Triangular norms which are meet-morphisms in interval-valued fuzzy set theory

Glad Deschrijver

Fuzziness and Uncertainty Modelling Research Unit Department of Applied Mathematics and Computer Science, Ghent University Krijgslaan 281 (S9), B-9000 Gent, Belgium E-mail: Glad.Deschrijver@UGent.be Homepage: http://www.fuzzy.UGent.be

Abstract

In this paper we study t-norms on the lattice of closed subintervals of the unit interval. Unlike for t-norms on a product lattice for which there exists a straightforward characterization of t-norms which are join-morphisms, respectively meet-morphisms, the situation is more complicated for t-norms in interval-valued fuzzy set theory. In previous papers several characterizations were given of t-norms in interval-valued fuzzy set theory which are join-morphisms and which satisfy additional properties, but little attention has been paid to meet-morphisms. Therefore, in this paper, we focus on t-norms which are meet-morphisms. We consider a general class of t-norms and investigate under which conditions t-norms belonging to this class are meet-morphisms. We also characterize the t-norms which are both a join- and a meet-morphism and which satisfy an additional border condition.

Keywords: interval-valued fuzzy set, t-norm, meet-morphism

1 Introduction

Interval-valued fuzzy set theory [11, 15] is an extension of fuzzy theory in which to each element of the universe a closed subinterval of the unit interval is assigned which approximates the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy set theory introduced by Atanassov [1]. In [8] it is shown that the underlying lattice of intuitionistic fuzzy set theory is isomorphic to the underlying lattice \mathcal{L}^{I} of interval-valued fuzzy set theory.

In [6, 7, 5, 18] several characterizations of t-norms on \mathcal{L}^{I} in terms of t-norms on the unit interval are given. In [13, 19, 20] t-norms on related and more general lattices are investigated. However all the characterizations in these papers only deal with t-norms which are joinmorphisms. Unlike for t-norms on a product lattice for which there exists a straightforward characterization of t-norms which are join-morphisms [3], respectively meet-morphisms, the situation is more complicated for t-norms in interval-valued fuzzy set theory. Therefore, in this paper, we focus on t-norms which are meet-morphisms. We consider a general class of t-norms (given in [7]) and investigate under which conditions t-norms belonging to this class are meet-morphisms.

2 The lattice \mathcal{L}^{I}

Definition 2.1 We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$, where

 $L^{I} = \{ [x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, 1]^{2} \text{ and } x_{1} \leq x_{2} \},$

 $[x_1, x_2] \leq_{L^I} [y_1, y_2] \iff (x_1 \leq y_1 \text{ and } x_2 \leq y_2), \text{ for all } [x_1, x_2], [y_1, y_2] \text{ in } L^I.$

Similarly as Lemma 2.1 in [8] it can be shown that \mathcal{L}^{I} is a complete lattice.

Definition 2.2 [11, 15] An interval-valued fuzzy set on U is a mapping $A: U \to L^{I}$.

Definition 2.3 [1] An intuitionistic fuzzy set on U is a set

$$A = \{ (u, \mu_A(u), \nu_A(u)) \mid u \in U \},\$$

where $\mu_A(u) \in [0,1]$ denotes the membership degree and $\nu_A(u) \in [0,1]$ the non-membership degree of u in A and where for all $u \in U$, $\mu_A(u) + \nu_A(u) \leq 1$.

An intuitionistic fuzzy set A on U can be represented by the \mathcal{L}^{I} -fuzzy set A given by

$$\begin{array}{rcl} A & : & U & \rightarrow & L^I & : \\ & & u & \mapsto & \left[\mu_A(u), 1 - \nu_A(u) \right] \end{array}$$

In Figure 1 the set L^I is shown. Note that to each element $x = [x_1, x_2]$ of L^I corresponds a point $(x_1, x_2) \in \mathbb{R}^2$.

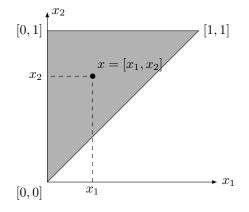


Figure 1: The grey area is L^{I} .

In the sequel, if $x \in L^{I}$, then we denote its bounds by x_{1} and x_{2} , i.e. $x = [x_{1}, x_{2}]$. The length $x_{2} - x_{1}$ of the interval $x \in L^{I}$ is called the degree of uncertainty and is denoted by x_{π} . The smallest and the largest element of \mathcal{L}^{I} are given by $0_{\mathcal{L}^{I}} = [0, 0]$ and $1_{\mathcal{L}^{I}} = [1, 1]$. Note that, for x, y in L^{I} , $x <_{L^{I}} y$ is equivalent to $x \leq_{L^{I}} y$ and $x \neq y$, i.e. either $x_{1} < y_{1}$ and $x_{2} \leq y_{2}$, or $x_{1} \leq y_{1}$ and $x_{2} < y_{2}$. We define for further usage the set $D = \{[x_{1}, x_{1}] \mid x_{1} \in [0, 1]\}$.

Note that for any non-empty subset A of L^{I} it holds that

$$\sup A = [\sup\{x_1 \mid [x_1, x_2] \in A\}, \sup\{x_2 \mid [x_1, x_2] \in A\}],$$

$$\inf A = [\inf\{x_1 \mid [x_1, x_2] \in A\}, \inf\{x_2 \mid [x_1, x_2] \in A\}].$$

Theorem 2.1 (Characterization of supremum in \mathcal{L}^{I}) [6] Let A be an arbitrary nonempty subset of L^{I} and $a \in L^{I}$. Then $a = \sup A$ if and only if

$$\begin{aligned} (\forall x \in A)(x \leq_{L^{I}} a) \\ and \ (\forall \varepsilon_{1} > 0)(\exists z \in A)(z_{1} > a_{1} - \varepsilon_{1}) \\ and \ (\forall \varepsilon_{2} > 0)(\exists z \in A)(z_{2} > a_{2} - \varepsilon_{2}). \end{aligned}$$

Definition 2.4 A t-norm on \mathcal{L}^{I} is a commutative, associative, increasing mapping \mathcal{T} : $(L^{I})^{2} \rightarrow L^{I}$ which satisfies $\mathcal{T}(1_{\mathcal{L}^{I}}, x) = x$, for all $x \in L^{I}$.

Example 2.1 [7, 9] We give some special classes of t-norms on \mathcal{L}^{I} . Let T, T_{1} and T_{2} be t-norms on $([0,1], \leq)$ such that $T_{1}(x_{1}, y_{1}) \leq T_{2}(x_{1}, y_{1})$ for all x_{1}, y_{1} in [0,1], and let $t \in [0,1]$. Then we have the following classes:

• t-representable t-norms:

$$\mathcal{T}_{T_1,T_2}(x,y) = [T_1(x_1,y_1), T_2(x_2,y_2)],$$

for all x, y in L^I ;

• pseudo-t-representable t-norms:

$$\mathcal{T}_T(x,y) = [T(x_1, y_1), \max(T(x_1, y_2), T(x_2, y_1))],$$

for all x, y in L^I ;

- $\mathcal{T}_{T,t}(x,y) = [T(x_1,y_1), \max(T(t,T(x_2,y_2)),T(x_1,y_2),T(x_2,y_1))], \text{ for all } x, y \text{ in } L^I;$
- $\mathcal{T}'_T(x,y) = [\min(T(x_1,y_2),T(x_2,y_1)),T(x_2,y_2)], \text{ for all } x,y \text{ in } L^I;$
- $\mathcal{T}_{T_1,T_2,t}(x,y) = [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)), T_2(x_1,y_2), T_2(x_2,y_1))], \text{ for all } x, y \text{ in } L^I,$ where T_1 and T_2 additionally satisfy, for all x_1, y_1 in [0,1],

$$T_2(x_1, y_1) > T_2(t, T_2(x_1, y_1)) \implies T_1(x_1, y_1) = T_2(x_1, y_1).$$
 (1)

In Theorem 5 of [7] it is shown that $\mathcal{T}_{T_1,T_2,t}$ is indeed a t-norm on \mathcal{L}^I if T_1 and T_2 satisfy (1).¹

Definition 2.5 We say that a t-norm \mathcal{T} on \mathcal{L}^{I} is

• a join-morphism if for all x, y, z in L^{I} ,

$$\mathcal{T}(x, \sup(y, z)) = \sup(\mathcal{T}(x, y), \mathcal{T}(x, z));$$

• a meet-morphism if for all x, y, z in L^{I} ,

$$\mathcal{T}(x, \inf(y, z)) = \inf(\mathcal{T}(x, y), \mathcal{T}(x, z));$$

¹Note that the condition in Theorem 5 of [7] that T_1 and T_2 are left-continuous is not used to prove that $\mathcal{T}_{T_1,T_2,t}$ is a t-norm.

