8 research outputs found

    A note on exploration of IoT generated big data using semantics

    Get PDF
    yesWelcome to this special issue of the Future Generation Computer Systems (FGCS) journal. The special issue compiles seven technical contributions that significantly advance the state-of-the-art in exploration of Internet of Things (IoT) generated big data using semantic web techniques and technologies

    Leveraging cloud computing for the semantic web: review and trends

    Get PDF
    Semantic and cloud computing technologies have become vital elements for developing and deploying solutions across diverse fields in computing. While they are independent of each other, they can be integrated in diverse ways for developing solutions and this has been significantly explored in recent times. With the migration of web-based data and applications to cloud platforms and the evolution of the web itself from a social, web 2.0 to a semantic, web 3.0 comes as the convergence of both technologies. While several concepts and implementations have been provided regarding interactions between the two technologies from existing research, without an explicit classification of the modes of interaction, it can be quite challenging to articulate the interaction modes; hence, building upon them can be a very daunting task. Hence, this research identifies and describes the modes of interaction between them. Furthermore, a “cloud-driven” interaction mode which focuses on fully maximising cloud computing characteristics and benefits for driving the semantic web is described, providing an approach for evolving the semantic web and delivering automated semantic annotation on a large scale to web applications

    Automatic deployment and reproducibility of workflow on the Cloud using container virtualization

    Get PDF
    PhD ThesisCloud computing is a service-oriented approach to distributed computing that has many attractive features, including on-demand access to large compute resources. One type of cloud applications are scientific work ows, which are playing an increasingly important role in building applications from heterogeneous components. Work ows are increasingly used in science as a means to capture, share, and publish computational analysis. Clouds can offer a number of benefits to work ow systems, including the dynamic provisioning of the resources needed for computation and storage, which has the potential to dramatically increase the ability to quickly extract new results from the huge amounts of data now being collected. However, there are increasing number of Cloud computing platforms, each with different functionality and interfaces. It therefore becomes increasingly challenging to de ne work ows in a portable way so that they can be run reliably on different clouds. As a consequence, work ow developers face the problem of deciding which Cloud to select and - more importantly for the long-term - how to avoid vendor lock-in. A further issue that has arisen with work ows is that it is common for them to stop being executable a relatively short time after they were created. This can be due to the external resources required to execute a work ow - such as data and services - becoming unavailable. It can also be caused by changes in the execution environment on which the work ow depends, such as changes to a library causing an error when a work ow service is executed. This "work ow decay" issue is recognised as an impediment to the reuse of work ows and the reproducibility of their results. It is becoming a major problem, as the reproducibility of science is increasingly dependent on the reproducibility of scientific work ows. In this thesis we presented new solutions to address these challenges. We propose a new approach to work ow modelling that offers a portable and re-usable description of the work ow using the TOSCA specification language. Our approach addresses portability by allowing work ow components to be systematically specifed and automatically - v - deployed on a range of clouds, or in local computing environments, using container virtualisation techniques. To address the issues of reproducibility and work ow decay, our modelling and deployment approach has also been integrated with source control and container management techniques to create a new framework that e ciently supports dynamic work ow deployment, (re-)execution and reproducibility. To improve deployment performance, we extend the framework with number of new optimisation techniques, and evaluate their effect on a range of real and synthetic work ows.Ministry of Higher Education and Scientific Research in Iraq and Mosul Universit

    Role of the Virtual Stakeholders in the Search of a Balance between Environment, Economy and Society in the Policy Choices Management

    Get PDF
    The PhD Thesis develops a pre-quantitative methodology to define the direct and indirect effects of policy choices concerning the environment. The main purpose has been to contribute to the solution of some of the problems affecting expert-based judgements: in particular, the dependence on the observer’s goals and beliefs (Reflexivity) and the possibility of making prevalent and accepted an extraneous and non-sustainable solution (Perspectivity). "Policy Choices Analysis and Synthesis System 42" (PoChASSy42) methodology provides a framework which describes the environment through all the possible interactions between: "Individuals Interests", identified as the normative values of the Universal Declaration of the Human Rights; "Collective Interests" identified through the economic activities classified by the NACE system of EuroStat; "Ecosystem Services", identified through the Millennium Ecosystem Assessment studies. The elements which make up these spheres of interests are considered as virtual stakeholders, i.e. the representatives of the existence, intentions, motivations and interests that make up the environment. Both the virtual stakeholders and the possible interactions among them are represented in the PoChASSy42 through the development of an Adjacency Matrix and a Narrative Structure (graph). Using these tools, the expert can: find the virtual stakeholders involved in a given policy choice and exclude, declaring the motivations, those which are not present in the particular geographic context. A final report with the results allows for a transparent communication, which is fundamental in order to further counteract the side effects (Perspectivity and Reflectivity) of a reductionist vision of the environment and to accept the challenge of complexity

    Development and Evaluation of a Holistic, Cloud-driven and Microservices-based Architecture for Automated Semantic Annotation of Web Documents

