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ABSTRACT
Full-system, deterministic record and replay has proven to be an
invaluable tool for reverse engineering and systems analysis. How-
ever, acquiring a full-system recording typically involves signif-
cant planning andmanual effort.This represents a distraction from
the actual goal of recording a trace, i.e. analyzing it. We present
PANDAcap, a framework based on PANDA full-system record and
replay tool. PANDAcap combines off-the-shelf and custom-built
components in order to streamline the process of recording PANDA
traces. More importantly, in addition to making the setup of one-
off experiments easier, PANDAcap also caters to the streamlining
of systematic repeatable experiments in order to create PANDA
trace datasets. As a demonstration, we have used PANDAcap to
deploy an ssh honeypot aiming to study the actions of brute-force
ssh attacks.
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1 INTRODUCTION
Full system record and replay has proven to be a powerful tool for
a variety of tasks including debugging [6, 12, 18], intrusion detec-
tion [11, 23], security fault analysis [6] and data provenance [26].
In the context of security, full system recordings enable rare condi-
tions to be detected and potential attack vectors to be studied more
deeply. Typically, full system recordings have been used in scenar-
ios where detailed analysis is necessary and the potential insights
gained are worth the effort involved in setting up the recording en-
vironment. In this work, we aim to dramatically lower the effort to
1) provision an environment where full system record and replay is
enabled; and 2) analyze the resulting recordings. By reducing this
barrier, we are able to expand the areas where full system record
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and replay can be potentially applied. In particular, we look at the
systematic collection of trace datasets for the purposes of security
analysis, which we illustrate with a classic honeypot case study.

In addition, we believe the framework can provide both an envi-
ronment for computational reproducibility as well as a foundation
for capturing systems oriented datasets. Lack of reproducibility
and (verifiable) datasets are hurting security research at large [21,
28]. Moreover, the ability to replay all events in arbitrary opera-
tions rather than logging specific features for a specific experiment
allows the use of data sets for multiple use cases, in more versatile
ways.

The contributions of this paper are as follows:
• the PANDAcap framework for streamlining the process of
recording PANDA based traces;

• a dataset of ssh honeypot traces, analytics over those traces
and the procedures to expand the dataset.

The rest of this paper is organized as follows. In §2 we briefly
present some work that inspired us. Next, in §3 we present PAN-
DAcap, followed by a case study in §4. Finally, in §5 we discuss
some issues related to our system and we conclude in §6.

2 RELATEDWORK
Our work is inspired by work on environments for computational
reproducibility [21, 27]. ReproZip [5] automatically analyzes sys-
tem calls to create bundles of files and programs that can be ex-
ecuted in a virtual machine or Docker image. Likewise, [20] de-
scribes a system for building Docker based virtual machines for
R environments. Indeed, Docker has become a foundation for a
number efforts to ensure computational reproducibility (e.g., [3, 14,
16]). Beyond just capturing computational artifacts in a container,
other approaches, such as the WholeTale[4] and CWLProv [15],
aim to incorporate datasets, papers into larger so called research
objects [1] to further facilitate reproducibility. More broadly repro-
ducibility is becoming an increasing concern in cybersecurity re-
search [8]. For a wider view of computational reproducibility and
particular its relevance to notions of data provenance, we recom-
mend the recent survey by Pimentel et al. [22]. Our work builds on
these approaches by adding full system recording capability. Addi-
tionally, our work sees the outcome not to be about reproducibility
but to provide datasets for analytics.

3 PANDACAP
PANDA offers an excellent platform for deep, full-system analy-
sis [25, 26]. In addition, PANDA is well-suited for creating and
sharing systems-related datasets, offering researchers a platform
to iterate and improve their methods using a common baseline.
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However, this potential is not fully realized in practice and the
sharing of datasets created with PANDA is lacking. We developed
PANDAcap to fill this gap and help PANDA to gain traction as
the de-facto tool for creating datasets for systems and security re-
search. The target user group of PANDAcap is researchers who
are already familiar with working in a Unix environment, but are
not intimate with Docker or PANDA so they can quickly spin-up
a dataset collection pipeline.