• a sup-morphism if for all $x \in L^I$ and $\emptyset \neq Z \subseteq L^I$,

$$\mathcal{T}(x, \sup Z) = \sup\{\mathcal{T}(x, z) \mid z \in Z\};\$$

• an inf-morphism if for all $x \in L^I$ and $\emptyset \neq Z \subseteq L^I$,

$$\mathcal{T}(x, \inf Z) = \inf\{\mathcal{T}(x, z) \mid z \in Z\}.$$

Definition 2.6 Let $n \in \mathbb{N} \setminus \{0\}$. If for an n-ary mapping f on [0,1] and an n-ary mapping F on L^{I} it holds that

$$F([a_1, a_1], \dots, [a_n, a_n]) = [f(a_1, \dots, a_n), f(a_1, \dots, a_n)],$$

for all $(a_1, \ldots, a_n) \in [0, 1]^n$, then we say that F is a natural extension of f to L^I .

Clearly, for any mapping F on L^{I} , $F(D, \ldots, D) \subseteq D$ if and only if there exists a mapping f on [0, 1] such that F is a natural extension of f to L^{I} . E.g. $\mathcal{T}_{T,T}$, \mathcal{T}_{T} , $\mathcal{T}_{T,t} = \mathcal{T}_{T,T,t}$ and \mathcal{T}'_{T} are all natural extensions of T to L^{I} , \mathcal{N}_{s} is a natural extension of N_{s} .

Example 2.2 Let, for all x, y in [0, 1],

$$T_W(x, y) = \max(0, x + y - 1),$$

$$T_P(x, y) = xy,$$

$$T_D(x, y) = \begin{cases} \min(x, y), & \text{if } \max(x, y) = 1, \\ 0, & \text{else.} \end{cases}$$

Then T_W , T_P and T_D are t-norms on $([0,1], \leq)$. Let now, for all x, y in L^I ,

$$\mathcal{T}_W(x,y) = [\max(0, x_1 + y_1 - 1), \max(0, x_1 + y_2 - 1, x_2 + y_1 - 1)],$$

$$\mathcal{T}_P(x,y) = [x_1y_1, \max(x_1y_2, x_2y_1)].$$

Then \mathcal{T}_W and \mathcal{T}_P are t-norms on \mathcal{L}^I . Furthermore, \mathcal{T}_W and \mathcal{T}_P are natural extensions of T_W and T_P respectively.

We will also need the following result and definition (see [2, 12, 14, 16, 17]).

Theorem 2.2 Let $(T_{\alpha})_{\alpha \in A}$ be a family of t-norms and $(]a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ be a family of non-empty, pairwise disjoint open subintervals of [0, 1]. Then the function $T : [0, 1]^2 \rightarrow [0, 1]$ defined by, for all x, y in [0, 1],

$$T(x,y) = \begin{cases} a_{\alpha} + (e_{\alpha} - a_{\alpha}) \cdot T_{\alpha} \left(\frac{x - a_{\alpha}}{e_{\alpha} - a_{\alpha}}, \frac{y - a_{\alpha}}{e_{\alpha} - a_{\alpha}} \right), & \text{if } (x,y) \in [a_{\alpha}, e_{\alpha}]^2, \\ \min(x,y), & \text{otherwise,} \end{cases}$$
(2)

is a t-norm on $([0,1],\leq)$.

Definition 2.7 Let $(T_{\alpha})_{\alpha \in A}$ be a family of t-norms and $(]a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ be a family of nonempty, pairwise disjoint open subintervals of [0, 1]. The t-norm T defined by (2) is called the ordinal sum of the summands $\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle$, $\alpha \in A$, and we will write

$$T = (\langle a_{\alpha}, e_{\alpha}, T_{\alpha} \rangle)_{\alpha \in A}$$

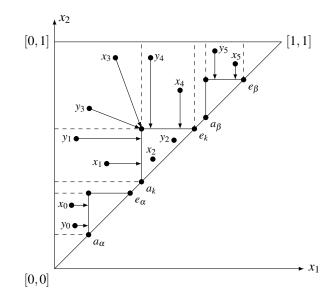


Figure 2: The different positions of $x, y \in L^I$, where $\mathcal{T}_{\alpha}([0,1],[0,1]) = [0,1], \mathcal{T}_k([0,1],[0,1]) = [0,t]$ and $\mathcal{T}_{\beta}([0,1],[0,1]) = [0,0]$. The value of $(\mathcal{T}(x,y))_2$ is calculated at the ending points of the arrows.

Let A be an arbitrary countable index-set and \mathcal{T}_{α} a t-norm on \mathcal{L}^{I} , for all $\alpha \in A$. Define, for all $\alpha \in A$ and for all a_{α} , e_{α} in D with $a_{\alpha} \leq_{L^{I}} e_{\alpha}$, the following sets and mappings:²

$$J_{\alpha} = \{x \mid x \in L^{I} \text{ and } a_{\alpha} \leq_{L^{I}} x \leq_{L^{I}} e_{\alpha}\};$$

$$J_{\alpha}^{*} = \{x \mid x \in L^{I} \text{ and } x_{1} > (a_{\alpha})_{1} \text{ and } x_{2} \leq (e_{\alpha})_{2}\};$$

$$\Phi_{\alpha} : J_{\alpha} \rightarrow L^{I} :$$

$$x \mapsto \left[\frac{x_{1} - (a_{\alpha})_{1}}{(e_{\alpha})_{1} - (a_{\alpha})_{1}}, \frac{x_{2} - (a_{\alpha})_{2}}{(e_{\alpha})_{2} - (a_{\alpha})_{2}}\right], \forall x \in J_{\alpha};$$

$$\Phi_{\alpha}^{-1} : L^{I} \rightarrow J_{\alpha} :$$

$$x \mapsto \left[(a_{\alpha})_{1} + x_{1}((e_{\alpha})_{1} - (a_{\alpha})_{1}), (a_{\alpha})_{2} + x_{2}((e_{\alpha})_{2} - (a_{\alpha})_{2})\right], \forall x \in L^{I};$$

$$\mathcal{T}_{\alpha}' = \Phi_{\alpha}^{-1} \circ \mathcal{T}_{\alpha} \circ (\Phi_{\alpha} \times \Phi_{\alpha}).$$

In Figure 2 the three smaller triangles are J_{α} , J_k and J_{β} . Assume that $J_{\alpha}^* \cap J_{\beta}^* = \emptyset$, for any $\alpha, \beta \in A$. Our aim is to construct a t-norm \mathcal{T} on \mathcal{L}^I such that $\mathcal{T}|_{J_{\alpha}^* \times J_{\alpha}^*} = \mathcal{T}'_{\alpha}$, for all $\alpha \in A$.

Let arbitrarily $k \in A$ and define the sets $A_{\leq} = \{\alpha \mid \alpha \in A \text{ and } a_{\alpha} <_{L^{I}} a_{k}\}$ and $A_{\geq} = \{\alpha \mid \alpha \in A \text{ and } a_{\alpha} >_{L^{I}} a_{k}\}$. Assume furthermore that $\mathcal{T}_{\alpha}([0,1],[0,1]) = [0,1]$, for all $\alpha \in A_{\leq}$, and $\mathcal{T}_{\alpha}([0,1],[0,1]) = [0,0]$, for all $\alpha \in A_{\geq}$. For \mathcal{T}_{k} we do not impose any restriction, so $\mathcal{T}_{k}([0,1],[0,1]) = [0,t]$ with $t \in [0,1]$. In [4, Theorem 4.2] it is shown that if \mathcal{T}_{α} is continuous for all $\alpha \in A$ and if we want to construct a t-norm \mathcal{T} on \mathcal{L}^{I} which satisfies the residuation principle and for which $\mathcal{T}|_{J_{\alpha}^{*} \times J_{\alpha}^{*}} = \mathcal{T}_{\alpha}'$ for all $\alpha \in A$, then there must exist a $k \in A$ such that the previously mentioned assumptions for $\mathcal{T}_{\alpha}([0,1],[0,1])$, for all $\alpha \in A$, hold.

