the potential callers. The callee is usually unwilling to receive and maintain a long list

of contact addresses of the potential callers, for example, when joining a club or attending a

conference. Another case is where potential callers cannot assure the callee of their contact

addresses, such as a call from a temporary location like a hotel.

7.6.1 Scenario 1: Web-then-Call Relations

A Web transaction, namely an HTTP transaction, does not have any transaction ID accord-

ing to the HTTP specification [Fielding et al., 1999]. Although an HTTP Cookie [Barth,

2011] can contain a session ID, it is generated by a Web server for its purposes, not by a Web

client. Thus, rather than using an HTTP Cookie, the callee creates a customized phone

number (or email address in a Web-then-email scenario) that contains a random component

and uses it as a proof of a Web transaction.

As Figure 7.6 illustrates, when Bob fills out his contact information in a sign-up form, a
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Web client extension helps him generate a random component (e.g., SDJP09lk) and insert it

between the user name and the domain name preceded with +, in the same way as the email

addressing practice called subaddressing [Murchison, 2008]. For a phone number in the tel

URI scheme [Schulzrinne, 2004], random digits follow the phone number like an extension

that identifies a terminal behind a PBX (e.g., tel:12121234567;ext=099213). Every time

the Web client extension generates a random component, the extension updates the CURE

database with the customized contact address and the URL of the Web site.

Upon making a call to Bob, Alice can be identified by the destination address (e.g.,

To:bob+SDJP09lk@columbia.edu). Although no extension is needed in a SIP UA, the SIP

server needs to support subaddressing of the destination address in its routing process.

The SIP server then queries the CURE database for the destination address to determine

whether or not to answer the call.

7.6.2 Scenario 2: Email-then-Call Relations

Unlike an HTTP transaction, an email message has a globally unique ID in the Message-ID

header field [Resnick, 2008], which is generated by a mail server or client. Figure 7.7 shows
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that Bob first sends an email message to a potential caller. He needs to collect the message

ID of his outgoing message and keep accessible in order to prove his acceptance for future

communication. When Alice makes a call to Bob, she should specify the message ID of his

message so that the SIP INVITE request conveys the message ID in the Sender-References

header field, specifying the email type. The SIP server, therefore, can determine whether

or not to accept the call carrying the message ID of an email message.

To collect the message IDs of outgoing messages, the CURE system needs to add a

function on each MDA that Bob uses or on a dedicated IMAP client, similar to the additional

function described in Section 7.5.2.

There are privacy concerns over messages posted to a mailing list since mailing lists often

publish their archives including their message IDs on the Internet. Thus, these message IDs

of mailing lists available to the public should not be used as a weak secret. However, senders

cannot always determine whether or not the destination of an outgoing message is a mailing

list. This is because some mailing lists share their messages without the subscribers’ consent.

Although senders cannot distinguish a mailing list address from regular email address when

sending a message, they can determine, when receiving a message from a mailing list, by

checking List-* or Precedence headers. The MDA or IMAP client, therefore, needs to learn

the destination address of a mailing list from a message received from the mailing list.

The MDA or IMAP client then excludes an outgoing email message destined to a mailing

list when extracting message-IDs from outgoing messages or finding any message IDs of

email messages posted to the mailing list in the stored message IDs. Learning mailing

list addresses from received messages is likely to perform without a significant delay since

the subscriber of the list can usually receive a message copy immediately after posting the

message. Therefore, the MDA or IMAP client avoids accepting a message ID as a weak

secret that is available to the public.

7.7 Call Filtering

Figure 7.8 illustrates our new filtering process for an incoming call, adding two conditions

that use cross-media relations. Upon receiving an incoming call, the filtering system parses
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the SIP INVITE message and extracts the authenticated caller ID, typically from the From

header field. If the caller ID is not found either on the blacklist or white list, this filtering

process proceeds to test on these two new conditions.

The first one is whether the SIP INVITE request contains a valid hashed contact address

or a valid message ID in the Sender-References header field. As Section 7.5.1 described, upon

starting the verification, the filtering system determines the type of the value in the Sender-

References header field by parsing its type parameter. If the h contact type is specified,

the filtering system verifies the value of Sender-References header field as a hashed contact

address. To verify the hashed contact address, the filtering system first queries the CURE

database for the URL corresponding to the hashed contact address. It then calculates the

SHA-1 hash of the caller ID extracted from the INVITE request concatenated with the URL

retrieved from the database. The filtering system finally checks if the newly generate hash

is the same with the hash extracted from the Sender-References header field. In the case

where the email type is specified, the filtering system handles the value of Sender-References

header field as the message ID of an email message, as described in Section 7.6.2. It simply

queries the CURE database for the message ID and determines whether or not to accept

the call.

If the call fails in being verified on the first condition, it proceeds to the test on the

second condition. The filtering system tests the INVITE request whether to contain a valid

subaddress in the To header field. The filtering system simply verifies the subaddress by

checking is it is registered in the CURE database.

Thus, on two new conditions using cross-media relations, the validity can be determined

by a database query and the information conveyed in the INVITE request. If either validity

test succeeds, the call request is accepted.

7.8 Implementation

To demonstrate our concept of using cross-media relations, we have implemented the CURE

system using a MySQL [MySQL, 2006] database server running Linux and RESTful JSON

Web interfaces [James, 2010] to the database. To add each of our proposed mechanisms
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into Web and email clients, we developed a Firefox add-on [Mozilla, 2010a] and a dedicated

IMAP mail client. We also modified SIP communicator [SIP, 2010] as a SIP UA and

OpenSER [Ope, 2010] as an inbound SIP proxy server.

The call filtering function has been implemented on OpenSER SIP server which queries

the database for an access control list including cross-media relations, instead of using a call

processing language (CPL) [Lennox et al., 2004] script. Although the CPL script, which is

written in XML [Bray et al., 2004], is a more general mechanism, it incurs the significant

storage cost of large-sized XML data and its parsing cost causing a longer setup delay. To

avoid these costs, the SIP server simply uses an access control list in a database.

7.9 Applicability to Email

The mechanism for collecting contact addresses either in plain text or in hashed form is

applicable to email messages, namely, Web-then-email relations. This is due to that fact

that the Correspondence-URI header field can contain any types of contact addresses. It

also due to that fact that email message headers are extensible. Similar to SIP, email clients

can add the new Sender-Reference header field in order to convey a hashed contact address

to recipients.

Similarly, the mechanism for sharing a weak secret, which is a proof of the previous

Web transaction, can help recipients good email messages. However, especially in the case

where the recipient’s email address does not appear in the header fields in an email message,

namely, being blind carbon copied (BCC’ed), the filtering based on the destination address

should be installed at the inbound server, not at the recipient’s mail client. Since all the

destination address, not distinguishing between them contained in message header fields, To,

CC, or BCC, are provided in the SMTP RCPT TO envelop, the filtering system should parse

the SMTP envelop to extract the destination addresses in order to see if they include the

recipient’s customized address. Since the subaddressing for customizing contact addresses

has been commonly used for sorting messages into mail folders, no difficulties exist in the

subaddressing deploying for email.

Thus, both mechanisms help recipients identify good email messages although the in-
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bound server should verify their destination addresses extracting from the SMTP envelop,

not from the email header field.

7.10 Evaluation: Testing the Concept through a User Study

Ideally, we would like to evaluate our implementation by trial use, but three practical

problems have made this impractical. First, people currently receive very low volume of

unwanted calls compared to unwanted email messages. Second, the trial requires cooper-

ation with Web sites which operate call center services or social media. Third, it requires

end-to-end SIP connections to transfer a weak secret in a SIP message between a caller

and the callee since the PSTN in certain countries, for example in the U.S., does not al-

low to transfer the extension in the destination phone number until the call is answered.

Although SIP has been deployed for many real services, the majority of VoIP calls have

interconnected with the PSTN. Thus, instead of evaluating our implementation, we tested

the concept of cross-media relations by conducting a survey. In addition to incoming calls,

our survey covered email and SMS messages.

7.10.1 User Survey

We conducted a survey4 using a Web application we developed. Our survey application

asked participants about incoming email, calls, and SMS messages received over the last

four weeks. Our survey application fetched email headers from participants’ mail boxes

on their IMAP servers and parsed call detail records (CDRs) if provided by participants.

If participants preferred, they could manually enter the number of incoming calls or SMS

messages.

The user study was carried out from July to September in 2011, calling for participants

on campus wide. Each participant had to have received at least 28 messages or calls for

last four weeks. Collected answers include 3,257 messages for 19 university email accounts

and 21,051 messages for 43 free email accounts. Our sample also contains 3,300 calls for 36

4The survey was approved by Columbia University Institutional Review Board (IRB) approved on June

20, 2011. The number was AAAI1148.
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Figure 7.9: Incoming email messages categorization flow chart

accounts and 3,970 SMS messages for 34 accounts.

It is worth noting that these messages included only part of unwanted messages or calls

which the participants received since many unwanted messages or calls had been removed

by the spam filters on these IMAP servers or call servers, by the participant’s email client,

and manually by the participants.

7.10.2 Classification of Incoming Email, Calls, and SMS

Figure 7.9 illustrates how each participant categorized incoming email messages into 13

groups: 12 groups of good messages and one group of unwanted messages. The first six

groups are automatically determined as good by our survey application in the following three

procedures. First, the “sent before” and “replied within two weeks” groups are determined

with outgoing email messages. Second, the “trusted users” and “trusted domain” groups

are determined with the user configurations at our survey Web application. If participants

do not modify their configurations, messages from the participant’s own address and from
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the default trusted domain, “columbia.edu”, fall in to the “trusted users” and “trusted

domain” groups, respectively. Although the survey application does not use participant’s

address book, these four groups are equivalent to good messages determined with their

address book. Third, the survey application categorizes messages from friends of a friend

(FoF) into two groups, “FoF in CC” and “FoF in ML.” The application generates a list of

email addresses of “FoF in CC” by collecting carbon copied (CC’ed) addresses of messages

sent from trusted users. Similarly, it generates a list of email addresses of “FoF in ML”

by collecting email addresses of the senders of the mailing lists (MLs) that the participants

join. Using these two lists, incoming messages fall into these two groups, respectively.

Thus, these two groups are determined by extended social graphs automatically calculated

by email communication history.

Unlike email messages, incoming calls or SMS messages are categorized in 9 groups,

excluding four out of these 13 groups for the following reasons. The “replied within two

weeks” group is excluded to allow participants to easily answer by manually looking at

their call history. The “trusted domain” group is eliminated since phone numbers contain

no domain name. The “FoF in CC” and “FoF in ML” groups are also eliminated since a

call has no CC’ed or a list of phone numbers as the destination, except a conference all.

After the survey application automatically determined good messages, the participants

are asked if they have had prior contact with senders or callers, and if so, what the com-

munication means was. Thus, the participants manually labeled the remaining messages

as Web, email, a call, or SMS, according to cross-media relations. These four groups also

contain good messages, which are prone to be false positives, namely, labeled as unwanted

by conventional origin-ID-based filtering systems. These four groups, therefore, indicate

the potential effectiveness of using cross-media relations.

Yet, good messages might remain unlabeled after the participants labeled messages

using cross-media relations. Our survey application asked participants to specify a message

if the message arrived because they are well-known in a specific field. Such a message is

categorized into the “public profile” group. If the participants find unwanted messages,

they were asked to label them as “unwanted.” Finally, good messages that the recipients

have no idea what triggered a message remained unlabeled. These remaining messages
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fall into the “unlabeled” group. The “public profile” and “unlabeled” groups, therefore,

indicate the limitation of our proposed filtering systems using cross-media relations in order

to identifying good messages.

7.10.3 Results: Fractions of Messages

Email messages

Figure 7.10 illustrates the percentages of incoming messages in these 13 groups. These

percentages are averaged across the participants of our survey. Each group has two bars:

a dark (or blue) bar for university email accounts and a light (or green) bar for free email

accounts, such as Gmail. The highlight of our results is that prior Web transactions triggered

only 13.3 percent of messages for university email accounts, but a surprising high 42.7

percent for free email accounts. On average 33.2 percent for all email accounts had Web-

then-email relations although they have wide variance across email accounts, as described

in Appendix B.1. These results demonstrate that Web-then-email relations will be very

effective in determining good messages whereas the other two types of cross-media relations,

call-then-email and SMS-then-email, are rarely used.
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Although for most groups, fractions of messages are similar between these two types

of email accounts, significant differences are found in two groups: messages from trusted

domains and messages triggered by Web-then-email relations. Messages from trusted do-

mains such as the “columbia.edu” domain constitute 66.5 percent of all incoming messages

for university email accounts while they are only 6.7 percent for free email accounts. This is

because university email accounts, unlike free email accounts, are used for internal commu-

nication within university domains and also within professional communities. Regarding the

difference in messages related to Web, we presume that this is also caused by the difference

in the usage patterns of email accounts. Compared to university email accounts, the email

addresses of free email accounts tend to be more easily given to the users of online services

and to receive newsletters or purchase confirmations. This contrast, therefore, indicates

that the effectiveness of filtering systems using cross-media relations highly depends on the

usage patterns of user accounts.

Yet after using cross-media relations, a small fraction of good messages remained unla-

beled. 1.6 percent of messages for university email accounts are triggered by the fact the

participants are well-known (found in the public profile group) and 0.3 percent of messages

remain unlabeled. This indicates the limitation of our proposed filtering mechanisms. The

fraction of messages in the public profile group would be larger if the participant group

included more professors, who have typically higher public profile than students. We have

observed that these messages are often from other lesser-known members belonging to the

same professional community. Thus, it would be helpful in identifying valid messages if

we have a query mechanism about sender references, especially membership in a profes-

sional organization like IEEE. This motivates our second approach using caller attributes

described in Chapter 8.

