9,736 research outputs found

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    Triangular norms which are join-morphisms in 3-dimensional fuzzy set theory

    Get PDF
    The n-dimensional fuzzy sets have been introduced as a generalization of interval-valued fuzzy sets, Atanassov's intuitionistic and interval-valued intuitionistic fuzzy sets. In this paper we investigate t-norms on 3-dimensional sets which are join-morphisms. Under some additional conditions we show that they can be represented using a representation which generalizes a similar representation for t-norms in interval-valued fuzzy set theory

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    On the incorporation of interval-valued fuzzy sets into the Bousi-Prolog system: declarative semantics, implementation and applications

    Full text link
    In this paper we analyse the benefits of incorporating interval-valued fuzzy sets into the Bousi-Prolog system. A syntax, declarative semantics and im- plementation for this extension is presented and formalised. We show, by using potential applications, that fuzzy logic programming frameworks enhanced with them can correctly work together with lexical resources and ontologies in order to improve their capabilities for knowledge representation and reasoning

    Extending Similarity Measures of Interval Type-2 Fuzzy Sets to General Type-2 Fuzzy Sets

    Get PDF
    Similarity measures provide one of the core tools that enable reasoning about fuzzy sets. While many types of similarity measures exist for type-1 and interval type-2 fuzzy sets, there are very few similarity measures that enable the comparison of general type-2 fuzzy sets. In this paper, we introduce a general method for extending existing interval type-2 similarity measures to similarity measures for general type-2 fuzzy sets. Specifically, we show how similarity measures for interval type-2 fuzzy sets can be employed in conjunction with the zSlices based general type-2 representation for fuzzy sets to provide measures of similarity which preserve all the common properties (i.e. reflexivity, symmetry, transitivity and overlapping) of the original interval type-2 similarity measure. We demonstrate examples of such extended fuzzy measures and provide comparisons between (different types of) interval and general type-2 fuzzy measures.Comment: International Conference on Fuzzy Systems 2013 (Fuzz-IEEE 2013
    corecore