PANDA traces contain a precise log of the code and data that
the program accessed during recording. Because of their serial na-
ture these traces may be time-consuming to analyze without hav-
ing any context. For this purpose, we decided to also separately
record the PANDA VM disk delta. While the disk deltas will not
add any execution-related information that is not also contained
in the traces, they may give useful hints for how to proceed with
the analysis of an unknown trace.

We envision several applications for PANDAcap. These applica-
tions are mostly related to the creation of security-related datasets,
but also extend outside the strict borders of security research. For
instance, we can use PANDAcap for applications such as:

• Analyzing samples frommalware datasets. PANDAcap
can be used to automate the collection of traces from exist-
ing datasets, similar to, but more versatile than, Malrec’s
full-trace recording of malware [25]. PANDAcap offers a
streamlined way to build such systems by simply plugging
in any experiment-specific customizations.

• Honeypot deployment. Sometimes it is desirable to de-
ploy honeypot systems for studying attack trends in a net-
work. Typically, full-systemhoneypots require a fair amount
of effort to be prepared. Moreover, they typically permit
mostly post-mortem analysis. With the help of PANDAcap,
it now becomes easier to deploy PANDA based honeypots.
We present an example of such a deployment in §4.

• User studies. PANDAcap can also find applications in do-
mains other than systems and security. For example, it can
be used to conduct a study on users in order to gain insights
on their use of tools and data. Traces collected from such a
study could be used in the fields of data provenance and
process mining.

To support such different use cases, PANDAcap provides sup-
port for containerized system deployment, recording and replay-
ing facilities, and powerful control primitives. In the remainder of
this section, we describe the components comprising PANDAcap,
the corresponding control primitives, the bootstrap procedure, and
finally the PANDAcap support wrapper.

3.1 Off-the-shelf components
Intended as a low-maintenance, multi-purpose framework for the
community rather than a one-off academic prototype, we devel-
oped PANDAcap on top of two widely-used, off-the-shelf compo-
nents.

3.1.1 The PANDA record and replay framework. First, PANDAcap
builds on PANDA [9, 10], an open-source, full-system record and
replay tool based on QEMU [2]. PANDA records traces comprised
of a) an initial dump of the QEMU guest memory, and b) a log
file containing all the non-deterministic inputs used during the

recorded execution. This information allows one to re-enact the
exact execution during the replay of the trace. To facilitate the anal-
ysis of traces, PANDA features a plugin architecture which allows
writing analysis modules in C, C++, and Python. Analysis plugins
can insert instrumentation at different execution points of the ana-
lyzed trace: per instruction, per memory access, per context switch
etc. PANDA also offers a communication mechanism for plugins to
interact with each other, thus building complex functionality from
many simple analysis modules.

3.1.2 Docker. Second, PANDAcap uses Docker [17] for easy de-
ployment and containment. Docker is currently the de facto stan-
dard for lightweight virtualization. Adoption of Docker in research
is already high, driven by the need for reproducibility. We create a
Docker image to bundle the runtime dependencies of PANDA, and
instantiate identical environments for PANDA VMs to run. Fur-
thermore, PANDAcap uses Docker to virtualize the networking of
PANDA VMs as well as the storage space used when running an
experiment.

3.2 The recctrl plugin
The recctrl plugin is the key building block we developed for PAN-
DAcap. Typically, starting recording a PANDA trace involves typ-
ing the begin_record command on the QEMU monitor prompt.
Τhis interaction can be scripted using the QEMU Machine Protocol
(QMP), but there’s still need for manual intervention to properly
time the start and the end of the recording. This may be acceptable
for one-off recordings, but becomes a problem when one wants to
collect a large number of recordings.

The recctrl plugin addresses this problem, by adding a special
hypercall to the PANDA VM that allows guest programs to sig-
nal when recording should start or stop. This allows to automate
recording of traces, removing the need for manual intervention or
scripting. Moreover, the captured traces will only contain the de-
sired part of the execution.

Unlike typical PANDA analysis plugins, recctrl is meant to op-
erate exclusively on a live VM, rather than a VM replaying a trace.
Its implementation piggybacks on existing, unprivileged instruc-
tions of the emulated architectures—CPUID for x86, MCR for
ARM. The plugin requires a magic value to be set in one of the
instruction input registers in order to process it. Because, overall,
the frequency of the instructions triggering recctrl is very low, the
performance impact on the live VM is negligible.