To find out a distinguishing feature between unlabeled and spam messages, we examined

them how many fraction of these messages were sent to subaddressing or hidden destination

addresses by using blind carbon copy (BCC), which is usually used for concealing other des-

tinations. However, we found no significant characteristics in the usage of these destination

addresses. For both unlabeled and spam groups, the recipient addresses were not explicitly

listed in the destination of most messages. No subaddressing was found in the messages in



CHAPTER 7. USING CROSS-MEDIA RELATIONS TO IDENTIFY GOOD
COMMUNICATION REQUESTS 107

call and sms

0%

10%

20%

30%

40%

50%

60%

70%

sent before

trusted users

W
eb-then-SMS

email-then-SMS

call-then-SMS

SMS-then-SMS

public profile

unlabeled

unwanted

5.8

01.71.0

12.0

3.94.2
9.3

62.0

SMS (3,970 messages for 34 users)

0%

10%

20%

30%

40%

50%

60%

70%

called before

trusted users

W
eb-then-call

email-then-call

call-then-call

SMS-then-call

public profile

unlabeled

unwanted

4.1
0.80.2

5.5

21.8

4.35.24.9

53.3

Calls (3,300 calls for 36 accounts)

Figure 7.11: Histogram of percentages of

incoming messages in 9 groups: Calls (av-

eraged across accounts)

call and sms

0%

10%

20%

30%

40%

50%

60%

70%

sent before

trusted users

W
eb-then-SMS

email-then-SMS

call-then-SMS

SMS-then-SMS

public profile

unlabeled

unwanted

5.8

01.71.0

12.0

3.94.2
9.3

62.0

SMS (3,970 messages for 34 users)

0%

10%

20%

30%

40%

50%

60%

70%

called before

trusted users

W
eb-then-call

email-then-call

call-then-call

SMS-then-call

public profile

unlabeled

unwanted

4.1
0.80.2

5.5

21.8

4.35.24.9

53.3

Calls (3,300 calls for 36 accounts)

Figure 7.12: Histogram of percentages of

incoming messages in 9 groups: SMS (av-

eraged across accounts)

these two groups.

Incoming Calls

Figure 7.11 illustrates the percentages of incoming calls messages received from nine groups.

These percentages are averaged across the participants. These bars show that approximately

4 - 5 percent of calls are triggered by cross-media relations, namely, Web-then-call, email-

then-call, and SMS-then-call. Similar to the email survey, Appendix B.2 show wide variance

across the participants. More than half the participants received no calls having these cross-

media relations; thus, the medians of these groups are all zero. Their distribution in the

cumulative distribution functions show that the potential effectiveness of using cross-media

relations is limited to a quarter to a half of participants; thus, it highly depends on the

communication patterns of participants.
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Incoming SMS messages

Figure 7.12 indicates that approximately 4 percent of SMS messages are related to Web

and email, respectively, whereas 12 percent are related to calls. It is understandable that

more SMS messages have call-then-SMS relations than other cross-media relations since

both call and SMS are provided to mobile phone users. However, we do not have reasons

for higher percentage of messages having call-then-SMS relations (12 percent) compared to

SMS-then-call (5.5 percent in Figure 7.11).

In summary, although there remains a small fraction of good messages unlabeled, this

study can conclude that using cross-media relations, especially to prior Web transactions,

would be effective in helping recipients label good email messages, calls, or SMS messages.

In addition to using cross-media relations, a query mechanism about sender references

like membership (See Chapter 8) could be another helpful component in identifying good

messages.

7.11 Conclusion

This chapter presented our idea, design, implementation, and evaluation of using cross-

media relations to identify good calls. They can be also applied to email messages. Using

cross-media relations, callees can collect more contact addresses of potential callers and pro-

vide evidence of prior contact in order to identify more good calls whether or not they carry

a familiar caller ID. Our user study tested the potential effectiveness of our concept using

cross-media relations. It demonstrates that approximately 30 percent of email messages,

5 percent of calls, and 4 percent of SMS messages can be identified as good by using the

relation to prior Web transactions. These results, thus, indicate that cross-media relations

would be useful as an additional component of a call filtering system, although the degree

of the usefulness varies across recipients and the usage patterns of accounts.

At the same time, our user study demonstrates the limitation of using cross-media

relations. A certain fraction of good messages or calls remain that were not related to

prior communication. Chapter 8 proposes a mechanism for validating a sender’s or caller’s

attributes in order to enhance the capability of identifying good communication requests.
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Chapter 8

Using User Attributes without

User Identity to Identify Good

Communication Requests

8.1 Introduction

Chapter 7 has introduced an approach using cross-media relations to identify good1 commu-

nication requests, carrying an unknown origin ID (i.e., caller ID or sender ID). This chapter

introduces a different approach, which uses the originator’s attribute. When two people do

not know each other, ascertaining a person’s attributes rather than a person’s name is often

useful to determine the trustworthiness of the person, as described in Section 6.3. These

attributes include, for example, an organizational affiliation, a role in a professional society,

age, holding certificates or licenses, and being a customer of a bank. We translate the way

of assessing the value of interaction with a stranger in real life to the way of assessing the

value of a communication request, whether or not to answer the phone or to open the email

message, carrying an unknown origin ID or for which the origin ID is blocked for privacy

reasons. Such a call might be unwanted telemarketing or fraudulent, but possibly originates

from an unfamiliar colleague. The callee cannot distinguish an unfamiliar colleague from a

1See the definition in Section 6.4.
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telemarketer or a fraudster before answering the phone using caller-ID-based filtering since

a caller ID is not found either a black list or white list, or even using cross-media relations

since the callee has had no prior contact with both of them. However, if a caller can provide

the callee with the caller’s attributes that can be validated by the callee, such attributes

would help the callee determine how to handle the call request by estimating whether the

call is good enough to be answered. There is evidence of such a situation; one of the findings

from our user survey shown in Section 7.10 – a fraction of good message originates from

those have had no prior contact but obtained the contact address of the survey participants

through their publications or other activities. The caller ID is solely one of the originator’s

attribute, but it can be helpful only in limited cases described in Section 6.8.

In this chapter, we demonstrate how callees can validate a caller’s attributes without

necessarily authenticating the caller ID through an attribute validation mechanism that we

have designed. Our mechanism introduces an attribute reference ID (ARID), which points

to the location of the caller’s attributes using an HTTPS URI so that the recipients of an

ARID can retrieve them, establishing the validity of the ARID. Unlike existing attribute

certificates, assertions, or credentials, such as an X.509 attribute certificate [Farrell et al.,

2010], SAML [Cantor et al., 2005], this mechanism is easy deployable since it does not

require the callee to authenticate a caller ID or the caller identity (i.e., caller’s name), which

is an obstacle to service deployment. Furthermore, unlike existing anonymous attribute

credentials, such as U-Prove [Brands, 2000], this mechanism is lightweight because it relies

on transport layer security, such as TLS, and transitive trust through the issuer of an

ARID. Thus, our mechanism provides moderate security that is sufficient for call acceptance

decision.

This chapter starts with providing an overview of the service architecture using an

example of a SIP call in Section 8.2, pointing out the differences in the trust model between

ours and two existing third-party authentication mechanisms such as Kerberos [Neuman et

al., 2005] and OAuth [Hammer et al., 2012]. It then describes key design decisions based on

a threat model we have mainly considered in Section 8.3. Our design choices mainly aim for

moderate security and ease of both development and deployment of the mechanism. This

chapter also enumerates the requirements from the perspectives of general, security, and
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Figure 8.1: AVS service architecture applied to a SIP call

privacy in Section 8.4. It then describes the procedures for a call using SIP in Section 8.5 and

security considerations in Section 8.6. Our prototype is described in Section 8.7, followed

by the evaluation comparing it to U-Prove [Paquin, 2011], an existing anonymous attribute

credentials, in Section 8.8. After reviewing existing attributes validation mechanisms in

Section 8.9, we conclude with some remarks in Section 8.10.

8.2 Service Architecture

This section describes three entities in our mechanism of attribute validation service and

the basic operations using a simple example.

Figure 8.1 shows an overview of the service architecture where Alice makes a call to Bob

using SIP and provides him with her attributes through an attribute validation server (AVS).

In this example, Alice is a student member in the organization, “members.ieee.org.” When

making a call, Alice wants to provide Bob at “sips:bob@example.com” with her attribute

being a student member at ieee.org in order to raise the possibility of being answered.

To allow Alice to deliver her attributes to Bob, our mechanism introduces an attribute

reference ID (ARID), which is an HTTPS URI [Berners-Lee et al., 2005] that points to the
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location of her attributes on the AVS.

8.2.1 Entities

We define the AVS, the originator of a communication, caller or sender (Alice), and the

recipient or callee (Bob) as an issuer, a principal, and a relying party, respectively.

Attribute Validation Server (AVS): Issuer

An Attribute Validation Server (AVS) provides attribute validation services for users in

an organization. The AVS performs the following three tasks: maintaining user attributes

(Alice’s attributes), issuing an ARID for the user (= Alice as the caller), and validating the

ARID upon the callee’s request (Bob). The AVS is the issuer of an ARID.

For each user in an organization, the AVS maintains the user attributes, in a database,

that are assigned by the organization. For example, the user attribute include a user ID

and a role at an organization. The AVS also maintains the username and credentials to

authenticate users who attempt to access the AVS.

Upon receiving a request from a user of an organization who plays the role of a caller

(Alice), the AVS issues an ARID, which is an HTTPS URI pointing to its server location

where the callee (Bob) can retrieve the user attributes.

Upon receiving a query about the caller’s attributes using an ARID, the AVS determines

whether the querier or the callee (Bob) is someone who has been authorized by the principal

of the ARID. The AVS also ensures that the ARID is not stale when receiving the query.

Once the AVS confirms the validity of the query and the ARID, it looks up the user ID

of the principal on the database and determines which set of attributes the principal has

authorized the relying party to retrieve from the database. The AVS then responds to the

relying party with the principal’s attributes.

Originator, Caller, or Sender: Principal

The originator of a communication request, specifically the caller of a call or the sender

of an email message, who is a user of the services provided by an organization is called a

principal. The principal (Alice) requests an ARID from the AVS in order to delivering her
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attributes to the callee. When requesting an ARID from the AVS, the principal specifies

which attributes to be disclosed and to whom. To restrict the recipients of her attributes to

the callee, the principal also provides the AVS with an ARID access code that is the hash

of the callee’s communication endpoint ID (CEID).2

Recipient or Callee: Relying Party

The recipient of a communication request, specifically the callee of a call, who receives an

ARID in a communication request assesses the request based on the information that is

retrieved using the ARID. The recipient or callee is called a relying party. The relying party

of an ARID (Bob) sends the AVS a query about the principal’s attributes and establish its

validity with the AVS. In this context, the relying party is a querier and a verifier. To be

identified by the AVS as its authorized party, the relying party sends an ARID access code,

the hash of his CEID found as the destination ID in the communication request.

8.2.2 Trust Relationships among Issuer, Principal, and Relying Party

The principal of an ARID and its issuer are assumed to trust each other regarding the at-

tribute validation service for an organization. They share Alice’s username and credentials,

which are used for authenticating her, and her attributes, such as a user ID and a role.

Alice trusts the issuer to properly maintain her information and to disclose the attributes

she selects only to relying parties whom she specifies. In turn, the issuer trusts Alice as a

user in the organization and trusts her attributes which it knows first-hand, such as “Alice

is an IEEE student member.”

It is worth noting that the issuer may store the principal’s electronic contact addresses,

or CEIDs, such as her email address and a SIP address of record (AoR), without ensuring

the authenticity. Unless they are assigned by the organization, these CEIDs should not been

treated as the users attributes. This is due to the fact that the issuer neither guarantees

that the user owns these CEIDs, nor that the user can be reached by any of these CEIDs.

We also assume that a relying party, Bob, knows “members.ieee.org” as the domain

name of an organization that has a user account management policy he trusts, whether

2See the definition in Section 6.2
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or not he belongs to the organization. Bob also trusts the issuer to properly perform its

attribute validation service. However, the issuer does not know anything about Bob.

It is worth noting that the relationship between the issuer and a relying party differs

from other third-party authentication systems using a key shared between them such as

Kerberos, which is the most common mechanism of third-party authentication, or OAuth,

which has recently emerged as a third-party authentication mechanism especially across

Web servers. These differences will be further described later in Section 8.9.

Alice finds Bob worth making a call or sending an email message and disclosing her

attributes to establish a communication with him. In turn, Bob does not have sufficient

information about Alice’s trustworthiness based solely on her identity indicated by her

CEID in a SIP communication request or in an email message.

8.2.3 Basic Operations using a SIP Call

We describe how this mechanism works when Alice makes a SIP call to Bob using the

example described in Figure 7.1. Alice first requests an ARID from the AVS, specifying

which set of her attributes she allows to disclose and what data the relying party has to

provide for authorization. The request is sent using HTTP [Fielding et al., 1999] over

TLS [Dierks and Rescorla, 2008]. When sending the request, Alice authenticates the AVS

using its X.509 Public Key Certificate (PKC) [Cooper et al., 2008] which is delivered during

the TLS handshake. Alice checks if the PKC is signed by a trusted certificate authority

(CA) and contains the server name that she intends to connect. In addition, she checks if

the PKC is neither expired nor revoked. In turn, when generating an ARID for Alice, the

AVS authenticates her using any credentials supported by the AVS, such as a password or

a client’s X.509 PKC.

Having successfully obtained an ARID, which is an HTTPS URI, Alice makes a call

to Bob specifying the ARID to be included in the Sender-References header field [Ono and

Schulzrinne, 2009b] of the SIP INVITE request over TLS.

When Bob receives the SIP INVITE request containing an ARID and wants to examine

the attributes of the caller in order to determine whether to answer the call, he proceeds

to establish the validity of the ARID and the corresponding attributes to the AVS. To be
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identified by the AVS as an authorized party by the principal, Bob generates an ARID access

code by computing the hash of his contact address (found in the To header field) with the

random string using the hash algorithm (found in Sender-References header field) all were

included in the SIP INVITE request. He then adds the hash to the ARID, an HTTPS URI,

as an additional path. He sends a validation request to the ARID by connecting to the

newly created HTTPS URI. At this time, Bob verifies that he is communicating with the

desired AVS using its X.509 PKC in the same way that Alice did earlier.

The AVS validates the ARID by ensuring that it has not been expired and that the query

has been authorized by the principal. If the validation is successful, the AVS responds to the

querier with Alice’s attributes that she selected to disclose when she obtained the ARID.

