179 research outputs found

    A review and comparison of ontology-based approaches to robot autonomy

    Get PDF
    Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.Peer ReviewedPostprint (author's final draft

    Towards a Framework for Visual Intelligence in Service Robotics:Epistemic Requirements and Gap Analysis

    Get PDF
    A key capability required by service robots operating in real-world, dynamic environments is that of Visual Intelligence, i.e., the ability to use their vision system, reasoning components and background knowledge to make sense of their environment. In this paper, we analyse the epistemic requirements for Visual Intelligence, both in a top-down fashion, using existing frameworks for human-like Visual Intelligence in the literature, and from the bottom up, based on the errors emerging from object recognition trials in a real-world robotic scenario. Finally, we use these requirements to evaluate current Knowledge Basesfor Service Robotics and to identify gaps in the support they provide for Visual Intelligence.These gaps provide the basis of a research agenda for developing more effective knowledge representations for Visual Intelligence

    Design and implementation of a system for mutual knowledge among cognition-enabled robots

    Get PDF
    The progressive integration of robots in everyday activities is raising the need for autonomous machines to reason about their actions, the environment and the objects around them. The KnowRob knowledge processing system is specifically designed to bring these competences to autonomous robots, helping them to acquire, reason about and store knowledge. This work presents a framework for enhancing the KnowRob system with mutual knowledge acquisition and reasoning among knowledge-enabled robot

    Assembly planning in cluttered environments through heterogeneous reasoning

    Get PDF
    Assembly recipes can elegantly be represented in description logic theories. With such a recipe, the robot can figure out the next assembly step through logical inference. However, before performing an action, the robot needs to ensure various spatial constraints are met, such as that the parts to be put together are reachable, non occluded, etc. Such inferences are very complicated to support in logic theories, but specialized algorithms exist that efficiently compute qualitative spatial relations such as whether an object is reachable. In this work, we combine a logic-based planner for assembly tasks with geometric reasoning capabilities to enable robots to perform their tasks under spatial constraints. The geometric reasoner is integrated into the logic-based reasoning through decision procedures attached to symbols in the ontology.Peer ReviewedPostprint (author's final draft

    A Survey of Knowledge Representation in Service Robotics

    Full text link
    Within the realm of service robotics, researchers have placed a great amount of effort into learning, understanding, and representing motions as manipulations for task execution by robots. The task of robot learning and problem-solving is very broad, as it integrates a variety of tasks such as object detection, activity recognition, task/motion planning, localization, knowledge representation and retrieval, and the intertwining of perception/vision and machine learning techniques. In this paper, we solely focus on knowledge representations and notably how knowledge is typically gathered, represented, and reproduced to solve problems as done by researchers in the past decades. In accordance with the definition of knowledge representations, we discuss the key distinction between such representations and useful learning models that have extensively been introduced and studied in recent years, such as machine learning, deep learning, probabilistic modelling, and semantic graphical structures. Along with an overview of such tools, we discuss the problems which have existed in robot learning and how they have been built and used as solutions, technologies or developments (if any) which have contributed to solving them. Finally, we discuss key principles that should be considered when designing an effective knowledge representation.Comment: Accepted for RAS Special Issue on Semantic Policy and Action Representations for Autonomous Robots - 22 Page
    • …
    corecore