17 research outputs found

    Leveraging Container Technologies in a GIScience Project: A Perspective from Open Reproducible Research

    Get PDF
    Scientific reproducibility is essential for the advancement of science. It allows the results of previous studies to be reproduced, validates their conclusions and develops new contributions based on previous research. Nowadays, more and more authors consider that the ultimate product of academic research is the scientific manuscript, together with all the necessary elements (i.e., code and data) so that others can reproduce the results. However, there are numerous difficulties for some studies to be reproduced easily (i.e., biased results, the pressure to publish, and proprietary data). In this context, we explain our experience in an attempt to improve the reproducibility of a GIScience project. According to our project needs, we evaluated a list of practices, standards and tools that may facilitate open and reproducible research in the geospatial domain, contextualising them on Peng’s reproducibility spectrum. Among these resources, we focused on containerisation technologies and performed a shallow review to reflect on the level of adoption of these technologies in combination with OSGeo software. Finally, containerisation technologies proved to enhance the reproducibility and we used UML diagrams to describe representative work-flows deployed in our GIScience project.This work has been funded by the Generalitat Valenciana through the “Subvenciones para la realización de proyectos de I+D+i desarrollados por grupos de investigación emergentes” programme (GV/2019/016) and by the Spanish Ministry of Economy and Competitiveness under the subprogrammes Challenges-Collaboration 2014 (RTC-2014-1863-8) and Challenges R+D+I 2016 (CSO2016-79420-R AEI/FEDER, EU). Sergio Trilles has been funded by the postdoctoral programme PINV2018 - Universitat Jaume I (POSDOC-B/2018/12) and stays programme PINV2018 - Universitat Jaume I (E/2019/031)

    Leveraging Container Technologies in a GIScience Project: A Perspective from Open Reproducible Research

    Get PDF
    Scientific reproducibility is essential for the advancement of science. It allows the results of previous studies to be reproduced, validates their conclusions and develops new contributions based on previous research. Nowadays, more and more authors consider that the ultimate product of academic research is the scientific manuscript, together with all the necessary elements (i.e., code and data) so that others can reproduce the results. However, there are numerous difficulties for some studies to be reproduced easily (i.e., biased results, the pressure to publish, and proprietary data). In this context, we explain our experience in an attempt to improve the reproducibility of a GIScience project. According to our project needs, we evaluated a list of practices, standards and tools that may facilitate open and reproducible research in the geospatial domain, contextualising them on Peng’s reproducibility spectrum. Among these resources, we focused on containerisation technologies and performed a shallow review to reflect on the level of adoption of these technologies in combination with OSGeo software. Finally, containerisation technologies proved to enhance the reproducibility and we used UML diagrams to describe representative work-flows deployed in our GIScience project

    PANDAcap: A framework for streamlining collection of full-system traces

    Get PDF
    Full-system, deterministic record and replay has proven to be an invaluable tool for reverse engineering and systems analysis. However, acquiring a full-system recording typically involves signifcant planning and manual effort. This represents a distraction from the actual goal of recording a trace, i.e. analyzing it. We present PANDAcap, a framework based on PANDA full-system record and replay tool. PANDAcap combines off-the-shelf and custom-built components in order to streamline the process of recording PANDA traces. More importantly, in addition to making the setup of one-off experiments easier, PANDAcap also caters to the streamlining of systematic repeatable experiments in order to create PANDA trace datasets. As a demonstration, we have used PANDAcap to deploy an ssh honeypot aiming to study the actions of brute-force ssh attacks

    Map Reproducibility in Geoscientific Publications: An Exploratory Study

    Get PDF
    Reproducibility is a core element of the scientific method. In the Geosciences, the insights derived from geodata are frequently communicated through maps, and the computational methods to create these maps vary in their ease of reproduction. In this paper, we present the results from a study where we tried to reproduce the maps included in geoscientific publications. Following a systematic approach, we collected 27 candidate papers and in four cases, we were able to successfully reproduce the maps they contained. We report on the approach we applied, the issues we encountered and the insights we gained while attempting to reproduce the maps. In addition, we provide an initial set of criteria to assess the success of a map reproduction attempt. We also propose some guidelines for improving map reproducibility in geoscientific publications. Our work sheds a light on the current state of map reproducibility in geoscientific papers and can benefit researchers interested in publishing maps in a more reproducible way

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    High-Fidelity Provenance:Exploring the Intersection of Provenance and Security