Based on the attributes retrieved, Bob determines whether or not to answer the call from

Alice and adjusts his communication stance accordingly.

8.3 Key Design Decisions

This section focuses two key design decisions over our proposed mechanism to serve pur-

poses – moderate security for low risk interactions and ease of service development and

deployment. (Other requirements are described later in Section 8.4.) First, an ARID is

loosely associated with the CEID (e.g., a SIP AoR or email address) of the principal in

order to avoid practical problems, such as difficulties in service development caused by the

limitations of caller ID authentication described in Section 6.6. Second, the hash of a relying

party’s CEID, not a cryptographically random string, is used for authorizing the relying

party. Using hashed relying party CEID enables the relying party to ensure that the ARID

is meant for herself, as a countermeasure to a form of replay attacks by legitimate recipients.

This section starts with describing the threat we considered.

8.3.1 Threat: Impersonating Principal Forwarding a Received ARID

The primary threat model considered for our mechanism is the scenario where a legitimate

recipient of an ARID sends a new communication request in which it purports to have the

attributes of the original principal. For example, assume that Alice makes a SIP call to
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Bob. Alice sends Bob a SIP INVITE request including a valid ARID and its access code so

that Bob can retrieve her attributes from the AVS. Whether he has retrieved her attributes

from the AVS or not, Bob places a call by sending another SIP INVITE request containing

Alice’s ARID and its access code to Carol. Consequently, Carol mistakenly accepts the call

from Bob and communicates with him, assuming the holder of Alice’s attributes.

When we design the countermeasures to such an attack, it is important to keep in mind

that the attacker has been provided a fresh and unused ARID and the related information –

the parameters used for generating an ARID access code – from the communication request

sent by the valid principal. Thus, binding the ARID or its access code to the identifier

of the communication request (e.g., the message ID of an email message) is ineffective.

Furthermore, a simple countermeasure such as limiting the lifetime or use time of an ARID

and its access code is ineffective if it is solely applied. Both or either of them is effective

in enhancing security when it is applied in conjuncture with other countermeasures. In

our mechanism, limiting an ARID’s lifetime to a short time period is used as a precaution

especially against another form of replay attacks using an eavesdropped validation request

to the AVS.

There are two possible countermeasures to the attack by forwarding a received ARID.

The relying party of a forwarded ARID (i.e., Carol in the example above) ensures the validity

of the ARID and its access code by performing either of the following two tests (If both are

available, performing both tests would provide strong security.) The first countermeasure

is to test whether the sender of the ARID (Bob) is the valid principal. To do so, the relying

party needs to authenticate the CEID and to ensure that the CEID is one of attributes

retrieved using the ARID. However, these procedures encounter practical problems, such

as no availability of mechanism for authenticating a SIP AoR in the tel URI, as described

in Section 6.6. This drawback is behind our decision not to take this option, rather to

design an ARID to be loosely associated with the principal’s CEID, as described below in

Section 8.3.2. On the other hand, the second countermeasure is to test whether the relying

party (Carol) is authorized by the valid principal of a forwarded ARID (Alice) to disclose

the principal’s attributes. To enable this test, the principal requests an ARID with the hash

of a desired principal’s CEID as an ARID access code, as described below in Section 8.3.3.
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8.3.2 ARID: Loosely Associated with the CEID

The first countermeasure to the attack described in Section 8.3.1, is to enable the relying

party (Carol) to ensure that the sender of the ARID (Bob) is the valid principal. It requires

ensure that the ARID is associated with the sender’s CEID, but our mechanism avoids

applying this countermeasure for the following practical reasons. Primarily, the principal’s

attributes usually do not include her CEID since the CEID is issued by a communication

service provider, which does not always work in alliances with the issuer of the ARID. Ad-

ditionally, no mechanism for authenticating a SIP AoR is available in the case where the

SIP AoR is in the SIP URI issued by the domain which does not deploy the SIP identity

mechanism, where the SIP AoR is in the tel URI which is sent without any other authen-

tication mechanisms, such as a digital signature in S/MIME [Ramsdell and Turner, 2010],

or where the SIP-AoR is anonymized, as described in Section 6.6. Therefore, tightening

linkage between the principal’s CEID and attributes makes the service deployment more

difficult and limits the principal’s choice of CEID. Since this does not serve our purpose,

ease of service deployment, an ARID is loosely associated with the CEID, just by being

sent in the same communication request over TLS.

8.3.3 ARID Access Code: Hash of Relying Party’s CEID

As described in Section 8.3.1, another possible solution to detecting the attack attempting

to impersonate the principal of a received ARID is to ensure that a relying party (Carol)

is authorized by the principal (Alice) to disclose the principal’s attributes. It is essential

to design an ARID access code which is used for authorizing a relying party – which is

provided to both the AVS and the relying party by the principal, and used by the AVS

for validating a query from a relying party. Unlike the first countermeasure, which suffers

from limited availability of caller ID authentication, this solution can employ the relying

party’s CEID without any difficulties because every party can authenticate his own CEID.

To preserve the privacy of the communication history on the AVS, the hash of the relying

party’s CEID, which is typically set in the To header field of a communication request, is

used as the ARID access code. Furthermore, To prevent re-identification based on the hash

of the CEID collected on the AVS, the ARID access code is generated HMAC-SHA1, for
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example, with a secret key, which is a random string of characters, for each communication

request. Therefore, the relying party needs to calculate the hash of her CEID with the

secret key using the hash algorithm that all are conveyed by a communication request over

TLS.

8.4 Requirements

This section lays out a set of requirements for a mechanism for validating the originator’s

attributes in order for recipients to identify a good communication request. We simply call

the originator’s attributes user attributes.

Our design decisions are associated with these requirements. They are categorized into

three groups: general, security, and privacy.

8.4.1 General Requirements

We have the following general requirements for our mechanism to identify a good commu-

nication request, especially a VoIP call, offering real-time communication.

GEN-REQ-1: The intension of providing user attributes must be presented in

the header of a signaling message. To easily filter communication

requests without needing to inspect the body of a signaling message, the

intension of providing user attributes must be set in the message header.

For this purpose, our mechanism sets an ARID in an HTTPS URI pointing

to the issuer of user attributes in the Sender-Reference header field.

GEN-REQ-2: A single message may contain attributes issued by multiple is-

suers. To allow the principal (i.e., a caller or a sender) to prove as many

attributes as possible to be identified as a good communication request,

the mechanism should enable user attributes issued by one or more orga-

nizations to set – by value or by reference – in a single communication

request.
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GEN-REQ-3: Supporting short-lived attributes. The mechanism needs to support

both temporary and persistent attributes. Examples of temporary at-

tributes include being a visitor for a business meeting or an attendant

for a one-day workshop.

GEN-REQ-4: Easy validation of attributes by recipients. Given that an ARID

supports short-lifetime attributes, recipients need to validate an ARID by

connecting to the attribute validation server online, rather than by checking

a long revocation list of ARIDs offline.

GEN-REQ-5: Easy adaptation to existing communication protocols. To minimize

modifications to existing communication protocols such as SMTP and SIP,

this mechanism needs to employ only the first message from the principal

to a relying party.

GEN-REQ-6: Easy deployment without special security capabilities. To easily

deploy this attribute validation service, this mechanism leverages the wide

deployment of HTTP servers secured by TLS, requiring no additional secu-

rity capabilities such as the principal’s X.509 public key certificate (PKC).

GEN-REQ-7: Flexible allocation of issuer and validation functions. To support

flexible deployment of validating attribute services, the issuer and valida-

tion functions should be flexibly allocated, namely, both are co-located or

separately located.

8.4.2 Security Requirements

Given that our target service is to identify good communication requests, which is low-risk

interactions, we analyze our security requirements as follows:

SEC-REQ-1: Data confidentiality. When transmitting user attributes and the infor-

mation which is used to retrieve user attributes (e.g., an ARID access code)

over networks, all entities must use a secure channel to prevent eavesdrop-

ping and replay attacks. Protection the confidentiality of user attributes
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and all related information is not necessary at trusted intermediaries such

as SIP or SMTP servers.

SEC-REQ-2: Data integrity. Similar to data confidentiality, when transmitting user

attributes and all related information over networks, all entities must use a

secure channel, such as TLS, to prevent message tampering.

If a relying party is received user attributes not directly from the issuer, but

via the principal, these user attributes needs to be signed by the issuer. This

application-level signature requires verification by the application, some-

times leading to complexity in parsing multipart message bodies in SIP and

email. Our mechanism intends to avoid this complexity, by sending user

attributes by reference so that a relying party can retrieve user attributes

directly from the issuer.

SEC-REQ-3: Issuer authentication. When requesting and generating an attribute

credential, the principal needs to authenticate the issuer with its X.509 PKC

or pre-shared credentials. In addition, a relying party needs to authenticate

the issuer by the issuer’s X.509 PKC or other mechanisms.

In our mechanism, the issuer authentication is performed with its X.509

PKC during the TLS handshake by the principal when it requests an ARID

and by a relying party when it establishes the validity of the ARID.

SEC-REQ-4: Limiting relying parties To reduce the effect of replaying attacks (Sec-

tion 8.6.2), this mechanism needs to enable the principal to limiting relying

parties who can retrieve the principal’s attributes. If the issuer validates

an attribute credential (e.g., AVS), given no mutual trust relationship be-

tween the issuer and a relying party, the issuer needs to authenticate a

relying party as someone whom the principal has authorized. If a relying

party validates an attribute credential without accessing the issuer (e.g., U-

Prove), the relying party himself needs to detect replay attacks, namely, to

determine whether an attribute credential is meant to himself or someone

else.
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For this purpose, in our mechanism, when receiving a validation request,

the issuer of an ARID needs to authenticate a relying party with the access

code associated with the ARID, provided by the principal. The access

code is not the relying party’s CEID since the issuer cannot authenticate it.

However, each relying party needs to generate the access code by computing

the hash of his CEID and a secret sent from the principal, as described in

Section 8.3.3.

SEC-REQ-5: Proof of possession of an attribute credential. To prevent replay

attacks using received or stolen attribute credentials (Section 8.6.2), the

principal needs to prove a relying party that she possesses an attribute

credential (an ARID). Given no requirements of the principal’s CEID au-

thentication below and the requirement of ease of deployment, this proof

needs to be performed without authenticating her CEID.

This requirement contraint is relaxed by one of the requirements excluded

because of the low risk of our target service. A described below, this does

not have to prevent transfer or delegation of an attribute credential.

We exclude the following requirements since this mechanism is used for protecting a

relatively low-risk interaction.

• No need for user accountability to the relying party, namely, no user au-

thentication. A relying party needs to know user attributes as a hint to estimate

the goodness of a communication request. Thus, a relying party does not need to

trace uniquely to the principal, which is called the principal’s accountability [Kissel,

2011]. For this reason, authenticating an origin ID of a communication request is not

needed [Kent and Millett, 2003].

• No need for non-repudiation of using an attribute credential. According

to the term definition in [Kissel, 2011], “non-repudiation” is the security service

that a sending entity cannot deny having sent a message (non-repudiation with proof

of origin), and the receiving entity cannot deny having received a message (non-
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repudiation with proof of delivery). For our target service, neither non-repudiation

with proof of origin nor delivery is needed.

• No need to prevent transfer or delegation of an attribute credential. Due to

the low risk of our target service, the mechanism does not need to support any special

features to prevent the principal from giving her ARID to others. In addition, this

mechanism does not support the principal who delegates her ARID, namely, allows

another party to send a communication request using her ARID, with proving the

chain of authorizing delegation. If the principal wants to delegate her ARID to her

assistant or friend, she can do that at her own risk. This conflicts SEC-REQ-5.

• No need for binding an attribute credential to the signaling path of a

communication. An ARID is used end-to-end, namely between an originator and

the recipient of a communication request while its signaling path is established hop-

by-hop through email servers or SIP proxy servers. Since binding an ARID to the

signaling path does not enhance any security features, this mechanism does not need

such binding.

• No need for binding an attribute credential to a CEID. An email message has

a global unique ID in the Message-ID header field and a SIP session can be identified

by the set of values from the Call-ID header field, the From header field and its tag,

and To header field and its tag. Embedding such a unique ID for a communication

request into an ARID does not help to prevent replay attacks. This is due to the fact

that when an ARID is stolen or received, it is likely that the communication request

message itself is also stolen or received (e.g., an attack by forwarding a received ARID).

Thus, this binding is useless for enhancing security. Instead, such a binding would

conflict with the privacy requirement, by enabling to link between an ARID and a

communication request.

8.4.3 Privacy Requirements

Among the security requirements above, data confidentiality and restricting relying parties,

overlap with privacy properties. The remaining privacy requirements are as follows:
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PRIV-REQ-1: Untraceability of communication history by issuer. The mecha-

nism must allow a principal to specify relying parties without revealing

their CEIDs to the issuer. The mechanism should minimize the amount

of communication history collected by the issuer.

This requirement contraint is relaxed by one of the requirement excluded

because we value the ease of deployment over further privacy enhance-

ment. As described below, there is no need for untraceability of the use

of attribute credentials by issuer.

PRIV-REQ-2: Selective disclosure of attributes. The mechanism must allow the

principal to specify the set of her attributes that she wants to disclose for

each communication session.

We intentionally omit the following requirements since we prioritize the ease of deploy-

ment over further privacy enhancement.

• No need for untraceability of the use of attribute credentials by issuer. The

mechanism should minimize the principal’s activity, for example, when an attribute

credential is used, revealed to the issuer, but not prioritize over the ease of deployment.

This relaxes the constraint of PRIV-REQ-1.

In our service architecture using online validation of ARIDs on the issuer or the AVS,

the AVS can collect and trace whether or not an ARID is used, and if so, when and

from which IP address.

• No need for unlinkability between issuance and use of an attribute creden-

tial. This privacy property is part of untraceability of the user of attribute credentials

considering the scenario where the issuer and a relying party are the same entity.

As described above, as long as this mechanism offer online validation of ARIDs on the

issuer or the AVS to the relying parties, the AVS can link the issuance of an ARID

and its use for activity analysis purposes, for example.

