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Chapter 1

Introduction

The field of information retrieval (IR) is concerned with systems that “make a
given stored collection of information items available to a user population” [111].
The way in which information is made available to the user depends on the for-
mulation of this broad concern of IR into specific tasks by which a system should
address a user’s information need [85]. The specific IR task also dictates how the
user may express their information need.

The classic IR task is ad hoc retrieval, where the user issues a query to the
system and gets in return a list of documents ranked by estimated relevance of
each document to the query [85]. However, it has long been acknowledged that
users are often looking for answers to questions, rather than an entire document
or ranked list of documents [17, 141]. Question answering (QA) is thus another
IR task; it comes in many flavors, but overall consists of taking in a user’s natural
language (NL) question and returning an answer.

This thesis describes work done within the scope of the QA task. The flavor
of QA called knowledge graph question answering (KGQA) is taken as the pri-
mary focus, which enables QA with factual questions against structured data in
the form of a knowledge graph (KG). This means the KGQA system addresses a
structured representation of knowledge rather than—as in other QA flavors—an
unstructured prose context. KGs have the benefit that given some identified en-
tities or predicates, all associated properties are available and relationships can
be utilized. KGQA then enables users to access structured data using only NL
questions and without requiring formal query language expertise.
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Even so, the construction of satisfactory KGQA systems remains a challenge.
Machine learning with deep neural networks (DNNs) is a far more promising ap-
proach than manually engineering retrieval models [29, 56, 130]. The current
era dominated by DNNs began with seminal work on computer vision, where
the deep learning paradigm demonstrated its first cases of “superhuman” per-
formance [32, 71]. Subsequent work in other applications has also demonstrated
“superhuman” performance with DNNs [58, 87]. As a result of its early posi-
tion and hence longer history as a leading application of deep learning, computer
vision with DNNs has been bolstered with much work on different approaches
towards augmenting [120] or synthesizing [94] additional training data. The dif-
ficulty with machine learning approaches to KGQA appears to rest in large part
with the limited volume, quality, and variety of available datasets for this task.
Compared to labeled image data for computer vision, the problems of data col-
lection, augmentation, and synthesis are only to a limited extent solved for QA,
and especially for KGQA. There are few datasets for KGQA overall, and little pre-
vious work that has found unsupervised or semi-supervised learning approaches
to address the sparsity of data. Instead, neural network approaches to KGQA rely
on either fully or weakly supervised learning [29].

We are thus concerned with neural models trained in a supervised setting to
performQA tasks, especially of the KGQA flavor. Given a clear task to delegate to
a computational system, it seems clear that we want the task performed as well as
possible. However, what methodological elements are important to ensure good
system performance within the chosen scope? How should the quality of sys-
tem performance be assessed? This thesis describes work done to address these
overarching questions through a number of more specific research questions. Al-
together, we designate the topic of this thesis as KGQA evaluation, which we ad-
dress in a broad sense, encompassing four subtopics from (1) the impact on per-
formance due to volume of training data provided and (2) the information leak-
age between training and test splits due to unhygienic data partitioning, through
(3) the naturalness of NL questions resulting from a common approach for gen-
erating KGQAdatasets, to (4) the axiomatic analysis and development of evalua-
tionmeasures for a specific flavor of the KGQA task. Each of the four subtopics is
informed by previous work, but we aim in this thesis to critically examine the as-
sumptions of previous work to uncover, verify, or address weaknesses in current
practices surrounding KGQA evaluation.
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1.1 Research Questions

We formulate four main research questions, each of which is further articulated
with specific subquestions. First of all, in the supervised learning setting models
are often trained using as large a training split as possible, but it is not always
clear how much this benefits the final performance. This is important since the
construction of datasets of high quality and volume is a considerable challenge in
QA. The first main research question is then:

RQ 1 How does training data volume impact QA performance?

This research question is relevant to other methods of question answering us-
ing neural architectures, and even to machine learning in general. We argue that
considering the capability of machine learning methods to learn from variable
volumes of training data is an important way to evaluate not just the actual per-
formance of a machine learning method for a given training dataset, but also to
estimate the potential of the method to learn its task if trained with a different
training dataset. In other words, the evaluation methodology should seek to gen-
eralize about the particular machine learning method, and not just for the ma-
chine learning method to generalize from training split to test split. If the mod-
els’ performance does not respond to increased training data volume, then the
model is not learning. Working with QA in the flavor of answer sentence selec-
tion (given a question, selecting an answer sentence from a candidate set; see
Definition 2.3.1.), we investigate the following specific research questions:

RQ 1.1 To what extent do QA models improve when trained on a larger vol-
ume of data?

RQ 1.2 How sensitive are the models to fractional changes in training data
volume?

Based on findings from initially addressing the above research questions with re-
spect to the answer sentence selection flavor of QA, we subsequently proceedwith
a focus on KGQA due to the intrinsically richer structure in the data for that task.
A particularly motivating meta-research question in this regard is “How can we
know if any meritorious model performance is merely a question of vocabulary
similarity or corresponds to an actual ‘understanding’ of the natural language?”
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Second, we look at how datasets are constructed and partitioned into training,
validation, and test splits to follow the common pattern of supervised learning.
Large scale datasets for KGQA may be constructed without (additional) crowd-
sourcing by synthetically generating instances from templates which have been
extracted from pre-existing datasets [57]. A template consists of text and place-
holders which can be given values; setting values to the placeholders creates an
instance from the template. Each template is used as the basis formany instances,
sometimes hundreds. If the model is trained on instances generated from a given
template, then we can say the model has seen the underlying template. The sec-
ond main research question is then

RQ 2 How does it affect model performance or behavior if the test split includes
instances that were generated from templates seen during training?

To address this we investigate the following specific research questions:

RQ 2.1 How is the performance of trained neural KGQA models affected by
whether testing templates are seen or unseen?

RQ 2.2 How is the ability to generalize to instances based onunseen templates
affected by the volume of training data used?

RQ 2.3 How does the proportion of unseen templates to seen templates affect
the trained models’ ability to generalize?

Third, as noted, the supervised learning setting makes the assumption that in-
stances in the dataset represent the task which the model should learn. The qual-
ity of data used inKGQA is therefore important, as supervisedneuralmodelsmust
be trained and tested on large datasets specific to the KGQA task. Consequently,
we look more closely at the common approaches of KGQA data generation in-
volving crowdsourcing. A crucial characteristic of KGQA (and QA generally) is
that the task involves taking as input a natural language question. Typically,
the ground truth label is handcrafted by experts or generated automatically as
a correct formal query from the KG, along with some corresponding template-
based pseudo-natural language question. Crowd workers are then tasked with
paraphrasing the generated pseudo-natural question into a more genuinely nat-
ural NL question. However, we hypothesize that this division of labor in dataset
construction introduces a mismatch between the formal query intent and the NL
question intent. The third main research question is then:
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RQ 3 How can we ensure or enhance the genuine naturalness of NL questions in
KGQA datasets?

In order to answer this larger research question, the following more specific re-
search questions are defined:

RQ 3.1 Can the crowdsourced NL questions in existing KGQA datasets be
considered as genuinely natural?

RQ 3.2 What are the properties of a high quality NL question?

RQ 3.3 Whathappens to the performance ofKGQAmodelswhen testing against
genuinely natural questions?

Fourth, we consider whether the evaluation measures used to quantify the per-
formance of KGQAmodels are appropriate. Considering the KGQA task, and the
established information retrieval (IR)-based and semantic parsing (SP)-based
approaches (see Sect. 2.4), we focus on the SP-based paradigm, because from an
evaluation perspective, SP-KGQA methods not only can be used to retrieve an-
swers like IR-based KGQA, they also yield formal queries that are in principle
interpretable and can be used to check if the model performance is due to an ap-
propriate understanding of the NL question ormerely a happy accident due to as-
sociations of terms. Thus, the “externally visible” behavior of SP-KGQA systems
encompasses that of IR-KGQA systems, while the converse is not guaranteed. We
therefore look critically at establishedmeasures for SP-KGQA and conduct an ax-
iomatic analysis leading to contributions towards a formally grounded evaluation
framework for SP-KGQA. The fourth main research question is then:

RQ 4 What are appropriate evaluationmeasures for SP-KGQAperformance eval-
uation?

To address this, we investigate the following specific research questions:

RQ 4.1 What, if any, are the shortcomings of commonly usedmeasures in SP-
KGQA evaluation?

RQ 4.2 Can we reason axiomatically about appropriate SP-KGQA evaluation
measures?

RQ 4.3 If so, can we construct measures for SP-KGQA evaluation that are for-
mally grounded?
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In summary, in this thesis we concern ourselves with: the capacity of a neural
model to learn from increasing volumes of training data; the hygienic use of syn-
thetically generated data for training and testing neural models; the quality of the
data with respect to representing the intended task; and, the evaluationmeasures
used to quantify performance in evaluation.

1.2 Main Contributions

In seeking to address these research questions, we bring a critical perspective to
how KGQA systems are to be evaluated. The research findings show the poten-
tial for meaningful improvements over the currently common practices in KGQA
evaluation. Themain contributions presented in this thesis are listed below. Each
contribution is categorized as being either a theoretical and methodological, re-
source, or insight contribution.

Theoretical and Methodological Contributions

• In Chap. 4 we present a novel dataset partitioning scheme that provides a
facility to quantify the generalized learning achieved by models trained on
template-generated synthetic data.

• In Chap. 5 we present a novel coding scheme to characterize to what extent
nominal natural language questions in KGQA datasets actually constitute
natural language.

• In Chap. 6 we present a novel SP-KGQA evaluation framework and novel
measures, as well as a first formulation of axioms for SP-KGQA measures,
which we apply in an axiomatic analysis of established and novel measures.

Resource Contributions

• InChap. 5wepresent a novel test collection, IQN-KGQA, consisting of 3x250
questions sampled from 3 prominent KGQA datasets, made publicly avail-
able at https://github.com/iai-group/IQN-KGQA. The sampled ques-
tions are rated on unnaturalness along 5 dimensions by at least 3 crowd
workers each, and rewritten for greater naturalness where possible.
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Figure 1.1: OverviewofKGQAevaluation as a systemof components, aswell as the
experimental intervention of data volume variation. The colored items represent
the subtopics of KGQA evaluation investigated in this thesis.

Insight Contributions

• InChap. 3we find thatmost state-of-the-art answer sentence selectionmod-
els do not exhibit the expected behavior in terms of performance improve-
ment in response to increased training dataset size.

• In Chap. 4 we identify the problem of information leakage in template-
based synthetic generation approaches. The significance of our finding,
however, extends beyond KGQA, as it applies to any template-base data
generation approach, and raises a set of interesting questions around train-
ing models with synthetic data using fair conditions.

1.3 Organization of the Thesis

The abstract architecture for KGQA evaluation is illustrated in Fig. 1.1, includ-
ing the subtopics around which this thesis is organized. Data generation is the
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process of creating the dataset where every instance represents a pair of values,
input X⃗ and output (or label) y. By data partitioning the dataset is divided into
splits to be used exclusively for training, validation, or testing, respectively. The
training and validation splits are used in themodel training process, with model
architecture, hyperparameters, and other settings defined by the chosen KGQA
method. For some of our experiments, we perform data volume variation and
restrict the volume of training data used in model training. Regardless of any
applied data volume variation, the resulting trained KGQA model is then used
to perform model inferencing to make predictions (ŷ), based on the input (X⃗)
in the test split. Given the test split ground truth labels (y) and corresponding
predictions (ŷ), as well as the definitions of somemeasures, it is then possible to
perform the evaluation and quantify the performance of the system with some
evaluation scores.

The background and previous literature relating to the work presented in this
thesis are summarized in Chap. 2. Next, in Chap. 3 we consider the impact of
varying the volume of data used in training in Chap. 3. After that, we look into
the impact of a more circumspect data partitioning scheme in Chap. 4. In Chap. 5
we investigate the naturalness (or lack thereof) of NL questions produced by the
commonmethod of data generation for KGQA. This is followed in Chap. 6 by our
axiomatic analysis of the formal basis for task-specific measures for SP-KGQA,
and our derivation of novel measures. Finally, we review and discuss the impli-
cations of our findings in Chap. 7.

1.4 Origins of the Material

Chronologically, the thesis is based on the following articles, all accepted after
peer-review:

• Linjordet and Balog [77]: “Impact of Training Dataset Size on Neural An-
swer Selection Models” (ECIR 2019, Short paper)

• Linjordet and Balog [78]: “Sanitizing Synthetic Training Data Generation
for Question Answering over Knowledge Graphs” (ICTIR 2020, Full paper)

• Linjordet [76]: “Neural (KnowledgeGraph)QuestionAnsweringUsing Syn-
thetic Training Data” (CIKM 2020, Doctoral consortium paper)

8



• Linjordet and Balog [79]: “Would You Ask it that Way? Measuring and Im-
proving Question Naturalness for Knowledge Graph Question Answering”
(SIGIR 2022, Resource paper)

• Linjordet et al. [80]: “Towards Formally Grounded Evaluation Measures
for Semantic Parsing-basedKnowledgeGraphQuestionAnswering” (ICTIR
2022, Full paper)

9
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Chapter 2

Background

In this chapter, we describe the technical background for our research which we
subsequently present in Chaps. 3—6. In Sect. 2.1, we review the concepts of ma-
chine learning and neural networks as they pertain to our machine learning ex-
periments. In Sect. 2.2, we provide background on knowledge graphs (KGs) and
structured data. In Sect. 2.3, we discuss the broad task of question answering
(QA), along with an overview of its specific flavors. On this basis, we go into de-
tail in Sect. 2.4 about the task definition of knowledge graph question answering
(KGQA). In Sect. 2.5, we discuss datasets for KGQA and how they are created.
In Sect. 2.6, evaluation measures are discussed in the context of KGQA, as well
as axiomatic approaches to analyzing existing evaluation measures and develop-
ing novel evaluation measures. Finally, in Sect. 2.7, we give an overview of the
methods—e.g., neural network architectures—used to construct KGQA systems.

2.1 Machine Learning and Neural Networks

Machine learning refers to a broad family of algorithms that instantiate mod-
els which learn from data how to perform tasks [52]. Neural networks are a
type of machine learning algorithm where the parameters learned from data are
the weights on directed edges in a graph where the nodes are non-linear activa-
tion units. Usually neural network architectures include several layers of paral-
lel components which combine input from a previous layer, apply a non-linear
transformation—e.g., the logistic sigmoid function—and then pass the result for-
ward on the weighted edges connecting an activation unit on one layer to some or

11



all activation units in the next layer. Deep neural networks include many layers
(more than six is the heuristic according to Goodfellow et al. [52]) and are able to
capture complex relationships between raw input variables. Prior to the current
era of deep learning, complex manual feature engineering was often applied to
raw data, yielding engineered feature vectors, which were then used in training
models. With sufficient volume and quality of data, deep neural networks are ef-
fectively able to learn features from raw data, eliminating or reducing the need
for feature engineering.

In the present work we use the termmethod to refer to a specific set of steps to
create a task-performing system, such as a KGQA model. In principle, a method
may also consist of manually and formulaically constructing a system to perform
the intended task. In contrast, in the present work we focus on machine learning
methods that train models on data to perform a task. Specifically, we use deep
neural network (DNN)methods because DNNmodels have shown higher perfor-
mance on complex tasks in many domains compared to models created by other
methods [29, 32, 56, 58, 71, 74, 87, 130, 155].

Next, we provide a brief overview of machine learning paradigms, their re-
lationships to datasets, and how research is looking at the impact on machine
learning by differentmethods of partitioning datasets. We explain the supervised
learning paradigm in Sect. 2.1.1 and its relationship to training data. We contrast
this with related paradigms of machine learning in Sect. 2.1.2. In Sect. 2.1.3, we
summarize work on learning capacity in neural networks. Finally, in Sect. 2.1.4
we describe investigations into schemes for partitioning datasets into different
splits for training and different stages of evaluation. These topics inform the com-
mon background for our work using primarily neural methods in the supervised
learning setting. For example, we explain briefly what self-supervision is with
reference to the BERT architecture in Sect. 2.1.2. This provides context to under-
stand the role of BERT in Sect. 2.7, as well as the challenge the KGQA task poses
for dataset construction as described in Sect. 2.5.2.

2.1.1 Supervised Machine Learning and Datasets

In supervisedmachine learning, the model is trained using data consisting of in-
stances (X⃗, y) to perform model inferencing, i.e., the prediction task X⃗ → ŷ ≈ y.
Here, X⃗ represents the input or independent variables of the instance, y is the
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ground truth output or label, and themodelmust learn tomake a prediction or es-
timate ŷ that approximates the ground truth y. Every instance is a point sampled
from a distribution, and the model should learn to generalize, i.e., to correctly
infer from novel X⃗ to appropriate corresponding ŷ. The datasets used to train,
validate, and test a machine learning model are critically important to achieve
an effective model that can perform the task correctly for the desired range of
possible inputs X⃗.

The datasets must be large and varied enough so that the machine learning
model can capture the relationships between different variables in X⃗. In addition,
the quality of the dataset is important, meaning that the instances in the dataset
must correctly represent the task to be learned.

2.1.2 Un-, Semi-, and Self-Supervised Machine Learning

In contrast to supervisedmachine learning, where data consists of instances (X⃗, y)
and y is a verified and possibly manually added (i.e., annotated) ground truth la-
bel, there are some other machine learning categories. Here it is worth pointing
out unsupervised, semi-supervised, and self-supervisedmachine learning.

Unsupervised learning assumes there are no labels y for a given data point
X⃗, and the learning algorithm itself should find the structure in the dataset. For
example, k-means clustering algorithms may be trained to classify instances into
a predefined number k ∈ N different classes, without seeing any labeled instances
during training [52].

Semi-supervised learning combines supervised and unsupervised learning, to
make the most of available data. For example, if only a small non-empty subset
of instances X⃗ have an associated ground truth label y, then the labeled instances
may be used to train, in a supervised manner, a model which in turn can be used
to pseudo-label all the remaining unlabeled instances. The complete dataset can
then be pseudo-labeled and used to train a final model [139].

Finally, self-supervised learning refers to the case where a substitute for a la-
bel is found in the context of the raw, unlabeled dataset [103, 108]. For example,
large language models, such as BERT [35], are trained on raw text data collected
on the Internet.1 Instead of manually adding or automatically generating labels,

1Specifically, Devlin et al. [35] first trained (pre-trained) BERT in a self-supervised manner,
then further trained (fine-tuned) the model in a supervised manner on specific language tasks.
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the prose text itself is used to construct both X⃗ and y, either bymasking a random
word in a sentence and training the model to predict that word, or else masking
the next sentence in a paragraph and training themodel to predict the whole sub-
sequent sentence.

2.1.3 Memorization and Generalization in Neural Networks

Asmentioned in Sect. 2.1.1, supervisedmachine learningmodels learn to perform
tasks from labeled training data. In this work, we ask how training data volume
impacts question answering (QA) models (RQ 1). Deep neural network methods
currently comprise the most promising family of machine learning approaches.
Therefore, we look at previous research into the impact of training data volume
on machine learned neural models.

The impact of the size of training datasets has been investigated for convo-
lutional neural networks (CNNs) trained on image data [30, 127]. In the latter
work, it was observed that model performance improves roughly logarithmically
as a function of increased training data. The idea of a logarithmic relationship
between performance and dataset size was further corroborated empirically by
Hestness et al. [59].

An investigation of the generalization problem in deep neural networks, i.e.,
the discrepancy between the performance of a trainedmodel on training data and
test data, shows that the deep neuralmodels have a representational capacity that
enables “memorization” of training data: Zhang et al. [153] show the order-of-
magnitude relationship between training dataset size (sample size), input data
dimensionality, and the depth of a network with sufficient parameters to fully
memorize the training dataset. They report a theorem with proof such that for
any finite n-sized sample of d-dimensional inputs, there exists a two-layer ReLU
neural network with 2n + d weights that can represent any function on the sam-
ple. As a corollary, this finding extends from this hypothetical shallow and wide
network to a narrow and deep network where the relationship between sample
size and number of parameters is conserved. This may not be how deep neural
networks learn in practice [12], but the theorem indicates the challenge that finite
datasets may present to generalization in deep learning models.

More recently Nguyen et al. [92] have worked with natural language data
while relying on pre-trained language models such as BERT. Their findings indi-
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cate that given a pre-trainedmodel in a similar domain, the need for task-specific
training data is much reduced. Zhang et al. [154] have updated their previous
work [153] with a survey of recent related developments, and note that a model
fitting and hence memorizing all training instances is “not necessarily at odds
with generalization.” Ongoing empirical research may further elucidate gener-
alization and memorization in the context of machine learning with deep neural
networks.

2.1.4 Dataset Partitioning

The commonly accepted practice in machine learning is to address datasets par-
titioned into disjoint splits for training, validation, and testing. During training,
the machine learning model’s parameters are adjusted, e.g., by the gradient de-
scent algorithm, to optimize model performance on a loss function with respect
to instances in the training split. The validation split is reserved for adjusting hy-
perparameters, while the test split is reserved to estimate the final model’s ability
to generalize to unseen instances. The difference in error rates of a trainedmodel
inferencing on the training split versus on the test split is called the generaliza-
tion gap [52].