²In [4] it is shown that if $a_{\alpha} \notin D$ or $e_{\alpha} \notin D$, then there does not exist an increasing bijection Φ from J_{α} to L^{I} such that Φ^{-1} is increasing. In this case the ordinal sum construction cannot be extended to L^{I} .

Theorem 2.3 [4] Let, for all $\alpha \in A$, $T_{\alpha} : [0,1]^2 \to [0,1]$ be the mapping defined by

$$T_{\alpha}(x_1, y_1) = (\mathcal{T}_{\alpha}([x_1, x_1], [y_1, y_1]))_1, \forall (x_1, y_1) \in [0, 1]^2$$

and let T be the ordinal sum of $\langle (a_{\alpha})_1, (e_{\alpha})_1, T_{\alpha} \rangle$, $\alpha \in A$. Define the mapping $\mathcal{T} : (L^I)^2 \to L^I$ by, for all $x, y \in L^I$,

$$\begin{aligned} (\mathcal{T}(x,y))_1 &= T(x_1,y_1), \\ (\mathcal{T}(x,y))_2 \\ &= \begin{cases} (\mathcal{T}'_{\alpha}([\max(x_1,(a_{\alpha})_1),\min(x_2,(e_{\alpha})_2)],[\max(y_1,(a_{\alpha})_1),\min(y_2,(e_{\alpha})_2)]))_2, \\ & \text{if } (x_2 \in](a_{\alpha})_2,(e_{\alpha})_2] \text{ and } y_2 > (a_{\alpha})_2 \text{ and } y_1 \leq (e_{\alpha})_1 \text{ and } \alpha \in A_{<}) \\ & \text{or } (y_2 \in](a_{\alpha})_2,(e_{\alpha})_2] \text{ and } x_2 > (a_{\alpha})_2 \text{ and } x_1 \leq (e_{\alpha})_1 \text{ and } \alpha \in A_{<}) \\ & \text{or } (x_1 \in](a_{\alpha})_1,(e_{\alpha})_1] \text{ and } y_2 > (a_{\alpha})_2 \text{ and } y_1 \leq (e_{\alpha})_1 \text{ and } \alpha \in A_{>}) \\ & \text{or } (y_1 \in](a_{\alpha})_1,(e_{\alpha})_1] \text{ and } x_2 > (a_{\alpha})_2 \text{ and } x_1 \leq (e_{\alpha})_1 \text{ and } \alpha \in A_{>}) \\ & \text{or } (x_2 > (a_{\alpha})_2 \text{ and } x_1 \leq (e_{\alpha})_1 \text{ and } \alpha \in A_{>}) \\ & \text{or } (x_2 > (a_{\alpha})_2 \text{ and } x_1 \leq (e_{\alpha})_1 \text{ and } y_2 > (a_{\alpha})_2 \text{ and } y_1 \leq (e_{\alpha})_1 \text{ and } \alpha = k), \\ & \min(x_2,y_2), \text{ if the previous conditions do not hold} \\ & \text{and } (x_2 \leq (a_k)_2 \text{ or } y_2 \leq (a_k)_2), \\ & \min(x_2,y_1), \text{ if the previous conditions do not hold and } x_1 \leq y_1, \\ & \min(y_2,x_1), \text{ else.} \end{aligned}$$

Then \mathcal{T} is a t-norm on \mathcal{L}^{I} called the ordinal sum of the summands $\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha} \rangle$, $\alpha \in A$, and we write

$$\mathcal{T} = ((\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha} \rangle)_{\alpha \in A_{<}} / \langle a_{k}, e_{k}, \mathcal{T}_{k} \rangle / (\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha} \rangle)_{\alpha \in A_{>}}).$$

In Figure 2 the construction of $(\mathcal{T}(x_i, y_i))_2$ is shown for $(x_i, y_i) \in (L^I)^2$ where $i \in \{0, \ldots, 5\}$. The value of $(\mathcal{T}(x_i, y_i))_2$ is calculated at the ending points of the arrows for each $i \in \{0, \ldots, 5\}$. In the figure, k is defined as in the paragraph before Theorem 2.3, $\alpha \in A_{\leq}$ and $\beta \in A_{>}$.

In the following example we show that there exist *different* t-norms T_1 and T_2 on $([0, 1], \leq)$ such that the mapping $\mathcal{T}_{T_1,T_2,t}$ defined in Example 2.1 is a t-norm on \mathcal{L}^I .

Example 2.3 Let \hat{T}_1, \hat{T}_2 and \hat{T}_3 be t-norms on $([0, 1], \leq)$ such that $\hat{T}_1 \leq \hat{T}_2$. Let furthermore $t \in [0, 1]$. Define the t-norms T_1 and T_2 by

$$T_1 = (\langle 0, t, T_1 \rangle, \langle t, 1, T_3 \rangle),$$

$$T_2 = (\langle 0, t, \hat{T}_2 \rangle, \langle t, 1, \hat{T}_3 \rangle).$$

Then

$$T_{2}(x_{1}, y_{1}) > T_{2}(t, T_{2}(x_{1}, y_{1})) \quad (= \min(t, T_{2}(x_{1}, y_{1})))$$

$$\iff T_{2}(x_{1}, y_{1}) > t$$

$$\implies \min(x_{1}, y_{1}) > t,$$

for all x_1, y_1 in [0, 1]. It can be easily verified that $T_1 \leq T_2$ and $T_1(x_1, y_1) = T_2(x_1, y_1)$, for all x_1, y_1 in $[t, 1]^2$. Clearly, if $\hat{T}_1 \neq \hat{T}_2$, then $T_1 \neq T_2$.

Define the mapping $\mathcal{T}_{T_1,T_2,t}$ by $\mathcal{T}_{T_1,T_2,t}(x,y) = [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)), T_2(x_1,y_2), T_2(x_2,y_1))]$, for all x, y in L^I . Then $\mathcal{T}_{T_1,T_2,t}$ is a t-norm on \mathcal{L}^I (see Example 2.1).

Finally we need a metric on L^{I} . Well-known metrics include the Euclidean distance and the Hamming distance. In the two-dimensional space \mathbb{R}^{2} they are defined as follows:

• the Euclidean distance between two points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 is given by

$$d^{E}(x,y) = \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}},$$

• the Hamming distance between two points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 is given by

$$d^{H}(x,y) = |x_{1} - y_{1}| + |x_{2} - y_{2}|.$$

If we restrict these distances to L^{I} then we obtain the metric spaces (L^{I}, d^{E}) and (L^{I}, d^{H}) . In these metric spaces, denote by $B(a; \varepsilon)$ the open ball with center a and radius ε defined as $B(a; \varepsilon) = \{x \mid x \in L^{I} \text{ and } d(x, a) < \varepsilon\}$. In the sequel, when we speak about continuity on \mathcal{L}^{I} , we mean continuity w.r.t. one of the above mentioned metric spaces.

3 Characterization of t-norms which are meet-morphisms

Since $([0, 1], \leq)$ is a chain, any t-norm on the unit interval is a join- and a meet-morphism. Furthermore, it is well-known that continuous t-norms on $([0, 1], \leq)$ are sup- and inf-morphisms. For t-norms on product lattices, the following result holds.

