14,461 research outputs found

    MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer

    Full text link
    We introduce MIDI-VAE, a neural network model based on Variational Autoencoders that is capable of handling polyphonic music with multiple instrument tracks, as well as modeling the dynamics of music by incorporating note durations and velocities. We show that MIDI-VAE can perform style transfer on symbolic music by automatically changing pitches, dynamics and instruments of a music piece from, e.g., a Classical to a Jazz style. We evaluate the efficacy of the style transfer by training separate style validation classifiers. Our model can also interpolate between short pieces of music, produce medleys and create mixtures of entire songs. The interpolations smoothly change pitches, dynamics and instrumentation to create a harmonic bridge between two music pieces. To the best of our knowledge, this work represents the first successful attempt at applying neural style transfer to complete musical compositions.Comment: Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, Franc

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio
    • …
    corecore