Dataset partitioning thus affects both learning optimization and the ability
to estimate how well the trained model has learned to generalize. For this rea-
son, methods of dataset partitioning are the subject of research within the field
of machine learning [49, 66, 68]. Gu et al. [53] explore the use of multiple test
splits to characterize discrete levels of generalization in the KGQA task: general-
izing to (1) independent and identically distributed (IID) generalization, where
test instances come from the same distribution as training instances, (2) com-
positional generalization, where test instances represent novel compositions of
schema items seen during training, and (3) zero-shot generalization, where test
instances comprise previously unseen schema items “or even domains.”

2.2 Structured Data and Knowledge Graphs

Data are considered to exist on a spectrum from unstructured through semi-
structured to structured [16]. Where a particular dataset is placed on this spec-
trum depends on the degree to which the data has features that support system-
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atized (i.e., machine) processing. Plain textwritten in natural language is a typical
example of unstructured data, which can be treated simply as a sequence of words
and symbols [16].

Structured data, on the other hand, is data that can typically exist in a re-
lational database, populating a system of interrelated tables that express an ex-
plicit data model, highly organized and following a strict schema [16]. A rela-
tional database can be queried with Structured Query Language (SQL), and the
(formal) query then represents a relational algebra operation on the database.
Formal queries are also called logical forms, a term derived from formal logic in
philosophy [109].

The relational database lends itself well to a system where a large number
of similar types of records are to be kept, and for each table the variables to be
populated for those records, as well as the permitted values, are known ahead of
time [16].

Standing between the two farthest points of the spectrum, semi-structured
data refers to data that is not rigidly structured, but contains typically a combi-
nation of unstructured data such as raw text, as well as structural elements that
are annotations in the documentmarkup according to some schema for resources
such as entities, classes, relationships, and properties.2 Two common document
formats that exemplify semi-structured data are HTML and XML.

The annotations in the semi-structured data are optional for each document,
and the schema of annotations may be developed in an ad hoc manner. There-
fore, semi-structured data is said to have a self-describing schema [16]. Such
semi-structured data may also be organized and annotated using the Resource
Description Framework (RDF) data model, and the specific schema adopted pro-
vides or informs which “uniquely and globally identifiable” Uniform Resource
Identifiers (URIs) are assigned to resources [16].

This way of annotating documents is helpful to search engines or other ser-
vices that can process the structured elements in semi-structured data [15]. Semi-
structured data as a machine readable annotation embedded in a document itself
is a technology that undergirds the larger mission of projects variously called the
Semantic Web, Linked Open Data, semantic technology, and so on.3

2One common set of schemata is provided by https://www.schema.org.
3Semantic here means that there is structured data in a document that refers to a common,

explictly defined schema. This is a slightly different meaning from the linguistic or colloquial use,

16

https://www.schema.org


The RDF approach to structured data, of annotating documents with facts
encoded as subject, predicate, object-triples (SPO-triples), also implies that the
structured data elements from all sources, e.g., relational databases or the an-
notated documents in a collection, together can be organized as a set of facts
in a database, called a knowledge base. Taking the perspective that all subjects
and objects constitute vertices, and that all predicates form edges, we can say the
database of facts is a knowledge graph (KG). This is sometimes called a knowl-
edge base (KB) in parts of the literature, but to emphasize the graph nature of
KGs, we refer to them as such in the present work. Knowledge graphs can be
subjected to formal queries much like relational databases, but use KG-specific
query languages. Formal queries typically include triple patterns, which consist
of three components, S, P, O, like the SPO-triples mentioned above, but where
each element may be treated as a variable rather than a determined value. The
most common formal query language for KGs is SPARQL.4

A major distinction from formally querying relational databases or tabular
data is that KGs have explicit relational semantics via the predicates, which repre-
sent relationships between subject entities and object entities or properties where
subject entities have object literal values.

The three largest andmostwidely used open-domainKGs areDBpedia5, Free-
base6, andWikidata.7 While Freebase is discontinued as a service, the knowledge
graph can be copied and self-hosted.8

where the term semantic refers to themeaning of language. Often this sense is intended in contrast
with syntax, the structure of language. However, in this sense, the semantics of a term or statement
are not always unambiguously tied to a single denotational definition. However, “semantic” in
the semantic technology sense refers to a document’s markup containing structured data, i.e., a
machine readable annotation about or some piece of text in the document having an unambiguous
correspondence with some item in the schema used for structured data in the document.

4https://www.w3.org/TR/sparql11-query/
5https://www.dbpedia.org/
6http://rdf.freebase.com/, was discontinued and migrated into Wikidata.
7https://www.wikidata.com
8Freebase discontinued: https://web.archive.org/web/20120516075431/http://blog.fre

ebase.com/2008/10/30/introducing_the_rdf_service/
Latest dump available for download: https://developers.google.com/freebase
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2.3 Question Answering

Since the early days of computer science and the field of artificial intelligence [86,
132, 144], the concept of a machine being able to appropriately answer natural
language (NL) questions posed by a user has been much studied. These early
works argued that if this concept—the question answering (QA) task understood
broadly—could be realized, the system’s ability to “understand” natural language
would have reached a threshold required tomerit the title of artificial intelligence.
The term “understand” here is taken pragmatically, as the system’s responses
would be an imitation of a human response to natural language behavior.

Question answering (QA) over unstructured text has been the focus of re-
search for decades within the fields of information retrieval (IR) and natural lan-
guage processing (NLP) [17, 28, 107, 141]. The field of NLP has approached QA as
a problem to solve using linguistics, common sense and “highly structured data
bases [sic]” [1]. Until machine learning methods became applicable, NLP used
formal theories of linguistics to inform the design of handcrafted computer pro-
grams to parse and process NL text.

In contrast, IR has initially adapted methods from ad hoc retrieval to the QA
task. Ad hoc retrieval in IR seeks to satisfy a user’s information need by present-
ing a ranked list of the most relevant documents, where the information need is
expressed by a querywhichmay be a collection of keywords, or anNL question, or
some intermediate form [85]. The IR approach to QA further seeks to retrieve the
correct short text (e.g., paragraph, sentence, or text span) that directly answers
the NL question posed by the user. These fields of research represent different
paradigms and may interpret the QA task differently in light of their respective
perspectives and preferred methods [28].

Whether for paradigmatic or practical reasons, various flavors of the QA task
have emerged. We name and briefly summarize the task descriptions for promi-
nent elementary flavors of QA. For conciseness, the task description is expressed
in imperative form.

Definition 2.3.1 - Answer Sentence Selection:
(or simply answer selection:) Given anNL question and a set of question-specific
candidate answers, select the correct answer from a predefined set of candidate
answers.
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Definition 2.3.2 - Answer Span Prediction:
Given an NL question and a short piece of prose as context, select the span of text
from the context which is the direct answer to the question.

Definition 2.3.3 - Answer Generation:
Given an NL question and a short prose context, generate the correct answer as a
fluent NL statement.

Definition 2.3.4 - Knowledge Graph Question Answering (KGQA):
(or Knowledge Base QA:) Given an NL question and a KG, return the answer(s)
to the question based on the factual support in the KG.

These task descriptions are accurate in the abstract, but we also note that re-
search typically addresses datasets (or benchmarks) that may concretize these
tasks in idiosyncraticways. For example, datasetsWikiQA9 [148] andSQuAD10 [104]
represent the tasks of answer sentence selection and answer span prediction, re-
spectively, exactly as described above. In contrast, the dataset MSMARCO11 [91]
consists of several different tasks and flavors thereof, but ties an IR subtask to
its QA tasks, e.g., QnA v1.1: “Given a query and 10 candidate passages select the
most relvant [sic] one and use it to answer the question.” In other words, the QA
task is here cast as a combination of ranking candidate short prose contexts, and
then using the highest ranking one as a basis to generate an answer as a fluent NL
statement to answer the NL question. This example of the MSMARCO flavors of
QA illustrates the interplay between task definition, the realization of the task as
a dataset, and the technological approach to the task anticipated in the design of
the dataset. Flavors of the QA task which involve inferring an answer to an NL
question from a context are classified under themachine reading comprehension
(MRC) [106, 107] class of QA flavors. This includes both answer span prediction
and answer generation under the definitions listed above.

Research inQA is largely focused on answering fact-based or factoidNLques-
tions [107], likely because system evaluation ismore easily operationalized in this
setting. In other words, if each NL question has a single “objective” answer [107],

9https://www.microsoft.com/en-us/research/publication/wikiqa-a-challenge-datas
et-for-open-domain-question-answering/

10https://rajpurkar.github.io/SQuAD-explorer/
11https://microsoft.github.io/msmarco/
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then it is easier to decide whether or not the correct answer was returned. In the
case of answer generation, and especially if the NL question is not factual in na-
ture, it is clear that in general, innumerable valid answers or formulations thereof
could exist.

For fact-basedQA, it is assumed some “evidence input” [107] is provided along
with the NL question for the system to be able to infer the correct answer. In the
case of answer span prediction and answer generation as described above, the
short prose context constitutes the evidential basis for answering the NL ques-
tion. As implied by the MS MARCO inclusion of a context selection step in the
QA task, it is possible to consider whole documents or even text collections (cor-
pora) as the evidential basis for QA [91, 107]. Any of theseQA task flavors can also
be subsumed in the Conversational QA setting [102],where the previous turns of
dialogue between the user and the system constitute part of the context or evi-
dential basis to answer an NL question correctly.

None of these task flavors necessarily consider structured data as the eviden-
tial basis for fact-based QA. Some systems have been constructed to perform QA
on semi-structured tabular data [99] as well as on relational databases via text-
to-SQL semantic parsing [54, 152]. However, the KGQA flavor takes advantage of
a far richer structured data by way of the more complex and formalized schema
underlying the KG as evidential basis for QA [38, 54, 107, 134].

2.4 Knowledge Graph Question Answering

By harnessing structured data in the form of KGs, knowledge graph question an-
swering (KGQA) can facilitate information access that would otherwise require
expertise in formal query languages. Here we consider the relationship between
the KGQA task, defined abstractly, and its interpretation in light of practical ap-
proaches and assumptions.

2.4.1 The KGQA Task

The KGQA task is a type of fact-based question answering (QA), using a knowl-
edge graph (KG) as the background knowledge for obtaining answers to ques-
tions. Reiterating our definition above, the KGQA task is:
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Definition 2.4.1 - KGQA:
Given an NL question and a KG, return the answer(s) to the question based on
the factual support in the KG.

2.4.2 Approaches to KGQA

The task of KGQA is typically approached as either an information retrieval (IR)
or a semantic parsing (SP) problem [10, 29, 72, 90].12

IR-KGQA

IR-based KGQA casts the task as the problem of generating, scoring, and then
selecting candidate solutions for a given NL question. Lan et al. [72] call this
a “retrieval-and-rank” paradigm. For a particular KGQA method, the candidate
solutions will be all of one type, e.g., formal queries [62], query graphs [84, 149]
(which can be deterministically translated to a formal query), or answers (entities
and literals in the KG, or operations upon these) [138]. Because of this variety of
approaches, we can formally define IR-KGQA with only limited specificity.

Definition 2.4.2 - IR-KGQA:
Given anNLquestion q and a knowledge graphK, construct and return a (ranked)
set of (candidate) answers or answer elements a.

SP-KGQA

SP-KGQA can be cast as semantically parsing an NL question to produce a formal
query, which is executed on the KG to produce the predicted answer. Lan et al.
[72] call this a “parse-then-execute” paradigm. SP-KGQA is characterized by a
single NL question being parsed into a single formal query. Formally, the SP-
KGQA task is defined [29] as:

Definition 2.4.3 - SP-KGQA:
Given an NL question q and a knowledge graph K, predict a formal query f that
executes onK to return the correct answer a, such that f also correctly represents
the meaning of q.

12In fact, Chakraborty et al. [29] claim semantic parsing is themost common approach to KGQA.
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Here, the execution of the formal query against the KG yields the one predicted
answer to the NL question. This one answer may itself be a set of multiple ele-
ments, such as a list of entities with attributes. One approach to solving the SP-
KGQA task has been using machine translation (MT) methods, such as various
neural machine translation (NMT) architectures [29, 42]. Under this approach,
the KGQA training data, consisting of question-formal query pairs, are treated as
source and target language instances.

2.4.3 Perspectives and Assumptions

IR-KGQA has the advantage of being able to robustly leverage entity descriptions
as well as graph structure. However, it is difficult to interpret how the system
arrived at the retrieved answers, and to verify whether the system’s “understand-
ing” of the questionwas correct. Conversely, SP-KGQApredicts an explicit formal
query (e.g., SPARQL) that represents the NL question posed by a human user,
and, in turn, executes the formal query to retrieve answers [29, 72]. This pro-
vides greater interpretability by showing explicitly how the system “understood”
the NL question. This means the reasoning represented by the formal query can
be reconstructed in natural language by a human who is an expert in the formal
query language.13 In other words, the interpretation may lie beyond the ability of
non-expert users in the case of complex formal queries, but the fact that a single
formal query is expressed allows interpretation in principle.

Vakulenko et al. [138] illustrate the challenge of categorizingKGQAapproaches,
as their method involves separate stages called “parsing” and “matching,” in a
phase called “question interpretation,” which indicates a staggered combination
of semantic parsing and information retrieval. In the “parsing” stage, references
to the categories of entity, predicate, and class are extracted, and the type of
question is determined, whereupon the extracted references are matched with a
ranked list of candidate elements from the KG. Ultimately, their approach can be
categorized as IR-KGQA, not only because typical IR techniques, such as ranking
andmatching, are used throughout their KGQA system, but because crucially, no
single formal query is produced to represent the system’s “understanding” of the
NL question.

Surveys on KGQA assert that the answer returned by KGQA must be based
13Wemake extensive use of the term “expert” in this sense in Sect. 2.5.
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on a set of entities from the KG and acknowledge that possible answers in KGQA
include sets of entities or literals from the KG, numerical results from aggregation
operations on the KG, or boolean values True/False [29, 54, 72]. Chakraborty
et al. [29] also acknowledge that “answers could take on complex forms, such as
ordered lists ... or even a table.” We follow the perspective of Chakraborty et al.
[29] as themost coherent and least restrictive interpretation of the KGQA answer
space.

2.5 Datasets and Dataset Generation for KGQA

As described in Sect. 2.4, the KGQA task can be approached in different ways,
and the datasets used to train and evaluate KGQA systems have a defining role in
concretizing the task. The following section therefore discusses existing datasets
and the way they have been created. In Sect. 2.5.1 we discuss the distinction be-
tween simple and complex KGQA. In Sect. 2.5.2 we look at historically important
KGQA datasets from previous work in the field with a focus on how each dataset
was created. The reported approaches to creating or augmenting KGQA datasets
are then summarized in Sect. 2.5.3, with an emphasis on datasets for complex
KGQAwhere manual labeling, especially using crowdsourced labor, played a role
in dataset creation.

2.5.1 Simple and Complex KGQA Datasets

There exist several KGQA benchmarks, which can be broadly classified as simple
or complex. Simple KGQA means finding the answer is only about completing
a single SPO triple (fact or relation) that exists in the KG: to retrieve the object
o, given a subject s and predicate p as input. In contrast, complex KGQA means
each formal query addresses more than one SPO triple in the KG. Thus, valid
complex KGQA formal queries can be mapped to KG subgraphs with more than
one edge. Examples of simple KGQA benchmarks include WebQuestions [20],
SimpleQuestions [22], andFree917 [27] over Freebase, andSimpleQuestions [39]
over Wikidata.

In recent years, the focus has been shifted to complexKGQAbenchmarks [100,
129], examples ofwhich include LC-QuADv1.0 [131] andDBNQA [57] overDBpe-
dia, LC-QuAD2.0 [43] overDBpedia andWikidata, ComplexWebQuestions [129],
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Table 2.1: Chronological overview of KGQA datasets.
Dataset Year KG Size Crowdsourcing

Free917 [27] 2013 Freebase 917 Unclear
WebQuestions [20] 2013 Freebase 5,810 Yes
SimpleQuestions [22] 2015 Freebase 108,442 Unclear
ComplexQuestions [18] 2016 Freebase 2,100 No
GraphQuestions [126] 2016 Freebase 5,166 Yes
WebQuestionsSP [150] 2016 Freebase 4,737 No
LC-QuAD v1.0 [131]⋄ 2017 DBpedia 5,000 No
QALD series (1–9) [81, 135, 136] 2013–2018 DBpedia ∼50-500 each No
ComplexWebQuestions [129] 2018 Freebase 34,689 Yes
DBNQA [57]⋄,†,‡ 2018 DBpedia 894,499 No
LC-QuAD v2.0 [43]† 2019 DBpedia, Wikidata 30,000 Yes
CFQ [69] 2020 Freebase 239,357 No
KQA Pro [119] 2020 Wikidata 117,970 Yes
GrailQA [53]† 2021 Freebase 64,331 Yes
⋄: in Chap. 4. †: in Chap. 5. ‡: in Chap. 6.

ComplexQuestions [18], andGraphQuestions [126] over Freebase. The work pre-
sented in Chaps. 4—6 focuses on complex KGQA, as opposed to simple KGQA.

2.5.2 Chronology of Salient KGQA Datasets

The field of KGQA is in many ways defined by the datasets used to train and
test systems. At the same time, unlike tasks such as the self-supervision tasks
used to pre-train BERT [35], appropriate datasets for the KGQA task cannot be
found freely in existing, incidental data, i.e., “in the wild.” The processes used
to create KGQA datasets are therefore of interest. In the following, we describe
some salient milestone KGQA datasets and their manner of construction. Pre-
vious work [29, 72, 107, 145] has surveyed the field of KGQA, which we draw
on in our present summary. The KGQA datasets are grounded in one or more of
the threemost common open-domain knowledge graphs (KGs): Freebase, DBpe-
dia, and Wikidata. We note that the overall trend in KGQA dataset construction
has been towards more complex formal queries as well as larger datasets. For
each dataset, we defer to the respective papers’ stance as to whether the dataset
should be considered to contain complex formal queries. The datasets are listed
chronologically in Table 2.1 in order of year of publication, and the creation pro-
cedure is summarized for each dataset below. While not exhaustive of all KGQA
datasets, this chronology reflects the major trends in KGQA dataset construction
approaches over the last decade.
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Free917: Cai and Yates [27] create the dataset Free917 by asking two na-
tive English speakers to pose questions inmultiple domains, and then annotating
these questions with formal queries.

WebQuestions: Berant et al. [20] construct the datasetWebQuestions, con-
sisting of 5810 instances with only NL questions and answers, but no formal
queries. The dataset is constructed by generating single-entity questions with the
Google Suggest API, and then crowdsourcing answers based only on the Freebase
page of the entity in a given NL question. Question-answer pairs are kept as in-
stances when at least two crowd workers agree on an answer.

SimpleQuestions: Bordes et al. [22] create the large dataset SimpleQues-
tions, consisting only of NL questions that can be answered by a single fact (SPO-
triple) in the KG, and the corresponding fact. The dataset is created by short-
listing a set of facts, and then having English-speaking annotators generate NL
questions mentioning the subject and predicate of the fact, such that the answer
would be the object.

ComplexQuestions: Bao et al. [18] construct the dataset ComplexQues-
tions consisting of question-answer pairs bymining a search query log for queries
with overlapping terms as in WebQuestions and SimpleQuestions, and then cat-
egorizing the search queries according to some rules to identify multi-constraint
questions. The questions aremanually annotatedwith answers. Additional question-
answer pairs are taken directly from pre-existing datasets.

GraphQuestions: Su et al. [126] construct the dataset GraphQuestions—
where each instance includesNLquestion, formal query, and ground truth answer—
by first generating query graphs, and then converting these to NL questions via
crowdsourcing. The ground truth answer is retrieved by converting the query
graph to a formal query and executing it. This approach to crowdsourcing for
KGQA datasets has been referred to as the Overnight method [126].

WebQuestionsSP: Yih et al. [150] construct the dataset WebQuestionsSP
by having experts annotate instances inWebQuestions [20]with SPARQLqueries
where feasible.

LC-QuAD v1.0: Trivedi et al. [131] construct the dataset LC-QuAD v1.0,
which consists of NL questions and formal queries. The dataset is created from
a set of 38 hand-made abstract query graphs extending at most two hops from a
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seed entity.14 First query graph templates are combined with whitelisted (non-
metadata) entities and predicates, instantiating formal queries. Pseudo-NL ques-
tion templates are used in parallel to instantiate pseudo-NL questions. These ten-
tative template-based pseudo-NL questions are paraphrased by non-expert an-
notators to improve the grammar of the question. The resulting paraphrased NL
questions are then reviewed and revised by experts.

QALD series (1–9) [81, 135, 136]: A series of datasets, from the Question
Answering over Linked Data (QALD) challenges,15 are almost exclusively created
manually at small scale. Each dataset consists of questions generated by students
and formal queries hand-crafted by experts. Within this initiative, the re-use and
revision of data from previous years has been common.

ComplexWebQuestions: Talmor and Berant [129] construct the dataset
ComplexWebQuestions by programmatically generating more complex formal
queries fromWebQuestionsSP [149] by adding constraints to each instance. The
pseudo-NLquestion templates are extendedwithmanually constructedpredicate-
specific templates. The generated pseudo-NL questions are paraphrased by non-
expert crowd workers into NL questions.

DBNQA: Hartmann et al. [57] construct the dataset DBNQA, consisting of
NL questions and formal queries, from the LC-QuAD v1.0 [131] and QALD-7-
train [136] datasets. The pre-existing datasets are taken as the basis (seeds) to
extract templates for both formal queries and NL questions, and those templates
are then instantiated with different entity and predicate bindings.