Theorem 3.1 [3] Consider two bounded lattices $\mathcal{L}_1 = (L_1, \leq_{L_1})$ and $\mathcal{L}_2 = (L_2, \leq_{L^2})$ and a tnorm \mathcal{T} on the product lattice $\mathcal{L}_1 \times \mathcal{L}_2 = (L_1 \times L_2, \leq)$, where $(x_1, x_2) \leq (y_1, y_2) \iff (x_1 \leq_{L_1} y_1 \text{ and } x_2 \leq_{L_2} y_2)$, for all (x_1, x_2) , (y_1, y_2) in $L_1 \times L_2$. The t-norm \mathcal{T} is a join-morphism (resp. meet-morphism) if and only if there exist t-norms T_1 on \mathcal{L}_1 and T_2 on \mathcal{L}_2 which are join-morphisms (resp. meet-morphisms), such that for all (x_1, x_2) , (y_1, y_2) in $L_1 \times L_2$,

$$\mathcal{T}((x_1, x_2), (y_1, y_2)) = [T_1(x_1, y_1), T_2(x_2, y_2)].$$

On \mathcal{L}^{I} , the situation is more complicated. Not all t-norms on \mathcal{L}^{I} are join- and meetmorphisms. Consider the t-norm $\mathcal{T}'_{T_{P}}$ given by $\mathcal{T}'_{T_{P}}(x,y) = [\min(x_{1}y_{2},x_{2}y_{1}),x_{2}y_{2}]$, for all x,yin L^{I} . Then we have $\mathcal{T}'_{T_{P}}([0.2,0.5], \sup([0.5,0.5],[0,1])) = \mathcal{T}'_{T_{P}}([0.2,0.5],[0.5,1]) = [0.2,0.5] \neq$ $[0.1,0.5] = \sup([0.1,0.25],[0,0.5]) = \sup(\mathcal{T}'_{T_{P}}([0.2,0.5],[0.5,0.5]),\mathcal{T}'_{T_{P}}([0.2,0.5],[0,1]))$. So $\mathcal{T}'_{T_{P}}$ is not a join-morphism. Similarly the t-norm $\mathcal{T}_{T_{P}}$ is not a meet-morphism.

Gehrke *et al.* [10] used the following definition for a t-norm on \mathcal{L}^I : a commutative, associative binary operation \mathcal{T} on \mathcal{L}^I is a t-norm if for all x, y, z in L^I ,

- (G.1) $\mathcal{T}(D,D) \subseteq D$,
- (G.2) $\mathcal{T}(x, \sup(y, z)) = \sup(\mathcal{T}(x, y), \mathcal{T}(x, z)),$
- (G.3) $\mathcal{T}(x, \inf(y, z)) = \inf(\mathcal{T}(x, y), \mathcal{T}(x, z)),$
- (G.4) $\mathcal{T}(1_{\mathcal{L}^I}, x) = x,$
- (G.5) $\mathcal{T}([0,1],x) = [0,x_2].$

They showed that such a t-norm is increasing, so their t-norms are a special case of the t-norms on \mathcal{L}^{I} as defined in Definition 2.4.

Clearly, commutative, associative binary operations on \mathcal{L}^{I} satisfying (G.1)–(G.5) are tnorms on \mathcal{L}^{I} which are join- and meet-morphisms. The two additional conditions (G.1) and (G.5) ensure that these t-norms are t-representable, as is shown in the next theorem.

Theorem 3.2 [10] For every commutative, associative binary operation \mathcal{T} on \mathcal{L}^{I} satisfying (G.1)–(G.5) there exists a t-norm T on $([0,1], \leq)$ such that, for all x, y in L^{I} ,

$$\mathcal{T}(x,y) = [T(x_1,y_1), T(x_2,y_2)].$$

We can extend this result as follows. First we need a lemma.

Lemma 3.3 [5] Let \mathcal{T} be a t-norm on \mathcal{L}^{I} which is a join-morphism. Then there exists a t-norm T on $([0,1],\leq)$ such that, for all x, y in L^{I} ,

$$(\mathcal{T}(x,y))_1 = T(x_1,y_1).$$

Theorem 3.4 For any t-norm \mathcal{T} on \mathcal{L}^{I} satisfying (G.2) and (G.5) there exist t-norms T_{1} and T_{2} on $([0,1], \leq)$ such that, for all x, y in L^{I} ,

$$\mathcal{T}(x,y) = [T_1(x_1,y_1), T_2(x_2,y_2)].$$

Proof. From Lemma 3.3 it follows that there exist a t-norm T_1 on $([0,1], \leq)$ such that $(\mathcal{T}(x,y))_1 = T_1(x_1,y_1)$, for all x, y in L^I . From (G.5) it follows that, for all x, y in L^I ,

$$\begin{aligned} (\mathcal{T}(x,y))_2 &= (\mathcal{T}([0,1],\mathcal{T}(x,y)))_2 \\ &= (\mathcal{T}(\mathcal{T}([0,1],x),\mathcal{T}([0,1],y)))_2 \\ &= (\mathcal{T}([0,x_2],[0,y_2]))_2. \end{aligned}$$

Hence $(\mathcal{T}(x,y))_2$ is independent of x_1 and y_1 , for all x, y in L^I . Let now $T_2(x_2, y_2) = (\mathcal{T}([x_2, x_2], [y_2, y_2]))_2$, for all x_2, y_2 in [0, 1]. Similarly as in the proof of Lemma 3.3 given in [5] it is shown that T_2 is a t-norm on $([0, 1], \leq)$.

Clearly, (G.5) is a rather restrictive condition. We will show that if this condition is not imposed, then the class of t-norms on \mathcal{L}^{I} satisfying the other conditions is much larger.

For continuous t-norms on \mathcal{L}^{I} we have the following relationship between sup- and joinmorphism, and between inf- and meet-morphisms.

Theorem 3.5 Let \mathcal{T} be a continuous t-norm on \mathcal{L}^{I} . Then

(i) \mathcal{T} is a sup-morphism if and only if \mathcal{T} is a join-morphism;

(ii) \mathcal{T} is an inf-morphism if and only if \mathcal{T} is a meet-morphism.

Proof. Let \mathcal{T} be a continuous t-norm on \mathcal{L}^{I} . We prove the first statement, the second equivalence is proven in a similar way. Clearly, if \mathcal{T} is a sup-morphism, then \mathcal{T} is a join-morphism.

Assume conversely that \mathcal{T} is a join-morphism. Let $x \in L^{I}$, A be an arbitrary non-empty subset of L^{I} and $a = \sup A$. Since \mathcal{T} is increasing, we have that $\mathcal{T}(x, y) \leq_{L^{I}} \mathcal{T}(x, a)$, for all $y \in A$.

From Theorem 2.1 it follows that there exists a sequence $(y_n)_{n\in\mathbb{N}^*}$ in A such that $(y_n)_1 > a_1 - \frac{1}{n}$, for all $n \in \mathbb{N}^*$. Let $y^* = \lim_{n \to +\infty} y_n$, then clearly $y_1^* = a_1$ and $y_2^* \le a_2$. Similarly, there exists a sequence $(z_n)_{n\in\mathbb{N}^*}$ in A such that $(z_n)_2 > a_2 - \frac{1}{n}$, for all $n \in \mathbb{N}^*$. Let $z^* = \lim_{n \to +\infty} z_n$, then $z_2^* = a_2$ and $z_1^* \le a_1$. Since \mathcal{T} is a join-morphism, $\mathcal{T}(x, a) = \sup(\mathcal{T}(x, y^*), \mathcal{T}(x, z^*)) = [\max((\mathcal{T}(x, y^*))_1, (\mathcal{T}(x, z^*))_1), \max((\mathcal{T}(x, y^*))_2, (\mathcal{T}(x, z^*))_2)].$

Assume that $(\mathcal{T}(x,a))_1 = (\mathcal{T}(x,y^*))_1$ (the case $(\mathcal{T}(x,a))_1 = (\mathcal{T}(x,z^*))_1$ is similar). Since \mathcal{T} is continuous, we have in particular that

$$(\forall \varepsilon_1 > 0) (\exists N \in \mathbb{N}^*) (\forall n \in \mathbb{N}^*) (n > N \implies |(\mathcal{T}(x, y_n))_1 - (\mathcal{T}(x, y^*))_1| + |(\mathcal{T}(x, y_n))_2 - (\mathcal{T}(x, y^*))_2| < \varepsilon_1).$$

So, for any $\varepsilon_1 > 0$, there exists an $n \in \mathbb{N}^*$ such that $(\mathcal{T}(x, y^*))_1 - \varepsilon_1 < (\mathcal{T}(x, y_n))_1 \leq (\mathcal{T}(x, y^*))_1 = (\mathcal{T}(x, a))_1$. Hence, for any $\varepsilon_1 > 0$, there exists an element $y \in A$ such that $(\mathcal{T}(x, y))_1 > (\mathcal{T}(x, a))_1 - \varepsilon_1$. Similarly, for any $\varepsilon_2 > 0$, there exists a $z \in A$ such that $(\mathcal{T}(x, z))_2 > (\mathcal{T}(x, a))_2 - \varepsilon_2$. From Theorem 2.1 it follows that $\mathcal{T}(x, a) = \sup_{y \in A} \mathcal{T}(x, y)$. \Box

In the following theorem the t-norms on \mathcal{L}^{I} which satisfy the residuation principle and an additional border condition are characterized in terms of the class of t-norms $\mathcal{T}_{T_1,T_2,t}$ given in Example 2.1.