• No need for unlinkability between multiple uses of an attribute credential.
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F6: HTTP GET with ARID and access code

An Example of 
Message Exchanges

F5: SIP INVITE with ARID and a secret that is used for generating the access code

Alice
Caller: Principal

Bob
Callee: Relying PartyAttribute Validation Server (AVS): Issuer

F7: HTTP 200 OK with user attributes

F1: HTTP POST with disclosure mode and access code

F8: SIP 200 OK (or 403 Forbidden)

Assesses the value 
of the call  based 
on the caller’s 
attributes

11

Wants to 
make a call to 
Bob providing 
her attributes

members.ieee.org sips:bob@example.comtel:+12345678

F2: HTTP 401 Unauthorized

F4: HTTP 200 OK with ARID

F3: HTTP POST with disclosure mode and access code

If ARID includes a 
trusted server’s URI

Note that SIP proxy servers and messages to and from them are omitted since they are not affected

by this mechanism.

Figure 8.2: Message exchanges for validating the caller’s attributes using ARID

This privacy property means that a relying party cannot link among two or more uses

of an attribute credential by the principal.

Given that an ARID is designed for the relying party (callee) to filter communication

requests based on the attributes of the principal (caller), this privacy requirement is

meaningless.

8.5 Procedures for a Call using SIP

Figure 8.2 illustrates message exchanges among a caller acting as the principal, the callee

playing the role a relying party and the AVS (i.e., the issuer) for the following procedures:

• Obtaining an ARID (messages F1 - F4);

• Sending the ARID to the callee when making a call using SIP (message F5);

• Validating the ARID to retrieve user attributes (messages F6 and F7);

• Responding to the call request (message F8).
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Before explaining each procedure, we describe how the AVS typically generates an ARID.

We then explain the first three procedures mainly for a call using SIP since the last proce-

dure, responding to the call request includes no ARID related information and requires no

special considerations.

8.5.1 Generating an ARID

An ARID is an HTTPS URI [Berners-Lee et al., 2005] pointing the location of user attributes

on a server. An ARID is generated by the AVS upon the principal’s request. To look up a

specific set of user attributes on a database, an ARID needs to be a unique identifier within

the AVS. Additionally, it needs to preserve the principal’s privacy, such as a user ID of the

AVS, since the ARID is transmitted remote parties. There are many ways to generate such

a unique identifier, including using a random string. We give two examples in which an

AVS generates an ARID using hashing and using encryption. In the first example, the AVS

generates an ARID by computing the hash of a unique string of characters within the AVS

using SHA1 and adding the path in the location of the server managing the attributes (e.g.,

HTTPS URI path/H(counter||timestamp)).

In the second example of generating an ARID, the AVS encrypts a string of characters

with a symmetric key of the AVS using AES [AES, 2001], and the string of characters,

represented by m, is a user ID concatenated with a disclosure mode, the expiry time, a salt,

and an ARID access code as follows:

ARID = URL path/Encrypt(m)

m = user ID||disclosure mode||expiry time||salt||ARID access code

The disclosure mode is provided by a principal to specify an ARID access code to

authenticate a relying party and which set of attributes to be disclosed to someone having

the ARID access code. (PRIV-REQ-2).

Hashed relying party’s SIP AoR is also provided by the principal as an ARID access

code for desired relying parties. The AVS set the ARID’s expiry time so that it expires

shortly after its issuance, such as ten minutes later for a call, to avoid replay attacks (SEC-

REQ-5). Since an approximate lifetime of an ARID depends on the communication mode



CHAPTER 8. USING USER ATTRIBUTES WITHOUT USER IDENTITY TO
IDENTIFY GOOD COMMUNICATION REQUESTS 126

– synchronous or asynchronous –, its lifetime for email communication should be longer.

Thus, the AVS needs to determine the lifetime of an ARID depending on the communication

mode that is provided by the principal.

When selecting a method for generating an ARID, using hashing or encryption, there is

the trade-off between the memory cost of storing ARIDs with related data in a database and

the computational cost of decrypting ARIDs. When generating an ARID using hashing,

the AVS needs to store the generated ARID with associated data including the expiry time,

the hashed SIP AoRs of desired relying parties which the principal sent, and the disclosure

mode which the principal specified. On the other hand, when generating an ARID using

encryption, the AVS only needs to remember a decryption key and the salt it included in

a string, but no ARIDs or related data. However, the ARID is longer and requires the

computational cost of decryption for all query messages in order to determine whether they

are still valid or have been expired. Our implementation described in Section 8.7 has adopted

a method for generating an ARID using hashing to avoid wasting the computational cost

of decrypting invalid query messages.

8.5.2 Obtaining an ARID

When Alice wants to send some of her attributes to send in a communication request to

Bob, she first needs to obtain an ARID from the AVS associated with the attributes by

using a SIP UA that supports this mechanism. To obtain an ARID from the AVS, Alice

needs to specify the destination ID of the communication request, namely, Bob’s CEID,

and which set of attributes to be disclosed, called the disclosure mode. Once she specifies

both information, the SIP UA sends an an HTTP POST over TLS to request an ARID

to the AVS. When connecting, the SIP UA authenticates the AVS using its X.509 PKC

received in the TLS handshake. In turn, the AVS authenticates Alice using her username

and credentials. For user authentication, HTTP Basic or Digest authentication [Franks et

al., 1999], a client’s PKC, or other mechanisms could be used.

To generate an HTTP POST request, the SIP UA sets the communication mode object

to the communication type (e.g.,“real-time”) and the disclosure mode object to her selected

disclosure mode (e.g., “basic”) as JSON [ECMA, 1999] objects in a message body, as shown
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POST /requestARID HTTP/1.1

HOST:members.ieee.org

Content-Type:application/json

{"communication_mode":"real-time",

"destination":"af8185ae01b4c9d81e125b408f86fd4c9a0eefc5",

"disclosure_mode":"basic"}

Note that mandatory HTTP and SIP headers unrelated to this mechanism are not shown here and

the following example messages.

Figure 8.3: Messages F1 and F3. HTTP POST sent from Alice to AVS

"destination_list":[

"destination":"af8185ae01b4c9d81e125b408f86fd4c9a0eefc5",

"destination":"20d9834e7477647ef4a32671e9f1cb69b0b9db01"]

Figure 8.4: Destinations in a destination list

in Figure 8.3. The format could be in XML [Bray et al., 2004]. In addition, the SIP UA

sets the destination object to an access code, which is used for limiting relying parties who

can retrieve her attributes using the ARID, as described in Section 8.3.3.

To preserve Alice’s communication history or plan (PRIV-REQ-1) and to prevent re-

identifying Bob based on the access codes collected on the AVS, the SIP UA generates an

ARID access code by calculating the HMAC [Krawczyk et al., 1997] of Bob’s destination

ID with a secret key, which is a random string of characters that the SIP UA generates for

the call. (The SIP UA sends this secret key, not the HMAC result, to Bob’s destination ID

in a SIP INVITE request later described in Section 8.5.3.) The SIP UA then sends the AVS

an HTTP POST request including It is worth noting that the SIP UA does not include the

secret key used for generating the access code into the HTTP POST request.

If a communication request can have multiple destinations, such as an email message,

destination list field should include a set of destination objects in a JSON array to contain

multiple access codes, as shown in Figure 8.4. The SIP UA or an email client needs to
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HTTP/1.1 200 OK

Content-Type:application/json

{"arid":"https://members.ieee.org/arid/4163c78e9b8d1ad58eb3f4b5344a4c0d5\

a35a023","expires":"2011-08-24T16:20:20Z" }

Figure 8.5: Message F4. HTTP 200 OK sent from AVS to Alice

generate each access code by hashing a destination ID.

When the AVS successfully generates an ARID for Alice, the AVS responds to her with

an HTTP 200 OK response including the ARID and its expiry time in the same data format

used in the HTTP request. As seen in Figure 8.5, the ARID is set in the arid JSON object.

The expires object contains the expiry time of the ARID in the universal time, coordinated

(UTC) format [Klyne and Newman, 2002].

8.5.3 Sending an ARID in a SIP INVITE Request

When Alice makes a call to Bob with an ARID, she needs to specify the information

corresponding to the ARID in a SIP UA so that Bob retrieves her attributes using the

ARID. The SIP UA generates a new SIP header field called Sender-Reference [Ono and

Schulzrinne, 2011a] including the sender-ref, type, expires, secret, and hash alg parameters

to convey the ARID, the service name of this attribute validation service, the expiry time

of the ARID, and the secret and the hash algorithm which were used for calculating HMAC

over the relying party’s AoR described in Section 8.5.2, respectively. The SIP UA then

sends an SIP INVITE request including the Sender-Reference, as shown in Figure 8.6. If

Alice wants to specify multiple ARIDs, the Sender-References header field includes multiple

set of an ARID and related parameters concatenated by a comma separator. The INVITE

request must be sent over TLS to protect message confidentiality and integrity.

Unlike email or instant messaging, a SIP INVITE request cannot contain multiple des-

tinations for one-to-many communications, although the call request can initiate multiple

party communications using a proxy server or a conference server. In these cases, relying
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INVITE sips:bob@example.com SIP/2.0

From:Alice<tel:+12345678>

To:Bob<sips:bob@example.com>

Sender-References:<https://members.ieee.org/arid/4163c78e9b8d1ad58eb3f4b\

5344a4c0d5a35a023>;type="avs";expires="2011-08-24T16:20:20Z";

hash_alg="HMAC-SHA1";secret="tqJrcYI7"

Figure 8.6: Message F5. SIP INVITE from Alice to Bob

parties share a single SIP AoR, whether or not a principal knows that the AoR is shared

by multiple users. Any of these relying parties can validate the ARID and retrieve user

attributes before its expiry time, causing privacy concerns. This privacy problem is tech-

nically unavoidable for any attribute mechanisms where others can retrieve the attributes

and distribute them.

How to convey an ARID: A new header vs. new parameters of an existing

header

Other than defining a new Sender-References header field, there are two options to convey

an ARID in a SIP INVITE request: new parameters of the Call-Info header field or new

parameters of the From header field.

The existing Call-Info header field, available only for SIP, can contain an ARID by

defining a new value of the purpose parameter, such as sender-attributes. However, to convey

a secret and the hash algorithm, the header field needs two more parameters. In addition to

this potential complexity of the Call-Info header filed structure, using this Call-Info header

field has another drawback. This header is unavailable for the email header fields. Because

of these two drawbacks, we have decided not to modify the Call-info header field to convey

an ARID.

Another option is to add parameters in the URI of the From header field, similar to the

SIP SAML solution (e.g., tel:+12345678;token-info=https://example.com/assns/?I

D=abcde) [Tschofenig et al., 2010]. The advantage of using the From header field is that
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protecting the data integrity is guaranteed when a domain-level authentication such as the

SIP identity mechanism or DKIM for email is applied. However, the tel URI for SIP cannot

take advantage of this mechanism since the tel URI contains no domain name. In addition,

the use of the From header field could potentially confuse recipients since user attributes

are not tightly linked to the From header field.

Even though protecting a new header field is not guaranteed, DKIM, unlike the SIP

Identity mechanism, allows the signer to easily add a header field for the signature. The

signer can add the name of a header field into the h= tag of the DKIM-Signature header

field. To deal with the use of the tel URI and to avoid potential confusion, we thus rather

define a new header field.

8.5.4 Validating an ARID to Retrieve User Attributes

When Bob, the relying party of one or more ARIDs, wants to retrieve the caller’s attributes,

the SIP UAS needs to test the validity of the ARIDs on the corresponding AVSes based on

the information found in the Sender-References header field in received SIP INVITE request.

The SIP UAS first needs to check if the expiry time in the expires parameter is not stale

and if it supports a hash algorithm specified in the hash alg parameter. The SIP UAS then

needs to determine whether or not it trusts each domain name of the AVS by prompting

Bob or based on his preconfigured information. Only for trusted AVSes, the SIP UAS looks

up the ARIDs on the corresponding AVSes to retrieve the caller’s attributes by using an

HTTP GET request, as shown in the following example. HTTP messages must be sent over

TLS for security as well as messages between the SIP UAC and the AVS. Bob authenticates

the AVS using its X.509 PKC delivered in the TLS handshake.

For this validation, the SIP UAS needs to generate a new HTTPS URI by adding an

ARID access code to the path of the ARID found in the Sender-References header field and

sends HTTP GET request to the newly created HTTPS URI. To do so, the SIP UAS first

needs to generate the ARID access code by computing the hash of the secret parameter

found in the Sender-Reference header field and its SIP AoR specified as the destination

ID found in the To header field using the hash algorithm found in the hash alg parameter

of the Sender-Reference header field, HMAC-SHA1("tqJrcYI7","sips:bob@example.com"),



CHAPTER 8. USING USER ATTRIBUTES WITHOUT USER IDENTITY TO
IDENTIFY GOOD COMMUNICATION REQUESTS 131

GET /arid/4163c78e9b8d1ad58eb3f4b5344a4c0d5a35a023/af8185ae01b4c9d81e125b\

408f86fd4c9a0eefc5 HTTP/1.1

HOST:members.ieee.org

Figure 8.7: Message F6. HTTP GET from Bob to AVS

HTTP/1.1 200 OK

Content-Type:application/json

{ "user_status":"student member" }

Figure 8.8: Message F7. HTTP 200 OK from AVS to Bob

getting "af8185ae01b4c9d81e125b408f86fd4c9a0eefc5." Once it computed the hash of

the relying party’s AoR, the SIP UAS finally generates the new HTTPS URI by adding it

to the path of the ARID, as shown in Figure 8.7.

If Bob enables call forwarding services, the To header may not include the destination ID

that Alice specified and used for generating an ARID access code. In this case, he needs to

find the original destination ID in the forwarding-related header fileld or in his configuration.

As long as a relying party can find the original destination ID in a communication request,

this mechanism can work with any forwarding services.

If the SIP UAS finds any deficiencies in the parameters of the Sender-Reference header

field Bob trusts no AVSes in these ARIDs, the SIP UAS must stop any further validation

process and continue normal processing of the SIP request.