Templates are extractedmanually fromQALD-7-train, but semi-automatically
from LC-QuAD v1.0. In the latter case, the resulting templates are reviewed by
SPARQL experts. For each entity URI or surface form in the seed data, corre-
sponding placeholders are inserted in the templates. The templates are then in-
stantiated using the results of the executable SPARQL templates applied to a DB-
pedia endpoint to find suitable entities for the placeholders.

LC-QuAD v2.0: Dubey et al. [43] construct the dataset LC-QuAD v2.0, ex-
tending the workflow established by Trivedi et al. [131] by crowdsourcing the
paraphrasing of generated pseudo-NL questions into improved NL questions.
This also includes several rounds of crowdworkers generating further paraphras-
ing of NL questions and performing quality control on others’ annotations. An-

14The published file only contains 35 templates.
15https://project-hobbit.eu/, https://github.com/ag-sc/QALD
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other difference is that the initial set of 22 query subgraph templates is con-
structed not from geometric constraints but from consideration of pre-existing
QA datasets.

CFQ: Keysers et al. [69] construct the dataset CFQ, with instances compris-
ing formal queries and NL questions, in a completely rule-based manner. With
239,357 instances, this is to our knowledge the largest KGQA dataset generated
entirely with rule-based automation.

KQA Pro: Shi et al. [119] construct the dataset KQA Pro broadly following
the Overnight [126] approach of generating formal queries and pseudo-NL ques-
tions, and then using crowdsourcing to paraphrase pseudo-NL questions into NL
questions, and finally using crowd workers to cross-validate the paraphrases of
their colleagues.

GrailQA: Gu et al. [53] also construct the dataset GrailQA in a similar man-
ner as Shi et al. [119], broadly following the Overnight [126] approach, including
the use of crowdsourced labor for paraphrasing pseudo-NL questions and cross-
validation.

Usage in the Present Work

Of the complex KGQA datasets mentioned, in Chap. 4 we choose to focus on DB-
NQA [57] because it is the largest complex dataset that has been used for eval-
uating several NMT-based models [151]. Because of the approach taken in the
construction of DBNQA [57], Chap. 4 also uses, but does not directly train or test
on LC-QuAD v1.0 [131]. Through our work discussed in Chap. 4, we create and
introduce two partitionings of DBNQA called Sanitized-1 DBNQA and Sanitized-
2 DBNQA. In Chaps. 5 and 6, we refer to Sanitized-1 DBNQA simply as DBNQA∗.
DBNQA∗ [78] is a partitioning of DBNQA [57] into training, validation, and test-
ing splits based on the underlying templates, avoiding leakage of information be-
tween training and test splits. The instances are identical to DBNQA, and so we
use DBNQA∗ in our experiments. Chap. 5 additionally works with the datasets
LC-QuAD v2.0 [43] and GrailQA [53].

2.5.3 Dataset Construction and Augmentation Approaches

In the previous section we have briefly described the reported construction pro-
cess of specific KGQA datasets. In this section, we generalize the approaches we
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have seen. To create a KGQA dataset, first some initial design decisions must be
made before instances can be created. Design decisions include:

• Which KG(s) will be addressed?

• Which entities, predicates, and formal query language aggregation opera-
tions will be included?

• How many triple patterns may be included in the formal query?

• Which items will each instance comprise? NL question, formal query, an-
swer, or other items?

The naive and effortful approach to construct a KGQA dataset is for one or more
experts to make all the design decisions as well as manually performing the work
of constructingNLquestions and their corresponding ground truth formal queries
(or answers). This fully manual approach is taken in the construction of the
QALD [135] series, as well as the Free917 [27] dataset.

In order to dedicate labor to expertise-appropriate tasks in amore cost-efficient
manner, various approaches emerged involving crowdsourced labor and automa-
tion (i.e., programs) for steps in the instance generation requiring less narrow
expertise. For example, researchers can (create programs to automatically) gen-
erate valid formal queries and corresponding template-based pseudo-NL ques-
tions, while crowd workers can paraphrase the template-based pseudo-NL ques-
tions into more fluent NL questions.

Two further labor-saving steps are (1) using crowd workers to quality control
the work of other crowd workers, as in the construction of LC-QuAD v2.0 [43],
and (2) using previously generated instances as a seed fromwhich to extract tem-
plates which in turn are used to generate novel instances, as in the construction
of DBNQA [57].

Table 2.2 shows how these different approaches to instance generation apply
to a selection of complex KGQA datasets. The table also shows what type of labor
was involved in the manual post-processing of the initially generated instances.
Out of the various QALD datasets, QALD-7-train [136] is highlighted due to its
use among the seed data from which Hartmann et al. [57] extracted templates.

16https://project-hobbit.eu/; https://github.com/ag-sc/QALD
17http://nlp.cs.tau.ac.il/compwebq; https://github.com/alontalmor/WebAsKB
18https://github.com/AKSW/DBNQA
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Table 2.2: Selected datasets for complex KGQA.
Dataset Generation Manual post-processing

QALD-{1-9}16 Manual N/A
QALD-7-train [136] Manual Programmatically filtered
LC-QuAD [131] Hand-made templates Paraphrasing† and reviews‡ of NLQs
LC-QuAD 2.0 [43] Hand-made templates Paraphrasing† and reviews† of NLQs
ComplexWebQuestions [129]17 Hand-made templates Paraphrasing† of NLQs
DBNQA [57]18 Extracted templates Reviews‡ of generated templates
†: Non-experts. ‡: Experts. NLQs: NL questions.

The datasets listed in Table 2.2 indicate a trend towards scalable instance gen-
eration to economically generate larger volumes of question-query pair data for
complex KGQA. The progression started with fully manual dataset generation,
moving to using hand-made templates for automated instance generation, and
withDBNQA the automated template generation frompre-existing seed datasets.
While these changes in automation have increased the scale of available datasets,
the need for manual post-processing also increases. Consequently, it becomes
economically desirable to divide the post-processing work into (i) work that re-
quires expert knowledge of the formal query language, and (ii) work that can be
adequately performed by crowdsourced non-experts. The non-experts only need
adequate natural language skills to improve the grammar of template-based NL
question generation. These are prevailing assumptions regarding KGQA dataset
construction, which we question in Chap. 5.

Synthetic Data Generation and Data Augmentation

To satisfy the need for large volume datasets to train deep learning models, vari-
ous approaches have been explored to enhance the collection of real data points,
such as data augmentation [34, 120] and synthetic data generation [94].19 Gen-

19The distinction between synthetic and augmented data can become ambiguous in some cases,
as augmented data means taking data from real measurements and changing the data in some way
that preserves key qualities of the data point while challenging the model to learn the preserved
relationships. On the one hand “synthetic” data could be considered to include all data that are not
the result of direct measurement, which would subsume data augmentation. On the other, “syn-
thetic data” implies that the data is constructed to represent an underlying distribution beyond
simply transforming original data with certain invariances. Following the above distinction, DB-
NQA [57] may represent an ambiguous case, as semantically, the generated instances are all novel
as in synthetic data, but syntactically, they are variations that serve to reinforce the shared pattern,
as in data augmentation. Our work hopefully elucidates this further.
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erating synthetic data to train machine learning models has been done for a large
number of tasks. Within the field of information retrieval (IR), synthetic data
generation has been explored to train models for various tasks, including ad hoc
document retrieval [13], suggesting NL questions to clarify search intent from
query terms [40], and query auto-completion [70].

Synthetic data generation has also been used for question answering (QA)
tasks [4, 51, 147, 156]. Much effort has focused on the machine reading compre-
hension (MRC) flavors of QA, where questions should be answered in the context
of a prose paragraph. For example, Golub et al. [51] looked at how to improve
transfer learning, fine-tuning a model (pre-trained on one source domain MRC
dataset) with synthetic MRC data generated from the target domain corpus of
context paragraphs. The common approach, also taken by Alberti et al. [4], is
to use neural language models to select answer spans from paragraphs, and to
generate questions conditioned on the answer and paragraph.

Completely synthetic data generation for KGQA has not yet been investigated
in depth. The KGQA datasets in Sect. 2.5.2 are almost all the product of (1) hand-
crafting instances entirely, (2) automatically generating formal queries andpseudo-
NL questions followed by manual paraphrasing to get NL questions, (3) aug-
menting existing instances in a rule-based manner, or a combination of these.
CFQ [69] is a notable exception, being a completely synthetically generatedKGQA
dataset. Keysers et al. [69] explain their generation algorithm in their paper, but
the code implementation is not shared openly. We note that large fully synthetic
KGQA datasets that are entirely generated by neural models have not yet been
published.

2.6 Evaluation Measures

In the following section, we review work on established evaluation measures for
KGQA, as well as work on axiomatic analysis of evaluation measures. KGQA
systems have been evaluated using typical IR measures [85], either considering
the correctness of answers [19, 82, 117], ranked candidate formal queries gen-
erated [41, 84], or in terms of sub-tasks [123], such as entity linking [149] and
answer type prediction [93]. In evaluating answers with typical IRmeasures, set-
basedmeasures (e.g., accuracy, precision, recall, and F1) [19, 37, 41, 101, 117, 149]
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and ranked-list-based measures (e.g., H@1, MRR) [26] have been used. We note
that evaluating answers using a ranked-list approach may not be suitable, since
the user relies on the KGQA system to provide a single (definitive) answer as op-
posed to a list of candidate answers. This may be a consequence of the IR-based
approach commonly taken with the task, in order to award partial reward in the
evaluation (cf. Sect. 2.4.2).

In our work we focus mainly on the SP-KGQA flavor of KGQA, and in Chap. 6
we devise ways to measure partial success on a single prediction rather than a list
of candidate predictions. Some existing SP-KGQA systems and benchmarks also
report machine translation-based evaluation measures [125, 151] with respect to
the predicted formal query. Those measures, like BLEU [97], focus on n-gram
overlap, which is insufficient to capture the complexities of formal queries. Re-
gardless, the appropriateness of these measures has not been addressed to date.
Chapter 6 aims to fill that gap.

2.6.1 Established Measures for SP-KGQA

A number of established measures have been used in SP-KGQA: Exact Match,
set-based measures (Accuracy, Precision, Recall, and F1), Perplexity, and BLEU.
In addition, the ROUGE family of measures comprise reasonable alternatives to
BLEU for SP-KGQA, being similarly based on n-gram overlaps.

Exact Match (EM) [104] is a binary measure, the proportion of instances
predicted exactly as given by any single associated ground truth reference. It is
used for QA [104] and in some cases for KGQA [42, 151]. For SP-KGQA, it can
be considered an overly strict measure, unless each NL question is exhaustively
labeled with all possible satisfactory ground truth formal queries.

Set-based measures like Accuracy, Recall (R), Precision (P), and F1 are
well known in an IR context [85], and for KGQA are used to evaluate retrieved
answers as overlapping sets of elements [36, 84, 138]. In the case of SP-KGQA
or other formal query prediction tasks [42, 151], such set-based measures can
consider the formal queries as sets of syntactic elements.

Perplexity (PPL) is a measure of how close a model is to the underlying
probability distribution being modeled. An exponentiation of the loss function
cross-entropy on text [23], PPL has been reported for KGQA [151]. However, this
measure represents the intrinsic quality of the model with respect to the dataset,
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rather than the performance of the model with respect to an extrinsic task [67].

Bilingual evaluationunderstudy (BLEU) [97] is ann-gramoverlapmea-
sure developed for MT and used for SP-KGQA [125, 151]. Technically a family of
measures based on amodified precision, BLEUmost commonly refers to the vari-
ant reported as best in [97]. BLEU originally assumed corpus-level evaluation,
aggregating over corpus sentences in a manner proportional to their lengths, and
not by the arithmetic mean of BLEU for each sentence.

Recall-OrientedUnderstudy forGistingEvaluation (ROUGE) [75] is
another family of n-gram overlap measures, devised for summarization but also
used in MT and other text generation tasks [61]. In contrast to BLEU, ROUGE
measures are based on R and F1, and n-gramsmatched inmultiple references are
givenmoreweight. We focus onROUGE-L, defined as anF -measure based on the
longest common subsequence of two sequences, i.e., a candidate and a reference.
To the best of our knowledge, ROUGEhas not been used for SP-KGQAevaluation.

2.6.2 Deriving Measures Axiomatically

There is a solid body of existing research on axiomatically analyzing existing eval-
uationmeasures and deriving novel evaluation measures for various information
access tasks. In this approach, formal constraints are defined and used to the-
oretically show which performance measures satisfy each constraint, and hence
possess the corresponding quality. Several tasks have been studied in thisway, in-
cluding clustering [6], classification [113], filtering [7], quantification [114], diver-
sification [3, 9, 110], and recommender systems [98]. In addition, the axiomatic
methodology itself has been investigated in the context of IR [5] and the proper-
ties of IR effectiveness measures have been axiomatically analyzed [25, 46], such
as whether they are interval scales [47] and what statistical properties different
measures have as a consequence [45]. Finally, work has been done towards con-
structing general theories of IR effectiveness measurements [8, 48]. In Chap. 6,
wemake the first attempt to axiomatically derive evaluationmeasures for the SP-
KGQA systems.
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2.7 Methods for KGQA

Various methods have been developed to build systems for performing complex
KGQA. In Sect. 2.4.2 we described the distinction between the two approaches to
the KGQA task, IR-KGQA and SP-KGQA, with their different task definitions. As
the definition of a task changes, the method required to accomplish it may also
need to change. Conversely, we also argue that the different approaches to the
KGQA task are themselves informed by what techniques can be combined in a
method to solve the task.

Recent technological developments have brought to the forefront techniques
based on neural networks. Therefore, an important distinction among KGQA
methods is the one between neural and non-neural methods. The former focuses
on the development of suitable neural architectures tending towards end-to-end
learning, while the latter tends to decompose the KGQA task into a sequence of
discrete subtasks and create purpose-built solutions for each. In this section,
a brief background is provided for non-neural methods of KGQA in Sect. 2.7.1.
After this, the neural methods used experimentally in the present work are de-
scribed in greater detail in Sect. 2.7.2.

2.7.1 Non-Neural Methods

As if to indicate the pervasive shift towards neural approaches, Chakraborty et al.
[29] refer to non-neural KGQA methods as “traditional” [20, 105, 133]. Diefen-
bach et al. [38] consider all KGQA tasks to consist of separate stages, all of which
must be solved by the KGQA system. Whether approached as an IR-based or
SP-based task, KGQA is still being studied as a problem with distinct sub-tasks
to be solved in modular manner [72, 82]. For example, the message-passing ar-
chitecture QAmp [138] can be considered a hybrid of neural and non-neural ap-
proaches, but is not an end-to-end neural system. QAmp uses neural compo-
nents (RNN classifiers, word embeddings) in its question interpretation stage, in
addition to BM25 and embeddings in its candidate answer ranking stage. In the
answer inference stage, probabilistic graphical model approaches are used. An-
other hybrid approach was devised by Abujabal et al. [2], who separated the se-
mantic parsing for KGQA into various components: an offline neural component
that learned fromKGQA data to generate the syntactic template components that
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were used compositionally to parse the semantics of an NL question into a formal
query; another component that generates candidate queries; and a component to
rank the candidate queries to output the inferred formal query.

2.7.2 Neural Architectures

In the present work, the methods used experimentally for KGQA are exclusively
neural architectures. In particular, the methods have primarily been neural ar-
chitectures following the encoder-decoder pattern introduced for sequence-to-
sequence tasks [31, 128]. These neural architectures were previously used for
neural machine translation (NMT) between two different natural languages. SP-
KGQA can then be approached by analogy as a translation from an NL question
to a formal query. At the time of our experiments, the respective methods used
represent the state of the art in terms of neural methods for KGQA.

Given that KGQA can be cast as a semantic parsing task, this makes sense, al-
though the strict syntax of the formal query language differs from themore varied
and flexible syntax in natural languages. As shown by Yin et al. [151], a number
of NMT KGQA architectures can be successfully trained on SP-KGQA data, i.e.,
NL question and SPARQL query pairs. In the present work, the following neural
architectures are used as methods for SP-KGQA:

Neural SPARQLMachine (NSpM) Soru et al. [124, 125] introduce an NMT-
inspired approach to SP-KGQA, training theirRNN-based sequence-to-sequence
model end-to-end to translate NL questions to SPARQL queries. The archi-
tecture is a 2-layer Long Short Term Memory (LSTM) RNN without any
attention mechanism [151].

NSpM+Att1 This architecture differs fromNSpMonly in that a global Bahdanau
attention mechanism is added [14].

NSpM+Att2 This architecture differs from NSpM only in that a local Luong at-
tention mechanism is added [83].

ConvS2S With this architecture, Gehring et al. [50] introduced the use of CNNs
in the encoder-decoder pattern. This architecture also includes a multi-
step attention mechanism where the aforementioned Bahdanau and Lu-
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ong attention mechanisms are classified as single-step attention mecha-
nisms [50].

Transformer Vaswani et al. [140] introduced the revolutionary self-attention
mechanism which improved many text-to-text tasks and lead to a prolifer-
ation of variants, including the famous pre-trained BERT [35] and its even
larger, but still Transformer-based successors such as GPT-3 [24].

GrailQA Transduction+BERT Gu et al. [53] use an LSTM-based encoder-
decoder pattern, but use BERT [35] to encode theNLquestion togetherwith
schema items from the KG.

In addition to the above SP-KGQAmethods used in the present work, a variant of
theGrailQAmodelwas used experimentally in Chap. 5 and represents an example
of IR-KGQA.

GrailQA Ranking+BERT Gu et al. [53] use the same LSTM-based encoder-
decoder architecture, along with encoding using BERT. However, in this
configuration, the sequence-to-sequence model is used to score candidate
formal queries, which are then ranked.

Neural KGQA is surveyed in greater detail by Chakraborty et al. [29], includ-
ing classification and ranking methods, especially for simple KGQA, as well as
machine translation methods, which are considered more suitable for complex
KGQA.
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Chapter 3

Variable Volumes of Training
Data

It is held as a truism that deep neural networks require large datasets to train ef-
fective models. However, large datasets, especially with high-quality labels, can
be expensive to obtain. Because such costs are a challenge in making effective
QA models, our main research question is how training data volume impacts QA
performance (RQ 1). To answer this main research question, we investigate the
subquestions: to what extent QA models improve when trained on a larger vol-
ume of data (RQ 1.1), and how sensitive the models are to fractional changes in
training data volume (RQ 1.2).

This chapter considers a practical approach to investigating the impact of
training dataset size on the performance that can be achieved with various deep
neural architectures for the task of answer sentence selection. We investigate a
pre-existing implementation of neural architectures for answer sentence selec-
tion by truncating the training data to fractions of the original training dataset, to
quantify the differences in performance by trainedmodels givendifferent amounts
of training data from the same distribution.

Unlike the later chapters, this chapter addresses a simpler flavor of QA and
sets the stage for the subsequent chapters focused on the more complex task of
KGQA. Here the focus is on simple matching of short texts without complicating
factors such as language modeling with sequential dependence between tokens,
and without structured data or the use of a formal query language. The data is
simpler for answer sentence selection than for KGQA, but so are the evaluation
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measures (further explored inChap. 6) and the neuralmethods used to trainmod-
els: simple matching between two short NL texts versus taking an NL question
as input to generate a formal query on a specific knowledge graph. For practical
reasons, this initial simplicity is also helpful. Still, even in this simple flavor of
QA we find challenges with machine learning the task.

3.1 Motivation

The impressive performance improvements brought by deep learning applied to
certain domains—computer vision, audio speech-to-text, and natural language
processing (NLP) [73, 112]—has motivated a great deal of interest to apply deep
learning to other domains as well, including information retrieval (IR). However,
the performance improvements from deep learning relative to conventional ma-
chine learning approaches have depended on increased computational power,
larger datasets to learn from, and some developments on the algorithm and ar-
chitecture level. Of these three factors, large datasets may represent the least
tractable challenge faced by those who would apply deep learning to new do-
mains. Quality training data, especially for supervised learning, requires inten-
sive effort to prepare for the actual learning process.

A category of tasks at the intersection of the fields of IR andNLP, question an-
swering (QA) means returning a correct answer sentence in response to a gram-
matically well-formed, natural language question. In the present chapter, a spe-
cific variant of the QA task is considered, namely answer (sentence) selection, the
task ofmatching single-sentence questionswith single-sentence answers. The an-
swer selection task is simply: given a question and a predefined set of candidate
answers, select the correct answer. Furthermore, when the candidate answers for
a given question are all full sentences, the task is called answer sentence selection.
This task has recently been investigated as a neural IR problem [88, 95, 148].

3.2 Approach

The approach presented in this chapter is practical in that dataset size was ma-
nipulated and the effects were evaluated using a pre-existing implementation of
multiple neural IRmodels with a single original dataset. Specifically, this chapter
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Table 3.1: Summary of datasets.
Training Validation Testing

10% 25% 50% 75% 100%

#Questions 78 209 414 639 857 122 237
#QA pairs 823 2256 4321 6537 8651 1126 2341

presents work on the MatchZoo project [44], where a number of deep neural ar-
chitectures for text matching have been implemented.1 Here, answer selection is
considered as a form of question answering, where the question text is matched
with the text of the correct answer. The original dataset used for training, valida-
tion, and testing, was the canonical WikiQA dataset [148]. The performance of
the implemented models on a given dataset was characterized in terms of Mean
Average Precision (MAP) over the candidate answer rankings for each question
in that dataset.