Theorem 3.6 [7] Let $\mathcal{T} : (L^I)^2 \to L^I$ be a t-norm such that, for all $x \in D$, $y_2 \in [0,1]$, $(\mathcal{T}(x, [y_2, y_2]))_2 = (\mathcal{T}(x, [0, y_2]))_2$. Then \mathcal{T} satisfies the residuation principle if and only if there exist two left-continuous t-norms T_1 and T_2 on $([0,1], \leq)$ and a real number $t \in [0,1]$ such that, for all $x, y \in L^I$,

$$\mathcal{T}(x,y) = [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)), T_2(x_1,y_2), T_2(y_1,x_2))],$$

i.e. $T = T_{T_1,T_2,t}$, and, for all x_1, y_1 in [0,1],

$$\begin{cases} T_1(x_1, y_1) = T_2(x_1, y_1), & \text{if } T_2(x_1, y_1) > T_2(t, T_2(x_1, y_1)), \\ T_1(x_1, y_1) \le T_2(x_1, y_1), & \text{else.} \end{cases}$$

We extend Theorem 3.6 to t-norms on \mathcal{L}^{I} which are join-morphisms. The proof of the following theorem is analogous to the proof of Theorem 3.6 given in [7].

Theorem 3.7 Let $\mathcal{T} : (L^I)^2 \to L^I$ be a t-norm such that, for all $x \in D$, $y_2 \in [0,1]$, $(\mathcal{T}(x, [y_2, y_2]))_2 = (\mathcal{T}(x, [0, y_2]))_2$. Then \mathcal{T} is a join-morphism if and only if there exist two t-norms T_1 and T_2 on $([0, 1], \leq)$ and a real number $t \in [0, 1]$ such that, for all $x, y \in L^I$,

$$\mathcal{T}(x,y) = [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)), T_2(x_1,y_2), T_2(y_1,x_2))],$$

i.e. $T = T_{T_1,T_2,t}$, and, for all x_1, y_1 in [0,1],

$$\begin{cases} T_1(x_1, y_1) = T_2(x_1, y_1), & \text{if } T_2(x_1, y_1) > T_2(t, T_2(x_1, y_1)), \\ T_1(x_1, y_1) \le T_2(x_1, y_1), & \text{else.} \end{cases}$$

Now we characterize the t-norms on \mathcal{L}^{I} belonging to the class $\mathcal{T}_{T_{1},T_{2},t}$ which are meetmorphisms. First we need some lemmas.

Lemma 3.8 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism. Then $T_2(t,y_1) = \min(t,y_1)$, for all $y_1 \in [0,1]$.

Proof. Let arbitrarily $y_1 \in [0, 1]$. Then

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}([0,1],\inf([y_1,y_1],[0,1])) &= \mathcal{T}_{T_1,T_2,t}([0,1],[0,y_1]) \\ &= [0,T_2(t,T_2(1,y_1))] \\ &= [0,T_2(t,y_1)]. \end{aligned}$$

On the other hand,

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}([0,1],\inf([y_1,y_1],[0,1])) &= \inf(\mathcal{T}_{T_1,T_2,t}([0,1],[y_1,y_1]),\mathcal{T}_{T_1,T_2,t}([0,1],[0,1])) \\ &= \inf([0,\max(T_2(t,y_1),y_1)],[0,t]) \\ &= \inf([0,y_1],[0,t]) \\ &= [0,\min(y_1,t)]. \end{aligned}$$

Hence $T_2(t, y_1) = \min(t, y_1)$, for all $y_1 \in [0, 1]$.

Corollary 3.9 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism. Then there exists two t-norms \hat{T}_1 and \hat{T}_2 on $([0,1],\leq)$ such that

$$T_2 = (\langle 0, t, \hat{T}_1 \rangle, \langle t, 1, \hat{T}_2 \rangle).$$

Proof. Define, for all x, y in [0, 1],

$$\hat{T}_1(x,y) = \frac{T_2(tx,ty)}{t},$$

$$\hat{T}_2(x,y) = \frac{T_2(t+(1-t)x,t+(1-t)y)-t}{1-t}.$$
(3)

Then it is easy to see that \hat{T}_1 is commutative, associative and increasing. Since from Lemma 3.8 it follows that $T_2(t, y) = \min(t, y)$, for all $y \in [0, 1]$, we obtain that $\hat{T}_1(1, y) = y$, for all $y \in [0, 1]$. So \hat{T}_1 is a t-norm. Similarly, we obtain that \hat{T}_2 is a t-norm on $([0, 1], \leq)$.

Let arbitrarily x, y in [0, 1] such that x < t < y (the case y < t < x is similar). Then we obtain that $x = \min(t, x) = T_2(t, x) \leq T_2(x, y) \leq T_2(1, x) = x$, so $T_2(x, y) = \min(x, y)$. It now easily follows that T_2 is equal to the ordinal sum of $\langle 0, t, \hat{T}_1 \rangle$ and $\langle t, 1, \hat{T}_2 \rangle$.

Lemma 3.10 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism. Then the t-norm \hat{T}_2 in the representation of T_2 given in Corollary 3.9 is equal to the minimum.

Proof. Let arbitrarily x_1, z_1 in [t, 1]. From Lemma 3.8 it follows that $T_2(t, z_1) = \min(t, z_1) = t$. Furthermore, from Corollary 3.9 it follows that $T_2(x_1, z_1) \ge t$. So, we obtain

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}([x_1,1],\inf([0,1],[z_1,z_1])) &= \mathcal{T}_{T_1,T_2,t}([x_1,1],[0,z_1]) \\ &= [0,\max(T_2(t,z_1),T_2(x_1,z_1))] \\ &= [0,\max(t,T_2(x_1,z_1))] \\ &= [0,T_2(x_1,z_1)] \end{aligned}$$

and

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}([x_1,1],\inf([0,1],[z_1,z_1])) \\ &= \inf(\mathcal{T}_{T_1,T_2,t}([x_1,1],[0,1]),\mathcal{T}_{T_1,T_2,t}([x_1,1],[z_1,z_1])) \\ &= \inf([0,\max(t,x_1)],[T_1(x_1,z_1),\max(T_2(t,z_1),T_2(x_1,z_1),z_1)]) \\ &= \inf([0,x_1],[T_1(x_1,z_1),z_1]) \\ &= [0,\min(x_1,z_1)]. \end{aligned}$$

So $T_2(x_1, z_1) = \min(x_1, z_1)$. From (3) it easily follows that $\hat{T}_2 = \min(x_1, z_1)$.

Corollary 3.11 Assume that $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism. Then there exists a t-norm T_1 on $([0,1],\leq)$ such that

$$T_2 = (\langle 0, t, T_1 \rangle, \langle t, 1, \min \rangle).$$

Lemma 3.12 Assume that there exists a t-norm \hat{T}_1 on $([0,1],\leq)$ such that $T_2 = (\langle 0,t,\hat{T}_1 \rangle, \langle t,1,\min\rangle)$, then $\mathcal{T}_{T_1,T_2,t}$ is a meet-morphism.

Proof. Let arbitrarily x, y, z in L^I . If $y \leq_{L^I} z$ (the case $y \geq_{L^I} z$ is similar), then $\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = \mathcal{T}_{T_1,T_2,t}(x,y) = \inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z))$. So, let $y_1 < z_1$ and $y_2 > z_2$ (the case $y_1 > z_1$ and $y_2 < z_2$ is similar). Then we have the following cases:

• $\max(x_1, y_1, z_1) \le t$:

From the fact that $T_2 \leq \min$ it follows that $T_2(x_1, z_2) \leq t$ and $T_2(x_2, y_1) \leq t$, so $T_2(x_1, z_2) \leq \min(t, T_2(x_2, z_2)) = T_2(t, T_2(x_2, z_2))$. Since $T_2(x_2, y_1) \leq T_2(x_2, z_1) \leq T_2(x_2, z_2)$, we obtain similarly that $T_2(x_2, y_1) \leq T_2(t, T_2(x_2, z_2))$. Thus,

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) &= \mathcal{T}_{T_1,T_2,t}(x,[y_1,z_2]) \\ &= [T_1(x_1,y_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_1,z_2),T_2(x_2,y_1))] \\ &= [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))]. \end{aligned}$$

On the other hand, we obtain similarly that

$$\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\
= \inf([T_1(x_1,y_1),T_2(t,T_2(x_2,y_2))],[T_1(x_1,z_1),T_2(t,T_2(x_2,z_2))]) \\
= [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))],$$

using the fact that T_2 is increasing, $y_1 < z_1$ and $y_2 > z_2$.