To cater for different types of experiments, recctrl offers several
runtime configuration options. First, it implements two modes of
operation. In toggle mode, recording starts on the first hypercall
and stops on the following. In semaphore mode, hypercalls can be
made to either increase or decrease a session counter. Recording
starts/stops when the counter raises from/falls back to zero. More-
over, recctrl allows to limit the number of recordings and the du-
ration of each recording. When the set number of recordings is
exceeded, the PANDA VM is powered off.

Finally, to avoid having to modify programs to include the new
hypercall, the plugin comes with a small utility program called rec-
ctrlu, providing a command-line interface to the hypercall.The util-
ity can be easily invoked from existing hooks offered by the guest
operating system, catering for a variety of scenarios. E.g. recctrlu
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can be hooked with the Linux PAM authentication framework in
order to start recording when a user logs in via ssh. Or, it can be
hooked to the iptables network firewall to start recording on an
incoming HTTP connection. The code of both the plugin and the
utility is portable and should work on Linux and Windows.

3.3 Bootstrapping PANDAcap
PANDAcap offers the capability to insert bootstrapping code at dif-
ferent phases of preparing an experiment. This gives a lot of flex-
ibility in designing and building the experiment workflow. Boot-
strapping has been automated using GNU Make where possible.
A central configuration file called Makefile.vars is used to define
options in a single location. In order to propagate the options to
scripts written in other languages, we use the Jinja templating lan-
guage1as a preprocessor for those scripts. Next, we describe the
different bootstrapping phases used by PANDAcap.

3.3.1 Docker image bootstrapping. The instructions for building a
Docker image are typically contained in a template file calledDock-
erfile. The file uses a domain-specific language to list the instruc-
tions.Themain PANDA repository included a Dockerfile, however
we found it to be mostly suited for automated testing of PANDA
builds, rather than deploying the tool inside a container. The rea-
son is that the template pulls inside the container all the PANDA
build-time dependencies. This result in unnecessary bloat in the re-
sulting image.

Figure 1 shows the process of creating the PANDAcap Docker
image. We can see that PANDA is added to the image as a pre-
compiled tar archive and only its runtime dependencies are in-
stalled, resulting in a slimmer image. Bootstrap scripts are also in-
stalled as a tar archive and run in a single step.The scripts from the
archive are executed in lexicographical order. Using this process
instead of using multiple RUN commands in the Dockerfile helps
us avoid creating redundant image checkpoints. Moreover, it helps
to make the Dockerfile easier to reuse, as any experiment-specific
customization can be applied through the bootstrap scripts.

Finally, we should mention that the PANDAcap Docker image
uses baseimage-docker2as its base. This provides us with some
desired features, such as a proper init process and the ssh access
to the container. But more importantly, it provides us with a hook
for our runtime bootstrapping scripts (see §3.3.3), so that they run
when we instantiate a container from the image.

3.3.2 PANDAVM customization. In addition to any customization
required for running a specific experiment, the only customization
required for using an existing PANDA VM image with PANDAcap
is to a) copy a single script somewhere in the filesystem, and b) add
it to rc.local startup script, so it will be executed at the end of the
VM boot process Optionally, the recctrl utility can also be copied
to the VM at this phase, although this is not strictly required.

The copied script will take care of the runtime bootstrapping
when we run the VM.The script looks whether a virtual USB drive
has been inserted. If one is found, it ismounted and thebootstrap.sh
script will be executed from it (see §3.3.3). Finally, the script will un-
mount and disconnect the USB drive, cleanup rc.local and remove

1The Jinja templating language: https://jinja.palletsprojects.com/
2baseimage-docker: https://github.com/phusion/baseimage-docker

PANDA source

gcc / make

panda.tar

docker build

Makefile.vars

Dockerfile

Jinja2

Docker
bootstrap scripts

templates

bootstrap.tar

baseimage-docker

PANDA runtime
dependencies

PANDAcap
Docker Image

Figure 1: PANDAcap Docker image creation process. A
dashed edge is used for components downloaded externally.
Typically, only the nodes with labels in bold-italic print re-
quire customization before an experiment.

itself from the system. This is a low-effort attempt to obscure the
presence of PANDAcap components in the VM. We should note
that currently, the boot-time VM customization script has only
been implemented for Linux.