3.2.1 Data Preparation

The training dataset was filtered to provide the models being trained with mean-
ingfully labelled training data. The filtering rule was simply to omit any question
and its associated set of candidate answer sentences if the set of candidate answer
sentences did not include both true and false candidates.

Table 3.1 summarizes the datasets used in the training of the various models.
Note that the same validation and test sets were used throughout, while the train-
ing dataset used was systematically varied between the original (filtered) training
set (100%), and various partial training sets truncated to 10%, 25%, 50%, and 75%
of the original (filtered) training set. These partial training sets were made by
randomly sampling (without replacement) on the questions in the original (fil-
tered) training set. Each selected question was then included in the respective
partial training set along with all corresponding candidate answers and their la-
bels. The percentages thus represent the probability for each question to be in-
cluded in each partial dataset. However, once the random sub-sampling was ac-
complished, these partial training sets were fixed. Each of the models was then
trained five times independently on each dataset size.

1https://github.com/faneshion/matchzoo
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3.2.2 Models

Ten models were able to train and perform nominally with the code provided by
the MatchZoo project [44]. The ten models investigated in the present chapter
comprised:

• Deep Structured Semantic Model (DSSM) [63], which extends latent se-
mantic analysis with deep architectures; a seminal work on neural IR.

• ConvolutionalDeepStructuredSemanticModel (CDSSM) [118], which
uses a convolutional neural network (CNN) to extendDSSMwith contextual in-
formation at the word n-gram level.

• Architecture-I (ARC-I) [60], an extension of CDSSMwhereby siameseCNNs
learn to represent two sentences, deferringmatching of sentence pairs to a final
multi-layer perceptron (MLP).

• Architecture-II (ARC-II) [60], an alternative to ARC-I where sentences in-
teract by 1D convolutionbefore proceeding through a2DCNNcomponentwhich
is purported to learn both the representation of the indvidual sentences, as well
as the structure of their relationship. Again, matching of the representations is
determined by a final MLP.

• Multiple Positional Sentence Representations (MV-LSTM) [142], fol-
lows the aforementioned models by capturing local information on multiple
levels of granularitywithin a sentence, using bidirectional long short-termmem-
ory networks (bi-LSTMs) to represent input sentences, modeling interactions
with a similarity function (tensor layer), and aggregating interactions with k-
Max Pooling before a final MLP to match the obtained representations.

• Deep Relevance Matching Model (DRMM) [55], distinguishes relevance
matching from semantic matching, using pre-trained neural embeddings of
terms and building up fixed-length matching histograms from variable-length
local interactions between each query term and document. Each query term
matching histogram is passed through a matching MLP, and the overall score
is aggregated with a query term gate—a softmax function over all terms in that
query.
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• Attention-based Neural Matching Model (aNMM) [146], which follows
a similar structure asARC-II, except instead of position-sharedweighting, aNMM
has adopted a value-shared weighting scheme “to learn the importance of dif-
ferent levels of matching signals,” and incorporated a query term gate similar
to that used in DRMM.

• CombinedLocal andDistributedRepresentations (DUET) [89], which
aims to combine local exactmatchingwith embeddings of query-document pairs
in semantic space. This relevancematching is enabled by both the local and dis-
tributedmodels, hence a “duet” of two parallel neural models. The final match-
ing score is simply the sum of the two outputs.

• MatchPyramid [96], which uses amatchingmatrix layer to evaluate pairwise
term similarity between two texts, followed by 2D convolutional and pooling
layers, with a final matching MLP.

• DRMM_TKS [44], which is a variant of DRMM provided by the MatchZoo
project, formatching short texts. The architecture is simply describedby “Specif-
ically, the matching histogram is replaced by a top-kmax pooling layer and the
remaining parts are fixed.”

Some of these models are motivated more by ad hoc search and document re-
trieval, whereas others were developed specifically for answer selection and the
similar task of sentence completion. However, the commonality is that all the
models are designed for text matching.

3.3 Experiments and Results

The following experimental results show the effect of varying training set size.

3.3.1 Final Performance of Trained Models

Figure 3.1 presents the performance on the test dataset of the different models
after training for 400 iterations on datasets of various sizes. These figures show
that aside from the DSSM, CDSSM, and possibly MatchPyramid models, some
improvement does appear to happen with greater training dataset sizes. How-
ever, by having an order of magnitude more training data (10% to 100%), only
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Figure 3.1: Performance (as measured by mean average precision) on the valida-
tion (blue) and test (green) datasets with different training dataset sizes.

threemodels, CDSSM,ARC-II, andDRMM_TKS, achieve a relative improvement
above 20%. Four more models, DSSM, MV-LSTM, aNMM, and DUET manage
to achieve a relative improvement above 10%. For DRMM, performance even
slightly decreases (by 1%). The relative improvements after having doubled (25%
to 50%), tripled (25% to 75%), or quadrupled (25% to 100%) the training data size
are similarlymoderate formostmodels. Specifically, after doubling, only CDSSM
and aNMM showed relative improvement above 10%, and with tripling and qua-
drupling, only DSSM, CDSSM, ARC-II, and aNMMshowed relative improvement
above 10%.

3.3.2 Model Training Histories

Figure 3.2 illustrates the relationship, for each model, between the size of the
training dataset and performance improvements over the course of training. We
can see that most models either reach a plateau or approximately monotonically
increase on the training set (shown in blue curves in Fig. 3.2) within the recorded
traininghistory. There are, however, a fewexceptions, namelyDRMMandaNMM,

42
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Figure 3.2: Training histories for variousmodels (columns) with varying training
dataset size (rows). The red and blue lines correspond to performance for training
and validation datasets, respectively. Performance is measured in terms of MAP,
and indicated with respect to the y-axes, which range from 0 to 1. The x-axes
indicate the number of training iterations (epochs), and range from 0 to 399. The
x- and y-axes are identically scaled in each of the sub-plots.

which donot exhibit this desired behavior. Another outlier isDRMM_TKS,which
improves at a drastically slow rate. It is also worth pointing out that the models
DSSM andMatchPyramid overfit very quickly. This may suggest a memorization
effect.

Looking at the MAP scores on the validation set (shown in blue curves in
Fig. 3.2), we see a discrepancy from expected behavior. The desired behavior
would be that these follow the same monotonically increasing trend as the red
lines, with the gap between the two lines decreasing as the amount of training
data increases. Most of the models, however, do not behave like that. The valida-
tion lines plateau out quickly formostmodels, or even degrade (DRMM, aNMM).

3.4 Summary

We have briefly looked at the effects of dataset size on the neural IR task of an-
swer sentence selection for a number of deep architectures. The consequences of
reducing the available training data logarithmically (10% versus 100%) are dis-
cernible, and indicate primarily a failure to generalize. This can be seen from the
discrepancy between performance improvement on training data, compared to
the modest improvements on validation data. Note that these findings are based
on one particular implementation, and the inner workings of the implementation
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were not rigorously analyzed and verified, butwere assumed to correctly enact the
cited algorithms.

These findings show that when choosing algorithms and strategies in regard
to data volume, there are factors which must be considered beyond the reported
benchmarks of fully trainedmodels. The actual performance of themodels during
different stages of training, relative to different scales of training data, must be
considered to discover any unexpected trends.

Furthermore, performance on validation sets is clearly a very important basis
for comparison, to gain an intuition about how fast models generalize from dif-
ferent volumes of training data, and with different numbers of training epochs.

Future work may consist of a deeper investigation into the reproducibility of
answer selection state-of-the-art results, as well as into quantifying the relation-
ship between training dataset size and the impact of diverse neural models on
generalizability.

Despite the fact that answer sentence selection is a simpler flavor of QA, we
see that state-of-the-art models are challenged to learn their task from data. The
theme of data volume variation (i.e., RQ 1) is carried forward later in this thesis,
where experiments involve training KGQAmodels (Chap. 4 and Chap. 6). We in-
vestigate the impact onmodel performance by training only on different fractions
of a training split, where training occurs over a fixed number of epochs or training
steps. This offers a way to consider the impact of prospective additional volumes
of training data. In turn, this gives an indication of how worthwhile additional
data collection or data generation would be for a given method. We speculate
that this is also a useful tool to go beyond optimizing model performance for a
task and to begin considering the fitness of a method for that task.
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Chapter 4

Information Leakage Across
Train and Test Splits

Synthetic data generation is important to training and evaluating neural models
for question answering over knowledge graphs. The quality of the data and the
partitioning of the datasets into training, validation, and test splits impact the
performance of the models trained on this data. If the synthetic data generation
depends on templates, as is the predominant approach for this task, there may
hypothetically be a leakage of information via a shared basis of templates across
data splits if the partitioning is not performed hygienically.

This leads to our main research question which we address in this chapter,
whether it is appropriate to include in the test split instances that were gener-
ated from templates that are also used to generate training split (RQ 2). The
following subquestions therefore arise: whether KGQAmodel performance is af-
fected by whether testing templates are seen or unseen during training (RQ 2.1),
whether generalization to unseen templates is affected by the volume of train-
ing data (RQ 2.2), and whether the proportion of unseen test templates to seen
training templates affects the performance (RQ 2.3).

This chapter investigates the extent of such information leakage across data
splits, and the ability of trainedmodels to generalize to test data when the leakage
is controlled. We find that information leakage indeed occurs and that it affects
performance. At the same time, the trained models do generalize to test data un-
der the sanitized partitioning presented here. Importantly, these findings extend
beyond the particular flavor of question answering task we studied and raise a se-
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ries of difficult questions around template-based synthetic data generation that
will necessitate additional research.

4.1 Motivation

Synthetic data generation can benefit neural models by producing adequate vol-
umes of training data. Knowledge graph question answering (KGQA)—the prob-
lem of mapping natural language questions to SPARQL queries—is a task where
deep neural models have recently been introduced. Neural models for KGQA
by their high-volume data requirements bring about the need for synthetic data
generation. However, unlike for other tasks like ad hoc document retrieval [13],
query clarification terms [40], or query auto-completion [70], synthetic data gen-
eration for KGQA has so far been developed in a template-based manner. This
raises a number of interesting methodological questions.

In particular, we consider a hypothesis that trainingmodels on template-based
synthetic data instances may result in information leakage if the partitioning of
synthetic data into training, validation, and test splits is not done carefully. If the
training and test splits are randomly partitioned without regard for the underly-
ing templates, it is possible that a significant portion of the performance seen in
trainedmodels is not coming from correct generalizations. Instead, some portion
of the observed performancemay come frommemorizing the underlying patterns
of the finite set of templates, which are common across the training, validation,
and testing splits. This leaky partitioning condition is illustrated in the top part
of Fig. 4.1. To explore the hypothesis, we devised an alternative, sanitized parti-
tioning scheme, illustrated in the bottom part of Fig. 4.1.

As a guide to intuition, we can imagine that the KGQA models trained on
template-based instances will “see” through the instance to the underlying tem-
plate, which is therefore considered seen with respect to the trained model. The
question of the trained models’ ability to generalize can then be cast as a ques-
tion of how the trainedmodels perform on instances generated from unseen tem-
plates.

To address our researchquestions, then, we specifically look at complexKGQA,
which is a variant of KGQA where the formal query represents a multi-relation
subgraphon the knowledge graph (KG).We investigate the properties of synthetic
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Figure 4.1: Illustration of leaky and sanitized partitioning for template-based syn-
thetic data generation.

data in the context of neural networkmodels, using the largest KGQAdataset that
exists to date, DBpedia Neural Question Answering (DBNQA) [57]. We empiri-
cally compare three neural machine translation (NMT) architectures that repre-
sent a specific family of neural network architectures, recurrent neural networks
(RNNs), which were shown to be effective on this task [29, 124, 125].

In the leaky partitioning, instances are randomly assigned to splits without
regard for underlying templates. This leaky partitioning is both convenient and
provides the models with the maximum volume and variety of training instances.
In the sanitized partitioning, templates are partitioned into train and test splits,
and instances are then partitioned so that test instances will only be those gen-
erated from unseen templates. If the synthetic data is not generated in a sani-
tized manner initially, the sanitized partitioning requires additional processing
to achieve: first templates must be partitioned into test and training splits; then
the generated instancesmust bematched with the templates they were generated
from; and finally, the instances must be allocated to test and training splits, ac-
cordingly. Nevertheless, this approach helpsminimize information leakage when
testing model performance.
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4.2 Approach

In this section, we describe the approach taken in preparing the shared basis
for the various individual experiments which then are described in Sect. 4.3. In
Sect. 4.2.1, we define the scope of KGQAmethods to be used, and in Sect. 4.2.2 the
structure and generation process for the datasets are described. In Sect. 4.2.3 the
original partitioning of the dataset is discussed, while in Sect. 4.2.4 we describe
the two sanitized partitionings of the dataset.

4.2.1 Scope

Out of the available approaches to KGQA, we consider only neuralmachine trans-
lation (NMT) architectures, which are interpreted as performing semantic pars-
ing on the NL question q to produce a semantically equivalent formal (SPARQL)
query f that also executes on the target knowledge graph K, retrieving the cor-
rect answer a. In the present work, we limit ourself to a particular baseline archi-
tecture and its variants, to ensure the comparability of the obtained results. We
note that the same experiments can be performedwith additional architectures in
the future. Specifically, the baseline architecture is taken from [151] (originally
from [124, 125]), as well as two attention-based variations of this architecture,
which in [151] performedwell onDBNQA. Thework of Yin et al. [151] was taken as
a starting point because it was the only work that considered a variety of NMT ar-
chitectures applied to the largest available complex KGQA dataset, DBNQA [57].
The selection was made both due to the high performance on the randomly par-
titioned DBNQA, as well as the fact that these models were implemented in the
same framework, Tensorflow. The three models used are:

NSpM The baseline architecture is here referred to as NSpM following [124,
125, 151]. However, it is a basic TensorflowNMT architecture, with 2 layers,
128 units per layer, a dropout rate of 20%, and optimizing on the BLEU
metric.

NSpM+Att1 The second architecture is calledNSpM+Att1, again following [151],
and it differs from NSpM only in that a global Bahdanau attention mecha-
nism is added [14]. Since the type of global Bahdanau attention mecha-
nism utilized in [151] was not further specified, the present work selected a
“normed” variant.
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NSpM+Att2 The third architecture is calledNSpM+Att2, again following [151],
and it differs from NSpM only in that a local Luong attention mechanism
is added [83]. Since the type of local Luong attention mechanism utilized
in [151] was not further specified, the present work selected a “scaled” vari-
ant. This architecture had the second-best performance of the 8 architec-
tures evaluated in [151], secondonly to theConvolutional sequence-to-sequence
architecture ConvS2S, and even that difference was relatively slight.

We are looking at a dataset [57] where instances were generated with templates
extracted from seeds [131, 136]. The evaluation of this synthetic dataset was
done with randomly partitioned training, validation, and test splits [151]. This
random partitioning did not avoid allocating instances generated from the same
template to different splits. Thus, models trained and evaluated on this ran-
dom partitioning would see “familiar” instances in the validation and test splits,
i.e., instances generated from the same template as instances used for training
that model. Could this have created an information leakage, whereby the trained
models have memorized a finite set of underlying templates—those seen during
training—rather than learning to generalize from training instances to previously
unseen patterns?

To answer this question, we have designed a method to sanitize1 the exist-
ing dataset, and ensure that a held-out test split contains only instances gener-
ated from a held-out split of templates. Since we are working with a pre-existing
dataset with no labelling or index of which template generated each instance, the
sanitation process is inevitably somewhat uncertain and depends on construct-
ing a reasonable set of rules to identify which template generated an instance. We
make a best effort to recover this information, that is, the originating template for
each instance.

We can consider that the two approaches taken, shown in Fig. 4.2, the fully
randompartitioning byYin et al. [151], and the sanitizedpartitioning in the present
work, may represent two extremes in how template-based synthetic data should
be treated. This perspective is further developed in Sect. 4.4.

1This termmight be value-laden and undescriptive of the mechanics employed, but reflects the
intention to remove or minimize any contamination due to information leakage.
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Figure 4.2: Illustration of original and sanitized DBNQA partitioning.

4.2.2 Preliminaries

The pipeline utilized by Hartmann et al. [57] to generate a large volume of KGQA
trainingdata canbe considered as three discrete stages, whichwe refer to as seeds,
templates, and instances. First, a small high-quality KGQA dataset consisting of
question-query pairs is taken as the seed dataset s ∈ S from which are extracted
templates t ∈ T , capturing the underlying pattern of the seed data points, but
replacing certain parts of the seed data points with placeholder tokens or URIs,
for NL question and SPARQL forms, respectively. The templates are then instan-
tiated into concrete data points, replacing the placeholders in a template with ap-
propriate terms (entity labels) or entity URIs. Each template can be used to gen-
erate an arbitrary number of such new instances i ∈ I, bounded only by the avail-
ability of unique paths (subgraphs) on the knowledge graph that fit the path(s) of
the template. The different stages are illustrated in Table 4.1, with a pair of NL
question and SPARQL forms for each stage. The examples are chosen such that
the template is derived from the seed, and the instances are both generated from
the same template. Two example instances are shown to illustrate the similarities
of instances generated from the same template.
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Table 4.1: Examples of seed, template, and instance. (NLQ stands for natural
language question.)
Seed NLQ Is Peter Piper Pizza in the pizza industry?

SPARQL ASK WHERE { <http://dbpedia.org/resource/Peter_Piper_Pizza>
<http://dbpedia.org/ontology/industry>
<http://dbpedia.org/resource/Pizza> }

Template NLQ Is <B> in the <A> industry?
SPARQL SELECT DISTINCT ?a, ?b WHERE {

?b <http://dbpedia.org/ontology/industry> ?a }

Instance 1 NLQ Is robot comics in the publishing industry?
SPARQL ASK WHERE { <http://dbpedia.org/resource/Robot_Comics>

<http://dbpedia.org/ontology/industry>
<http://dbpedia.org/resource/Publishing> }

Instance 2 NLQ Is tiger aircraft in the aerospace industry?
SPARQL ASK WHERE { <http://dbpedia.org/resource/Tiger_Aircraft>

<http://dbpedia.org/ontology/industry>
<http://dbpedia.org/resource/Aerospace> }

4.2.3 Original DBNQA

TheDBNQAdataset is providedwithout any canonical partitions [57]. Researchers
are free to randomly partition the dataset into training, validation, and testing
splits. This was done by Yin et al. [151], who reported allocating 80%-10%−10% to
the respective splits. However, their unique partitioning is not recoverable from
their paper or code repository. The present work randomly partitioned DBNQA
in the same proportions, but used specific random seeds. In order to ensure that
any differences were not due to random chance, this random partitioning was
done five times with different random seeds each time, and the resulting parti-
tions were used in Experiment 1 (see Sect.4.3.1) to separately trainmodels of each
of the three NSpM architectures discussed in Sect. 2.7.2.

4.2.4 Sanitized DBNQA

In order to investigate the question of information leakage via templates, the
train-and-test-splits partitioning of the major part of the seed dataset, LC-QuAD,
was used to coordinate a partitioning of the LC-QuAD-based templates dataset
previously used in generating DBNQA. Subsequently, the partitioned templates
were used to partition the instances dataset, DBNQA. This repartitioning is illus-
trated in the bottom half of Fig. 4.2. Templates were assigned to the template
test split Ttest ⊂ T if the NL question forms of both the seed and template were
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Table 4.2: Overview of dataset splits used in our experiments. Five different ran-
dom splits of original DBNQAwere used with these proportions. Sanitized-1 DB-
NQA and Sanitized-2 DBNQA were based on 20% and 10% test splits in the LC-
QuAD seed set, respectively.
Dataset Train Validation Test
Original DBNQA 715 600 (80.0%) 89 449 (10.0%) 89 450 (10.0%)
Sanitized-1 DBNQA 659 313 (74.8%) 73 257 (8.3%) 148 397 (16.8%)
Sanitized-2 DBNQA 726 355 (82.4%) 80 706 (9.2%) 73 906 (8.4%)

identical except where the template placeholders allow a contiguous sequence of
tokens in the seed, and if the predicates in the seed SPARQL are the same as those
in the template SPARQL. Similarly, instances were assigned to the instance test
split Itest if the NL question forms match as above, and if all the predicates in the
template SPARQL are also in the instance SPARQL, in the same order.

The datasets were also de-duplicated at each stage. The original and sani-
tized instance datasets are summarized in Table 4.2. Sanitized-1 DBNQA was
based on the canonical split of LC-QuAD into an 80% training split and a 20%
test split. Sanitized-2 DBNQA was based on a 90%-10% split of LC-QuAD. Only
after repartitioning in this systematic manner based on template matching is the
instance training split itself randomly partitioned into a 90% training split and
a 10% validation split. Thus, the test split is sanitized with respect to the train-
ing split, while the validation split is not. By evaluating trained models on both
the test split and validation split, we illustrate the information leakage via tem-
plates caused by a purely randompartitioning of an instance dataset like DBNQA.
Having thus repartitioned the instances, we trained KGQA NMTmodels as done
by Yin et al. [151], both reproducing the approach taken by Yin, et al. with the
original DBNQA partitionings described in Sect. 4.2.3, as well as on the reparti-
tioned datasets, to compare the results of training with and without information
leakage across the dataset splits.