• $\max(x_1, y_1) \le t < z_1$:

Similarly as in the previous case, we have that

$$\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))]$$

and

$$\begin{aligned} \inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\ &= \inf([T_1(x_1,y_1),T_2(t,T_2(x_2,y_2))],[T_1(x_1,z_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_2,z_1))]) \\ &= [T_1(x_1,y_1),\min(T_2(t,T_2(x_2,y_2)),\max(\min(t,T_2(x_2,z_2)),T_2(x_2,z_1)))]. \end{aligned}$$

We have two cases:

1. $x_2 \leq t$: in this case, we have that $T_2(x_2, z_1) = \min(x_2, z_1) = x_2 \leq t$, so $T_2(x_2, z_1) \leq \min(t, T_2(x_2, z_2)) = T_2(t, T_2(x_2, z_2))$. Hence

$$\begin{aligned} &\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\ &= [T_1(x_1,y_1),\min(T_2(t,T_2(x_2,y_2)),T_2(t,T_2(x_2,z_2)))] \\ &= [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))]. \end{aligned}$$

2. $x_2 > t$: in this case, $T_2(x_2, z_1) = \min(x_2, z_1) > t$, so $T_2(x_2, y_2) \ge T_2(x_2, z_2) \ge T_2(x_2, z_1) > t$. Thus,

$$\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\
= [T_1(x_1,y_1),\min(\min(t,T_2(x_2,y_2)),T_2(x_2,z_1)))] \\
= [T_1(x_1,y_1),t]$$

and

$$\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),\min(t,T_2(x_2,z_2))] = [T_1(x_1,y_1),t].$$

• $x_1 \le t < y_1 \ (< z_1)$:

We have that $T_2(x_1, z_2) \le x_1 \le t$, so $T_2(x_1, z_2) \le \min(t, T_2(x_2, z_2)) = T_2(t, T_2(x_2, z_2))$. We obtain

$$\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_2,y_1))]$$

and similarly

$$\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) = \inf([T_1(x_1,y_1),\max(T_2(t,T_2(x_2,y_2)),T_2(x_2,y_1))], [T_1(x_1,z_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_2,z_1))]).$$

We have two cases:

1. $x_2 \leq t$: in this case, we have that $T_2(x_2, y_1) \leq t$, so, using the fact that $y_1 < z_1 \leq z_2, T_2(x_2, y_1) \leq \min(t, T_2(x_2, z_2)) = T_2(t, T_2(x_2, z_2))$. Thus,

 $\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))].$

Similarly, we obtain that $\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) = [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))].$

2. $x_2 > t$: from the representation of T_2 it follows that $T_2(x_2, y_2) \ge T_2(x_2, z_2) \ge T_2(x_2, z_1) \ge t$. So, using the fact that $T_2(t, a) = \min(t, a)$ for all $a \in [0, 1]$, we obtain

$$\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),\max(t,T_2(x_2,y_1))]$$

and

$$\begin{aligned} &\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\ &= [T_1(x_1,y_1),\min(\max(t,T_2(x_2,y_1)),\max(t,T_2(x_2,z_1)))] \\ &= [T_1(x_1,y_1),\max(t,T_2(x_2,y_1))]. \end{aligned}$$

• $(y_1 <) z_1 \le t < x_1$:

Similarly as in the previous case, we obtain that

$$\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_1,z_2))]$$

and

$$\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) = \inf([T_1(x_1,y_1),\max(T_2(t,T_2(x_2,y_2)),T_2(x_1,y_2))], [T_1(x_1,z_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_1,z_2))]).$$

We have two cases:

1. $y_2 \leq t$: we obtain that $T_2(x_1, z_2) \leq T_2(x_1, y_2) \leq t$, so $T_2(x_1, y_2) \leq \min(t, T_2(x_2, y_2)) = T_2(t, T_2(x_2, y_2))$ and similarly for $T_2(x_1, z_2)$. Thus

$$\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) = [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))]$$

and

$$\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\
= \inf([T_1(x_1,y_1),T_2(t,T_2(x_2,y_2))],[T_1(x_1,z_1),T_2(t,T_2(x_2,z_2))]) \\
= [T_1(x_1,y_1),T_2(t,T_2(x_2,z_2))].$$

2. $y_2 > t$: we have that $T_2(x_1, y_2) \ge t \ge \min(t, T_2(x_2, z_2))$ and $T_2(x_1, y_2) \ge T_2(x_1, z_2)$, so

$$\begin{split} &\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\ &= [T_1(x_1,y_1),\min(T_2(x_1,y_2),\max(T_2(t,T_2(x_2,z_2)),T_2(x_1,z_2)))] \\ &= [T_1(x_1,y_1),\max(T_2(t,T_2(x_2,z_2)),T_2(x_1,z_2))] \\ &= \mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)). \end{split}$$

• $y_1 \le t < \min(x_1, z_1)$:

We have that $T_2(x_2, y_1) \le y_1 \le t \le T_2(x_1, z_2) \le T_2(x_1, y_2)$, so

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) &= [T_1(x_1,y_1),\max(\min(t,T_2(x_2,z_2)),T_2(x_1,z_2))] \\ &= [T_1(x_1,y_1),T_2(x_1,z_2)]. \end{aligned}$$

Similarly,

$$\begin{aligned} \inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\ &= \inf([T_1(x_1,y_1),\max(T_2(x_1,y_2),T_2(x_2,y_1))],\\ & [T_1(x_1,z_1),\max(T_2(x_1,z_2),T_2(x_2,z_1))]) \\ &= [T_1(x_1,y_1),\min(T_2(x_1,y_2),\max(T_2(x_1,z_2),T_2(x_2,z_1)))]. \end{aligned}$$

We have two cases:

1. $x_1 < \min(x_2, z_1)$: in this case, we have that $T_2(x_1, z_2) = \min(x_1, z_2) = x_1 < \min(x_2, z_1) = T_2(x_2, z_1)$ (using Corollary 3.11), so

$$\min(T_2(x_1, y_2), \max(T_2(x_1, z_2), T_2(x_2, z_1)))$$

= $\min(T_2(x_1, y_2), T_2(x_2, z_1))$
= $\min(x_1, y_2, x_2, z_1)$
= $x_1 = \min(x_1, z_2) = T_2(x_1, z_2).$

2. $x_1 \ge \min(x_2, z_1)$: since $z_2 \ge z_1 \ge \min(x_2, z_1)$, we have that $T_2(x_1, z_2) = \min(x_1, z_2) \ge \min(x_2, z_1) = T_2(x_2, z_1)$, so

 $\min(T_2(x_1, y_2), \max(T_2(x_1, z_2), T_2(x_2, z_1)))$ = $\min(T_2(x_1, y_2), T_2(x_1, z_2))$ = $T_2(x_1, z_2),$

since $y_2 > z_2$.

$$t \le \min(x_1, y_1, z_1)$$

From Lemma 3.8 and Corollary 3.11 it follows that

$$\begin{aligned} \mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)) &= \mathcal{T}_{T_1,T_2,t}(x,[y_1,z_2]) \\ &= [T_1(x_1,y_1),\max(\min(t,T_2(x_2,z_2)),\min(x_1,z_2),\min(x_2,y_1))] \\ &= [T_1(x_1,y_1),\max(\min(x_1,z_2),\min(x_2,y_1))]. \end{aligned}$$

On the other hand, we obtain similarly that

$$\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)) \\
= \inf([T_1(x_1,y_1),\max(\min(x_1,y_2),\min(x_2,y_1))], \\
[T_1(x_1,z_1),\max(\min(x_1,z_2),\min(x_2,z_1))]).$$

Clearly, it holds that $(\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z)))_1 = T_1(x_1,y_1) = \min(T_1(x_1,y_1),T_1(x_1,z_1)) = (\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)))_1$. For the second projection, we have two cases:

1. $x_1 < \min(x_2, z_1)$: in this case, we have that $\min(x_1, z_2) = x_1 < \min(x_2, z_1) \le z_2 < y_2$. So, $(\mathcal{T}_{T_1, T_2, t}(x, \inf(y, z)))_2 = \max(x_1, \min(x_2, y_1))$. On the other hand

$$(\inf(\mathcal{T}_{T_1,T_2,t}(x,y),\mathcal{T}_{T_1,T_2,t}(x,z)))_2 = \min(\max(x_1,\min(x_2,y_1)),\min(x_2,z_1))$$
$$= \max(x_1,\min(x_2,y_1))$$
$$= (\mathcal{T}_{T_1,T_2,t}(x,\inf(y,z))_2)$$

using the fact that $y_1 < z_1$ and $x_1 < \min(x_2, z_1)$.