3.3.3 Runtime bootstrapping. PANDAcap offers support for run-
time customization for both the PANDAVMused to capture a trace
and the Docker container it runs in. As we mentioned in §3.3.1 and
§3.3.2, this is implemented by hooking to the baseimage-docker
startup and the rc.local script respectively. Similar to what we de-
scribed in §3.3.1, the startup scripts and any files they need to gen-
erate have access to the configuration options in Makefile.vars,
can be generated using the Jinja template language.

PANDAcap provides a sample Makefile for quickly creating a
set of bootstrap scripts. However its use is not mandated. Further-
more, users are free to choosewhether the runtime bootstrap scripts
used for capturing different samples will be batch-generated at the
start of the experiment or if they will generated at the beginning
of each run.

3.4 The PANDAcap wrapper
While PANDA and Docker are very feature-rich, combining them
to record a trace for a specific experiment can be a significant chal-
lenge.This is because of the sheer amount of options they offer:The
PANDA binary lists over 170 command-line flags and switches, most
of them inherited from QEMU. Adding to that, Docker’s run sub-
command alone adds over 90 flags and switches. Even after finding
the right options to use, the resulting command line is extremely
long and unwieldy3.

3The command line for the case study in §4 spans 10 lines in a standard 80col terminal.
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For this we created the pandacap.py wrapper around the two
tools. The goal of the wrapper is to help researchers to set up a
PANDA-based experiment, without requiring them to have extended
experience with QEMU, Docker and Linux system-administration.
The wrapper script is written in Python and employs the powerful
argparse module of the language. It provides reasonable defaults
and shortcuts for the most commonly used options, and handles
the intermediate steps required to launch an experiment. Follow-
ing, we briefly describe the main amenities offered by pandacap.py.

Transparently handles the creation of VM derived images. This is
an essential part for efficiently supporting running multiple VM
instances concurrently. The derived images are essentially deltas
over the initial VM image. Without using them, we would have to
provide each PANDA VM instance with a separate copy of the VM
image. Thus, the use of derived images both saves storage space
and makes launching a new VM instance faster.

Transparently handles the creation of the virtual disk used for
VM bootstrapping. Aswementioned in §3.3.3, PANDAcap supports
bootstrapping a VM at runtime via a virtual USB drive. panda-
cap.py handles the creation of this virtual drive from the contents
of a directory. This removes the need for the user to learn about
aspects of administration of Linux filesystems.

Supports naming each run. This is important for experiments in-
volving the collection of many individual samples. The run name
is propagated to the names of the support files generated by pan-
dacap.py, making their management easier.

Python integration. PANDAcap can be imported as Python mod-
ule, so it can be used as a building block for more complex setups.
E.g. it can be integrated with a Flask4web application to enable
controlling a PANDAcap workflow over the web.

Use of Docker is optional. We believe that using Docker makes it
easier to manage multiple PANDA instances running concurrently.
However, for simple cases its use may be seen as an unnecessary
complication. For example, when debugging a PANDA plugin, one
may prefer to run everything directly on the host. For this, panda-
cap.py also works without Docker and will produce an appropriate
command line if no Docker-specific options are supplied.

4 CASE STUDY: SSH HONEYPOT
To demonstrate the use of PANDAcap, we used it to configure a
PANDA VM to operate as an ssh honeypot. Brute-forcing of ssh
passwords is still a very common type of attack today [13]. Attack-
ers identify reachable ssh servers on the internet and repeatedly
try to guess the password of a user—typically root—to gain access
to the server. All recent OS distributions come with the ssh service
configured with secure defaults that would prevent these attacks.
However, for reasons of convenience, users often revert to insecure
configurations. As a result, ssh brute-force attacks still remain vi-
able and popular. Despite their low sophistication, a study of such
attacks would be interesting, in order to gain an understanding of
the tools used as well as the incentives of the attackers. As attack-
ers often remove their traces, using PANDAcap to capture a series
of incidents could provide uswithmuchmore insight than a simple
post-mortem analysis on a host.
4Flask micro web framework: https://flask.palletsprojects.com/

Table 1: Collected samples per ssh port. No attempts to gain
access to the VM listening on port 2200 were made.

port samples nondet nondet-gz disk-delta
22 50 9.61 GiB 2.75 GiB 11.49 GiB
2222 13 0.99 GiB 0.28 GiB 3.00 GiB
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Figure 2: Trace size and instruction count distributions.