4.3 Experiments

This section presents a series of experiments we performed on the original and
sanitized DBNQA collections, to answer our research questions. Model perfor-
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Table 4.3: Results of comparing original DBNQA and Sanitized-1 DBNQA to train
and evaluate models.

Original DBNQA Sanitized-1 DBNQA
Architecture BLEU Perplexity BLEU Perplexity

Valid. Test Valid. Test Valid. Test Valid. Test

NSpM 62.56± 0.10 62.52± 0.10 2.37± 0.01 2.37± 0.01 64.96 41.12 2.33 11.86
NSpM+Att1 79.27± 1.82 79.22± 1.77 1.58± 0.06 1.58± 0.06 85.08 54.39 1.60 7.73
NSpM+Att2 80.58± 0.95 80.53± 0.89 1.54± 0.03 1.54± 0.02 84.67 54.55 1.61 9.01

mance is evaluated in terms of the metrics BLEU [97] and perplexity [23], for
comparison with results reported by Yin et al. [151]. These measures are com-
monly used in machine translation evaluation, especially BLEU, which reflects
how well the predicted output matches with the ground truth. Perplexity reflects
the degree of surprise caused bymodel predictions compared to the ground truth.
For perplexity, unlike BLEU, a higher value representsworsemodel performance.

4.3.1 Sanitized Data Partitioning

Is the performance of trained models affected by the sanitized data partitioning?
We addressed this question with our first experiment, which compared models
trained on either the original DBNQA, or on Sanitized-1DBNQA,whichwas parti-
tionedbased on the canonical partitioning of LC-QuADas described in Sect. 4.2.4.
The original DBNQA was randomly partitioned five times with unique random
seeds but identical proportions between the splits (80% − 10% − 10%), and the
models were independently trained on each random partition. The performance
results of original DBNQA are therefore shown as the mean and ± standard de-
viation of the models across the five random partitionings. These results, listed
in Table 4.3, show that the performance of the trained models was very similar
across the test and validation splits of original DBNQA, as well as the unsanitized
validation split of Sanitized-1 DBNQA. However, the sanitized test split showed
a significant reduction in performance across all the trained models, in terms of
both BLEU and perplexity.

Is the performance of the trainedmodels with respect to the sanitized test split
dependent on the amount of training data? This would indicate whether there is
some degree of generalization from instances based on templates that have been
seen before during training, or if there is no discernible generalization at all. We
addressed this question with our second experiment, which compared the effects
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Figure 4.3: Results of comparing models trained on different fractions of the
Sanitized-1 DBNQA training split.

of different amounts of training data on the trainedmodels’ performance with re-
spect to the Sanitized-1 DBNQA validation and test splits. Although performance
increase as a function of increased training data volume is the expected behavior,
it has been shown to not always be the case in QA, such as in Chap. 3 [77]. Thus, it
is not a priori certain that the sanitized test split is similar enough to the sanitized
training split that the expected behavior occurs. This experiment verifies whether
or not what the models learn generalizes to the sanitized test split proportionally
to the volume of training data. Thus, the experiment also elucidates whether the
models are only learning to memorize the seen template patterns, or is learning
to generalize to instances from unseen templates.

4.3.2 Varying Volumes of Training Data

We trainedwith fractions of the training data used in our first experiment: 12.5%,
25%, 50%, and 100%. From the results shown in Fig. 4.3, there is a clear trend for
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Table 4.4: Results of evaluating models trained on Sanitized-2 DBNQA.
Architecture BLEU Perplexity

Validation Testing Validation Testing

NSpM 64.35 42.58 2.36 10.01
NSpM+Att1 82.87 53.09 1.59 7.33
NSpM+Att2 86.05 56.94 1.52 6.57

the models NSpM+Att1 and NSpM+Att2, where increased amounts of training
data yield improved model performance on both the sanitized test split and the
unsanitized validation split, in terms of both BLEU and perplexity. The NSpM
model, on the other hand, does not benefit as much from increased training data,
improving in termsof perplexity, but evendeteriorating slightly in termsofBLEU.
This also holds for the unsanitized validation split, and so reflects on the archi-
tecture’s ability to improve from training data, not on the sanitized partitioning.

For all models, performance is reduced by the challenge of the sanitized test
split, but where performance improves with increased training data, it does so
even on the sanitized test split.

4.3.3 Varying Size of Seed Partitions Before Sanitation

Is it possible that different partitions of the seed set can affect the degree of gen-
eralization? To address this question, in our third experiment we investigated
whether increasing the proportion of templates seen via the training instances
would translate into improved performance on the sanitized test split. We di-
vided the canonical test split of LC-QuAD in half, and added one half back into
the seed training split, before doing the sanitizing procedure, yielding Sanitized-2
DBNQA, as described in Sect. 4.2.4.

As can been seen from results shown in Table 4.4, here as in our second ex-
periment the performance of all models on the unsanitized validation split was
generally better than the performance of models trained on the original DBNQA.
Models trained on Sanitized-2 DBNQA performed similarly to models trained on
Sanitized-1 DBNQA, with some variations on the order of the standard deviations
seen for original DBNQA in Table 4.3. We note, however, that all models trained
on Sanitized-2 DBNQA performed better in terms of perplexity with respect to
the sanitized test split.
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4.4 Summary

As we have seen from the datasets presented in Sect. 2.5, there is a trend to-
wards satisfying an important desideratum of machine learning generally, and
deep learning in particular: (i) a large-scale training dataset of such quality and
variety that it allows the model to observe and learn to predict patterns when
presented new data from the same distribution. However, there is an important
second desideratum: (ii) a test set that comprises data from the same distribution
but which is novel enough to the model so that model performance is due to the
model learning the underlying dynamics of the data, rather than memorizing a
finite set of patterns.

In the present work, we have questioned whether DBNQA as used in previous
work [151] satisfies (ii). Our hypothesis is that there is a leakage of information
between the DBNQA training split on the one hand and the validation and test
splits on the other, as used by Yin et al. [151]. We argue that Yin et al. [151] have
sacrificed (ii) in favor of (i), while in this chapterwe considered the other extreme,
where (i) is sacrificed in favor of (ii). For future work, we speculate, is there a
middle ground that can be reliably found?

In our experiments, we first showed in Sect. 4.3.1 that there is indeed a large
difference in performance on the test split of our sanitized DBNQA partitioning,
compared to the validation split, which is randomly partitioned in a template-
naive manner. From our second experiment in Sect. 4.3.2, we showed that for
models that improve with increased volumes of training data, that improvement
also generalizes to the sanitized test split. Finally, in our third experiment in
Sect. 4.3.3, the models trained on Sanitized-2 DBNQA showed some tendency to
improve performance on both validation and test split, indicating generalization
from seen to unseen templates.

Our results raise a set of interesting questions around training models with
synthetic data using fair conditions. These are questions raised by the present
study that may be the subject for future work: How well do these findings gen-
eralize to other model families than those tested here? Of particular interest are
the architectures of ConvS2S [50], Transformer [140], and BERT [35]. Can the
distinction between memorization and generalized learning be precisely charac-
terized? How can synthetically generated training data be structured to promote
learning dynamics (e.g., of a formal syntax) rather a finite set of fixed patterns?
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For template-based synthetic data generation, what should be the relationship
between training and test splits to fairly evaluate the performance of trainedmod-
els?

In summary, we have shown that several NMT-based neural KGQA systems
have reducedperformance on instances generated from templateswhere themod-
els saw no instances generated from those templates during training. At the same
time, the performance on instances from such unseen templates did show im-
provement from increased training data, indicating that some models were able
to generalize better with more training data.

We have shown that a significant part of performance in these models as re-
ported by Yin et al. [151]may largely be attributed to themodels learning to recog-
nize the underlying patterns of specific templates from which were generated the
instances seen during training. In contrast, the ideal NMT KGQA system would
learn the underlying syntaxes of the source and target languages and handle un-
seen patterns according to implicit principles.

57



58



Chapter 5

Data Quality and Question
Naturalness

Datasets used to train KGQA models that would provide such a service are ex-
pensive to construct, both in terms of expert and crowdsourced labor. Typically,
crowdsourced labor is used to improve template-based pseudo-natural questions
generated from formal queries. However, the resulting datasets often fall short
of representing genuinely natural and fluent language.

In this chapter, we therefore investigate ourmain research question of howwe
can ensure or enhance NL question naturalness (RQ 3). To address this in turn
we consider subquestions regarding: whether NL questions in existing KGQA
datasets can be considered as natural (RQ 3.1), what characterizes a high quality
NLquestion (RQ3.2), and howKGQAmodel performance fares against genuinely
natural questions (RQ 3.3).

To characterize and remedy these shortcomings of the commonKGQAdataset
construction approach, we create the IQN-KGQA test collection by first sampling
questions from existing KGQA datasets and evaluating them with regards to five
different aspects of naturalness. Then, the questions are rewritten to improve
their fluency. Finally, the performance of existing KGQA models is compared on
the original and rewritten versions of the NL questions.
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5.1 Motivation

KnowledgeGraphQuestionAnswering (KGQA) is an approach to answeringusers’
questions that both harnesses structured data in the form of knowledge graphs
(KGs) and also allows the user to articulate their information need in natural lan-
guage (NL). Training machine learning models for KGQA requires large-scale
datasets specific to the KGQA task. Most commonly, such datasets consist of
instances that each comprises a formal query (also known as logic form) and a
corresponding NL question [72].

In order to construct large KGQA datasets, the work is typically divided into
expert and non-expert subtasks which are then assigned to different people. This
makes sense economically, but the resulting dataset may have qualitative short-
comings as a result. The formal query is typically constructed by experts or gen-
erated synthetically, while the NL questions are typically added by crowdsourced
labor tasked with paraphrasing some generated pseudo-natural form of the cor-
responding formal query [143]. The NL question is thus typically not formulated
by the same person who devised the formal query. Critically, this decouples the
intent of the formal query from the NL question meant to express that intent.
In addition, in large-scale dataset construction, the data is often back-generated
from formal queries, that is, the formal query is generated based on available data,
and the corresponding NL question is created afterwards. An individual working
with a KG for practical reasons would first develop an information need, which
may or may not be first expressed as an NL question, and only then construct a
formal query to represent that information need. The crowd worker is also not
guaranteed to be completely fluent in the specific language that is used in the
dataset being constructed. Furthermore, even so-called open-domain KGQA typ-
ically consists of questions in a variety of specific domains. If the crowd worker is
unfamiliar with this domain, they may not be able to apply the appropriate word-
ing for the underlying domain and categories. We therefore hypothesize that this
approach to KGQA dataset construction does not ensure genuinely natural NL
questions.

InTable 5.1wehave listed five example questions sampled fromexistingKGQA
datasets, each in their original form and in a rewritten form, generated by addi-
tional rounds of crowdsourced paraphrasing and quality control. These are all
examples where a KGQA model trained on the original dataset performed per-
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Table 5.1: Example questions, each rewritten by crowd workers as amore natural
way to express the original question.
Original question Rewritten question
From DBNQA [57]. From IQN-KGQA [79] (our work).

List the territory of romanian war of
independence ?

What territory was involved in the
Romanian War of Independence?

Name the nearest city to la laguna lake ? What is the nearest city to La Laguna Lake?
What is the government type of wallis and futuna ? What type of government does Wallis and Futuna

have?
What is the origin of faberrebe? What is the origin of the faberrebe grape?
What is the total number of writers whose singles
are recorded in ferndale?

How many writers had singles recorded in
Ferndale?

fectly on the original question, but completely failed on the rewritten question.
This illustrates that some KGQA systems trained on less natural NL questions
are not able to address a more naturally phrased version of the same question.

From a machine learning perspective, it is unsurprising that test data from
a different distribution than training data may be challenging. However, as the
rewritten questions in Table 5.1 illustrate, the KGQA models are failing on more
naturally articulated questions. This calls into question whether KGQA mod-
els are really learning to perform their nominal task. We investigate how NL
questions in KGQA datasets can be considered unnatural, and develop a coding
scheme for dimensions of unnaturalness. We determine five dimensions of un-
naturalness in NL questions: grammar, form, meaning, answerability, and factu-
ality.

Next, we use our coding scheme in a crowdsourcing context to characterize
original NL questions and collect rewritten forms of these NL questions, which
are included in our test collection, IQN-KGQA.We sample 250NLquestions from
each of three benchmark KGQA datasets: DBNQA [57], LC-QuAD v2.0 [43], and
GrailQA [53].

To develop truly effective KGQA systems requires an appreciation of howwell
these systems fare against realistic questions formulated in genuinely natural
language. We apply KGQA models to the original and rewritten questions and
see how improved naturalness challenges existing systems. We find that perfor-
mance drops up to 78%when KGQAmodels are challenged with the set of rewrit-
ten questions.
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5.2 Preliminary Analysis

Larger KGQA datasets typically rely on crowdsourcing for generating NL ques-
tions from synthetically generated formal queries. We hypothesize that scaling
up a KGQA dataset by relying heavily on these two distinct modes comes at the
expense of NL question quality, and that the original NL questions may not al-
ways be genuinely natural NL questions. To investigate unnaturalness in the NL
questions of existing KGQA datasets, we begin by testing that hypothesis on a
small sample of instances using expert annotators.

We select three KGQA datasets to sample NL questions from. We choose
KGQAdatasets that are recent, large, have complex questions and formal queries.
We also choose the datasets so that all of the most common KGs are represented
in the formal query bindings. Specifically, we consider the datasetsDBNQA∗ [78],
LC-QuAD v2.0 [43], and GrailQA [53]. We then randomly sample 25 NL ques-
tions from each of these datasets. Specifically, the 25 NL questions are respec-
tively sampled from the entire DBNQA∗ dataset, and from the train splits of LC-
QuAD v2.0 and GrailQA.

Following the approaches of Arguello et al. [11] and Jørgensen and Bogers
[65], we perform an open coding pass to collect impressions on how the NL ques-
tions fall short of being “natural.” Three academic researchers are presented each
NL question and asked to (i) judge whether or not the question is natural, (ii) pro-
duce a (more) natural paraphrase of the question, and (iii) comment on the NL
question and suggest any tags or categories regarding “why and how the ques-
tion is or is not natural.” The first author of [79] then collates the responses, and
the comments and categories are harmonized into a consistent coding scheme of
tags by the first author. Both authors of [79] review the extracted tags and discuss
common themes across tags. The tags are then organized into the five dimensions
of unnaturalness illustrated along with NL question examples in Table 5.2. We
note that the examples in the table may exhibit more than one of the properties
that exemplify a given tag or dimension of unnaturalness.

5.3 Data Annotation

Having defined codes to characterize question unnaturalness in KGQA datasets,
we next design a protocol for larger-scale data labeling using a two-step crowd-
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Table 5.2: Dimensions of question unnaturalness
Dimension Tag Example

Grammar Grammatical errors Which is {godmother} of {Camillo Benso di Cavour}, whose {craft}
is {politician} ?

Poor flow/word
ordering

Who lives in Anita Bryant whose arrondissement is Pittsburg
County?

Non-idiomatic What is character role of Turandot ?

Form Quizlike astronaut gerhard thiele is associated with which space agency?
Imperative find beaufort wind force whose wave height is 0.1
Inconcise Which is the regression analysis that is used by the logistic regres-

sion analysis and contains the word logistic in it’s name?

Meaning Inconsistent
domains/categories

Was 6063 jason invented in eugene merle shoemaker

Overly specific Which university attended by arturo macapagal was also the alma
mater of hector tarrazona ?

Redundant constraint What is the death place of the étienne pélabon and is the birthplace
of the abeille de perrin?

Answerability Under-constrained which organism was born on 1926-06?
Nonsense/
Unintelligible

what routed drug that amarketed formulation that has a reference
form of neurontin 250 solution?

Factuality Two questions Who was married to Faye Dunaway and when did it end?
Descriptive answer
expected

What is a crescent?

sourcing pipeline. Crowd workers are first asked to annotate and paraphrase the
sampled NL questions. Then, in a separate task, a different set of workers is em-
ployed to select the best version of a question from a set, including the original
formulations as well as rewritten questions from the first task.

We sample a new set of NL questions, this time 250NL questions from each of
the three datasets. Specifically, we randomly sample the NL questions from the
test split of DBNQA∗ and LC-QuAD v2.0, but from the validation split of GrailQA,
since for the latter, the public test split does not include ground truth answers.
The resulting test collection is termed IQN-KGQAand is summarized inTable 5.3.

5.3.1 Crowdsourcing: Platform andWorkers

Our data annotation was conducted on the Amazon Mechanical Turk platform.
For both tasks, workers were required to have a HIT approval rate of 98% with
more than 1000 approvals. The payments were set to USD $0.30 and $0.15, re-
spectively, based on the estimated effort demanded for each task.

Crowd workers were not required to have domain knowledge, based on the
findings of Dubey et al. [43]. Since only open-domain KGQA datasets are used in
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Table 5.3: Summary of the IQN-KGQA collection.
Subset Split #Questions #Rewritten
DBNQA∗ test 250 180
LC-QuAD v2.0 test 250 150
GrailQA validation 250 211

Total 750 541

this chapter, the annotation tasks are designed to rely on common sense and En-
glish language knowledge primarily. For example, the prompt for the Likert scale
“answerablility” is the question “Would you be able to answer this question with
the help of a search engine orWikipedia?” In other words, the data annotation re-
lies on metacognition with respect to an NL question rather than actually finding
some answer. Identifying crowd workers with comparable levels of expertise in
specific domains prior to data annotation would present a major additional cost.
Also, those workers would not necessarily be representative of the general user
population whose information needs KGQA datasets aim to capture.

5.3.2 Task 1: Annotate and Rewrite

In the first task, the crowdworkers are given one of the sampledNLquestions (the
target question) and are asked to rate the question in terms of the five dimensions
of unnaturalness. For each dimension, the question is rated on a Likert scale.
Next, the crowdworkers are asked to rewrite the question, to “write a better, more
natural and correct version” of the question. Finally, the crowdworkers are asked
to indicate if they rewrote the question, and if not what the reason was, including
a free text field to elaborate on any “other” reason for not rewriting.

The instruction for this task is shown in Fig. 5.1, with examples of the Likert
scales in Figs. 5.2 and 5.3. Examples for the question rewriting part of the task
are shown in Fig. 5.4, along with examples of cases where for the given reasons a
target question could not be rewritten. The form used by crowd workers in Task
1 is shown in Fig. 5.5 and Fig. 5.6.

The responses from crowdworkers are then quality controlled, and responses
which overtly demonstrate a lack of genuine effort are entirely removed. Criteria
for this exclusion include indicating that a question was rewritten but providing
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Figure 5.1: Instructions for crowd workers performing data annotation Task 1.

Figure 5.2: Likert scale examples presented to crowd workers performing data
annotation Task 1. Continues in Fig. 5.3.
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Figure 5.3: Likert scale examples presented to crowd workers performing data
annotation Task 1. Continued from Fig. 5.2.
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Figure 5.4: Question rewriting examples presented to crowd workers performing
data annotation Task 1. Continued from Fig. 5.3.

no paraphrase, writing a short comment like “good” instead of a question, or else
copy-pasting parts of the instructions into the rewrite field.

Whenever crowdsourced responses are excluded, additional responses are re-
quested, so that every sampled NL question is annotated (and potentially rewrit-
ten) with acceptable responses by at least three different crowd workers.

The results of the Likert scale ratings are shown in Fig. 5.7. The scales are
oriented so that the farther to the right the scale lies, the more natural the ques-
tions are considered by the crowd workers. The differences between the rows
are intuitive since the rows group the responses in terms of the reason given for
whether the original question has been rewritten or not. Specifically, the middle
row reflects responses where the crowd worker deems the original question to be
“already perfect” and hence abstains from rewriting the question. This is also the
row with the highest ratings over all five Likert scales.

The bottom two rows also show a consistency between the Likert scale ratings
and the reason given why the original question was not rewritten. However, here
the ratings are mostly negative compared to the distribution over all responses.
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Figure 5.5: Data annotation form presented to crowd workers performing data
annotation Task 1. Continues in Fig. 5.6.
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Figure 5.6: Data annotation form presented to crowd workers performing data
annotation Task 1. Continued from Fig. 5.5.
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Figure 5.7: Likert scale rating results on all NL questions (Top), on questions
which were rewritten (Second row), on questions which were not rewritten be-
cause the original question was “already perfect” (Middle), on questions which
were “unclear” (Fourth row), and on questions which were not rewritten for an-
other reason (Bottom), broken down per dataset (columns).
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The bottom two rows’ ratings are also negative compared to the second and mid-
dle rows from the top, which reflect the original question having been rewritten
or being “already perfect.” One interesting exception is that the Likert scale “fac-
tuality” is rated highly even in the bottom two rows of Fig. 5.7. It is possible that
the distinction was not made clear to the crowd workers between whether a ques-
tion indicates a very terse and factual answer or a longer, more descriptive one.
Alternatively, it may be possible for a question to clearly indicate that its proper
answer is factual, but that what is asked is so unclear that the question cannot be
improved.

Overall, the consistency of ratings across the five Likert scales over the 750
sampled NL questions as rated in the approved crowdsourced responses is calcu-
lated as Cronbach’s α = 0.707, which is designated as “acceptable.”

5.3.3 Task 2: Validate and Vote

We then use the rewritten questions from the previous task to establish which
version of an NL question is the better formulation. For every original question
where at least one rewrite was provided by crowd workers in Task 1, we take the
original question and up to three rewrites, shuffle the order, and ask a different
set of crowd workers to choose which version of the question is the best way of
asking. Both the instruction and examples are illustrated in Fig. 5.8, while Fig. 5.9
shows the simple form for this task.