If the AVS finds that the ARID is not stale and its access code (the hash of relying

party’s AoR) is valid, it responds to the relying party with an HTTP 200 OK having the

attributes in the message body, based on the disclosure mode which Alice has specified, as

shown in Figure 8.8. The attributes are attached as a JSON object or in XML. If the ARID

is expired or received access code is invalid, the AVS responds with an HTTP 404 Not Found

response. Specifically the invalidity is caused by a query received after the expiry time, the

AVS may respond with 410 Gone in HTTP.
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If Bob receives an HTTP 200 OK response from the AVS, he is informed that the ARID

is valid and the principal has the attributes set in the message body, for the example of

Figure 8.8, the caller is a student member in “members.ieee.org.” With any other responses,

Bob can know nothing about the caller’s attributes. Based on this information, he deter-

mines whether or not to answer the call and adjusts his communication stance accordingly.

8.6 Security Threats and Countermeasures

To analyze vulnerability our mechanism, this section describes security considerations in-

cluding potential threats and possible countermeasures.

8.6.1 Man in the Middle Attacks

In a man in the middle attack, the attacker imposes himself in the path of signaling or

message exchange between entities for impersonation, eavesdropping, and message tamper-

ing [Kissel, 2011]. This mechanism needs to protect all three parts of signaling or message

path, between a principal and the AVS using HTTP, between the principal and a relying

party using SIP or email protocols, and between the relying party and the AVS using HTTP.

To prevent eavesdropping and to detect message tampering, all parts of message path

must be protected using TLS.

To prevent an attacker from impersonating a principal to the AVS, the AVS must au-

thenticate the principal using HTTP Basic or Digest authentication over TLS, a client X.509

PKC or other mechanisms. In turn, to prevent impersonating the AVS to the principal, the

principal must authenticate the AVS using its X.509 PKC in the TLS handshake. Similarly,

to prevent impersonating the AVS to a relying party, the relying party must authenticate

the AVS using its X.509 PKC in the TLS handshake. Neither user authentication between

the principal and a relying party nor relying party authentication by the AVS are not needed

since no trust relationships are assumed, as described in Section 8.2.2.
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8.6.2 Replay Attacks

In a replay attack, the attacker obtains a valid ARID in some way and uses the ARID

to spoof user attributes to a relying party, or to retrieve user attributes from the AVS. A

replay attack potentially occurs from a compromised intermediary along the signaling or

message path, such as an HTTP or SIP proxy server or an SMTP server. We first de-

scribe countermeasures to replay attacks from outsiders, and then analyze the vulnerability

to replay attacks from compromised or malicious intermediaries. Another form of replay

attacks occurs from a legitimate relying party by using a received ARID, as described in

Section 8.3.1.

8.6.2.1 Replay Attacks from Outsiders

To prevent unauthorized retrieval of user attributes using a stolen ARID, the AVS must

restrict relying parties who can use a specific ARID based on the information the principal

specifies (an ARID access code). The information is HMAC over the SIP AoR or email

address of a relying party; thus, SIP UAs or email clients must support HMAC-SHA1.

If an ARID is stolen with the information, for example, a validation request itself is

captured in some way, the user attributes corresponding to the ARID can be fetched by

anyone. To mitigate this unauthorized access to user attributes, the AVS must limit an

ARID’s lifetime to a short time period. The AVS may also limit the number of times it can

be resolved. However, while limiting the use times of an ARID strengthens security, it may

reduce the degree of applicability to email, especially in the following scenario. An ARID

cannot be used for validating user attributes when a principal specifies a single relying

party in a message, but the message is copied to multiple destinations, for example, using

a forking proxy at the recipient side or using a listing service. Thus, this limitation on the

use times of an ARID is recommended only for a communication service which needs the

long lifetime of an ARID, such as email.

To detect posing user attributes using a stolen ARID in a communication request, a

relying party may collect received ARIDs until their lifetime end. When receiving an ARID

in a new communication request, a relying party sees if the same ARID exists in previously

received ARIDs.
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8.6.2.2 Replay Attacks from Intermediaries

An HTTP proxy server often exists between a principal and the AVS and between the relying

party and the AVS. SIP proxy servers or email servers usually exist between the principal

and a relying party depending on the communication means. If these intermediaries include

a malicious or compromised server, the attacker can exploit the information stored on the

server for replay attacks. However, a malicious server is rarely involved in the signaling

path using HTTP, SIP, or email protocols, if each entity configures its application settings

to connect only to a trust proxy server using TLS, and carefully authenticates the server

using its X.509 PKC. Therefore, for each signaling path, we analyze the potential damage

by replay attacks mainly from compromised intermediares and from malicious ones on the

condition in which server authentication is not properly done.

To prevent man in the middle attacks described in Section 8.6.1, these HTTP proxy

servers are supposed to transmit messages protected with an end-to-end TLS connection

without terminating and restarting a secure TLS connection. If a principal neglects to

authenticate an X.509 PKC of the AVS, the HTTP proxy server can intercept a response

including an ARID from the AVS. However, this ARID alone is insufficient for the attacker

to impersonate user attributes to a relying party or to retrieve user attributes from the

AVS. If a relying party neglects to authenticate an X.509 PKC of the AVS, the HTTP

proxy server can intercept a request carrying full information for retrieving user attributes.

A short lifetime of an ARID and its limited use time, if enabled, can reduce the effect of

replay attacks using this request for retrieving user attributes.

Similarly, SIP proxy servers or email servers also are supposed to use TLS, but they do

not allow TLS tunneling to provide its communication service by dealing with the message

headers of a communication request. Thus, the attacker can obtain a message including

an ARID from a compromised server. However, to exploit the ARID for replay attacks on

the AVS, the attacker needs the same processes as a relying party does in order to form

an HTTP GET request. The processes include parsing two header fields of To and Sender-

Reference and generating HMAC over the destination address with the secret found in these

header fields. Although the computational costs of parsing and generating HMAC are not

expensive, they are expensive than the cost of copy and replay. Combined with a short
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lifetime of an ARID, this additional required process can reduce the effect of replay attacks

using a captured communication request.

To detect replay attacks at a relying party, the relying party needs to test whether an

ARID is new or has been used before (within the lifetime of an ARID), relying on collected

received ARIDs, and also relying on the countermeasures (limiting the lifetime of an ARID)

implemented on the AVS. If an intermediary wrongly modifies with message headers before

forwarding a message (e.g., swapping a set of the To and Sender-References header fields

of a message with others), a relying party cannot detect that. In that case, however, the

communication service itself is also disrupted.

8.6.2.3 Replay Attacks from Relying Party Using a Received ARID

Any legitimate relying party of an ARID can attempt to impersonate the principal of the

ARID just by sending the ARID to another user since this mechanism does not have a tight

link between the username of AVS and the caller ID, as described in Section 8.3.2, nor a link

between the signaling path and the ARID. As described in Section 8.3.1, to mitigate this

attack, a relying party need to generate an ARID access code, the hash of his CEID (i.e.,

SIP AoR or email address) and the secret in the communication request. This is one of the

countermeasures as preventing replay attacks from outsiders, as described in Section 8.6.2.1.

When it comes to this service applied to email and instant messaging where a message

is copied and shared by multiple recipients, the attacker can easily pick another recipient

of the received message and reuse the received ARID when sending a new message to the

recipient.

To mitigate this form of forwarding attacks, the AVS and a relying party need to rely

on the same countermeasures, as preventing replay attacks from outsiders, as described in

Section 8.6.2.1. These countermeasures include, limiting relying parties to whom have been

authorized by the principal, limiting the lifetime of an ARID to a short time period and

limiting the use time of an ARID to one per relying party. Furthermore, they include that

each relying party collects ARIDs that have been received until their lifetime ends. As the

lifetime of an ARID is set longer to be adjusted to asynchronous services such as email, the

countermeasures become more costly and less effective.
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8.6.3 Denial of Service Attacks on the AVS

Since our service architecture requires online validation of an ARID, a flood of validation

requests or queries potentially incurs overload on the AVS. To mitigate overload, the AVS

can build on separate servers one for the issuer of ARIDs and another for the validator for

them. A flood of issuance and validation requests originate from legitimate relying parties

and also from users attempting denial of service (DoS) attacks. Thus, we need to maximize

resource allocated for valid requests with minimizing it for invalid requests for both servers.

At the application level, it is important for the AVS to detect invalid requests as easily

as possible. To do so, the AVS, acting as the issuer, must authenticate users. The AVS,

as the validator, must use a lightweight query protocol, such as the RESTful API [Fielding

and Taylor, 2002], which sets a query key in the path of an HTTPS URI.

Since these requests are sent over TLS, the AVS also needs to reduce the effect of

flooding requests at TCP and TLS levels. At the TCP level, these servers must carefully

configure TCP to mitigate TCP SYN flooding attacks. At the TLS level, these servers are

vulnerable to DoS attacks by exceeding the maximum rate of TLS Client Key Exchange

requests. To decrease the impact of flooding TLS handshake requests, these servers should

disable the TLS re-negotiation since the issuance and validation requests requires one or

two transaction to exchange small messages.

8.6.4 Phishing Attacks on the AVS

A Web site having a domain name confusingly similar to a well-known AVS makes it possible

to steal the password of a user for remote access to the AVS. It is also possible for an evil

Web site to respond to any attribute queries with an HTTP 200 OK response with forged

user attributes attached to invalidate the attribute validation service. To prevent these

attacks, both a user and the recipient of an ARID must use TLS when connecting to the

AVS and must ensure that the server’s X.509 PKC has a valid signature for the valid domain

name.
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8.7 Implementation

To illustrate our design concept for a lightweight and easily deployable mechanism, we

have built an AVS prototype on an HTTPS server using a standard Linux, Apache HTTP

Server [Apa, 2006], MySQL database [MySQL, 2006], and PHP (LAMP) package. The AVS

does not need any special cryptographic capabilities other than its X.509 PKC for TLS. The

AVS generates an ARID using hashing and stores it in a database. This implements the

first approach to generating an ARID using hashing described in Section 8.5.1

To a MySQL database, we added RESTful JSON Web interfaces [James, 2010] so that

the AVS efficiently verifies received ARID validation requests. Without parsing the message

body of an HTTP request, the AVS forwards received requests as database queries to the

“arid” table in a database indexed on two columns: an ARID and its access code. Each row

in the “arid” table has its expiry time, which is checked and deleted, if it becomes stale, by

a scheduled job. If the query finds no rows, the AVS receives and forwards an HTTP 404

Not Found response back to the relying party. Thus, a belated validation request from a

legitimate relying party receives an HTTP 404 Not Found response, not conveying a specific

reason of invalidity, namely, the ARID is expired or it provided with invalid access code.

Even if a query successfully finds a row, it needs to check the expiry time in case the ARID

ends its lifetime after the scheduled job performed. If the ARID is fresh and valid, it then

needs to retrieve the corresponding disclosure mode and user ID to look up user attributes

from different tables. This can be done by modified the RESTful JSON Web interfaces to

support SQL SELECT with JOIN for retrieving multiple tables upon receiving a query by

an ARID an its access code.

The AVS prototype is tested with a simplified SIP UAC and UAS implemented in a Web

browser, instead of modifying existing SIP clients to support the AVS. Based on the settings

of a UAC, the UAC written in JavaScript obtains an ARID from the AVS and generates

a SIP INVITE message, as shown in Figures 8.9. When receiving the SIP INVITE message

and extracting several parameters, the UAS written in JavaScript sends a validation request

to the AVS and receives the attribute of the UAC, as shown in Firefox with the Firebug3

3Firebug is a Firefox add-on for web development found at http://getfirebug.com/.
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Figure 8.9: Sample implementation of UAC: Settings and the SIP INVITE request

extension in Figure 8.10.

To support selective disclosure, this implementation accepts two disclosure modes: basic

or detail. Each mode has defined a set of attributes as system-wide settings. For more user-

friendly selective disclosure, the AVS should allow a user to configure her preference settings

of whether or not to disclose each attribute. We leave this function for a future revision of

implementation.

In summary, our AVS prototype demonstrates proof of concept and the capability of

easy deployment by building an HTTPS server using a standard LAMP stack and RESTful

JSON Web interfaces with a minor modification.
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Figure 8.10: Sample implementation of UAS: Parameters extracted from a received SIP

INVITE request and an HTTP response from AVS

8.8 Evaluation

We demonstrate that the issuer can be easily deployed by implementing our AVS pro-

totype, building an HTTPS server using a standard LAMP stack without special security

capabilities other than X.509 PKC for the AVS in Section 8.7. To evaluate our claim that

our proposed system is simple and lightweight, ideally, we should compare our implemen-

tation with a system having the same functionality, and assuming the same trust model.

We select U-Prove [Paquin, 2011] as a counterpart since it provides anonymous attribute

assertions having relatively similar functionality. The U-Prove service architecture is de-

picted in Figure 8.11 when U-Prove is applied to a SIP call assuming that a U-Prove token

is transmitted using HTTP over TLS and SIP over TLS.
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Overview:  
U-Prove token

Issuer of U-Prove tokens
e.g., members.ieee.org

UAC: Principal
Alice
Student member in ieee.org
tel:+12345678

UAS: Relying Party
Bob
Accepts calls from members in ieee.org; 
does not know Alice’s phone number
sips:bob@example.com

1. Requests and
 obtains a U-Prove 

token

3. Makes a call with the U-Prove token

HTTP over TLS
SIP over TLS

4.  Receives user attributes and 
verifies two signatures, of the 

issuer and the principal, 
attached to the U-Prove token

{Alice’s username, credentials, attributes}

6

2.  Enters the 
current timestamp 
and relying party’s 

URI and generates a 
signature over them

Figure 8.11: U-Prove service architecture applied to a SIP call

8.8.1 Qualitative Evaluation: Functionality

Table 8.1 compares AVS with U-Prove in required functionality listed in Section 8.4. Since

AVS is designed specifically for our target service, which is to identify a good communication

request in SIP and email, its functionality is optimized for the requirements. Thus, the AVS

fully satisfies all the requirements. Although a security requirement, proof of possession of a

token (SEC-REQ-5, and a privacy requirement, the untraceability of communication history

by the issuer (PRIV-REQ-1) are not supported as the same extent as U-Prove, they are

allowed to be relaxed because of the low risk of our traget service and of our priority of ease

of the service deployment, as described in each requirement.