    Get PDF
    The Semantic Web is based on the concept of representing information on the web such that computers can both understand and process them. This implies defining context for web information to give them a well-defined meaning. Semantic Annotation defines the process of adding annotation data to web information for the much-needed context. However, despite several solutions and techniques for semantic annotation, it is still faced with challenges which have hindered the growth of the semantic web. With recent significant technological innovations such as Cloud Computing, Internet of Things as well as Mobile Computing and their various integrations with semantic technologies to proffer solutions in IT, little has been done towards leveraging these technologies to address semantic annotation challenges. Hence, this research investigates leveraging cloud computing paradigm to address some semantic annotation challenges, with focus on an automated system for providing semantic annotation as a service. Firstly, considering the current disparate nature observable with most semantic annotation solutions, a holistic perspective to semantic annotation is proposed based on a set of requirements. Then, a capability assessment towards the feasibility of leveraging cloud computing is conducted which produces a Cloud Computing Capability Model for Holistic Semantic Annotation. Furthermore, an investigation into application deployment patterns in the cloud and how they relate to holistic semantic annotation was conducted. A set of determinant factors that define different patterns for application deployment in the cloud were identified and these resulted into the development of a Cloud Computing Maturity Model and the conceptualisation of a “Cloud-Driven” development methodology for holistic semantic annotation in the cloud. Some key components of the “Cloud-Driven” concept include Microservices, Operating System-Level Virtualisation and Orchestration. With the role Microservices Software Architectural Patterns play towards developing solutions that can fully maximise cloud computing benefits; CloudSea: a holistic, cloud-driven and microservices-based architecture for automated semantic annotation of web documents is proposed as a novel approach to semantic annotation. The architecture draws from the theory of “Design Patterns” in Software Engineering towards its design and development which subsequently resulted into the development of twelve Design Patterns and a Pattern Language for Holistic Semantic Annotation, based on the CloudSea architectural design. As proof-of-concept, a prototype implementation for CloudSea was developed and deployed in the cloud based on the “Cloud-Driven” methodology and a functionality evaluation was carried out on it. A comparative evaluation of the CloudSea architecture was also conducted in relation to current semantic annotation solutions; both proposed in academic literature and existing as industry solutions. In addition, to evaluate the proposed Cloud Computing Maturity Model for Holistic Semantic Annotation, an experimental evaluation of the model was conducted by developing and deploying six instances of the prototype and deploying them differently, based on the patterns described in the model. This empirical investigation was implemented by testing the instances for performance through series of API load tests and results obtained confirmed the validity of both the “Cloud-Driven” methodology and the entire model

    Development and Evaluation of a Holistic, Cloud-driven and Microservices-based Architecture for Automated Semantic Annotation of Web Documents

    Get PDF
    The Semantic Web is based on the concept of representing information on the web such that computers can both understand and process them. This implies defining context for web information to give them a well-defined meaning. Semantic Annotation defines the process of adding annotation data to web information for the much-needed context. However, despite several solutions and techniques for semantic annotation, it is still faced with challenges which have hindered the growth of the semantic web. With recent significant technological innovations such as Cloud Computing, Internet of Things as well as Mobile Computing and their various integrations with semantic technologies to proffer solutions in IT, little has been done towards leveraging these technologies to address semantic annotation challenges. Hence, this research investigates leveraging cloud computing paradigm to address some semantic annotation challenges, with focus on an automated system for providing semantic annotation as a service. Firstly, considering the current disparate nature observable with most semantic annotation solutions, a holistic perspective to semantic annotation is proposed based on a set of requirements. Then, a capability assessment towards the feasibility of leveraging cloud computing is conducted which produces a Cloud Computing Capability Model for Holistic Semantic Annotation. Furthermore, an investigation into application deployment patterns in the cloud and how they relate to holistic semantic annotation was conducted. A set of determinant factors that define different patterns for application deployment in the cloud were identified and these resulted into the development of a Cloud Computing Maturity Model and the conceptualisation of a “Cloud-Driven” development methodology for holistic semantic annotation in the cloud. Some key components of the “Cloud-Driven” concept include Microservices, Operating System-Level Virtualisation and Orchestration. With the role Microservices Software Architectural Patterns play towards developing solutions that can fully maximise cloud computing benefits; CloudSea: a holistic, cloud-driven and microservices-based architecture for automated semantic annotation of web documents is proposed as a novel approach to semantic annotation. The architecture draws from the theory of “Design Patterns” in Software Engineering towards its design and development which subsequently resulted into the development of twelve Design Patterns and a Pattern Language for Holistic Semantic Annotation, based on the CloudSea architectural design. As proof-of-concept, a prototype implementation for CloudSea was developed and deployed in the cloud based on the “Cloud-Driven” methodology and a functionality evaluation was carried out on it. A comparative evaluation of the CloudSea architecture was also conducted in relation to current semantic annotation solutions; both proposed in academic literature and existing as industry solutions. In addition, to evaluate the proposed Cloud Computing Maturity Model for Holistic Semantic Annotation, an experimental evaluation of the model was conducted by developing and deploying six instances of the prototype and deploying them differently, based on the patterns described in the model. This empirical investigation was implemented by testing the instances for performance through series of API load tests and results obtained confirmed the validity of both the “Cloud-Driven” methodology and the entire model
    corecore