For this task, since the response type is very simple and if less than three
rewritten questions were generated there is always at least one non-option which
the crowd worker technically can choose, quality control consists of removing re-
sponses from crowd workers who repeatedly choose non-options.

Each question and its rewrites are validated by at least three crowd workers.
If the Task 2 result is a clearmajority for any specific version of the question, then
that is the question carried forward into the rewritten questions test collection.
If there is not a clear majority given a set of original question and its rewrites,
two more crowd worker validations are requested until a majority vote emerges.
The distribution of responses is displayed in Fig. 5.10, while the number of crowd
worker responses required to reach a majority is shown in Fig. 5.11. In total, 541
of the 750 questions are rewritten in the new collection; see Table 5.3 for a break-
down on specific subsets.
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Figure 5.8: Instructions and examples presented to crowd workers performing
data annotation Task 2.

Figure 5.9: The form presented to crowd workers performing data annotation
Task 2.
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Figure 5.10: Histogram of frequencies over whether a rewritten question was
provided (“rewritten”) or otherwise reasons given for not rewriting (the original
question was “already perfect” or “unclear,” or else some “other” reason).
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Figure 5.11: Histogram of frequencies over how many votes were required to de-
termine a majority in favour of one version of the original or rewritten question.

5.4 Experiments

We comparemodel performance on the original versus rewritten NL questions in
our samples. Specifically, weuseneuralKGQAmodels trained on theDBNQA∗ [78]
and GrailQA [53] datasets.1 The question we seek to answer is how quality im-
provements on the inputNLquestions impact the answer prediction effectiveness

1Since we could not find papers with open source code addressing LC-QuAD v2.0 and there are
still no models on the corresponding leaderboard, this dataset is not included in our experiments.
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of the models (RQ 3.3).

5.4.1 Experimental Setup

For each of theKGQAdatasets, the underlyingKG is provided by aVirtuoso triple-
store instance. For DBNQA∗, DBpedia 2016 is the KG used to execute formal
queries to retrieve answers. For GrailQA, Freebase is served as the KG, following
the instructions provided by Gu et al. [53].2 This includes using their processed
version of Freebase to make it fully compatible with the relevant Resource De-
scription Framework (RDF) standard.

TheGrailQAmodels rely on entity linking, which is provided for the full GrailQA
validation split. In order to compare the original and rewritten question sam-
ples under equivalent conditions, the rewritten questions are identified with the
original questions’ query ID to apply the same entity linking to the rewritten NL
question.

5.4.2 Methods

We use seven different neural KGQA methods to test the effect of rewritten NL
questions on KGQA performance. These are sequence-to-sequence neural mod-
els with an encoder-decoder motif, where all but one are used to generate the for-
mal query as a sequence of tokens. The exception is Ranking+BERT [53], where
a neural model is used as a ranker to rank generated candidate formal queries.

Three methods are variations of the Neural Sparql Machine (NSpM) [124,
125, 151] architecture, including the NSpM, NSpM+Att1, and NSpM+Att2 mod-
els. They are all based on Tensorflow NMT. NSpM+Att1 features a normed Bah-
danau [14] attention mechanism, while NSpM+Att2 uses a scaled Luong [83] at-
tention mechanism. All three NSpM models are specified with 2 layers and a
dropout coefficient of 0.2. They are also all trained for 50,000 training steps.

Two methods, ConvS2S [50] and Transformer [140], are adapted from ma-
chine translation between natural languages to semantic parsing for KGQA. We
rely on the sequence-to-sequence model implementations in Pytorch.3 To bet-
ter support the models, the both NL and formal query data is pre-processed with

2https://github.com/dki-lab/Freebase-Setup
3https://github.com/bentrevett/pytorch-seq2seq/
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sub-word tokenization, specifically Byte Pair Encoding (BPE) [116] using Senten-
cepiece.4 The other hyperparameters for ConvS2S and Transformer are kept as
default, except notably the training data is not shuffled between epochs during
training, and the models are trained in a case-sensitive manner.

The five models mentioned thus far are all trained on the training split of
DBNQA∗, which has been shuffled. The models predict formal queries from the
NL questions in the full test split of DBNQA∗, as well as the original sample of
250 NL questions from the test split, and the rewritten NL questions of the same
sample.

Next, we use the methods using a pre-trainedmodel based on BERT [35] pro-
vided by Gu et al. [53].5 Specifically, the model is an LSTM-based sequence-
to-sequence which uses uncased base-BERT for encoding, and is fine-tuned on
GrailQA train split. The Transduction+BERT method uses this model for gener-
ating a formal query in an auto-regressive manner. In contrast, Ranking+BERT
uses this model to rank candidate formal queries.

5.5 Results and Analysis

With the methods described above, we achieve the KGQA performance results
listed in Table 5.4. We use two performance measures, Exact Match (EM) and
F1, to quantify effectiveness. Exact match compares the predicted formal query
to the ground truth formal query. For DBNQA∗, EM is 1.0 for an instance if and
only if the two strings are identical. Meanwhile, using the provided evaluation
script with GrailQA [53], the predicted and ground truth formal queries are both
converted to query graphs and are considered as exactly matching if the graphs
are isomorphic. The F1measure is based on the precision and recall of comparing
answer sets. For the KGQA models evaluated on DBNQA∗, if both the ground
truth answer and the predicted answer are empty sets, the score for an instance
is 1.0. This follows the example of Usbeck et al. [137].

InTable 5.4, we observe that the original questions in our sample (IQN-KGQA)
may differ in terms of mean performance when compared to the full subset from
which the samplewas taken. Thedifference canbe either either lower (e.g., Trans-
former) or higher (e.g., ConvS2S) on the sample than on the full subset. However,

4https://github.com/google/sentencepiece
5https://github.com/dki-lab/GrailQA/
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Table 5.4: Results on the DBNQA∗ (testing split) and GrailQA (validation split)
datasets. The full subset refers to the original benchmarks and is included for ref-
erence. The IQN-KGQA dataset contains a sample of 250 questions per dataset.
Performance is reported on the original questions in the sample aswell as on their
rewritten variant with improved naturalness. Significance is tested between the
rewritten and original questions.
Dataset Method Full subset IQN-KGQA

Original questions Original questions Rewritten questions
EM F1 EM F1 EM F1

DBNQA∗ NSpM 0.000 0.013 0.000 0.020 0.004 0.016
NSpM+Att1 0.081 0.119 0.085 0.105 0.033† 0.050†
NSpM+Att2 0.089 0.132 0.081 0.117 0.028† 0.050‡
ConvS2S 0.091 0.138 0.121 0.152 0.036‡ 0.048‡
Transformer 0.177 0.260 0.166 0.254 0.036‡ 0.067‡

GrailQA Ranking+BERT 0.510 0.583 0.452 0.540 0.372 0.452†
Transduction+BERT 0.337 0.364 0.296 0.339 0.208† 0.251†

performance on original questions are of the same magnitude for both the full
subset and sample across all methods. This holds true for both DBNQA∗-test and
GrailQA-dev.

In contrast, performance is reduced drastically when predicting on the rewrit-
ten questions. The three methods with the highest performance overall, Trans-
former, Ranking+BERT, and Transduction+BERT, all show that performance in
both EM and F1 is reduced by a large fraction (up to 78%) when predicting on the
rewritten questions compared to predicting on the original questions. This trend
is also followed by the NSpM+Att2 results, while the remaining models, NSpM,
NSpM+Att1, and ConvS2S all show some deviations. These models achieve a
higher performance in one or both measures on the sampled original questions
compared to the full DBNQA∗-test split. Excepting the NSpM, however, perfor-
mance in both measures is less when predicting on the rewritten questions than
the original questions.

We indicate statistical significance in Table 5.4 on the performance of the
rewritten questions sample compared to the original questions sample for each
KGQA model. A single dagger (†) indicates that the p-value was below α = 0.05,
while a double dagger (‡) indicates that the p-value was less than the Bonferroni-
corrected threshold of α

7 based on the seven comparisons made for each depen-
dent variable.
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5.6 Discussion

This chapter addresses data quality and collects improved formulations of NL
questions, to yield the IQN-KGQA test collection. We reflect on the data collection
process, discuss possible uses of our test collection, and identify limitations.

5.6.1 Data Collection

We have followed a similar procedure as the crowdsourced paraphrasing and
cross-validation used in the construction of several large-scale KGQAdatasets de-
scribed in Sect. 2.5. Unlike the reported crowdsourcing of prior datasets, we have
involved the crowd workers in a consideration of language quality and question
naturalness, by soliciting ratings on the five unnaturalness dimensions, imme-
diately prior to paraphrasing an original NL question. The Likert ratings them-
selves provide a perspective into how crowdworkers seeNL questions that should
be rewritten compared to those that should not or cannot be rewritten.

Amajority of sampled NL questions weremarked by some of the crowd work-
ers as needing rewriting. Furthermore, during the second crowdsourced task, we
see that the formost rewritten questions, the preferred version emerges quickly—
in most cases with 3–5 votes. The resulting test collection has a majority (541 of
750) of its NL questions rewritten from their original form. This indicates that
crowd workers have found room for improvement even after the initial para-
phrasing and cross-validation undertaken in the original KGQA datasets’ con-
struction. This proportion of question rewrites also indicates that all three KGQA
datasets can benefit in terms of question naturalness from extensive NL question
rewriting.

5.6.2 Utilization

This chapter describes a process of improving NL questions for KGQA datasets.
This shows the value of additional rounds of rewriting and quality control when
creating NL questions via crowdsourcing. However, the reduced performance of
KGQAmodels on the sample with rewritten NL questions also calls into question
the overall approach of relying heavily on crowdsourcing for large scale KGQA
dataset construction.
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Weencourage other researchers to report their performance onour IQN-KGQA
test collection as well as the test splits of the KGQA datasets on which they train
their models. This will serve to keep the true KGQA performance in perspec-
tive. The reduced performance caused by rewritten NL questions illustrates that
KGQAmodels are effectively overfitting on their datasets and do not generalize to
natural question formulations. Our IQN-KGQA collection can be used to guard
against this.

Our crowdsourcing designs can be utilized in future large-scale KGQA dataset
construction efforts. The numerical ratings on the various dimensions of unnatu-
ralness (in Task 1)may be used as quality control. Our collection could also be uti-
lized for automatic question rewriting using, e.g., for fine-tuning large language
models, to generate question paraphrases to contribute to the pool of options that
crowd workers can vote on (as in Task 2).

5.6.3 Limitations

We tried to simplify quality control of crowdsourcing by having some heuristics
about what constituted a reasonable effort of rewrites, but these filters were per-
haps not sufficient. There are examples where the crowdsourced rewriting and
validation seem to fail to improve the NL question that is rewritten. For exam-
ple, the original question “Which pastmembers of the labelle also sang somebody
loves you baby (Blackstreet &Ma song)?” was voted down in favor of the rewritten
question “What song is Patti LaBelle famous for ?”

Our test collection is of small scale, yet has been relatively expensive to pro-
duce, on the order of US$1000. Although crowdsourcing labor may be an eco-
nomic way to scale up data annotation, there remains a question of how involved
the manual quality control should be from the researchers’ side.

5.7 Summary

We have investigated the dimensions of unnaturalness in the nominally natural
language questions found in several modern large-scale knowledge graph ques-
tion answering (KGQA)datasets. Specifically, wehave developed a coding scheme
to evaluate the naturalness of NL questions. We have also used crowdsourcing to
rewrite such NL questions in KGQA datasets to be more genuinely natural. By
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combining language quality evaluation with NL question rewriting, we have at-
tempted to prime crowd workers with attention towards language quality. From
these rewrittenNL questions, we have created the IQN-KGQA test collection with
grounding in each of the three major knowledge graphs (KGs) addressed in pre-
vious KGQA research: DBpedia, Freebase, andWikidata. This test collection can
put KGQAperformance in amore realistic perspective compared to testing KGQA
systems on validation and test splits created with the exact same procedure as the
training split. We have experimentally shown the impact of our test collection on
the performance of KGQA models compared to performance on the correspond-
ing sample of original NL questions and found that model performance deterio-
rated substantially when a more natural formulation of the same questions was
provided. This suggests that existing models do not generalize well to genuinely
natural questions. This chapter represents an initial effort to better understand
ways to improve the naturalness of NL questions for KGQA and to ensure that
KGQA performance is evaluated with genuinely natural questions.
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Chapter 6

Grounded Evaluation
Measures

This chapter focuses on the SP-KGQA task, which consists of mapping a natu-
ral language (NL) question to a formal query that is machine executable, such as
SPARQL. The SP-KGQA task is currently evaluated by adopting evaluation mea-
sures from other tasks, such as information retrieval and machine translation.
However, this adoption typically occurs without fully considering the desired be-
havior of SP-KGQA systems. This leads to ourmain research question about what
constitutes appropriate SP-KGQA evaluationmeasures (RQ 4), which boils down
to a series of subquestions: the shortcomings of established measures (RQ 4.1),
the axioms that SP-KGQA evaluation measures should satisfy (RQ 4.2), and the
formally grounded evaluationmeasures thatmight be constructed to satisfy those
axioms (RQ 4.3). To address these research questions, in this chapter we articu-
late task-specific desiderata, then develop novel SP-KGQA measures based on a
probabilistic framework. We use the desiderata to formulate a set of axioms for
SP-KGQA measures and conduct an axiomatic analysis that reveals insufficien-
cies of established measures previously used to report SP-KGQA performance.
We also perform experimental evaluations, using synthetic and state-of-the-art
neural machine translation approaches. The results highlight the importance of
grounded alternative SP-KGQA measures.
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6.1 Motivation

The reported evaluation measures in KGQA research are often repurposed from
other tasks, like machine translation and ad hoc retrieval [29, 72], as detailed in
Sect. 2.6.1. When the interpretability of predictions is of interest, i.e., SP-KGQA, it
is not clear that straightforward adoption of measures established for other tasks
is appropriate. In fact, SP-KGQA evaluation has been an undeservedly neglected
field of research.

In order to capture the performance quality of SP-KGQA systems there is a
need for a theoretically grounded analysis which is currently missing in the field.
Axiomatic analysis has been a productivemethodology to investigate and develop
evaluation measures [3, 5, 6, 8, 9, 25, 45–48, 113, 114], as detailed in Sect. 2.6.2.
In the present work, we therefore make an initial effort to apply the axiomatic
approach to developing formally grounded evaluation measures for SP-KGQA.

Research in SP-KGQA is increasingly oriented towards neural machine trans-
lation (NMT) architectures [42, 125, 151], and the reported results are promising.
We therefore further limit our scope to focus on state-of-the-art NMT methods
in our experimental evaluation, noting that the proposed measures are neverthe-
less applicable to all SP-KGQA systems. The scope of NMT systems is chosen as
a tractable and sufficient experimental scope where state-of-the-art performance
from previous work with open-source codebases can be reproduced on a complex
KGQA dataset.

We begin by describing the desiderata of the SP-KGQA task. Using these
desiderata, we derive a probabilistic framework for novel evaluation measures
that combines desideratum-specific component measures into compound mea-
sures that by construction address all task desiderata. We also describe a number
of specific componentmeasures, and specific instantiations of the framework, i.e.,
novel compound measures.

We next postulate axioms for SP-KGQA measures on the basis of the task
desiderata. With this theoretical basis, we perform an axiomatic analysis on es-
tablished measures, as well as novel proposed measures. This analysis reveals
that all the established measures used to evaluate SP-KGQA in previous work
have critical shortcomings with respect to properly evaluating this task, as estab-
lished measures can only partially satisfy the axioms.

To validate the framework itself and the novelmeasures, we performan exper-

82



imental evaluation using both synthetic (ground truth degraded in a controlled
manner) and state-of-the-art NMT SP-KGQA models. We find that important
differences between NMT architectures for SP-KGQA are obscured by evaluat-
ing with individual established measures. Our proposed measures provide the
necessary instrumentation to conduct a balanced re-evaluation.

6.2 Measurement Framework

We begin by defining the SP-KGQA task and associated desiderata in Sect. 6.2.1.
On this basis, we derive a probabilistic framework to express an ideal SP-KGQA
measure in Sect. 6.2.2. We next develop component measures in Sect. 6.2.3 and
present some possible compound measures in Sect. 6.2.4.

6.2.1 Desiderata of the Semantic Parsing KGQA Task

The task of SP-KGQA is, given some natural language (NL) question q, to pro-
duce a corresponding formal query f that when executed on knowledge graph
K will return the correct answer a to the question. We denote the result of this
query execution as rK(f) = a. If the formal query is syntactically incorrect, at-
tempted execution returns an error, rK(f) = ϵ. Conversely, if the formal query
is well-formed but returns no entities or values, we denote this as rK(f) = ∅. In
the present work we only address NL questions that can be correctly represented
as a KG formal query, e.g., factual questions with semantic support in the KG. In
the context of a specific K then, for an NL question q there exists a correspond-
ing ground truth formal query f∗ that represents the NL question in a structured
manner (i.e., as a logical form), which when executed returns the ground truth
answer, rK(f∗) = a∗.

According to Chakraborty et al. [29], a correct formal query f produced by
SP-KGQAmust both correctly represent the meaning of q, and return the correct
answer a corresponding to q when f is executed on the KG. We write f sem≡ f∗ to
denote semantic equivalence between a predicted formal query f and the ground
truth formal query f∗ (acknowledging that f may be semantically equivalent to
f∗ without being verbatim identical). As a simple example, a fact x parentOf
y is semantically equivalent to the fact y childOf x. Another example of se-
mantic equivalence is that the ordering of triple patterns in the WHERE-clause of
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a SPARQL query can be reordered without changing the meaning or effect of the
formal query:

SELECT ?person WHERE { ?person childOf ?parent
. ?parent childOf Albert_Einstein }

is semantically equivalent to

SELECT ?person WHERE { ?parent childOf Albert_Einstein
. ?person childOf ?parent }

and both these formal queries represent the NL question “Who are the grandchil-
dren of Albert Einstein?”

Note that retrieving the correct answer requires the formal query to be syn-
tactically correct. We therefore also make the executability requirement explicit
in postulating the following desiderata:

D1 Semantic representation (or semantic structure in [29]): f correctly repre-
sents the meaning of q. Formally: f sem≡ f∗.

D2 Syntax correctness: f is well-formed under the formal query language and
does not return an error ϵ when executed on K. Formally: rK(f) ̸= ϵ.

D3 Answer correctness: f when executed on K retrieves the correct answer a.
Formally: rK(f) = rK(f

∗) = a∗.

An imperfect system could satisfy some but not all these desiderata. For example,
if the NL question is “What country has the highest GDP in the world?”, then
a good system would retrieve the answer “USA.” If a system retrieves the same
answer by a formal query that represents the meaning of a different NL question,
such as “What country has a flag known as the Stars and Stripes?”, this would
be better than getting the wrong answer, but not as good as getting the correct
answer with the correct formal query.

We want correct answers, but a reliable and trustworthy system must get the
correct answers for the correct reasons. Thus, syntax correctness reflects whether
the formal query is well-formed, and hence executable, while semantic represen-
tation reflects how well the meaning of the NL question is reflected in the formal
query.
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As a more explicit example from our dataset and experiments, we can com-
pare a ground truth formal query with a spurious predicted formal query that il-
lustrates the same point: The NL question is “Did justinmadden study at the aus-
tralian catholic university university? [sic]” and the ground truth formal query is

ASK WHERE { dbr:Justin_Madden dbp:university
dbr:Australian_Catholic_University }

but the model predicts the formal query

ASK WHERE { dbr:Justin_Madden dbo:almaMater ?uri . }

which represents a differentNLquestion, “Did JustinMaddenhave an almamater?”
However, the answers to the ground truth and predicted formal queries are iden-
tical: True. This illustrates howmeasuring task performance only with respect to
one desideratum could give a misleading impression, either overestimating the
quality of predictions or neglecting the merits of imperfect performance.

6.2.2 Probabilistic Framework

Given that the SP-KGQA task has several desiderata which might not all be ful-
filled simultaneously, an evaluation measure for SP-KGQA should ideally take
each of the three desiderata into account. Furthermore, we would like to be able
to quantify partial success with respect to each desideratum. Therefore, the mea-
sure of each desideratummay be expressed as a probability of how plausible [64]
the prediction is, given the evidence. Here, the prediction comprises both the pre-
dicted formal query and answer, while the evidence referenced is the ground truth
formal query and answer. We denote the overall correctness of the SP-KGQApre-
diction as the probabilistic expression P (C = 1|q, f, f∗).