4.1 Experiment setup
We deployed 3 instances of our honeypot VM on a publicly acces-
sible host for a period of approximately 3 days. The VMs were lis-
tening for ssh connections on ports 22, 2222, and 2200 respectively.
Waiting for attackers to actually guess a password was deemed im-
practical. For this, the Linux PAM authentication framework was
tuned to a) accept any password for user root, and b) run recctrlu
on each successful ssh login. This reconfiguration was performed
at runtime, as described in §3.3.3. The Docker container needed no
particular runtime configuration for this experiment.

recctrl was configured to run in semaphore mode (see §3.2) and
capture a single trace, for 30min after the first successful login. We
used this setup because our initial tests showed that attackers used
a single command per ssh connection. Under this usage pattern, the
regular use of semaphore mode would result in many tiny traces.

We used supervisord5to reset and restart each VM after it fin-
ished recording a trace. Additionally, supervisord provided a log-
ging facility for the messages emitted by the running VMs. In or-
der to prevent the case where the same small group of hosts would
intrude our VMs again and again, we periodically blocked the IP
addresses we found listed in the ssh access logs.

4.2 Collected dataset
During the course of our experiment, we gathered a total of 63
traces, and their associated VM disk deltas. Links for downloading
the dataset are provided at the end of the paper.The size of the sam-
ples collected per port can be seen in Table 1. We should mention
that non-determinism logs also include much of the information
in disk deltas. We decided to preserve disk deltas in order to allow
for direct analysis with existing disk forensic tools. In Figure 2 we
show the distributions of the size and the instruction count of the
traces. We observe that the distributions are heavy on their left
side, but they do not match exactly. This indicates that there are
variations in the workload inside the traces.
5Python supervisor: http://supervisord.org/
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Figure 3: Top target ports for outgoing connections. In one
trace, there were no outgoing connections.
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Figure 4: Succesful logins attempts in auth.log.

4.3 Trace analysis
Following, we make a quick analysis of some aspects of the col-
lected traces. The analysis is not meant to be exhaustive. Our aim
is to present different types of analysis that are possible using the
data collected, and give some starting pointers onwhat can be done
with the released dataset.

4.3.1 Scanning activity. Hosts compromised by ssh brute-force at-
tacks are often used for scanning for more hosts with weak pass-
words. We would like to know how often this happened in our
dataset. For this, we used the PANDA network plugin on the col-
lected traces to extract their network activity as pcap traces.

Querying the pcap traces with tcpdump, we counted the top
destination port for outgoing packets that have the SYN flag set.
The distribution of these ports is shown in Figure 3. We can see
that around half of the honeypot VMs started scanning for more
weak hosts within 30 min from getting compromised.

4.3.2 Number of successful root logins. To demonstrate the use-
fuleness of having VM disk deltas along PANDA traces, we used
them to inspect how many times we had a successful root login on
each VM. The results are presented in Figure 4.

Inspecting the figure can help us to quickly infer information
about the collected traces, before processing themwith some PANDA
plugin. For example, if we want to study what type of cleanup an
intruder performs, we can see that two traces have aggressively
cleaned-up all log entries for root. These would be a good candi-
date for further inspection.

Similarly, if we are interested to study a rootkit that leaves be-
hind a known file, we can identify which traces were infected by it
using familiar command-line tools. Then we can switch to PANDA
for a more comprehensive analysis.

4.3.3 Cleanup methodology. Wanting to investigate the cleanup
methodology used by the intruder, we wrote a plugin that for each

system call prints a) the process id and name that ran the call, b) the
system call name, and c) the values of all of its string arguments.
We ran it on one of the two traces with the thorough cleanup. Un-
surprisingly, the auth.log file was among the files touched by the
rm command and the unlinkat system call. However, many of the
other files affected by the same command/system call were known
to be non-existent. This indicates a blind cleanup action, rather
than targeted hidding of the intruder’s trails.