There are three differences in the general functions: the capability of sending user

attributes in the header of a signaling message, easy validation of attributes by recipients

of a communication request, and easy deployment without special security capabilities.

First, whereas the AVS can deliver user attributes by reference, using an ARID, in the

message header of a SIP request or an email message, U-Prove cannot convey its token

in XML in the message header since it exceeds the maximum length of an email message

header field, 998 characters [Resnick, 2008]. U-Prove therefore needs to covey its token in
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AVS U-Prove

General functions

User attributes delivery in the

header of a signaling message

Yes: By reference, ARID in

an HTTPS URI

No: By value, U-Prove token set in

XML

Attributes issued by multiple is-

suers in a single message

Yes Yes

Supporting short-lived at-

tributes

Yes Yes with on-demand option

Easy validation of attributes by

recipients

Yes: Online validation from

AVS using TLS

Complicated: Offline validation by re-

lying party

Easy adaption to existing com-

munication protocols

Yes Yew with non-interactive option of to-

ken presence protocol

Easy deployment without spe-

cial security capabilities

Yes: TLS and HMAC-SHA1 No: Adds U-Prove token crypto.

functionalities to a secure channel

Flexible allocation of issuer and

validation functions

Yes Not necessary

Security

Data confidentiality Yes: Using TLS Yes: Adding security, such as TLS

Data integrity Yes: ARID generated using

SHA1 and using TLS

Yes: Signature in U-Prove token

Issuer authentication Yes: Relying on Issuer’s

PKC used in TLS

Yes: Relying on Issuer’s PKC and sig-

nature on U-Prove token

Limiting relying party Yes: AVS’s control with

ARID’s lifetime and an ac-

cess code generated with re-

lying party’s CEID

Yes: a relying party’s check a desired

relying party’s ID and its expiry time

in U-Prove token

Proof of possession of a token

(an ARID or a U-Prove token)

Yes: By providing fresh

ARID and a secret

Yes: By verifying the signature of the

principal

Privacy

Untraceability of communica-

tion history by issuer

Partly yes Mostly yes

Selective disclosure of attributes Yes: Supported through a

trusted Issuer

Yes: User can directly control each at-

tribute.

Table 8.1: Comparison of functionality required for our target service: AVS vs. U-Prove
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the message body using a multi-part MIME message body [Freed and Borenstein, 1996a;

Freed and Borenstein, 1996b], imposing the complexity of message generating and parsing

on user agents. If U-Prove allows to send a U-Prove token by reference, this completely

changes the service architecture of U-Prove. This change makes it unable to offer the

capability of verifying the signatures and the attributes set in a U-Prove token without

the relying party’s accessing the issuer, called offline validation, and untraceability by the

issuer.

Second, while the AVS enables recipients to validate user attributes by sending an ARID

to the AVS, U-Prove requires recipients to validate offline by verifying two signatures of the

issuer and the user using their public keys, the timestamp, and the specified relying party’s

URI, adding cryptographic computation into user agents. When a user weigh online, which

requires a relying party to connect with the issuer, and offline validation, there are generally

two trade-offs between the risk of server failure, such as unavailable caused by overload, and

the cost of validation on the user, and between user privacy against the server and the cost of

validation on the user. Offline validation is independent of the validation server availability.

Offline validation also provides a privacy property for users. The validation server, which is

often co-located with the issuer of attributes, cannot trace the use of attributes. However,

given that our target service needs short-lived attributes, the privacy advantage of offline

validations are not significant since the issuer can guess when and how many times a U-Prove

token is used from when it issues the U-Prove token. The use of a U-Prove token corresponds

to the issuance with one-to-one basis. The timing of these two actions is similar. Moreover,

to easily deploy attribute validation services, a smaller cost of user agents overweighs the

risk of server failure. Thus, we consider online validation using AVS offers easier validation

of attributes than offline validation, although online validation requires countermeasures to

overload and DoS attacks.

Third, while the AVS needs TLS and HMAC-SHA1, which are supported by the stan-

dard security libraries of Apache and PHP, U-Prove requires its own special cryptographic

libraries in addition to a standard libraries for a secure channel, such as TLS. For example,

the issuer of a U-Prove token needs to prepare a discrete-logarithm-representation public

key for a U-Prove security and an X.509 PKC for TLS. Users and recipients also need to



CHAPTER 8. USING USER ATTRIBUTES WITHOUT USER IDENTITY TO
IDENTIFY GOOD COMMUNICATION REQUESTS 143

use special cryptographic libraries. This requirement of special security capabilities hinders

easy and wide deployment.

Regarding security functionality, U-Prove uses its own cryptographic functions to offer

attribute integrity and issuer authentication, whereas the AVS relies on transport layer

integrity and authentication, using the standard security libraries. In general, application-

level attribute integrity (i.e., attributes with the signature attached) can be ensured, whether

the attribute are directly transmitted between the issuer and a relying party, or through in-

termediaries. In contrast, transport-layer-level attribute integrity needs to rely on the trust-

worthiness of the intermediaries along the path. In this sense, U-Prove provides stronger

security than the AVS.

However, U-Prove provides stronger security, in not all aspects, than AVS. Since U-

Prove security offers no attribute confidentiality, it needs another security mechanism, such

as TLS, for protecting a message over networks in addition to U-Prove security. As replay

protection, both mechanisms have similar countermeasures although there is difference in

the role of the issuer. Since a U-Prove token is sent by value, a principal needs to send

a token In U-Prove, the issuer does nothing. Instead, a principal sends a U-Prove token

including the principal’s attributes and each relying party’s URI to desired relying parties.

Upon receiving a U-Prove token, each relying party checks if it is desired to the URI of

himself. In addition, the relying party verifies a signature over the timestamp and the

relying party URI using a principal’s token-specific public key from the U-Prove token. The

relying party also check if the timestamp is within the valid time period specified in the

U-Prove token. On the other hand, the issuer of an ARID, the AVS controls the limitation

with collaborating with the principal. The relying party needs to send a validity request

with a newly generated access code attached to the AVS, instead of checking the valid time

period or the original relying party. Thus, unless a relying party checks the relying party’s

URI and the U-Prove token’s lifetime, it cannot detect the attack.

A U-Prove principal can prove to a relying party that she has the token and attributes on

it by the signature generated by the corresponding private key. Compared to the proof of the

possession of the U-Prove token, the AVS provides a relatively weak proof of the possession

of an ARID, but keeps the system simple and lightweight. As described in Section 8.3.2,
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when receiving an ARID, a relying party verifies the proper possession by the fact that a

user sends a fresh ARID to a legitimate relying party. If a relying party can retrieve the

user attributes from the trusted AVS over TLS, he considers that the user properly has the

ARID. If he receives an HTTP error response from the AVS, he detects unauthorized use

of the ARID. If the lifetime of an ARID is longer for asynchronous communications, such

as email, the proof of possession becomes weak against replay attacks.

Regarding privacy functionality, U-Prove provides stronger privacy than the AVS since

the degree of trust from a relying party to the issuer co-located with the validation server is

weaker. U-Prove provides the untraceability of communication history by issuer more than

the AVS. A user of the AVS can protect the relying party’s ID using hashing, but reveals the

number of relying parties for each communication. Online validation of an ARID reveals

the IP addresses of relying parties and the time of the user of the ARID. On the other

hand, offline validation of a U-Prove token can hide the number of relying parties and their

IP addresses although the time of the use can be guessed by the time of the issuance for

a short-lived token. Also for selective disclosure, the AVS can trace which attributes are

disclosed since it gets involved in the selection. A user asks the AVS whether or not to

disclose each attribute, or simply select a disclosure mode, for each communication. By

contrast, U-Prove allows a user to directly control selective disclosure without any support

of the issuer. A user can select attributes to disclose and encrypt undisclosed attributes

with her private key.

Thus, with assuming the issuer is trusted by a user and relying party in terms of handling

attributes and ARIDs, the AVS provides functions to meets all the general requirement,

offers moderate security and privacy. By settling for offering moderate security and privacy,

the AVS can avoid complexity of security capabilities, resulting in keeping the mechanism

simple and lightweight. Compared to U-Prove, more functions are assigned to the issuer of

an ARID than the issuer of a U-Prove token since we assume that a principal and relying

party trust the issuer to manage access log files. By contrast, for easy deployment, fewer

functions are assigned to a user and relying party of an ARID than these entities of a

U-Prove token.
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8.8.2 Quantitative Evaluation: Lines of Code

To support the functionality evaluation indicating the simplicity and the capability of easy

development and deployment of our proposed mechanism, we would like to quantitatively

evaluate our AVS prototype. For this purpose, we compare our AVS prototype with U-

Prove Crypto software development kit (SDK) [Microsoft, 2012]. We measured the number

of lines of code for each although the lines of code depends functionality, configuration

flexibility, coding style, packaging policy, and the language. Thus, the number of lines of

code is a second-order metric. The exact numbers do not directly reflect the complexity,

but suggest an appropriate ordering.

Table 8.2 compares the numbers of lines of code4 of our AVS libraries and part of

U-Prove Crypto SDK. Figure 8.8.2 shows the sample AVS code using our AVS libraries.

Although these implementations are written in different languages, the AVS in PHP and

U-Prove in Java, both are class-based object-oriented and define setter and getter functions

for most variables. The UAC and UAS for the AVS are written in JavaScript and using

an external HMAC-SHA1 library. The code does not define any classes nor setters and

getters of variables. However, they include functions to generate and parser a SIP INIVTE

request while the U-Prove Crypto SDK includes any interfaces to messages exchanged over

networks.

For a fair comparison, the part of U-Prove excludes unnecessary optional functions re-

lated to device-supported security. The part of U-Prove also excludes several files which are

provided by the libraries of PHP (e.g., Base64.java), to decrease the language dependencies.

It is worth noting that the U-Prove Crypto SDK provides offer cryptographic functions only.

When implementing the issuer of U-Prove, developers needs to include functions of all mes-

sage exchanges over networks, such as HTTP interfaces, user authentication and database

interfaces. The code for these functions requiring additional implementations for U-Prove

is also excluded from the subtotal and total number of the lines of code for the AVS.

For U-Prove, the interfaces of crypto and a U-Prove token are needed both on the issuer

and principal. However, to avoid double counting, the number of lines of code is added

4The code excluding comments and blank lines is counted by a code line counter, cloc-1.55-pl at

http://sourceforge.net/projects/cloc.
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Entity: Functions AVS Part of U-Prove

Issuer: Issuing a token 235 1097

Issuer: Validating a token 199 01

Issuer: Authenticating users and reading user at-

tributes from database

192 -2

Issuer: HTTP interfaces 176 -2

Principal: Obtaining a token 98 375

Principal: User and SIP interfaces 84 -2

Relying party: Validating a token 33 130

Relying party: User and SIP interfaces 39 -2

Secure token3 134 246

Crypto 04 636

Subtotal

Issuer excluding user authentication, database and

HTTP interfaces

568 1733

Principal: Obtaining a token 98 621

Relying party: Validating a token 33 130

Total 699 2484

1 This is because the validation of a U-Prove token is performed on a relying

party while the validation of an ARID is on the AVS upon a request from a

relying party.

2 Additional implementations or packages are needed.

3 At subtotal, secure token-related functions are added into Issuer for AVS,

but into the principal for U-Prove.

4 The AVS security is achieved by the standard libraries such as TLS and

HMAC-SHA1.

Table 8.2: Comparison of the number of lines of code: AVS vs. Part of U-Prove
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only into one entity which mainly use. For example, the interfaces of a U-Prove token are

added only into the principal. Principal, and the interfaces of crypto are added only into the

issuer. On the other hand, all entities of AVS use cryptography provided by the standard

libraries such as TLS and HMAC-SHA1. ARID-specific validation functions are centralized

on the issuer. Thus, there is no overlap in three entities.

Compared to the numbers in the Subtotal of Table 8.2 of part of U-Prove, the AVS

approximately requires one third of the lines of code of the part of U-Prove for issuers.

This difference is caused by the AVS security relying on the standard libraries while U-

Prove implements its own security in addition to the standard libraries, such as TLS. This

comparison roughly indicates the simplicity of the AVS security and privacy compared to

U-Prove. More remarkable, the AVS requires less than only one sixth of the lines of code

of the part of U-Prove for the principal, and a quarter of the lines of code for a relying

party. These differences in the lines of code roughly reflect the differences in the degree

of the complexity and also in allocating the functions of token validation, as identified in

Section 8.8.1.

All in all, the numbers of lines of code indicate that an AVS system, especially user

and relying party, has simpler and more lightweight functionality than U-Prove although

these numbers also depend on other factors such as functionality, configuration flexibility

and coding style. Combined with the results of functionality evaluation, we estimate that

an AVS system can be easily developed and deployed for our target service.

8.9 Related Work

This section reviews attribute certificates or assertions that have been studied and developed

over two decades [ITU-T, 1993; Ellison, 1999; Brands, 2000; Cantor et al., 2005; Peterson

et al., 2006; Farrell et al., 2010; Zurich, 2011]. This section also reviews mechanisms for

trusted third-party authentication, which are relatively recent work. Existing mechanisms

explained below satisfy some of our requirements (Section 8.4), but not all.

Prior work on asserting user attributes has been designed for attribute-based authoriza-

tion for various purposes including access control on limited resources, data origin authenti-
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1 <?php

2 require_once("User.php");

3 require_once("Issuer.php");

4

5 //sets a user authentication mode

6 $userAuth=User:: AuthByHttpBasic;

7

8 // authenticates a user by its password stored in the database

9 // returns a user ID (if ok), or interrupts with an error

10 $issr = new Issuer ();

11 $uid = $issr ->userAuth($userAuth);

12 if (isset($uid)) {

13 // reads a message body and generates an ARID , uptating the

database

14 //then responds with HTTP 200 OK including the ARID

15 $issr ->generateARID($uid);

16 ?>

Listing 8.1: Sample code of AVS issuer

cation for prioritizing communications, and non-repudiation for accounting and settlement

among service providers [Farrell et al., 2010; Peterson et al., 2006], which entails different

levels of risks. As a result, mechanisms offer strong security, but are over-engineered for

identifying good calls or messages, which are low-risk interactions.