2. $x_1 \ge \min(x_2, z_1)$: in this case, we have that $x_1 = x_2$ or $x_1 \ge z_1$, so $\min(x_1, z_2) \ge \min(x_2, z_1)$. If $x_1 = x_2$, then $(\mathcal{T}_{T_1, T_2, t}(x, \inf(y, z)))_2 = \min(x_1, z_2)$, because $z_2 \ge z_1 > y_1$. On the other hand, $(\inf(\mathcal{T}_{T_1, T_2, t}(x, y), \mathcal{T}_{T_1, T_2, t}(x, z)))_2 = \min(\min(x_1, y_2), \min(x_1, z_2)) = \min(x_1, z_2)$. If $x_1 \ge z_1$, then $(\mathcal{T}_{T_1, T_2, t}(x, \inf(y, z)))_2 = \max(\min(x_1, z_2), y_1) = \min(x_1, z_2)$, because $y_1 < z_1 \le x_1 \le x_2$. On the other hand, $(\inf(\mathcal{T}_{T_1, T_2, t}(x, y), \mathcal{T}_{T_1, T_2, t}(x, z)))_2 = \min(\max(\min(x_1, y_2), y_1), \min(x_1, z_2)) = \min(x_1, z_2)$, using the fact that $z_2 < y_2$. So again $(\inf(\mathcal{T}_{T_1, T_2, t}(x, y), \mathcal{T}_{T_1, T_2, t}(x, z)))_2 = (\mathcal{T}_{T_1, T_2, t}(x, \inf(y, z)))_2$.

Now we obtain the main result.

Theorem 3.13 For any t-norms T_1 and T_2 on $([0,1], \leq)$ and $t \in [0,1]$, $\mathcal{T}_{T_1,T_2,t}$ is a meetmorphism if and only if there exists a t-norm \hat{T}_1 on $([0,1], \leq)$ such that

$$T_2 = (\langle 0, t, T_1 \rangle, \langle t, 1, \min \rangle).$$

Proof. This follows immediately from Corollary 3.11 and Lemma 3.12.

If we assume that $T_1 = T_2$, then we do not only obtain that T_1 is the ordinal sum of two t-norms on $([0, 1], \leq)$, but we can also write the t-norm $\mathcal{T}_{T_1,T_1,t} = \mathcal{T}_{T_1,t}$ as an ordinal sum of two t-norms on \mathcal{L}^I . This is shown in the next theorem.

Theorem 3.14 For any t-norm T on $([0,1], \leq)$ and $t \in [0,1]$, $\mathcal{T}_{T,t}$ is a meet-morphism if and only if there exists a t-norm \hat{T}_1 on $([0,1], \leq)$ such that

$$\mathcal{T}_{T,t} = (\emptyset \ / \ \langle 0_{\mathcal{L}^{I}}, [t,t], \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}} \rangle \ / \ \langle [t,t], 1_{\mathcal{L}^{I}}, \mathcal{T}_{\min} \rangle),$$

where, for all x, y in L^{I} ,

$$\begin{aligned} \mathcal{T}_{\hat{T}_1,\hat{T}_1}(x,y) &= [\hat{T}_1(x_1,y_1),\hat{T}_1(x_2,y_2)],\\ \mathcal{T}_{\min}(x,y) &= [\min(x_1,y_1),\max(\min(x_1,y_2),\min(x_2,y_1))]. \end{aligned}$$

Proof. Assume first that $\mathcal{T}_{T,t}$ is a meet-morphism. From Theorem 3.13 it follows that there exists a t-norm \hat{T}_1 on $([0,1],\leq)$ such that $T = (\langle 0,t,\hat{T}_1 \rangle, \langle t,1,\min\rangle)$.

Let $\phi: [0,t] \to [0,1]: x_1 \mapsto \frac{x_1}{t}$ and $\hat{T}'_1 = \phi^{-1} \circ \hat{T}_1 \circ (\phi \times \phi)$. Define for all x, y in L^I ,

$$\begin{split} \Phi_1(x) &= [\phi(x_1), \phi(x_2)], \\ \Phi_2(x) &= \left[\frac{x_1 - t}{1 - t}, \frac{x_2 - t}{1 - t}\right], \\ \mathcal{T}'_{\hat{T}_1, \hat{T}_1} &= \Phi_1^{-1} \circ \mathcal{T}_{\hat{T}_1, \hat{T}_1} \circ (\Phi_1 \times \Phi_1), \\ \mathcal{T}'_{\min} &= \Phi_2^{-1} \circ \mathcal{T}_{\min} \circ (\Phi_2 \times \Phi_2). \end{split}$$

Note that \mathcal{T}'_{\min} defined by the formula above is a transformation of \mathcal{T}_{\min} and not a member of the class of t-norms \mathcal{T}'_T given in Example 2.1. Then, for all x, y, x', y' in L^I such that $x \leq_{L^I} [t, t], y \leq_{L^I} [t, t], x' \geq_{L^I} [t, t]$ and $y' \geq_{L^I} [t, t],$

$$\mathcal{T}'_{\hat{T}_1,\hat{T}_1}(x,y) = [\hat{T}'_1(x_1,y_1),\hat{T}'_1(x_2,y_2)],$$

$$\mathcal{T}'_{\min}(x',y') = [\min(x'_1,y'_1),\max(\min(x'_1,y'_2),\min(x'_2,y'_1))].$$

We consider the following cases:

1. $\max(x_2, y_2) \leq t$: using Lemma 3.8, we obtain

$$\begin{aligned} \mathcal{T}_{T,t}(x,y) &= [T(x_1,y_1), \max(\min(t,T(x_2,y_2)),T(x_1,y_2),T(x_2,y_1))] \\ &= [T(x_1,y_1), \max(T(x_2,y_2),T(x_1,y_2),T(x_2,y_1))] \\ &= [\hat{T}_1'(x_1,y_1),\hat{T}_1'(x_2,y_2)]. \end{aligned}$$

- 2. $\max(x_2, y_1) \leq t < y_2$ (the case $\max(y_2, x_1) \leq t < x_2$ is similar): we obtain in a completely similar way that $\mathcal{T}_{T,t}(x, y) = [\hat{T}'_1(x_1, y_1), \min(x_2, y_2)] = [\hat{T}'_1(x_1, y_1), x_2] = [\hat{T}'_1(x_1, y_1), \hat{T}'_1(x_2, t)].$
- 3. $\max(x_1, y_1) \leq t < \min(x_2, y_2)$: we obtain that $T(t, T(x_2, y_2)) = \min(t, x_2, y_2) = t$, $T(x_1, y_2) \leq x_1 \leq t$ and $T(x_2, y_1) \leq y_1 \leq t$. So $\mathcal{T}_{T,t}(x, y) = [T(x_1, y_1), t] = [\hat{T}'_1(x_1, y_1), \hat{T}'_1(t, t)].$
- 4. $x_2 \leq t < y_1$ (the case $y_2 \leq t < x_1$ is similar): we obtain that $T(t, T(x_2, y_2)) = \min(t, x_2, y_2) = x_2$, $T(x_1, y_2) = \min(x_1, y_2) = x_1$ and $T(x_2, y_1) = \min(x_2, y_1) = x_2$. So $\mathcal{T}_{T,t}(x, y) = [T(x_1, y_1), x_2] = [\min(x_1, y_1), \min(x_2, y_1)] = [\min(x_1, y_1), \min(x_2, y_2)].$
- 5. $x_1 \leq t < \min(x_2, y_1)$ (the case $y_1 \leq t < \min(y_2, x_1)$ is similar): we obtain that $T(t, T(x_2, y_2)) = \min(t, x_2, y_2) = t$, $T(x_1, y_2) = \min(x_1, y_2) = x_1$ and $T(x_2, y_1) = \min(x_2, y_1) > t$. So $\mathcal{T}_{T,t}(x, y) = [T(x_1, y_1), \min(x_2, y_1)] = [\min(x_1, y_1), \max(\min(t, y_2), \min(x_2, y_1))]$.
- 6. $t < \min(x_1, y_1)$: we obtain that $T(t, T(x_2, y_2)) = \min(t, x_2, y_2) = t$, so $\mathcal{T}_{T,t}(x, y) = [\min(x_1, y_1), \max(\min(x_1, y_2), \min(x_2, y_1))].$