5 DISCUSSION
5.1 Comparison with Malrec
PANDAcap andMalrec [25] both leverage PANDA to capture high-
fidelity execution traces. However the two projects differ in scope.
Malrec was designed with a single application in mind: converting
a feed of malware samples to PANDA traces. The disclaimer on the
project’s GitHub page6 notes that heavy modifications would be
needed to adapt to other scenarios. On the other hand, PANDAcap
has been designed to be reusable. Towards this end, it supports
integration with Docker that allows virtualization of storage and
networking, and includes a streamlined bootstrapping mechanism
for easy customization for different use cases.

5.2 PANDAcap as a honeypot solution
In their survey, Nawrocki et al. [19] present different honeypot tax-
onomies. A honeypot based on PANDAcap would rank as a high-
interaction, virtual honeypot. Depending on the bootstrapping, it
can operate either as server or client honeypot.

The high-interaction honeypots listed in [19] typically focus on
a single type of analysis. For example, Argos [24] focuses on taint
analysis of network inputs. Moreover, transient effects on the sys-
tem typically will not be captured. Contrasting to this, honeypots
based on PANDAcap offer significant advantages because of the
underlying PANDAVM record and replay capabilities. Specifically,
a) the analyst doesn’t have to decide a priori on the type of analysis,
thus providing for flexible analysis, and b) all the transient effects
of an attack are captured, thus resulting in higher accuracy of the
analysis.

5.3 Detectability
Offensive tools and malware have evolved to avoid analysis by
changing their behaviour in the presence of an analysis environ-
ment [7]. For the case of an analysis sandbox based on PANDAcap,
the QEMU emulator underlying PANDAwould be the main source
of environment artifacts that can be fingerprinted by malware. For
this, we did not attempt to fully conceal the presence of compo-
nents specific to PANDAcap, like recctrlu. In principle, if we ever
identify malware that probes for the presence of recctrlu, we can
use the same tools used by malware authors (packers, code injec-
tors etc.) to hide its presence inside existing binaries. Moreover,
to prevent malware from running the recctrl hypercall itself, we
can randomize the magic number it uses at runtime. Finally, we
should mention that the APIs provided by PANDA make it pos-
sible to identify and react to attempts of malware to fingerprint
QEMU. However, this is a topic for future research.

6Malrec GitHub repository: https://github.com/moyix/panda-malrec
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5.4 Privacy Issues
Sharing datasets of traces captured with PANDAcap could help to
boost reproducibility of research results in the area of systems anal-
ysis. However, full system traces capured using PANDA or a sim-
ilar system, will inevitably include any privacy-sensitive informa-
tion used during recording. This introduces privacy concerns that
need to be thought through. Taking a technical approach and sani-
tizing the trace before sharing is considered infeasible. Sanitization
has been investigated in the past for much simpler types of traces
without reaching to a generally acceptable solution to the problem.

Since we do not consider not sharing trace datasets as an ac-
ceptable option, any privacy issues would need to be addressed
with non-technical means. First, users or organizations participat-
ing in a study, should be asked for consent to share their data.
An additional step would be to share the collected datasets under
some form of non-disclosure agreement (NDA). This would provide
strong guarantees for keeping any identified privacy leaks con-
tained. However, the procedure of signing an NDA is typically a
cumbersome process that requires the involvement of legal profes-
sionals. For this, we favor more lightweight approaches. For exam-
ple, each released dataset can come with a well defined retraction
procedure for individual samples. This would allow to minimize
the damage from any privacy leak, while maintaining the desired
flexibility for researchers that use the dataset.

6 CONCLUSION
We presented PANDAcap, a framework that aims to streamline
the collection of PANDA full-system traces. Furthermore, we pre-
sented an experimental deployment of an ssh honeypot with the
help of our framework and made publicly available the collected
dataset. The source code for PANDAcap as well as links to down-
load the collected dataset can be found on GitHub:

https://github.com/vusec/pandacap

We aspire for PANDAcap to lower the bar for the creation of
similar dataset and promote reproducibility of research results in
the field of systems and security.