Most attribute credentials, such as an X.509 attribute certificate (AC) [Farrell et al.,

2010] and a SAML assertion for SIP [Cantor et al., 2005; Tschofenig et al., 2010], bind a

user’s attributes to her authenticated identity. More specifically, a credential binds Alice’s

attributes to her two authenticated IDs: one is issued by attribute service provider or

an attribute authority, and another is issued by a communication service, complicating

authentication relationships, as depicted in Figure 8.12. This binding enables Alice, an

originator or a principal, to definitively prove to Bob, the recipient or relying party, that

she possesses attributes on the credential. However, it has two drawbacks related to the

service deployment. First, a credential issuer of user attributes needs to be the same, work in
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Figure 8.12: Conceptual model of authentication relationship between originator (Alice)

and recipient (Bob) by validating user ID of attribute service and communication endpoint

ID

alliance with a communication service provider, or confirm her communication endpoint ID

(CEID) or contact address by the fact that she has performed a simple task which the issuer

assigns her via her contact address (reachability). Second, a communication service needs

to enable recipients to authenticate an origin ID. These two drawbacks can be overcome for

email, but nor for SIP. Since caller ID authentication services have suffered from technical

and practical problems, as discussed in Section 6.6. These requirements have been a serious

obstacle to wide deployment of attribute certificates binding a user’s attributes to the user’s

identity.

As people have more concerns over their privacy online, the anonymity of the holder

of an attribute certificate has gained more interests. Anonymous certificates unlink the

principal name from the principal’s attributes by specifying the principal by its public key.

The Simple Public Key Infrastructure (SPKI) [Ellison, 1999; Ellison et al., 1999] offers an

authorization certificate, which binds the holder’s permission to the holder’s key, in contrast

to its attribute certificate, which binds the holder’s permission to the holder’s name. The

permission, which is authorized to an attribute, explicitly identify authorized operations.

However, for our target service, neither issuer nor principal can obtain permission from a

relying party beforehand.

U-Prove [Brands, 2000] and Idemix [Zurich, 2011] provide a proof of possessing at-
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Figure 8.13: Conceptual model of authentication relationship between originator (Alice)

and recipient (Bob) without validating any user IDs

tributes, which is called a token. In these mechanisms, a principal generates a token-specific

public key, and signs over attributes in the token issued by the issuer. As depicted in Fig-

ure 8.13, these techniques simplify authentication relationships by removing the requirement

of an authenticated CEID. These techniques also enhance privacy properties against the is-

suer, such as offline validation and selective disclosure without the issuer’s involvement, but,

at the same time, add complexity especially to user agents supporting this privacy-enhanced

credential. These privacy enhancements are over-engineered for low-risk interactions.

These mechanisms use discrete-logarithm-representation-based public keys. The issuer

generates a digital signature over a set of attribute values and cryptographic information

with a discrete-logarithm-representation-based public key that is generated for each use.

They support selective disclosure which enables a principal to directly control whether or

not to disclose each attribute. They also support untraceability of the use of a certificate

by the issuer and unlinkability between the issuance and the use of a certificate. Idemix

enhances privacy more than U-Prove, resulting in more complexity. For example, Idemix

supports unlinkability among multiple uses of a certificate by generating a random key

based on the same master secret key for each use. In addition to a short-lived certificate,

both support a persistent certificate of which validity is checked offline using a certificate

revocation list. This rich functionality of privacy enhancement imposes the complexity of

development and deployment. These privacy enhancements are beyond our requirements
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listed in Section 8.4. The principal needs to rely on the issuer’s policy how to handle their

attributes issued and stored on the issuer’s server after all. Thus, our proposed mechanism

prioritizes simplicity for easy deployment over complexity for privacy enhancement.

All attribute certificates or assertions are authenticated by their issuer, a trusted third-

party who is not involved in the communication in question. Kerberos [Neuman et al.,

2005] has been widely used an authentication system using a trusted third-party, a key

distribution center (KDC). An authentication server in the KDC authenticates a principal

on behalf of a relying party, a service server (SS). A ticket granting server (TGS) in the

KDC issues a ticket which is effective only for a session between the principal and the SS

for a limited time period. The Although Kerberos features cover all our mechanism needs,

the trust model is different. Unlike our trust model (Section 8.2.2), Kerberos assumes that

the issuer and the relying party, SS, share a SS’s secret key to allow the SS to verify a

received ticket by decrypting with the SS’s key without connecting to the TGS. To resolve

the difference in the trust model, sharing the SS’s key with the TGS is eliminated, but it

is intractable since the off-line decryption using the SS’s key is a key feature in Kerberos.

Thus, our target service cannot use Kerberos because of this difference in assumed trust

model.

OAuth [Hammer et al., 2012] has recently emerged as a third-party authentication model

used across Web service providers. This mechanism allows a user of a Web service acting as

a principal to delegate limited permission using an access token to another Web service in

order to access part of her resource. With the OAuth terminology, a principal is the resource

owner, a relying party is the client, and the issuer of an access token plays two roles of the

authorization server, which is a third-party authenticator, and the resource server. The

issuer of OAuth issues an access token in two steps. Upon a relying party’s request through

a resource owner, the issuer first provides a relying party with an authorization grant on the

approval of a resource owner. Upon the relying party’s request along with the authorization

grant, the issuer then issues an access token to the relying party. OAuth differs from our

target service in who takes the initiative in requesting an access token to give permission to

retrieve attributes. In OAuth, a relying party starts to request an access token where as a

principal starts in our mechanism. OAuth also differs from our trust model; the issuer and
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a relying party share the relying party ID and a secret to authenticate the relying party

when the issuer issues an access token, whereas our mechanism does not require them to

share a key, as described in Section 8.2.2. To adopt OAuth to our target service, we need

to modify the OAuth procedures for the principal, instead of a relying party, to take the

initiative in requesting an access token. Correspondingly, the principal, instead of a relying

party, shares a principal’s ID and a secret for the principal’s authentication on the issuer.

This modified procedure is similar to the procedures for a principal using an application,

which does not use HTTP, called non-Web application. The non-Web application model

assumes that both the principal and a relying party are installed in the same entity, resulting

in a simplified version of OAuth where the authorization server is no longer a third-party

authenticator from the perspective of the entity. To adopt this non-Web application model

to our target service, an access token should be transmitted by an email message or a SIP

request over TLS. Since the client authentication information is embedded in an ARID in

our proposed mechanism, the recipient of the email message of SIP request can access the

resource server by solely using the ARID. Thus, this is vulnerable to replaying attacks from

a legitimate recipient. OAuth needs to add a countermeasure to replaying attacks, such

authenticating a relying party using an access code, similar to our mechanism. Thus, we

prefer a simple mechanism using a single token rather than using a simplified option along

with unnecessary complexities for other options.

8.10 Conclusion

We have designed, implemented, and evaluated a mechanism for an attribute validation

service, which is simple and lightweight for validating user attributes in order to identify

a good communication request. Authentication services for a caller ID in the SIP URI or

the tel URI have encountered difficulties in development and deployment. This observation

motivated us to introduce an anonymous attribute token, ARID, that is not associated with

the origin ID or the signaling path. An ARID is an HTTPS URI, which can be conveyed

in a message header of a communication request, unlike typical existing anonymous tokens.

To provide the mechanism with moderate security keeping it simple and lightweight, most
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security properties of an ARID relies on transport layer security such as TLS to leverage

the wide deployment of HTTPS servers.

We have implemented an AVS prototype on an HTTPS server using a standard LAMP

package. The AVS generates an ARID with a short lifetime and restricting desired rely-

ing parties. A legitimate relying party can easily validate an ARID by sending an HTTP

GET request, which uses a RESTful API simply forwarded as a query to a database stor-

ing ARIDs. Compared to U-Prove, a relatively simple U-Prove mechanism, AVS provides

weaker proof of possession of an ARID and fewer privacy enhancement. This is because AVS

assumes that a relying party trusts on the issuer more than the assumption that U-Prove

makes in order to minimize functions allocated to the user side for easy service deployment.

This AVS mechanism aims at striking the proper balance between properties of security and

privacy and the low-risk level of protected assets, whether or not to accept a communication

request.
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Chapter 9

Controlling Unwanted Calls Using

Two Proposed Approaches

9.1 Introduction

This chapter describes a call filtering system integrating our work into the current practice.

It then explains the limitations of our work and how these limitations are to be solved. It

also describes potential direction where this work can be expanded.

9.2 Call Filtering Using Two Proposed Approaches

Figure 9.1 illustrates our call filtering process that integrates our two approaches – using

cross-media relations (Chapter 7) and user attributes (Chapter 8) – into existing call filtering

conditions. These additional filtering conditions are typically installed at the callee’s user

agent to make an individual decision over a call request. In the contrast, the inbound

server blocks calls that are unwanted by a group of users based on IP addresses and caller

IDs. The inbound proxy intends to protect their resources (e.g., the cost of processing

unnecessary call requests) and to preserve the call service utility and value for their users.

In addition to these two filtering conditions, the inbound server typically authenticates

a caller ID on behalf of users. If any caller ID authentication mechanisms are available,

but the authentication fails, the inbound server may set an asserted caller ID (e.g., the
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                                      * Callee may authenticate a caller ID before white-listing.
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Figure 9.1: Call filtering using two approaches: Using cross-media relations and user at-

tributes

P-Asserted-Identity header field [Jennings et al., 2002]) to “unavailable.”

At the callee side, if a caller ID – whether or not to be authenticated – is found on a black

list, or an authenticated caller ID is found on a white list, this filtering process proceeds to

our new filtering conditions based on our two approaches in the following manner. First,

to determine if the callee has had prior contact with the caller, the filtering process checks

SIP related header fields and accesses a database for the CURE system, as described in

Section 7.7. Limitations and privacy concerns over the CURE database are discussed in

Section 9.3.

Second, to determine whether the callee accepts a call from a party who holds attributes,

the filtering process examines whether the callee trusts the domain server issuing the at-

tributes, based on the callee’s configuration. The filtering process then retrieves the caller’s
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attributes from the issuer so that it can determine whether the callee accepts a call from

the holder of the attributes based on the callee’s configuration, or it prompts the callee to

determine that.

If the callee’s configuration contains a list of all trusted domain servers and a list of

all acceptable attributes, using these filtering conditions can automatically make a decision

whether or not to answer the call. Thus, the inbound server on behalf of the callee can

test on these filtering conditions. Enabling automated decision needs a standard framework

for expressing trusted domain servers and caller’s attributes. This is further described in

Section 9.4.

Even if the framework is established, it is difficult for each individual to maintain a

long list of trusted domain servers or acceptable attributes. When the inbound servers and

callees belong to an enterprise or school, the inbound server can filter incoming calls, on

behalf of a group of users. For example, the filtering is based on a white list populated with

the contact addresses of business partners and based on a list of trusted domain servers, for

verifying attributes, populated with all professional membership organizations

9.3 Limitations and Privacy Concerns over CURE Database

The CURE database stores cross-media relations, namely, various types of communication

history including contact addresses, Web transactions, and email exchanges. Communica-

tion history is privacy-sensitive data, but there is a trade-off between privacy and service

convenience. If the data is obfuscated – to make a binary decision, accept or block – in

such a way that the original data cannot be restored, a user cannot retrieve any specific

information about prior contact.

The CURE database can be maintained by one of three entities: a SIP inbound server, a

trusted third party, and the owning individual. First, a SIP inbound server is the most likely

option since it is the main user of query to the database when filtering calls on behalf of

users. Except in the case of query to the database, user authentication is required for email

clients and Web browser extensions to update the database. However, an issue occurs when

a callee uses multiple VoIP services operated by different ITSPs since it is usually difficult to
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share customer information among ITSPs. Therefore, it requires business alliances between

them.

Second, in the case where a trusted third party maintains the database, user authenti-

cation is required for SIP inbound servers, email clients, and Web browser extensions that

query or update the database. Thus, a user needs to set his username and credential for

each entity to be authenticated by the trusted third party. To avoid this authentication

issue, a third party authorization using an access token, such as OAuth [Hammer et al.,

2012], could be used.

Third, if the owning individual maintains the database, no privacy issues arise theo-

retically. The individual is responsible for storing the information about prior contact,

preserving his privacy. However, when the user has multiple clients or multiple VoIP ac-

counts, he needs to share the database with all clients or accounts he uses. As a result, the

usability of the service suffers.

In summary, deploying the CURE system requires to consider how the CURE database

authenticates user clients and a SIP server. In addition, an email client that collects message

IDs of outgoing messages (Section 7.6.2) needs to be authenticated by the MDA (e.g., IMAP

server). Therefore, to deploy the CURE system effectively, it is important for multiple

clients to integrate a third party authorization with user authentication.

9.4 Platform for Attribute and Filtering Preferences

One of promising directions we can extend this work is defining the format of user preferences

in trusted domains, attribute types, and attribute values. By defining the format, not

only by humans but also user agents and servers can parse preferences so that they can

automatically filter calls based on them. The following sub-sections describe possible ways

to define the platform.

9.4.1 Attribute Preferences

As shown in the right bottom of Figure 9.1, a caller’s attributes require three steps to be

retrieved: to determine whether the domain is trusted, to check if it can verify domain



CHAPTER 9. CONTROLLING UNWANTED CALLS USING TWO PROPOSED
APPROACHES 158

authentication, and to examine whether the attribute types and their values are trusted to

answer the call.

To allow a SIP UA or SIP server to filter calls based on retrieved attributes, it is the

key to express the callee’s preferences in domain names, attribute types, and their values,

similar to privacy policy preferences [Cranor, 2002]. This should be explored in future work.

9.4.2 Filtering Preferences

Call processing language (CPL) [Lennox et al., 2004] has defined the data format for call

filtering conditions in XML. Using the CPL script, we could expand it to filter calls based

on trusted domain, attributes, and values.
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Chapter 10

Conclusions

The growth of VoIP services requires that end users and servers process a larger amount

of signaling messages, which are also becoming longer. To maintain the grade of their

services, ITSPs need to redesign their server resources for their large-scale VoIP system if

the transport protocol for VoIP signaling affects the server capacity and performance. To

benefit by its low cost and rich features without being disturbed by unwanted calls, end

users need to control unwanted calls without blocking desirable ones.

