194 research outputs found

    MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion

    Full text link
    Query expansion is a commonly-used technique in many search systems to better represent users' information needs with additional query terms. Existing studies for this task usually propose to expand a query with retrieved or generated contextual documents. However, both types of methods have clear limitations. For retrieval-based methods, the documents retrieved with the original query might not be accurate enough to reveal the search intent, especially when the query is brief or ambiguous. For generation-based methods, existing models can hardly be trained or aligned on a particular corpus, due to the lack of corpus-specific labeled data. In this paper, we propose a novel Large Language Model (LLM) based mutual verification framework for query expansion, which alleviates the aforementioned limitations. Specifically, we first design a query-query-document generation pipeline, which can effectively leverage the contextual knowledge encoded in LLMs to generate sub-queries and corresponding documents from multiple perspectives. Next, we employ a mutual verification method for both generated and retrieved contextual documents, where 1) retrieved documents are filtered with the external contextual knowledge in generated documents, and 2) generated documents are filtered with the corpus-specific knowledge in retrieved documents. Overall, the proposed method allows retrieved and generated documents to complement each other to finalize a better query expansion. We conduct extensive experiments on three information retrieval datasets, i.e., TREC-DL-2020, TREC-COVID, and MSMARCO. The results demonstrate that our method outperforms other baselines significantly

    A Critical Look at the Evaluation of Knowledge Graph Question Answering

    Get PDF
    PhD thesis in Information technologyThe field of information retrieval (IR) is concerned with systems that “make a given stored collection of information items available to a user population” [111]. The way in which information is made available to the user depends on the formulation of this broad concern of IR into specific tasks by which a system should address a user’s information need [85]. The specific IR task also dictates how the user may express their information need. The classic IR task is ad hoc retrieval, where the user issues a query to the system and gets in return a list of documents ranked by estimated relevance of each document to the query [85]. However, it has long been acknowledged that users are often looking for answers to questions, rather than an entire document or ranked list of documents [17, 141]. Question answering (QA) is thus another IR task; it comes in many flavors, but overall consists of taking in a user’s natural language (NL) question and returning an answer. This thesis describes work done within the scope of the QA task. The flavor of QA called knowledge graph question answering (KGQA) is taken as the primary focus, which enables QA with factual questions against structured data in the form of a knowledge graph (KG). This means the KGQA system addresses a structured representation of knowledge rather than—as in other QA flavors—an unstructured prose context. KGs have the benefit that given some identified entities or predicates, all associated properties are available and relationships can be utilized. KGQA then enables users to access structured data using only NL questions and without requiring formal query language expertise. Even so, the construction of satisfactory KGQA systems remains a challenge. Machine learning with deep neural networks (DNNs) is a far more promising approach than manually engineering retrieval models [29, 56, 130]. The current era dominated by DNNs began with seminal work on computer vision, where the deep learning paradigm demonstrated its first cases of “superhuman” performance [32, 71]. Subsequent work in other applications has also demonstrated “superhuman” performance with DNNs [58, 87]. As a result of its early position and hence longer history as a leading application of deep learning, computer vision with DNNs has been bolstered with much work on different approaches towards augmenting [120] or synthesizing [94] additional training data. The difficulty with machine learning approaches to KGQA appears to rest in large part with the limited volume, quality, and variety of available datasets for this task. Compared to labeled image data for computer vision, the problems of data collection, augmentation, and synthesis are only to a limited extent solved for QA, and especially for KGQA. There are few datasets for KGQA overall, and little previous work that has found unsupervised or semi-supervised learning approaches to address the sparsity of data. Instead, neural network approaches to KGQA rely on either fully or weakly supervised learning [29]. We are thus concerned with neural models trained in a supervised setting to perform QA tasks, especially of the KGQA flavor. Given a clear task to delegate to a computational system, it seems clear that we want the task performed as well as possible. However, what methodological elements are important to ensure good system performance within the chosen scope? How should the quality of system performance be assessed? This thesis describes work done to address these overarching questions through a number of more specific research questions. Altogether, we designate the topic of this thesis as KGQA evaluation, which we address in a broad sense, encompassing four subtopics from (1) the impact on performance due to volume of training data provided and (2) the information leakage between training and test splits due to unhygienic data partitioning, through (3) the naturalness of NL questions resulting from a common approach for generating KGQA datasets, to (4) the axiomatic analysis and development of evaluation measures for a specific flavor of the KGQA task. Each of the four subtopics is informed by previous work, but we aim in this thesis to critically examine the assumptions of previous work to uncover, verify, or address weaknesses in current practices surrounding KGQA evaluation

    Terms interrelationship query expansion to improve accuracy of Quran search

    Get PDF
    Quran retrieval system is becoming an instrument for users to search for needed information. The search engine is one of the most popular search engines that successfully implemented for searching relevant verses queries. However, a major challenge to the Quran search engine is word ambiguities, specifically lexical ambiguities. With the advent of query expansion techniques for Quran retrieval systems, the performance of the Quran retrieval system has problem and issue in terms of retrieving users needed information. The results of the current semantic techniques still lack precision values without considering several semantic dictionaries. Therefore, this study proposes a stemmed terms interrelationship query expansion approach to improve Quran search results. More specifically, related terms were collected from different semantic dictionaries and then utilize to get roots of words using a stemming algorithm. To assess the performance of the stemmed terms interrelationship query expansion, experiments were conducted using eight Quran datasets from the Tanzil website. Overall, the results indicate that the stemmed terms interrelationship query expansion is superior to unstemmed terms interrelationship query expansion in Mean Average Precision with Yusuf Ali 68%, Sarawar 67%, Arberry 72%, Malay 65%, Hausa 62%, Urdu 62%, Modern Arabic 60% and Classical Arabic 59%

    On the Origin of Abstraction : Real and Imaginary Parts of Decidability-Making

    No full text
    International audienceThe behavioral tradition has largely anchored on Simon's early conception of bounded rationality, it is important to engage more explicitly cognitive approaches particularly ones that might link to the issue of identifying novel competitive positions. The purpose of the study is to describe the cognitive processes by which decision-makers manage to work, individually or collectively, through undecidable situations and design innovatively. Most widespread models of rationality developed for preference-making and based on a real dimension should be extended for abstraction-making by adding a visible imaginary one. A development of a core analytical/conceptual apparatus is proposed to purposely account this dual form of reasoning, deductive to prove (then make) equivalence and abstractive to represent (then unmake) it. Complex numbers, comfortable to describe repetitive, expansional and superimposing phenomena (like waves, envelope of waves, interferences or holograms, etc.) appear as generalizable to cognitive processes at work when redesigning a decidable space by abstraction (like relief vision to design a missing depth dimension, Loyd's problem to design a missing degree of freedom, etc.). This theoretical breakthrough may open up vistas capacity in the fields of information systems, knowledge and decision

    JURI SAYS:An Automatic Judgement Prediction System for the European Court of Human Rights

    Get PDF
    In this paper we present the web platform JURI SAYS that automatically predicts decisions of the European Court of Human Rights based on communicated cases, which are published by the court early in the proceedings and are often available many years before the final decision is made. Our system therefore predicts future judgements of the court. The platform is available at jurisays.com and shows the predictions compared to the actual decisions of the court. It is automatically updated every month by including the prediction for the new cases. Additionally, the system highlights the sentences and paragraphs that are most important for the prediction (i.e. violation vs. no violation of human rights)

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence
    • …
    corecore