Here C is a binary random variable denoting correctness with respect to all
desiderata, C = D1 ∧ D2 ∧ D3, where Di is the binary random variable corre-
sponding to desideratum Di. For binary random variableX ∈ {0, 1}, we simplify
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the probability notation as P (X = 1) = P (X). We then express P (C|q, f, f∗) as:

P (C|q, f, f∗) = P (D1 ∧D2 ∧D3 | q, f, f∗) (6.1)

= P (D1|q, f, f∗)P (D2 ∧D3|q, f, f∗) (6.2)

= P (D1|q, f, f∗)P (D2|q, f, f∗)P (D3|D2, q, f, f
∗) (6.3)

= P (D1|f, f∗)P
(
D2|rK(f)

)
P
(
D3|D2, rK(f), rK(f

∗)
)

(6.4)

Starting fromEq. (6.1) wemake the assumption that D1 is independent both from
D2 and from D3, and get Eq. (6.2). This assumption is made because predicted
formal queries can represent relevant semantic and structural aspects of the NL
question, even if other desiderata are not well satisfied. As stated, if the predicted
formal query is not executable, there can be no answers, much less correct an-
swers. Therefore, D3 is conditionally dependent on D2. In contrast, it is perfectly
possible for a predicted formal query to have correct syntax without returning the
ground truth answer. Therefore D2 is conditionally independent from D3. This
yields Eq. (6.3) from Eq. (6.2). Finally, in Eq. (6.4) we express each component
in terms of the input variables immediately relevant to them.

Equation (6.4) presents a general framework, based on which one can instan-
tiate specific compound measures, by setting the different components. Note
that the instantiated compound measure does not need to be strictly probabilis-
tic; since component measures are multiplied, any real-valuedmeasure in a fixed
range may be used. The framework is probabilistic to make explicit the depen-
dencies between the desiderata. Nevertheless, the component measures do not
need to be probabilistic—this allows us to instantiate specific measures based on
the framework using existing measures as component measures (as we do with
BLEU in Sect. 6.2.4), with the overall result being rank-equivalent.

In addition, the framework can be relaxed to ignore a desideratum by sub-
stituting the value 1 for the respective component. Also note that because of the
multiplicative formulation, the compound expression in Eq. (6.4) yields zero if
any of the components are zero. In order to preserve the evaluation of partial suc-
cesses on each component, we need to make sure that P (Di|.) > 0 for i ∈ 1, 2, 3.
This could be ensured by enforcing a minimum non-zero value γ for each of the
components: P (Di|.) = γ + (1 − γ)P̂ (Di|.). Finally, this formulation assumes
that each of the desiderata are weighted equally. However, the framework could
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be extended to allow for non-uniform weighting; this is left to future work.

6.2.3 Component Measures

Next, we consider in more detail each component and discuss suitable measures,
using either established measures, where appropriate, or developing new ones.

Measuring Semantic Representation: We express D1 as f sem≡ f∗ to em-
phasize that semantic equivalence is more nuanced than just an Exact Match [42,
104, 151]. From machine translation, n-gram-based measures like BLEU [97]
or ROUGE [75] may be used to measure semantic representation, capturing both
partial and complete success of a predicted formal query. However, such n-gram-
based approaches do not distinguish between terms; specifically, they do not rec-
ognize the key semantic elements in the formal query, like entities and predicates.
We therefore define novel component measures to quantify semantic represen-
tation, P (D1|q, f, f∗), that can reflect both partial and complete success in terms
of semantic elements in the formal query. First, considering the formal queries
as sets of individual semantic elements, i.e., entities and predicates:
fSem = {e ∈ f} ∪ {p ∈ f}.

This gives us recall and precision on the level of individual semantic elements,

RSem(f, f
∗) =

|fSem ∩ f∗
Sem|

|f∗
Sem|

; PSem(f, f
∗) =

|fSem ∩ f∗
Sem|

|fSem|
(6.5)

and consequently semantic representation F-measure,

Fβ, Sem(f, f
∗) =

1 + β2RSem(f, f
∗)PSem(f, f

∗)

RSem(f, f∗) + β2PSem(f, f∗)
, (6.6)

where we simply take β = 1 to have F1, Sem(f, f∗).
Second, following the same rationale as above, but considering formal queries

as sets of (s, p, o) triple patterns: fTri = {(s, p, o) ∈ f}, we define the triple
patterns-based semantic representation F-measure where we simply take β = 1

to get F1,Tri(f, f∗), following the same steps as Eq. (6.6). Following Usbeck et al.
[137], for each set-based measure, if both the ground truth answer and the pre-
dicted answer are empty sets, the score for an instance is 1.0. Note that we here
take advantage of the permutation invariance of the triple patterns as illustrated
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in Sect. 6.2.1. For both F1, Sem(f, f∗) and F1,Tri(f, f∗), the rationale is to focus
on the distinct meaningful parts of the formal query, i.e., the URIs, while dis-
regarding the syntactical elements and triple pattern ordering. In the case of
F1,Tri(f, f∗), the evaluation is simplified by ignoring the placeholder variables in
the triple patterns, which would otherwise require more involved coordination
reflecting the graph structure of the formal query. Extending F1,Tri(f, f∗) in this
regard may be warranted in future work.

Measuring Syntax Correctness: Simply and strictly, syntax correctness of
the predicted formal query can be evaluated by execution. We distinguish this
specific measure Executability (Exec), from D2 (syntax correctness) as it may be
possible to measure degrees of syntax correctness. Hence, we express D2 simply
as rK(f) ̸= ϵ. We then have Exec(f) = 1 iff rK(f) ̸= ϵ, otherwise Exec(f) = 0. A
continuous measure of syntax correctness with values between 0.0 and 1.0 could
be implemented in various ways, but this is left as future work.

Measuring Answer Correctness: For answer correctness, Exact Match is
an applicable established measure. However, to capture partial success, we can
consider the retrieved answers as sets of result tuples, Ta = {τa ∈ a}. We can
then obtain an answer F-measure, following the same steps as Eq. (6.6), to obtain
F1,Ans. As D3 depends on D2, if rK(f) = ϵ we simply set P (D2|.) = P (D3|.) = γ.

There is a variety of types of answers that can be retrieved by formal queries
fromK. For a given formal query (considering formal queries in SPARQL, specifi-
cally), the answer typemay be, for example, a boolean, an entity or predicate URI,
a literal value, a tuple, or a set of tuples. Generally, we treat all answers as sets of
tuples, even if they contain a single item. That way we can use set overlap-based
measures for answer correctness.

6.2.4 Novel CompoundMeasures

Using the probabilistic evaluation framework introduced in Sect. 6.2, we now in-
stantiate three novel compound measures GEK-1..3, where GEK is an acronym
for “Grounded Evaluation of SP-KGQA.” Specifically, we vary the semantic rep-
resentation component, but measure syntax correctness and answer correctness
in a fixed way, yielding the following novel compound measures:
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GEK-1 = BLEU · Exec · F1,Ans

GEK-2 = F1,Sem · Exec · F1,Ans

GEK-3 = F1,Tri · Exec · F1,Ans

While other combinations would also be possible, we have selected a tractable
number of compoundmeasures that are expected to address the shortcomings of
established measures.

6.3 Axiomatic Analysis

We have proposed a framework for SP-KGQAmeasures based on task desiderata
in Sect. 6.2.1. In light of these, we develop axioms that formally express the con-
straints that SP-KGQAmeasures should satisfy. We then analyze established and
proposed measures in terms of these axioms.

6.3.1 Axioms

The SP-KGQA task consists of instanceswith elements (q, f, f∗), where for a given
KG (f, f∗) determine the answers (a, a∗). For each axiom, we consider an ab-
stract measure of the formm(f, f∗), the evaluation of a predicted formal query f
with respect to the ground truth f∗. The axioms discuss comparisons of the form
m(f1, f

∗) ≥ m(f2, f
∗) when comparing the evaluation properties of two hypo-

thetical predictions f1 and f2. Note that answer-level measures are analogously
expressed in the formm(a, a∗).

Our first axiom (A1) corresponds to desideratum D1. Practically, we must
evaluate the logical equivalence of f to q by comparing f to f∗.

Axiom A1 - Semantic Representation:
A formal query f may be considered as a set Uf of elements uf that are semantic
properties extracted from the formal query f , such as entities in f , predicates in
f , (s, p, o) triple patterns in f , or formal query language keywords used in f . If we
have the following:

a. A set comparison function g(f, f∗) ∈ [0, 1] that compares f and f∗ as sets of
elements uf ∈ Uf and uf∗ ∈ Uf∗ , such that a correctly predicted formal query
f
sem≡ f∗ =⇒ g(f, f∗) = 1.

89



b. Two predicted formal queries f1 and f2 where f1 is a better prediction than f2,
i.e., where 1 > g(f1, f

∗) > g(f2, f
∗)≥0.

Then we must also have thatm(f1, f
∗)> m(f2, f

∗).

Our second axiom (A2) corresponds to D2, concerning syntax correctness.

Axiom A2 - Executability:
A predicted formal query must be syntactically well-formed and executable to be
correct. If we have the following:

a. A ground truth formal query and its corresponding answer: rK(f∗) = a∗.

b. A predicted formal query f1 that returns a non-error answer: rK(f1) = a1 ̸= ϵ.

c. A predicted formal query f2 that results in an execution error: rK(f2) = ϵ.

Then we must have thatm(f1, f
∗) > m(f2, f

∗). This also holds if a1 = ∅ ̸= a∗.

Note that this axiom assumes a strict definition of syntax correctness. If syntax
correctness can be measured by degrees, then an additional axiom for D2may be
appropriate.

Our third axiom (A3) is corresponds to D3, concerning answer correctness.

Axiom A3 - Answer Completeness:
Assuming an answer a as a set Ta of result tuples τa retrieved after executing a
formal query f . If we have the following:

a. A set comparison function g(a, a∗) ∈ [0, 1] that compares the predicted and
ground truth answers as sets of elements τa ∈ Ta and τa∗ ∈ Ta∗ , such that a
correctly predicted answer a = a∗ =⇒ g(a, a∗) = 1.

b. Two predicted answers a1 and a2 where a1 is a better prediction than a2, i.e.,
where 1 > g(a1, a

∗) > g(a2, a
∗)≥0.

Then we must also have thatm(a1, a
∗) > m(a2, a

∗).
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Table 6.1: Evaluating measures with axioms.
Axioms General properties

Measure A1 A2 A3 Instance Partial
level reward

Established measures

Exact Match (Query) G#1 G# G#  #
Exact Match (Answer) #  G#2  #
Acc/F1/R/P (Answer) #     
Perplexity # # #   
BLEU G#1 # # G#  
ROUGE-L G#1 # #   
Novel measures

GEK-1 G#1     
GEK-2      
GEK-3      

1 Satisfies only A1.a. 2 Satisfies only A3.a.
Both A1.b and A3.b require a specific form of partial reward.

6.3.2 Measure Analysis

Having established axioms derived from task-specific desiderata for evaluation
measures, we can now analyze relevant established measures in terms of these
axioms. We summarize our findings in Table 6.1, where  indicates that a mea-
sure satisfies an axiom or general property, while # indicates it does not, and G#
indicates a partial addressing of the axiom or property. Specifically, the general
properties indicate whether a measure can be evaluated at an instance level and
whether the measure can give a partial reward for a partially successful task.

We see thatmeasures with n-gram-basedmatching like BLEU andROUGE-L,
as well as Exact Match (applied to the formal query) are able to address A1 par-
tially, satisfying A1.a in that a perfect prediction will indeed give a maximal score
of 1, assuming a single valid ground truth formal query for a given NL question.
However, these measures do not capture specific semantic properties of the for-
mal query, and so cannot fully satisfy A1. Analogously, Answer Exact Match can
only partly satisfy A3, unlike set-based measures like Accuracy and F1 that can
fully satisfy A3. A major shortcoming shared by all the established measures is a
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failure to explicitly address whether a predicted formal query is executable. As-
suming that the ground truth formal query is executable, which should be the
case in principle, then Exact Match on the predicted formal query does satisfy A2
and A3. In practice, however, Query Exact Match by itself does not intrinsically
guarantee A2 and A3, hence it can only partially satisfy those axioms.

Since D3 depends on D2, any evaluation of answer correctness assumes that
the ground truth formal query has been correctly executed, which demonstrates
syntax correctness D2. Hence, Answer Exact Match and set-based measures ap-
plied only to answer correctness do imply the satisfaction of A2.

Exact Match cannot give partial reward, since only complete success is re-
warded. We also note that while BLEU is not created to be evaluated on the
instance level, it is possible to apply the measure in an instance-level manner.
Finally, we note that Perplexity [23] does not satisfy any of the axioms even par-
tially, and thus is not suitable for evaluatingmodel performance for SP-KGQA. As
can be seen from the analysis of measures against axioms, only our novel com-
pound measures GEK-2 and GEK-3 fully satisfy all three axioms.

6.4 Experiments

We investigate the proposed SP-KGQA framework, and more specifically GEK-
1..3 and established measures, with two experiments. First, we investigate the
sensitivity of measures in Sect. 6.4.2 by evaluating synthetic runswith controlled
degradation of the ground truth. Second, we evaluate neural models trained on a
large complex SP-KGQA dataset in Sect. 6.4.3.

6.4.1 Experimental Setup

We use the DBNQA [57] dataset, which consists of 894,499 instances, generated
from 5,217 templates extracted from the LC-QuAD [131] and QALD-7-Train [136]
datasets. Specifically, to avoid the reported information leakage issues described
in Chap. 4 [78], a sanitized partitioning of DBNQA is used, here referred to as
DBNQA∗ (called Sanitized-1 in Chap. 4 [78]), where the training and test splits
are partitioned based on the underlying templates. In terms of the Chakraborty
et al. [29] categories for neural KGQA, our work focuses on translation-based SP-
KGQA, and our setting is fully supervised machine learning.
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Table 6.2: Overview of transformations.
Original query SELECT DISTINCT ?uri where {

dbr:Villa_Sturegården dbp:locationCountry ?uri }
Trans. Desid. Example degraded formal ground truth query
T1 #   SELECT DISTINCT ?uri where {

dbr:Villa_Sturegården dbp:locationCountry ?uri

T2  #  SELECT DISTINCT ?uri where {
dbr:Yorkshire_1 dbp:champion ?uri }

T3  # # SELECT DISTINCT ?uri where {
dbr:Jonas_Kullhammar dbp:origin ?uri }

To retrieve answers, all formal queries, including the ground truth, those pre-
dicted bymodels, and those generated for the synthetic runs, are executed against
a Virtuoso endpoint holding DBpedia 2016-10 [21] as the KG. The retrieved re-
sults are considered the respective ground truth and predicted answers.

During training, prediction, and query evaluation, the formal queries were
tokenized and encoded in the manner of Soru et al. [124, 125]. We refer to Yin
et al. [151] for an encoding example. For calculating GEK-1..3, we set the value
γ = 10−4.

6.4.2 Experiment 1: Synthetic Experiments

To investigate the sensitivity of SP-KGQA measures, we simulate predictions er-
rors without trainingmodels by constructing synthetic runs by degrading ground
truth test data in a controlled manner. The more degradation applied, the worse
the synthetic predictions; consequently, the more evaluation scores should de-
crease. This demonstrates that our novel compound measures are sensitive and
balanced to all of the tested error types, as compared to established measures.

Transformations

We devise a set of transformations, that simulate particular types of prediction
errors. Each of these transformations preserve the prediction quality with respect
to one desideratumwhile degrading with regards to others. Table 6.2 provides an
overview of the transformations, where desiderata marked with# are preserved,

93



Table 6.3: Synthetic experiments. Here † means moderately sensitive response
(∆ > 0.10 × x% relative to T0; ≤ 0.990 for Ti,10%, and ≤ 0.980 Ti,20%). ‡ means
sensitive response (∆ > 0.50× x% relative to T0; ≤ 0.950 for Ti,10%, and≤0.900
for Ti,20%).
Transf. Established Measures Novel Component Meas. Novel CompoundMeas.

Exact Match BLEU ROU. Exec F1,Ans F1,Sem F1,Tri GEK-1 GEK-2 GEK-3
Query Answer Inst.

T0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T1,10% 0.899‡ 0.899‡ 0.990† 0.995 0.899‡ 0.899‡ 1.000 1.000 0.899‡ 0.899‡ 0.899‡
T1,20% 0.799‡ 0.799‡ 0.981 0.990 0.799‡ 0.799‡ 1.000 1.000 0.799‡ 0.799‡ 0.799‡

T2,10% 0.900‡ 0.900 ‡ 0.929‡ 0.962† 0.961† 0.900‡ 0.900‡ 0.900‡ 0.900‡ 0.900‡ 0.900‡
T2,20% 0.799‡ 0.800‡ 0.859‡ 0.925† 0.923† 0.800‡ 0.799‡ 0.799‡ 0.800‡ 0.799‡ 0.799‡

T3,10% 0.942‡ 1.000 0.965† 0.983 1.000 1.000 0.957† 0.948‡ 0.965‡ 0.957‡ 0.948‡
T3,20% 0.885‡ 1.000 0.931‡ 0.966‡ 1.000 1.000 0.915‡ 0.898‡ 0.931† 0.915† 0.898‡

while those with  are disrupted. Each transformation is randomly applied to
10% or 20% of the test split.

• T1: Remove the closing curly bracket (}) from the WHERE clause. This mostly
preserves D1 (both n-gram overlaps and semantic properties, like URIs and
SPO triple patterns), but disrupts D2, and hence D3. This creates the case of
correct semantics but wrong result.

• T2: Replace each entity (predicate) URI with a random entity (predicate) URI.
This mostly preserves D2, but deteriorates D1 and hence D3.

• T3: Replace the querywith another that yields the exact same answer, if another
such query exists in the dataset. This preserves D2 and D3, but disrupts D1.

Results

Table 6.3 presents the results of the synthetic experiments, where resultsmeeting
the sensitivity thresholds are indicated by daggers.1 For each transformation Ti

and for each measure, we see that established measures, novel component mea-
sures, and novel compound measures are reduced either proportionally by the
degradation, or else negligibly. For example, T1 affects Exact Match proportion-
ally at a one-to-one rate, while BLEU and ROUGE-L reduce at a lower rate. This

1We omit corpus BLEU because results correlate closely with instance-level BLEU.
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illustrates the independence of D1 from D2 and D3. In contrast, F1,Sem and F1,Tri
are not affected by T1. Crucially, we see that GEK-1..3 and Query Exact Match are
sensitive to all transformations. Out of these measures, GEK-3 is the only mea-
sure considered here that satisfies all the axioms and also shows sensitivity to all
the synthetic prediction errors tested. Therefore, if a singlemeasure is to be used,
we recommend that to be GEK-3.

6.4.3 Experiment 2: Neural Methods

So far, wehave shownboth theoretically (with our axiomatic analysis in Sect. 6.3.1)
and empirically (with our controlled degradation experiments in Sect. 6.4.2) that
our novel GEK-1..3 measures indeed capture the desired properties of the SP-
KGQA task. Having a principled and validated measurement instrumentation at
our disposal, we are interested in applying the novel measures to evaluate state-
of-the-art NMT SP-KGQAmodels, and assess whether the findings agree with the
reported results in previous works using established measures.

Methods

• NSpM [124, 125]: architectures Baseline, Attention 1, and Attention 2 were
based on the original TensorflowNMT implementation. Hyperparameterswere
50 000 training steps, 2 layers, dropout 0.2. Based on [151], Attention 1 used
the normed Bahdanau [14] attention mechanism, while Attention 2 used the
scaled Luong [83] attention mechanism.

• ConvS2S [50]: architecture based on PyTorch implementation,2 using de-
fault hyperparameters, except optimizing with stochastic gradient descent with
learning rate of 0.075 and momentum of 0.99.

• Transformer [140]: architecture based on the samePyTorchproject asConvS2S,
using only default hyperparameters.

Some NMTmodels perform better with sub-word tokenization, such as Byte Pair
Encoding (BPE) [116], so for the Transformer and ConvS2S models we addition-
ally used Sentencepiece3 BPE restricted to maximum 32k terms. Increased vol-
umes of training data are expected to produce better performance if the model is

2https://github.com/bentrevett/pytorch-seq2seq/
3https://github.com/google/sentencepiece
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Table 6.4: Evaluation of SP-KGQA methods in terms of established and novel
measures. Best scores in each block are boldfaced.
Method Training Established Measures Novel CompoundMeas.

data Exact Match BLEU ROUGE GEK-1 GEK-2 GEK-3
Query Answer Corpus Instance

NSpM 12.5% 0.000 0.059 0.437 0.374 0.679 0.009 0.006 0.002
25% 0.000 0.034 0.434 0.371 0.676 0.009 0.006 0.003
50% 0.000 0.019 0.432 0.371 0.678 0.006 0.002 0.001
100% 0.000 0.023 0.432 0.371 0.679 0.006 0.004 0.001

NSpM+Att1 12.5% 0.012 0.036 0.486 0.417 0.713 0.022 0.022 0.017
25% 0.024 0.050 0.484 0.423 0.721 0.037 0.035 0.029
50% 0.045 0.074 0.511 0.451 0.740 0.060 0.060 0.052
100% 0.081 0.117 0.548 0.498 0.778 0.105 0.105 0.093

NSpM+Att2 12.5% 0.008 0.036 0.478 0.408 0.705 0.017 0.016 0.012
25% 0.029 0.053 0.498 0.436 0.731 0.041 0.041 0.035
50% 0.049 0.076 0.522 0.460 0.747 0.066 0.066 0.058
100% 0.078 0.119 0.558 0.503 0.785 0.107 0.107 0.093

ConvS2S 12.5% 0.042 0.062 0.485 0.444 0.759 0.056 0.056 0.050
25% 0.066 0.106 0.536 0.490 0.795 0.094 0.100 0.089
50% 0.084 0.119 0.577 0.519 0.817 0.110 0.112 0.100
100% 0.085 0.126 0.582 0.525 0.821 0.115 0.114 0.100

Transformer 12.5% 0.051 0.089 0.489 0.436 0.764 0.082 0.088 0.073
25% 0.077 0.154 0.528 0.480 0.791 0.137 0.147 0.123
50% 0.102 0.202 0.560 0.510 0.809 0.179 0.193 0.163
100% 0.113 0.229 0.570 0.522 0.810 0.199 0.217 0.180

learning. We train models from each of the five architectures on four different
training splits from DBNQA∗: 12.5%, 25%, 50%, and 100%. We can then compare
the measures on models expected to show performance improvement.

