19,665 research outputs found

    Transition-Metal Pentatelluride ZrTe5_5 and HfTe5_5: a Paradigm for Large-gap Quantum Spin Hall Insulators

    Full text link
    Quantum spin Hall (QSH) insulators, a new class of quantum matters, can support topologically protected helical edge modes inside bulk insulating gap, which can lead to dissipationless transport. A major obstacle to reach wide application of QSH is the lack of suitable QSH compounds, which should be easily fabricated and has large size of bulk gap. Here we predict that single layer ZrTe5_5 and HfTe5_5 are the most promising candidates to reach the large gap QSH insulators with bulk direct (indirect) band gap as large as 0.4 eV (0.1 eV), and robust against external strains. The 3D crystals of these two materials are good layered compounds with very weak inter-layer bonding and are located near the phase boundary between weak and strong topological insulators, which pave a new way to future experimental studies on both QSH effect and topological phase transitions.Comment: 16 pages, 6 figure

    Topological fault-tolerance in cluster state quantum computation

    Get PDF
    We describe a fault-tolerant version of the one-way quantum computer using a cluster state in three spatial dimensions. Topologically protected quantum gates are realized by choosing appropriate boundary conditions on the cluster. We provide equivalence transformations for these boundary conditions that can be used to simplify fault-tolerant circuits and to derive circuit identities in a topological manner. The spatial dimensionality of the scheme can be reduced to two by converting one spatial axis of the cluster into time. The error threshold is 0.75% for each source in an error model with preparation, gate, storage and measurement errors. The operational overhead is poly-logarithmic in the circuit size.Comment: 20 pages, 12 figure

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Cubical Cohomology Ring of 3D Photographs

    Get PDF
    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex QQ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, Q\partial Q by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information

    Colloidal particles in liquid crystal films and at interfaces

    Get PDF
    This mini-review discusses the recent contribution of theoretical and computational physics as well as experimental efforts to the understanding of the behavior of colloidal particles in confined geometries and at liquid crystalline interfaces. Theoretical approaches used to study trapping, long- and short-range interactions, and assembly of solid particles and liquid inclusions are outlined. As an example, an interaction of a spherical colloidal particle with a nematic-isotropic interface and a pair interaction potential between two colloids at this interface are obtained by minimizing the Landau-de Gennes free energy functional using the finite-element method with adaptive meshes.Comment: 22 pages, 10 figure
    corecore