REFERENCES
[1] Sean Bechhofer, Iain Buchan, David De Roure, Paolo Missier, John Ainsworth,

Jiten Bhagat, Philip Couch, Don Cruickshank, Mark Delderfield, Ian Dunlop,
Matthew Gamble, Danius Michaelides, Stuart Owen, David Newman, Shoaib
Sufi, and Carole Goble. 2013. Why linked data is not enough for scientists. Fu-
ture Generation Computer Systems 29, 2 (Feb. 2013), 599–611. https://doi.org/10.
1016/j.future.2011.08.004

[2] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of USENIX ATC’05. Anaheim, CA, USA.

[3] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[4] Adam Brinckman, Kyle Chard, Niall Gaffney, Mihael Hategan, et al. 2019. Com-
puting environments for reproducibility: Capturing the “Whole Tale”. Future
Generation Computer Systems 94 (2019), 854 – 867. https://doi.org/10.1016/j.
future.2017.12.029

[5] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-
prozip: Computational reproducibility with ease. In Proceedings of the 2016 inter-
national conference on management of data. 2085–2088.

[6] Jim Chow, Tal Garfinkel, and Peter M. Chen. 2008. Decoupling Dynamic
Program Analysis from Execution in Virtual Environments. In Proceedings of
USENIX ATC’08. Boston, MA, USA.

[7] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti. 2018. Understanding
Linux Malware. In 2018 IEEE Symposium on Security and Privacy (SP). 161–175.

[8] Ewa Deelman, Victoria Stodden, Michela Taufer, and Von Welch. 2019. Initial
Thoughts on Cybersecurity And Reproducibility. In Proceedings of the 2nd In-
ternational Workshop on Practical Reproducible Evaluation of Computer Systems
(Phoenix, AZ, USA) (P-RECS ’19). Association for Computing Machinery, New
York, NY, USA, 13–15. https://doi.org/10.1145/3322790.3330593

[9] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whe-
lan. 2014. Repeatable Reverse Engineering for the Greater Good with PANDA.
Technical Report CUCS-023-14. Columbia University. https://doi.org/10.7916/
D8WM1C1P

[10] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and RyanWhelan.
2015. Repeatable Reverse Engineering with PANDA. In Proceedings of PPREW’15.
Los Angeles, CA, USA. https://doi.org/10.1145/2843859.2843867

[11] GeorgeW. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. 2002. ReVirt: Enabling Intrusion Analysis Through Virtual-machine Log-
ging and Replay. In Proceedings of USENIX OSDI’02. Boston, MA, USA. https:
//doi.org/10.1145/1060289.1060309

[12] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans
Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level Kernel for Record
and Replay. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (San Diego, California) (OSDI’08). USENIX Associa-
tion, USA, 193–208.

[13] Rick Hofstede, Luuk Hendriks, Anna Sperotto, and Aiko Pras. 2014. SSH Com-
promise Detection Using NetFlow/IPFIX. SIGCOMM Comput. Commun. Rev. 44,
5 (Oct. 2014), 20–26. https://doi.org/10.1145/2677046.2677050

[14] Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Freeman, Brian
Granger, Tim Head, Chris Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew Os-
heroff, M Pacer, Yuvi Panda, Fernando Perez, Benjamin Ragan-Kelley, and Carol
Willing. 2018. Binder 2.0 - Reproducible, interactive, sharable environments for
science at scale. In Proceedings of the 17th Python in Science Conference. SciPy.
https://doi.org/10.25080/majora-4af1f417-011

[15] Farah Zaib Khan, Stian Soiland-Reyes, Richard O Sinnott, Andrew Lonie, Car-
ole Goble, and Michael R Crusoe. 2019. Sharing interoperable workflow prove-
nance: A review of best practices and their practical application in CWLProv.
GigaScience 8, 11 (Nov. 2019). https://doi.org/10.1093/gigascience/giz095

[16] Christian Knoth and Daniel Nüst. 2017. Reproducibility and practical adoption
of geobia with open-source software in docker containers. Remote Sensing 9, 3
(2017), 290.