    Get PDF
    In the past 25 years, the World Wide Web has disrupted the way news are disseminated and consumed. However, the euphoria for the democratization of news publishing was soon followed by scepticism, as a new phenomenon emerged: fake news. With no gatekeepers to vouch for it, the veracity of the information served over the World Wide Web became a major public concern. The Reuters Digital News Report 2020 cites that in at least half of the EU member countries, 50% or more of the population is concerned about online fake news. To help address the problem of trust on information communi- cated over the World Wide Web, it has been proposed to also make available the provenance metadata of the information. Similar to artwork provenance, this would include a detailed track of how the information was created, updated and propagated to produce the result we read, as well as what agents—human or software—were involved in the process. However, keeping track of provenance information is a non-trivial task. Current approaches, are often of limited scope and may require modifying existing applications to also generate provenance information along with thei regular output. This thesis explores how provenance can be automatically tracked in an application-agnostic manner, without having to modify the individual applications. We frame provenance capture as a data flow analysis problem and explore the use of dynamic taint analysis in this context. Our work shows that this appoach improves on the quality of provenance captured compared to traditonal approaches, yielding what we term as high-fidelity provenance. We explore the performance cost of this approach and use deterministic record and replay to bring it down to a more practical level. Furthermore, we create and present the tooling necessary for the expanding the use of using deterministic record and replay for provenance analysis. The thesis concludes with an application of high-fidelity provenance as a tool for state-of-the art offensive security analysis, based on the intuition that software too can be misguided by "fake news". This demonstrates that the potential uses of high-fidelity provenance for security extend beyond traditional forensics analysis

    Reproducibility and Replicability in Unmanned Aircraft Systems and Geographic Information Science

    Get PDF
    Multiple scientific disciplines face a so-called crisis of reproducibility and replicability (R&R) in which the validity of methodologies is questioned due to an inability to confirm experimental results. Trust in information technology (IT)-intensive workflows within geographic information science (GIScience), remote sensing, and photogrammetry depends on solutions to R&R challenges affecting multiple computationally driven disciplines. To date, there have only been very limited efforts to overcome R&R-related issues in remote sensing workflows in general, let alone those tied to disruptive technologies such as unmanned aircraft systems (UAS) and machine learning (ML). To accelerate an understanding of this crisis, a review was conducted to identify the issues preventing R&R in GIScience. Key barriers included: (1) awareness of time and resource requirements, (2) accessibility of provenance, metadata, and version control, (3) conceptualization of geographic problems, and (4) geographic variability between study areas. As a case study, a replication of a GIScience workflow utilizing Yolov3 algorithms to identify objects in UAS imagery was attempted. Despite the ability to access source data and workflow steps, it was discovered that the lack of accessibility to provenance and metadata of each small step of the work prohibited the ability to successfully replicate the work. Finally, a novel method for provenance generation was proposed to address these issues. It was found that artificial intelligence (AI) could be used to quickly create robust provenance records for workflows that do not exceed time and resource constraints and provide the information needed to replicate work. Such information can bolster trust in scientific results and provide access to cutting edge technology that can improve everyday life

    Reproducibility and Replicability in Unmanned Aircraft Systems and Geographic Information Science

    Get PDF
    Multiple scientific disciplines face a so-called crisis of reproducibility and replicability (R&R) in which the validity of methodologies is questioned due to an inability to confirm experimental results. Trust in information technology (IT)-intensive workflows within geographic information science (GIScience), remote sensing, and photogrammetry depends on solutions to R&R challenges affecting multiple computationally driven disciplines. To date, there have only been very limited efforts to overcome R&R-related issues in remote sensing workflows in general, let alone those tied to disruptive technologies such as unmanned aircraft systems (UAS) and machine learning (ML). To accelerate an understanding of this crisis, a review was conducted to identify the issues preventing R&R in GIScience. Key barriers included: (1) awareness of time and resource requirements, (2) accessibility of provenance, metadata, and version control, (3) conceptualization of geographic problems, and (4) geographic variability between study areas. As a case study, a replication of a GIScience workflow utilizing Yolov3 algorithms to identify objects in UAS imagery was attempted. Despite the ability to access source data and workflow steps, it was discovered that the lack of accessibility to provenance and metadata of each small step of the work prohibited the ability to successfully replicate the work. Finally, a novel method for provenance generation was proposed to address these issues. It was found that artificial intelligence (AI) could be used to quickly create robust provenance records for workflows that do not exceed time and resource constraints and provide the information needed to replicate work. Such information can bolster trust in scientific results and provide access to cutting edge technology that can improve everyday life
    corecore