Results

Table 6.4 presents the results of SP-KGQA neural models trained on different
training data volumes. TheNSpMmodels shownegligible change in allmeasures;
this indicates that despite the additional training instances no improvement has
occurred. All other methods show improvements in all measures with increased
training data. Note that different models improve more on some measures than
others. For example, Transformer is not the best model with respect to BLEU or
ROUGE-L, but is clearly the best with respect to Query and Answer Exact Match.

As Table 6.4 shows, comparing Exact Match for queries and answers, there
can be a large gap between semantic parsing quality and answer correctness. Syn-
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tax correctness also shows an SP-KGQA system’s mastery of the formal query
syntax (e.g., SPARQL). Therefore, our novel compound measures give partial re-
ward to models which generate SPARQL queries which are executable without
any errors.

Yin et al. [151] concluded that “the ConvS2S model consistently, significantly
outperformed all other models [including Transformer] at a margin,” but our re-
sults constitute evidence to the contrary. The change between the relative or-
dering of ConvS2S and Transformer is a crucial one, especially considering the
absolute performance difference. While the two are close in terms of BLEU and
ROUGE-L (with a slight advantage toConvS2S), the Transformermodel produces
substantially more executable queries (see Answer Exact Match scores). Hence,
measures of individual components in the SP-KGQA task may give a distorted
impression of the system performance on the task as a whole. This shows the ad-
vantage of a compoundmeasure being simultaneously sensitive to all desiderata.

6.5 Discussion

Being a first study in this direction, the work presented is not without limitations.

6.5.1 An Initial Axiomatic Effort

We identified the desiderata based on the essential qualities of theKGQA task [29],
following a standard methodology of axiomatic development of evaluation mea-
sures in Sect. 2.6.2. We acknowledge that our desiderata and axioms represent
one possible perspective and it is by no means claimed to be exhaustive. For ex-
ample, the answer completeness axiom makes strong assumptions about how a
retrieved answer is to be treated, i.e., as a set of result tuples. This restricted view
of answer correctness does not consider the relationships between the elements
of an answer. In the future, additional or alternative axiom-level formulations
of answer correctness may be developed, which would regard it as degrees of
plausibility, e.g., with respect to the type of the answer retrieved [93]. Further
desiderata may be included, e.g., to express a preference for simpler and shorter
predicted formal queries. Syntax correctness could also be extended to address
degrees of partial correctness. Furthermore, we plan to further expand the set
of axioms and component measures to consider structural elements of semantic
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representation, like reserved words, brackets, and query graph structure.

6.5.2 Choice of Component Measures

In the present work, BLEU and ROUGE are interpreted as reflecting semantic
representation because they would partly capture this aspect, at least matching
the entity and predicate URI unigrams in a formal query. As for the novel compo-
nent measures of semantic representation, entities and predicates are treated as
more important semantic signifiers than structural elements of the formal queries
because they are the explicit KG properties which must be matched. However,
the structural elements play an important semantic role, and future work could
incorporate these.

Validating whether a formal query provides a good semantic representation
of a given NL question would require expert human evaluation efforts. This is
similar to the challenge that motivated measures such as BLEU and ROUGE ini-
tially. We introduce our overlap-based measures as a first effort at automating
the evaluation in terms of salient semantic elements from the formal query. Fu-
ture work can investigate which semantic representation measures might corre-
late best with human evaluations of semantic representation. Importantly, the
key message of this chapter is not about the specific component measures sug-
gested, but about the framework of taking multiple desiderata of a single task
into account simultaneously in a formally grounded manner.

6.5.3 Weighting of Component Measures

The component measures corresponding to the three task desiderata are equally
weighted in our proposed compoundmeasure framework because all the desider-
ata are necessary for the SP-KGQA task. There is no a priori difference in impor-
tance between the three desiderata. However, as required for a particular system
or application scenario, our framework enables different weightings of compo-
nent measures.

6.5.4 Generalizing to Multiple Knowledge Graphs

We have experimentally addressed KGQA on a single, well-maintained ontology,
DBpedia. Since this is an initial iteration on an axiomatic approach to develop-
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ing grounded evaluation measures for SP-KGQA, we have restricted the scope of
the work to general aspects of KGs and formal queries. This has been a help-
ful constraint to be able to clearly express our framework. However, in future
work it may be interesting to develop concepts in our framework with respect
to semantic knowledge representation, e.g., as expressed using the OWL Web
Ontology Language. Distinct URIs may represent the same underlying property
or entity, in which case they are connected by the OWL predicate owl:sameAs.
If two predicates represent mutually inverse properties, the are connected by
owl:inverseOf.

Extending the first NL question example in Sect. 6.2.1, with a pair of predi-
cates that are mutual inverses such as parentOf and childOf, we can replace the
triple pattern ?person childOf ?parent with ?parent parentOf ?person. We
then get yet another formal query formulation

SELECT ?person WHERE { ?parent parentOf ?person
. ?parent childOf Albert_Einstein }

that we can recognize as semantically equivalent to the two formal queries in
the Sect. 6.2.1 example, such that all three formal queries correctly represent the
meaning of theNL question “Who are the grandchildren of Albert Einstein?” This
illustrates how semantic technologies, like OWL, may be used to expand the con-
cept of semantic equivalence. Developments in this direction would also enable
our framework to evaluate QA approaches over multiple KGs. The complexity of
evaluating SPARQL semantic representations in a multi-KG ontology may be ad-
dressed by resolving the synonymy of different URIs for the same entity or pred-
icate.

6.6 Summary

Currently, there is no agreed-upon way of evaluating SP-KGQA systems. Previ-
ous work uses multiple measures that evaluate individual aspects, such as either
the quality of the semantic parse or the quality of the answer retrieved. It is clear
that researchers also want to consider multiple aspects, but there is no other way
of doing that other than reporting on a set of different measures. There is no

99



systematic and principled way to combine these aspects in a single unified eval-
uation measure. Because of that, one particular measure (implicitly or explicitly)
becomes “privileged” and gets optimized, at the expense of others. This carries
the risk of overfitting and may lead to an imbalanced view of true system perfor-
mance. It is therefore clear that there is a need to unify SP-KGQA measures in a
formally grounded manner.

We have looked through an axiomatic lens at the measures used to evaluate
systems’ performance on the SP-KGQA task. We have introduced a probabilis-
tic framework for a family of compound measures capable of addressing all the
identified task desiderata. With this framework we have instantiated novel com-
pound measures, designed specifically for the SP-KGQA task. After postulating
axioms for SP-KGQA evaluation measures, our axiomatic analysis found insuffi-
ciencies in established measures that our novel compoundmeasures resolve. We
have also validated the novel measures by evaluating synthetic predictions, be-
fore evaluating real predictions by state-of-the-art NMT-based SP-KGQA mod-
els. From the experiments, we see that established measures are generally sen-
sitive to some but not all desiderata, unlike our novel compound measures. The
discrepancy between established and novel measures we have observed in state-
of-the-art NMT-based SP-KGQA models indicates a need for re-examination of
the results of previous works.
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Chapter 7

Discussion and Conclusions

In the previous four chapters we have presented research done to address the
four main research questions and their respective subquestions. In this chap-
ter, we first reflect on the research questions in light of our findings in Sect. 7.1.
Next, we consider the limitations of the present work and speculate about possi-
ble mitigations in Sect. 7.2. Finally, we discuss possible future work and broader
perspectives in Sect. 7.3.

7.1 Reflections on Research Questions

In this section, we discuss our research questions and what we observe from the
results presented in Chaps. 3–6.

In Chap. 3, we considered research question RQ 1, and its subquestions, re-
garding training data volume for QA models.

RQ 1 How does training data volume impact QA performance?

RQ 1.1 To what extent do QA models improve when trained on a larger volume
of data?

RQ 1.2 How sensitive are the models to fractional changes in training data vol-
ume?

With a series of QA models trained on subsets of WikiQA in Chap. 3, we have
found that the QA models improved at best modestly when trained on increas-
ingly larger WikiQA subsets. Since the initial dataset was so small, increasing
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the training data did not make much difference to the trained QA model’s per-
formance (RQ 1.1), even when the training data was increased by factors of, e.g.,
2, 4, or 10 (RQ 1.2). In contrast, in Chaps. 4 and 6 with neural KGQA models
we have observed a distinct improvement when the training data was increased
by factors of 2. While fractionally varying volumes of training data based on a
very small training dataset may not affect QA models very much, it is neverthe-
less clear that increasing volumes of training data evenwith smaller datasets does
improve the performance of the trained QA models (RQ 1).

In Chap. 4, we considered research question RQ 2, and its subquestions, re-
garding information leakage between data splits during training and evaluation
of KGQA models.

RQ 2 How does it affect model performance or behavior if the test split in-
cludes instances that were generated from templates seen during train-
ing?

RQ 2.1 How is the performance of trainedneuralKGQAmodels affected bywhether
testing templates are seen or unseen?

RQ 2.2 How is the ability to generalize to instances based on unseen templates
affected by the volume of training data used?

RQ 2.3 How does the proportion of unseen templates to seen templates affect
the trained models’ ability to generalize?

From our experiments with sanitized data partitioning, performance dropped
for all methods when test instances were from unseen templates as opposed to
seen templates (RQ 2.1). However, increasing training data volume improved
performance even on the sanitized test split, indicating that additional training
data supported generalization to test instances from unseen templates (RQ 2.2).
Next, different methods showed different patterns of small changes to the ex-
periment with a smaller sanitized test split (RQ 2.3). From our experiments in
Chap. 4, it is clear that trainedKGQAmodels testedwith instances from seen tem-
plates display better performance, obscuring the true generalization gap (RQ 2).
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In Chap. 5, we considered research question RQ 3, and its subquestions, re-
garding the quality of genuine naturalness of NL questions that exist in datasets
for KGQA.

RQ 3 How can we ensure or enhance the genuine naturalness of NL questions
in KGQA datasets?

RQ 3.1 Can the crowdsourced NL questions in existing KGQA datasets be con-
sidered as genuinely natural?

RQ 3.2 What are the properties of a high quality NL question?

RQ 3.3 What happens to the performance of KGQAmodels when testing against
genuinely natural questions?

After crowdsourcing additional paraphrases of NL questions sampled from three
different KGQA datasets and voting for the best version, the majority of the NL
questions were replaced by improved NL questions. The NL questions that were
rewritten were also considered by the crowd workers to be of lower quality in
terms of question naturalness than the NL questions which were not rewritten
due to being “already perfect” to the crowd workers. This indicates that NL ques-
tions in KGQA datasets are lacking in genuine naturalness (RQ 3.1). Conversely,
by the same data we see that the NL questions were rated as higher quality with
respect to the same dimensions of question naturalness, indicating that the di-
mensions we have identified do reflect the quality of NL questions (RQ3.2). No-
tably, the dimension of factuality was less directly correlated with NL question
quality, which is appropriate sense since the crowd workers were not informed of
the NL questions’ relationship to KGQA. This shows that a high-quality NL ques-
tion may still not be appropriate for fact-based QA, such as KGQA. We have also
found experimentally that trained KGQAmodels perform worse on the same sets
of sampled NL questions after they were rewritten and improved by crowd work-
ers (RQ 3.3). On the one hand, this is expected from machine learning models,
i.e., testing on instances that are from a distribution less like the training distri-
bution is expected to yield lower performance. On the other hand, we have two
observations: (1) many KGQA datasets rely on crowdsourcing to make pseudo-
NLquestions into genuinelyNLquestions, and (2) additional crowdsourced para-
phrasing and quality control applied to improved the question naturalness results
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in reduced KGQA performance. This implies either that the common approach
to crowdsourcing NL questions is yielding NL questions of inadequate quality, or
else that the crowdsourcing approach to NL question paraphrasing and quality
control has an inherent limit to the quality that can be achieved (RQ 3).

In Chap. 6, we considered research question RQ 4, and its subquestions, re-
garding the appropriateness of evaluationmeasures used with SP-KGQAmodels.

RQ 4 What are appropriate evaluation measures for SP-KGQA performance
evaluation?

RQ 4.1 What, if any, are the shortcomings of commonly used measures in SP-
KGQA evaluation?

RQ 4.2 Canwe reason axiomatically about appropriate SP-KGQAevaluationmea-
sures?

RQ 4.3 If so, can we construct measures for SP-KGQA evaluation that are for-
mally grounded?

As we have stated, the SP-KGQA approach to KGQA holds the advantage of rep-
resenting the system’s “understanding” of the NL question as a single formal
query. However, as the purpose of KGQA is to provide an answer, it is unfor-
tunate that SP-KGQA often only evaluates performance in terms of the predicted
formal query (RQ4.1). By performing an axiomatic analysis grounded in the SP-
KGQA task desiderata, we have found further shortcomings of commonly used
measures (RQ 4.2). We have also shown that a formally grounded framework
can be used to construct novel evaluation measures for SP-KGQA (RQ 4.3) with
simultaneous sensitivity to all identified task desiderata, as shown with the syn-
thetic experiments in Sect. 6.4.2. While our axiomatic analysis and novel mea-
sures for SP-KGQA represent an initial effort, both the axiomatic analysis and
experimental results give evidence for the hypothesized shortcomings of estab-
lished measures for SP-KGQA. Appropriate measures for SP-KGQA should be
developed with an awareness of these shortcomings, and our approach provides
strategies to both identify and avoid such shortcomings when constructing novel
evaluation measures (RQ 4).
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7.2 Limitations and Mitigations

Here we acknowledge and address some limitations of our work. Where possible,
we speculate about ways of mitigating these limitations.

7.2.1 Set of Axioms

The axioms proposed in Chap. 6 for measures of SP-KGQAwere derived from the
definition of the SP-KGQA task itself, andbased on adeeper consideration ofwhat
this task actually entails. We want to make clear that we in no way assert this set
of axioms to be complete. Nevertheless, the approach of elucidating task-specific
desiderata and axioms has raised important questions about KGQA evaluation.
Indeed, this part of our work has illustrated the importance of making explicit
assumptions in all aspects of KGQA evaluation.

Furthermore, as the set of axioms of SP-KGQA measures is open to be ex-
panded, it is hoped that in the future SP-KGQA measures will be developed to
evaluate partial success in syntax correctness. Such an advance would mean that
a corresponding axiom on partial syntax correctness is needed. The challenge lies
not so much in formulating such an axiom, but in operationalizing it.

7.2.2 Datasets

In Chaps. 4 and 6, we have used a single KGQA dataset, DBNQA, to train models.
This might be a concern in terms of making broad conclusions over KGQA. How-
ever, as we have seen in Chap. 5, when we investigate additional KGQA datasets
based on different KGs (i.e., URIs are expressed in different namespaces), the
quality of naturalness of NL questions show very similar patterns when evaluated
by crowd workers. In addition, the KGQA models have shown similar effects on
performance when NL questions rewritten for improved naturalness are used to
test the models.

7.2.3 Single Language

We have looked at a single natural language, English, and a single formal query
language, SPARQL. Regarding the NL questions, there is little reason to expect
that a different NL would yield different quality of NL questions. Instead, the
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quality ofNLquestions depends on the trade-offmadewhen incorporating crowd-
sourcing into the dataset construction workflow, as explored in Chap. 5. As for
the formal query language, there is indication from previous work [53] that using
S-expressions instead of full SPARQL queries may be easier for models to learn.
However, S-expressions are in such cases translated to SPARQL before execu-
tion, and we are interested in systems learning the task in an end-to-end manner
as much as possible.

7.2.4 Ontology Agnosticity

As previous work [54] acknowledges, a major challenge in SP-KGQA, is the size
of the formal query vocabulary due to the many entity and predicate URIs. This
is a bigger challenge in SP-KGQA than in similar tasks using a semantic parsing
approach, such as text-to-SQL.

Nevertheless, KGs are commonly not only constructed as a set of RDF triples,
but obey a set of rules, defined by an ontology, which may be specified, e.g., in
OWL. It would certainly be interesting if KGQA can be extended into an ontology-
aware form, where the model learns not only a specific RDF namespace, but also
learns the governing ontological rules in OWL, and is able to interact with or rea-
son over both. Thiswould potentiallymean inferring new facts in theKGbased on
responding to NL questions, which is important given the challenge of populating
a KG with all relevant and current real-world facts.

7.3 Future Work and Perspectives

Finally, we consider future possibilities regarding KGQA specifically, as well as
more general topics such as QA, information access, and artificial intelligence
(AI).

7.3.1 KGQA

The task of KGQA and the systems created to address this task have evolved in
the last decade to addressmore complex information needs. However, the field is
still comprised of diverse positions with regards to its own internal taxonomy and
foundational assumptions, such as the space of possible answers. In the end, un-
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derlying assumptions will remain individual to the specific KG that a given KGQA
dataset addresses or the manner in which a model is applied to the KGQA task.

Conceptually, the distinction between SP-KGQA and IR-KGQA appears ini-
tially clear, but in practice these categories say little about the internals of the
systems which they encompass. Pragmatically, we can say that unlike IR-KGQA
systems, an SP-KGQA system predicts a single formal query, which produces a
single predicted answer. However, for IR-KGQA systems that internally rank
candidate formal queries or candidate query graphs which may deterministically
be translated into candidate formal queries, this categorical distinction is more
an issue of whether the top-ranked formal query is recorded and evaluated. As
for the IR-KGQA systems which only predict a ranking of candidate answers, the
categorical distinction is still intrinsic to the design of the system.

We hope that future work can address where common conventions in the field
are carried forward as historical artifacts of previous practical constraints, and
where current techniques allow a revision and broadening of fundamental as-
sumptions about what the task entails.

It is possible that some lessons learned from our work on SP-KGQA might
also apply to IR-KGQA. For example, with continued reliance on large language
models, the issues of training data volume and generalizability will likely consti-
tute challenges for the next generation of IR-KGQA approaches as much as for
SP-KGQA. In addition, as we have pointed out in Sect. 2.6, the rank-based eval-
uation of IR-KGQA is actually disconnected from the end-user task—unlike in
other ranking problems where a ranked list of items (documents, entities) is the
answer, for KGQA users would really expect a single answer, i.e., the ultimate
binary measure would be success@1. To develop measures that can give partial
reward, our axiomatic analysis of SP-KGQA evaluation measures may constitute
a good starting point for an analogous effort on IR-KGQA evaluation measures.

7.3.2 Question Answering, Information Access, and Artificial
Intelligence

QA is often studied in a fact-basedQA setting, in which case using a KG as eviden-
tial basis is suitable. Intuitively, the QA task where a single NL question yields a
single direct and correct answer is one which is very desirable to solve. Neverthe-
less, we still find ourselves using ad hoc retrieval tools like search engines on the
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Web to satisfy our information needs in daily work and leisure. Extending QA be-
yond the fact-based setting is an important challenge tomakeQA a primarymode
for users to interact with their information systems. Many information needs
are not simply factual, and managing multiple subsystems addressing different
types of information needs may be a suitable task for an AI system. Indeed, while
KGQA is studied largely as an isolated task, one can imagine the KGQA model
as a subsystem of a broader dialogue system, e.g., for conversational assistance.
Furthermore, it would be useful for the system to reliably inform the user which
NL questions, even if factual in nature, are not answerable with a specific KG. The
handling of unanswerable questions has so far not been thoroughly explored for
the KGQA task.

We have seen rapid development of increasingly large-scale pre-trained lan-
guage models with applications to text generation, dense retrieval, and dialogue
systems, to name but a few. In some cases, such as the LaMDAmodel [33], which
is intended for dialogue applications, the system is trained to use an external in-
formation retrieval system as an external “knowledge source.” It is a small leap
to imagine that KGs can likewise be used as a tool and external knowledge for a
dialogue system. Another possible feature would be for a system to support the
use of natural language to build, or extend, a KG for future reference. Further-
more, in thiswaywe can hope that userswill be able to interact with systems using
completely natural language and take advantage of structured data such as KGs
for fact-based information needs, alongside other functions of a dialogue system.

In broad terms, what is next for KGQA and QA? These tasks sit at the inter-
section of information access and artificial intelligence. QA is far from solved.
If we compare AI applied to QA with AI applied to playing strategy games, we
would consider the current state of progress in QA equivalent to the time period
when IBM’s Deep Blue beat Garry Kasparov at chess [115]. However, we are not
yet at a milestone such as when Google DeepMind’s AlphaGo beat Lee Sedol at
Go [121, 122]. With the research presented in this thesis, we hope to have made
a small but significant move in the direction of helping everyone win at the game
of information access.
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Appendix A

Appendix: Resources

The work culminating in this thesis includes the development of some resources
that are shared with the community for reproducibility and further research.

• IQN-KGQA: as part of work on NL question naturalness in the context of
KGQA [79], the test collection IQN-KGQA was created. The test collection
can be found at https://github.com/iai-group/IQN-KGQA.

• ictir2022-kgqaeval: as part of work on formally grounded evaluation
measures for SP-KGQA [80], the synthetic experiments are shared at
https://github.com/iai-group/ictir2022-kgqaeval.
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