[17] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent De-
velopment and Deployment. Linux J. 2014, 239, Article 2 (March 2014), 1 pages.
https://dl.acm.org/doi/10.5555/2600239.2600241

[18] Mozilla.org. 2014. rr. https://rr-project.org/.
[19] Marcin Nawrocki, Matthias Wählisch, Thomas C. Schmidt, Christian Keil, and

Jochen Schönfelder. 2016. A Survey on Honeypot Software and Data Analysis.
arXiv:cs.CR/1608.06249

[20] Daniel Nüst and Matthias Hinz. 2019. containerit: Generating Dockerfiles for
reproducible research with R. Journal of Open Source Software 4, 40 (2019), 1603.

[21] Thomas Pasquier, Matthew K Lau, Ana Trisovic, Emery R Boose, Ben Couturier,
Mercè Crosas, AaronMEllison, Valerie Gibson, Chris R Jones, andMargo Seltzer.
2017. If these data could talk. Scientific data 4 (2017).

[22] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo.
2019. A Survey on Collecting, Managing, and Analyzing Provenance from
Scripts. ACM Comput. Surv. 52, 3, Article 47 (June 2019), 38 pages. https:
//doi.org/10.1145/3311955

[23] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.
2010. Paranoid Android: Versatile Protection for Smartphones. In Proceedings of
ACSAC’10. Austin, TX, USA. https://doi.org/10.1145/1920261.1920313

[24] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. 2006. Argos: An Emu-
lator for Fingerprinting Zero-day Attacks for Advertised Honeypots with Au-
tomatic Signature Generation. In Proceedings of EuroSys’06. Leuven, Belgium.
https://doi.org/10.1145/1217935.1217938

[25] Giorgio Severi, Tim Leek, and Brendan Dolan-Gavitt. 2018. Malrec: Compact
Full-Trace Malware Recording for Retrospective Deep Analysis. In Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer International
Publishing, Cham, 3–23. https://doi.org/10.1007/978-3-319-93411-2_1

[26] Manolis Stamatogiannakis, Elias Athanasopoulos, Herbert Bos, and Paul Groth.
2017. PROV2R: Practical Provenance Analysis of Unstructured Processes. ACM
Trans. Internet Technol. 17, 4, Article 37 (Aug. 2017), 24 pages. https://doi.org/
10.1145/3062176

[27] Victoria Stodden, Marcia McNutt, David H Bailey, Ewa Deelman, Yolanda Gil,
Brooks Hanson, Michael A Heroux, John PA Ioannidis, andMichela Taufer. 2016.
Enhancing reproducibility for computational methods. Science 354, 6317 (2016),
1240–1241.

[28] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and Cris-
tiano Giuffrida. 2019. SoK: Benchmarking Flaws in Systems Security. In EuroS&P.
https://download.vusec.net/papers/benchmarking-crimes_eurosp19.pdf

6

https://github.com/vusec/pandacap
https://doi.org/10.1016/j.future.2011.08.004
https://doi.org/10.1016/j.future.2011.08.004
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1145/3322790.3330593
https://doi.org/10.7916/D8WM1C1P
https://doi.org/10.7916/D8WM1C1P
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1145/1060289.1060309
https://doi.org/10.1145/1060289.1060309
https://doi.org/10.1145/2677046.2677050
https://doi.org/10.25080/majora-4af1f417-011
https://doi.org/10.1093/gigascience/giz095
https://dl.acm.org/doi/10.5555/2600239.2600241
https://rr-project.org/
http://arxiv.org/abs/cs.CR/1608.06249
https://doi.org/10.1145/3311955
https://doi.org/10.1145/3311955
https://doi.org/10.1145/1920261.1920313
https://doi.org/10.1145/1217935.1217938
https://doi.org/10.1007/978-3-319-93411-2_1
https://doi.org/10.1145/3062176
https://doi.org/10.1145/3062176
https://download.vusec.net/papers/benchmarking-crimes_eurosp19.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 PANDAcap
	3.1 Off-the-shelf components
	3.2 The recctrl plugin
	3.3 Bootstrapping PANDAcap
	3.4 The PANDAcap wrapper

	4 Case study: ssh honeypot
	4.1 Experiment setup
	4.2 Collected dataset
	4.3 Trace analysis

	5 Discussion
	5.1 Comparison with Malrec
	5.2 PANDAcap as a honeypot solution
	5.3 Detectability
	5.4 Privacy Issues

	6 Conclusion
	References