This thesis first presents quantitative analysis of the impact of using connection-oriented

protocols, TCP or SCTP, on SIP server capacity and performance. To distinguish the

impact of TCP or STCP implementation from SIP server implementation artifacts, this

study provides the measurement results using our echo server, SIP front-end server, and

full SIP server. Our measurements identified that the major impact is the memory footprint

per connection and demonstrated that a 32-bit commodity server can accommodate a large

number of concurrent TCP connections and process registration and call requests from

users. This study also gives a rough estimate for the cost of SIP keep-alive messages

on CPU utilization, but leaves the measurement for future work. Regarding SCTP, our

measurements examined the effect of using the one-to-many style socket on the server and

client, which reduces the number of sockets on the server and setup delay for clients. They

contributed to the improvement of the Linux SCTP implementation by pointing out a few

scalability problems. Since the implementation has still significant room for improvement in

the efficiency of handling a large number of associations, this thesis leaves the measurement
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of SIP server performance using SCTP in a user-to-server scenario for future work.

Our SIP server measurement indicates that SIP server performance is susceptible to

the impact of TCP byte-streaming, which requires a longer lifetime of a thread or process

for message parsing than message oriented protocols like UDP or SCTP. This impact is

negligible under low loads, but become noticeable under high loads. These results can be

applied to other large-scale servers that need a large number of TCP connections or SCTP

associations and high throughput.

The thesis also proposes two approaches using cross-media relations and user attributes

to identifying good calls, namely, legal and desirable calls. The first approach, using cross-

media relations, is motivated by the observations that many good calls are preceded by a

Web transaction or email messages because they attempt to mitigate the intrusive nature of

call services. Our system design focusing on prior contact as a helpful distinguishing feature

between good and unwanted calls, and covers Web-then-call and email-then-call. Our user

study demonstrates that approximately 30 percent of email messages, 5 percent of calls,

and 4 percent of SMS messages can be identified as good by using relations to prior web

transactions. The user study indicates that using cross-media relations would be useful as

an additional component of a call filtering system, but at the same time that the degree of

the usefulness varies across recipients and the usage type of accounts. The user study also

motivates us to proceed to our second mechanism, using caller attributes, by showing that

a certain fraction of good messages or calls still remain unlabeled.

To design a mechanism for verifying caller attributes, this thesis focuses on easy deploy-

ment without authenticating the caller ID since existing mechanisms have suffered from

difficulties in deployment. This thesis proposes an attribute validation service using a sim-

ple and lightweight attribute reference ID (ARID). Since authentication services for caller

ID in the SIP URI or the tel URI have encountered difficulties in development and deploy-

ment, our design allows the ARID to loosely link with the originator ID or the signaling

path. An ARID is an HTTPS URI, which can be conveyed in a message header of a com-

munication request, unlike typical existing anonymous tokens. To provide the mechanism

with moderate security, keeping it simple and lightweight, most security properties of an

ARID relies on transport layer security such as TLS to leverage the wide deployment of
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HTTPS servers. Compared to an existing anonymous attribute credential, our proposal

provides weaker proof of possession of an ARID and fewer privacy enhancements. This is

acceptable on the assumption that a relying party trusts more on the issuer of ARIDs in

order to minimize functions allocated to the user side for easy service deployment. Our

design aims at striking the proper balance between properties of security and privacy and

the low-risk level of protected assets, whether or not to accept a communication request.
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Appendix A

Measurement Results

A.1 Slab Cache for TCP Connections

To get a detailed picture of the memory usage for TCP connections, we monitored the usage

of the slab cache, where Linux implements a memory allocation mechanism for frequent

allocations and deallocations of data. Figure A.1 shows that the usage of the slab cache

for approximately 520,000 TCP connections. The Linux kernel, configured for 2 GB of the

kernel memory in the VM split, allocates TCP socket data structures and socket buffers

at 14,800 requests/second rate. This result indicates that slab cache consumes 1.2 GB

for these TCP connections, which are approximately the same amount of overall memory

usage shown in Figure 3.1. The slab cache was allocated mostly for the socket related data

structures, a few for the data structures for the epoll() system calls: eventpoll epi and

evenpoll pwq. This also illustrates that the slab cache dynamically allocated for the socket

buffer heads, i.e., skbuff head cache, and user data, i.e., size-512, consumes only 12

MB. Therefore, we have determined that each TCP connection requires 2.27 KB of the slab

cache1 and the bottleneck of sustainable concurrent connections is the amount of allocatable

kernel memory for the slab cache since this slab cache excluding for the socket buffer heads

and user data is statically allocated while the TCP connection remains open.

1This is larger than the value in Table A.1 below since this memory footprint includes the memory

consumption for partial set of data structures for a connection being created in progress, as described in

Section 3.4.1.
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Figure A.1: Slab cache usage for 520,000 TCP connections for echo server

A.2 Data Size of TCP and SCTP Sockets

Table A.1 itemizes the sizes of socket-related data structures used by the Linux implemen-

tation. These data structures are allocated from slab cache objects to maintain an SCTP

association or a TCP connection. SCTP-specific data structures requires a larger amount of

memory, including the 5,120 byte sctp association which stores parameters in transmis-

sion control block (TCB), while TCP requires only the 1,096 byte tcp socket. Table A.1

also shows that the amount of memory using a one-to-many socket significantly increases as

a function of the number of associations, while using multi-streams increases slightly with

the number of streams.

Furthermore, several SCTP-specific data objects, including the sctp association, are

allocated from general purpose slab objects, which suffer from internal fragmentation be-

cause of power of two sized objects. As a result, maintaining an SCTP socket consumes

10,812 bytes, approximately five times of the amount needed for a TCP socket, even in the

simplest case, namely, with a one-to-one socket and a single stream. The dominant data

is association-related data, which consumes approximately 80 percent of the total memory
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Data structure Slab cache

Name Size Name Size # of objects

(bytes) (bytes) SCTP TCP

dentry 128 dentry 128 1 1

file 136 filp 192 1 1

inode 328 sock inode cache 384 1 1

socket 40

sock(sctp socket) 772 SCTP 896 1 0

sock(tcp socket) 1,096 TCP 1,152 0 1

epoll entry 36 eventpoll pwq 36 1 1

epitem 80 eventpoll epi 128 1 1

sctp endpoint 176 size-256 256 1 0

sctp bind addra 40 size-64 64 1 0

Subtotal for a socket (bytes) 2,084 2,020

sctp association 5,120 size-8192 8,192 1 or nb 0

sctp transport 284 size-512 512 1 or nb 0

sctp ssnmap 60 size-64 64 1 or mc 0

Subtotal for an association (bytes) 8,768 0

Total memory usage (bytes) 10,852 2,020

a The sctp bind addr structure includes the pointer to a list of IP addresses

for multi-homing.

b one-to-many: 1-to-n

c multi-streaming: m streams

Table A.1: Comparison of the data structures of SCTP and TCP sockets
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usage. A server needs to allocate the same number of associations for both two SCTP socket

styles. Therefore, using a one-to-many socket does not contribute to a drastic reduction

of memory usage contrary to our expectation described in Section 2.4.2. How to reduce

association-related data size is discussed in Section 3.5.1.
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Appendix B

User Study Results

This appendix provides the detailed results of our user study to test the concept of cross-

media relations described in Section 7.10. The following tables provide the standard devi-

ation of fractions for each group among participants in addition to the mean.

Our user study had 60 unique participants including 53 holders of Columbia University

email accounts. Since the participants were identified by their email accounts registered

as their contact address, a person might be counted as separate participants when using

multiple contact addresses.

B.1 User Study of Incoming Email

For our email survey, the Web application for this survey performed as an IMAP client

fetching email headers to the IMAP server where each participants had stored their received

email messages. Our user study collected answers from 72 email accounts consisting of 19

university accounts (18 for Columbia University and one for other university) and 53 free

email accounts (31 for gmail.com and 22 for yahoo.com or yahoo outside of the U.S.). Since

10 out of 53 free email accounts had only spam messages, the results excluded these 10

accounts used as disposal accounts, which did not fit for our study. Consequently, this

study analyzes 62 email accounts.

Each participant was asked to categorize received messages into 13 groups based on

sender IDs, as described in Section 7.10.2. Collected answers contains 3,257 message for
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Messages for university email accounts Messages for free email accounts

Mean 171.4 489.6

Median 91 150

Stdev. 223.5 573.5

Stdev.: Standard deviation

Table B.1: Mean, median, and standard deviation of numbers of messages: University email

accounts and free email accounts

sent

before

replied

within

two weeks

trusted

users

trusted

domains

FoF

in

CC

FoF

in

ML

Web-

then-

email

email-

then-

email

call-

then-

email

SMS-

then-

email

public

profile

Mean 10.4 0.3 1.1 66.5 0.1 0.0 13.3 3.0 0.6 0.0 1.6

Median 7.4 0.0 0.1 75 0.0 0.0 6.6 0.0 0.0 0.0 0.0

Stdev. 1.4 1.1 1.8 26.9 0.4 0.0 15.8 7.2 2.1 0.0 2.8

spam unlabeled

Mean 2.6 0.5

Median 0.6 0.0

Stdev. 4.8 1.4

Table B.2: Mean, median, and standard deviation of percentages of messages in 13 groups:

University email accounts

19 university email accounts and 21,051 messages for 43 free email accounts. Table B.1

presents the mean, median, and standard deviation of the number of messages for each

type of email accounts, across participants. Tables B.2 and B.3 presents the mean, median,

and standard deviation of fraction of messages received for the 13 groups for these two types

of email accounts, respectively.

B.2 User Study of Incoming Calls

Our user study collected answers about 3,300 calls for 36 call accounts, including 17 free

VoIP accounts, 10 landlines, and 9 mobile phones. The information about categories is
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sent

before

replied

within

two weeks

trusted

users

trusted

domains

FoF

in

CC

FoF

in

ML

Web-

then-

email

email-

then-

email

call-

then-

email

SMS-

then-

email

public

profile

Mean 18.8 0.1 1.0 6.7 2.0 0.0 42.7 8.8 1.0 0.5 0.3

Median 1.6 0.0 0.0 0.0 0.0 0.0 31.4 0.0 0.0 0.0 0.0

Stdev. 25.9 0.1 2.5 18.3 6.6 0.0 37.0 17.3 3.8 2.4 1.2

spam unlabeled

Mean 18.0 0.2

Median 3.7 0.0

Stdev. 26.4 0.7

Table B.3: Mean, median, and standard deviation of percentages of messages in 13 groups:

Free email accounts

based on answers to the questionnaire described in Section 7.10.2.

Table B.4 shows the mean, median, and standard deviation of the number of incoming

calls, across participants. Table B.5 presents the mean, median, and standard deviation of

fraction of the number of calls received from nine groups, across participants. Compared to

email, 4 out of 13 groups are eliminated. The “replied within two weeks” group is excluded to

allow participants to easily answer by manually parsing call history. The “trusted domain”

group is eliminated since phone numbers contain no domain name. The “FoF in CC” and

“FoF in ML” groups are also eliminated since a call has no CCed or list phone numbers

except a conference all.

Although the Web survey application was enabled to parse call detail records provided by

two major mobile phone companies, it also allowed participants to manually enter answers.

As seen in Table B.5, the medians of the fractions of calls having web-then-call, email-

then-call, and SMS-then-call are all zero although the means range from 4.3 to 5.5. To

closely look at the distribution, Figures B.1 –B.4 plot the cumulative distribution function

(CDF) of the percentages of calls having each relation including call-then-call. These figures

show that the potential effectiveness of using cross-media relations to identify good calls is

limited to less than half of the participants although it appears significant for certain users.

In contrast, using call-then-call relations appears effective for more than 80 percent of the
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Calls

Mean 91.7

Median 85.5

Stdev. 46.9

Table B.4: Mean, median, and standard deviation of numbers of calls

sent

before

trusted

users

Web-

then-call

email-

then-call

call-

then-call

SMS-

then-call

public

profile

spam unlabeled

Mean 53.3 4.9 5.2 4.3 21.8 5.5 0.2 4.1 0.8

Median 49.6 3.4 0.0 0.0 25.5 0.0 0.0 3.8 0.0

Stdev. 16.2 7.4 8.9 9.5 16.8 12.2 0.5 2.6 5.0

Table B.5: Mean, median, and standard deviation of percentages of calls in 9 groups

participants although the fractions of calls having the relations widely vary.

B.3 User Study of Incoming SMS Messages

Our user study collected answers about 3,970 SMS messages for 34 accounts including 27 free

SMS accounts. The information about categories is based on answers to the questionnaire

described in Section 7.10.2.

Table B.6 shows the mean, median, and standard deviation of the number of SMS

messages, across participants. Table B.7 presents the mean and standard deviation of each

fraction of the number of SMS messages in the nine groups, which are the same as the

groups for calls. Similar to calls, the Web survey application was enabled to parse call

detail records provided by two major mobile phone companies and also allowed participants

to manually enter answers.
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Figure B.1: CDF of percentages of calls hav-

ing Web-then-call relations
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Figure B.2: CDF of percentages of calls hav-

ing email-then-call relations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50

Chart 22

Web-then-call

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50

Chart 23

email-then-call

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50

Chart 24

SMS-then-call

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50 60

Chart 25

call-then-call

Figure B.3: CDF of percentages of calls hav-

ing call-then-call relations
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Figure B.4: CDF of percentages of calls hav-

ing SMS-then-call relations

SMS messages

Mean 117.8

Median 91

Stdev. 123.5

Table B.6: Mean, median, and standard deviation of numbers of SMS messages
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sent

before

trusted

users

Web-

then-

SMS

email-

then-

SMS

call-

then-

SMS

SMS-

then-

SMS

public

profile

spam unlabeled

Mean 62.0 9.3 4.2 3.9 12.0 1.0 1.7 5.8 0.0

Median 60.2 8.9 3.4 2.4 6.5 0.0 0.0 5.4 0.0

Stdev. 10.1 7.3 4.1 4.5 13.4 3.9 7.5 3.1 0.0

Table B.7: Mean, median, and standard deviation of percentages of SMS messages in 9

groups
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