We see that

$$(\mathcal{T}_{T,t}(x,y))_1 = T(x_1,y_1) = \begin{cases} \hat{T}_1'(x_1,y_1), & \text{if } (x_1,y_1) \in [0,t]^2, \\ \min(x_1,y_1), & \text{else.} \end{cases}$$

So, the first projection of $\mathcal{T}_{T,t}$ is determined by the ordinal sum of $\langle 0, t, \hat{T}_1 \rangle$ and $\langle t, 1, \min \rangle$. The second projection of $\mathcal{T}_{T,t}$ is given by

$$(\mathcal{T}_{T,t}(x,y))_{2}$$

$$=\begin{cases}
(\mathcal{T}_{\hat{T}_{1},\hat{T}_{1}}([x_{1},\min(x_{2},t)],[y_{1},\min(y_{2},t)]))_{2}, \\ \text{if } x_{2} > 0 \text{ and } x_{1} \leq t \text{ and } y_{2} > 0 \text{ and } y_{1} \leq t, \\
(\mathcal{T}_{\min}'([\max(x_{1},t),x_{2}],[\max(y_{1},t),y_{2}]))_{2}, \\ \text{if } (x_{1} \in]t,1] \text{ and } y_{2} > t \text{ and } y_{1} \leq 1) \\ \text{or } (y_{1} \in]t,1] \text{ and } x_{2} > t \text{ and } x_{1} \leq 1), \\ \min(x_{2},y_{2}), \text{ if the previous conditions do not hold} \\ \text{and } (x_{2} \leq 0 \text{ or } y_{2} \leq 0), \\ \min(x_{2},y_{1}), \text{ if the previous conditions do not hold and } x_{1} \leq y_{1} \\ \min(y_{2},x_{1}), \text{ else.} \end{cases}$$

This corresponds to the formula in Theorem 2.3, in which $A = \{1, 2\}$, $a_1 = 0_{\mathcal{L}^I}$, $e_1 = a_2 = [t, t]$, $e_2 = 1_{\mathcal{L}^I}$, k = 1, $A_{\leq} = \emptyset$ and $A_{>} = \{2\}$. Hence $\mathcal{T}_{T,t}$ is the ordinal sum of the summands $\langle 0_{\mathcal{L}^I}, [t, t], \mathcal{T}_{\hat{T}_1, \hat{T}_1} \rangle$ and $\langle [t, t], 1_{\mathcal{L}^I}, \mathcal{T}_{\min} \rangle$, with k = 1.

Conversely, assume that $\mathcal{T}_{T,t}$ is the ordinal sum of the summands $\langle 0_{\mathcal{L}^{I}}, [t, t], \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}} \rangle$ and $\langle [t, t], 1_{\mathcal{L}^{I}}, \mathcal{T}_{\min} \rangle$, with k = 1. Then from Theorem 2.3 it follows that T is the ordinal sum of $\langle 0, t, \hat{T}_{1} \rangle$ and $\langle t, 1, \min \rangle$. Using Theorem 3.13 we obtain that $\mathcal{T}_{T,t}$ is a meet-morphism. \Box

Corollary 3.15 Let T be a t-norm on $([0,1],\leq)$.

- If t = 0, then $\mathcal{T}_{T,0}$ is a meet-morphism if and only if $\mathcal{T}_{T,0} = \mathcal{T}_{\min}$.
- If t = 1, then $\mathcal{T}_{T,1} = \mathcal{T}_{T,T}$ is a meet-morphism for any T.

By combining Theorems 3.6 and 3.13, we obtain the following result.

Theorem 3.16 Let $\mathcal{T} : (L^I)^2 \to L^I$ be a t-norm such that, for all $x \in D$, $y_2 \in [0,1]$, $(\mathcal{T}(x, [y_2, y_2]))_2 = (\mathcal{T}(x, [0, y_2]))_2$. Then \mathcal{T} is a join-morphism and a meet-morphism if and only if there exist two t-norms T_1 and T_2 on $([0, 1], \leq)$ and a real number $t \in [0, 1]$ such that, for all $x, y \in L^I$,

$$\mathcal{T}(x,y) = [T_1(x_1,y_1), \max(T_2(t,T_2(x_2,y_2)), T_2(x_1,y_2), T_2(y_1,x_2))],$$

 T_2 is the ordinal sum $(\langle 0, t, \hat{T}_1 \rangle, \langle t, 1, \min \rangle)$, where \hat{T}_1 is a t-norm on $([0, 1], \leq)$, and, for all x_1, y_1 in [0, 1],

 $T_1(x_1, y_1) = T_2(x_1, y_1), \text{ if } T_2(x_1, y_1) > t.$

4 Conclusion

In this paper we investigated t-norms in interval-valued fuzzy set theory which are meetmorphisms. First we showed that for continuous t-norms the notions of sup- and joinmorphism, respectively the notions of inf- and meet-morphism, collapse. We considered a general class of t-norms (given in [7]) and investigated under which conditions t-norms belonging to this class are meet-morphisms. We also showed that there exist non-trivial examples of t-norms in this class, i.e. t-norms which belong to this class but not to the class investigated in [5, 18]. Finally we gave a characterization of the t-norms which are both a join- and a meet-morphism and which satisfy an additional border condition.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, New York, 1999.
- [2] A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954) 631–646.
- [3] B. De Baets, R. Mesiar, Triangular norms on product lattices, Fuzzy Sets and Systems 104 (1) (1999) 61–75.
- [4] G. Deschrijver, Ordinal sums in interval-valued fuzzy set theory, New Mathematics and Natural Computation 1 (2) (2005) 243–259.
- [5] G. Deschrijver, A representation of t-norms in interval-valued L-fuzzy set theory, Fuzzy Sets and Systems 159 (13) (2008) 1597–1618.

- [6] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems 12 (1) (2004) 45–61.
- [7] G. Deschrijver, E. E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11 (6) (2003) 691–709.
- [8] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2) (2003) 227–235.
- [9] G. Deschrijver, E. E. Kerre, Implicators based on binary aggregation operators in interval-valued fuzzy set theory, Fuzzy Sets and Systems 153 (2) (2005) 229–248.
- [10] M. Gehrke, C. L. Walker, E. A. Walker, Some comments on interval valued fuzzy sets, International Journal of Intelligent Systems 11 (10) (1996) 751–759.
- [11] M. B. Gorzałczany, A method of inference in approximate reasoning based on intervalvalued fuzzy sets, Fuzzy Sets and Systems 21 (1) (1987) 1–17.
- [12] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems 126 (2) (2002) 199–205.
- [13] F. Karaçal, D. Khadjiev, ∨-distributive and infinitely ∨-distributive t-norms on complete lattices, Fuzzy Sets and Systems 151 (2) (2005) 341–352.
- [14] C.-H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965) 189–212.
- [15] R. Sambuc, Fonctions Φ-floues. Application à l'aide au diagnostic en pathologie thyroidienne, Ph.D. thesis, Université de Marseille, France (1975).
- [16] S. Saminger, On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and Systems 157 (10) (2006) 1403–1416.
- [17] B. Schweizer, A. Sklar, Associative functions and abstract semigroups, Publ. Math. Debrecen 10 (1963) 69–81.
- [18] B. Van Gasse, C. Cornelis, G. Deschrijver, E. E. Kerre, A characterization of intervalvalued residuated lattices, International Journal of Approximate Reasoning 49 (2) (2008) 478–487.
- [19] G. Wang, W. Wang, Left-continuity of t-norms on the n-dimensional Euclidean cube, Applied Mathematics Letters 23 (4) (2010) 479–483.
- [20] D. Zhang, Triangular norms on partially ordered sets, Fuzzy Sets and Systems 153 (2) (2005) 195–209.