Triangular norms which are meet-morphisms in interval-valued fuzzy set theory

Glad Deschrijver
Fuzziness and Uncertainty Modelling Research Unit
Department of Applied Mathematics and Computer Science, Ghent University
Krijgslaan 281 (S9), B-9000 Gent, Belgium
E-mail: Glad.Deschrijver@UGent.be
Homepage: http://www.fuzzy.UGent.be

Abstract

In this paper we study t-norms on the lattice of closed subintervals of the unit interval. Unlike for t-norms on a product lattice for which there exists a straightforward characterization of t-norms which are join-morphisms, respectively meet-morphisms, the situation is more complicated for t-norms in interval-valued fuzzy set theory. In previous papers several characterizations were given of t-norms in interval-valued fuzzy set theory which are join-morphisms and which satisfy additional properties, but little attention has been paid to meet-morphisms. Therefore, in this paper, we focus on t-norms which are meet-morphisms. We consider a general class of t-norms and investigate under which conditions t-norms belonging to this class are meet-morphisms. We also characterize the t-norms which are both a join- and a meet-morphism and which satisfy an additional border condition.

Keywords: interval-valued fuzzy set, t-norm, meet-morphism

1 Introduction

Interval-valued fuzzy set theory [11, 15] is an extension of fuzzy theory in which to each element of the universe a closed subinterval of the unit interval is assigned which approximates the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy set theory introduced by Atanassov [1]. In [8] it is shown that the underlying lattice of intuitionistic fuzzy set theory is isomorphic to the underlying lattice \mathcal{L}^{I} of interval-valued fuzzy set theory.

In [6, 7, 5, 18] several characterizations of t-norms on \mathcal{L}^{I} in terms of t -norms on the unit interval are given. In [13, 19, 20] t-norms on related and more general lattices are investigated. However all the characterizations in these papers only deal with t-norms which are joinmorphisms. Unlike for t-norms on a product lattice for which there exists a straightforward characterization of t-norms which are join-morphisms [3], respectively meet-morphisms, the situation is more complicated for t -norms in interval-valued fuzzy set theory. Therefore, in this paper, we focus on t-norms which are meet-morphisms. We consider a general class of t-norms (given in [7]) and investigate under which conditions t-norms belonging to this class are meet-morphisms.

2 The lattice \mathcal{L}^{I}

Definition 2.1 We define $\mathcal{L}^{I}=\left(L^{I}, \leq_{L^{I}}\right)$, where

$$
\begin{aligned}
& L^{I}=\left\{\left[x_{1}, x_{2}\right] \mid\left(x_{1}, x_{2}\right) \in[0,1]^{2} \text { and } x_{1} \leq x_{2}\right\}, \\
& {\left[x_{1}, x_{2}\right] \leq_{L^{I}}\left[y_{1}, y_{2}\right] \Longleftrightarrow\left(x_{1} \leq y_{1} \text { and } x_{2} \leq y_{2}\right), \text { for all }\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right] \text { in } L^{I} .}
\end{aligned}
$$

Similarly as Lemma 2.1 in [8] it can be shown that \mathcal{L}^{I} is a complete lattice.
Definition 2.2 [11, 15] An interval-valued fuzzy set on U is a mapping $A: U \rightarrow L^{I}$.
Definition 2.3 [1] An intuitionistic fuzzy set on U is a set

$$
A=\left\{\left(u, \mu_{A}(u), \nu_{A}(u)\right) \mid u \in U\right\}
$$

where $\mu_{A}(u) \in[0,1]$ denotes the membership degree and $\nu_{A}(u) \in[0,1]$ the non-membership degree of u in A and where for all $u \in U, \mu_{A}(u)+\nu_{A}(u) \leq 1$.

An intuitionistic fuzzy set A on U can be represented by the \mathcal{L}^{I}-fuzzy set A given by

$$
\begin{aligned}
A: U & \rightarrow L^{I}: \\
u & \mapsto\left[\mu_{A}(u), 1-\nu_{A}(u)\right]
\end{aligned}
$$

In Figure 1 the set L^{I} is shown. Note that to each element $x=\left[x_{1}, x_{2}\right]$ of L^{I} corresponds a point $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.

Figure 1: The grey area is L^{I}.
In the sequel, if $x \in L^{I}$, then we denote its bounds by x_{1} and x_{2}, i.e. $x=\left[x_{1}, x_{2}\right]$. The length $x_{2}-x_{1}$ of the interval $x \in L^{I}$ is called the degree of uncertainty and is denoted by x_{π}. The smallest and the largest element of \mathcal{L}^{I} are given by $0_{\mathcal{L}^{I}}=[0,0]$ and $1_{\mathcal{L}^{I}}=[1,1]$. Note that, for x, y in $L^{I}, x<_{L^{I}} y$ is equivalent to $x \leq_{L^{I}} y$ and $x \neq y$, i.e. either $x_{1}<y_{1}$ and $x_{2} \leq y_{2}$, or $x_{1} \leq y_{1}$ and $x_{2}<y_{2}$. We define for further usage the set $D=\left\{\left[x_{1}, x_{1}\right] \mid x_{1} \in[0,1]\right\}$.

Note that for any non-empty subset A of L^{I} it holds that

$$
\begin{aligned}
\sup A & =\left[\sup \left\{x_{1} \mid\left[x_{1}, x_{2}\right] \in A\right\}, \sup \left\{x_{2} \mid\left[x_{1}, x_{2}\right] \in A\right\}\right] \\
\inf A & =\left[\inf \left\{x_{1} \mid\left[x_{1}, x_{2}\right] \in A\right\}, \inf \left\{x_{2} \mid\left[x_{1}, x_{2}\right] \in A\right\}\right]
\end{aligned}
$$

Theorem 2.1 (Characterization of supremum in \mathcal{L}^{I}) 6] Let A be an arbitrary nonempty subset of L^{I} and $a \in L^{I}$. Then $a=\sup A$ if and only if

$$
\begin{aligned}
& (\forall x \in A)\left(x \leq_{L^{I}} a\right) \\
& \text { and }\left(\forall \varepsilon_{1}>0\right)(\exists z \in A)\left(z_{1}>a_{1}-\varepsilon_{1}\right) \\
& \text { and }\left(\forall \varepsilon_{2}>0\right)(\exists z \in A)\left(z_{2}>a_{2}-\varepsilon_{2}\right) .
\end{aligned}
$$

Definition 2.4 A t-norm on \mathcal{L}^{I} is a commutative, associative, increasing mapping \mathcal{T} : $\left(L^{I}\right)^{2} \rightarrow L^{I}$ which satisfies $\mathcal{T}\left(1_{\mathcal{L}^{I}}, x\right)=x$, for all $x \in L^{I}$.

Example 2.1 [7, 9 , We give some special classes of t-norms on \mathcal{L}^{I}. Let T, T_{1} and T_{2} be t -norms on $([0,1], \leq)$ such that $T_{1}\left(x_{1}, y_{1}\right) \leq T_{2}\left(x_{1}, y_{1}\right)$ for all x_{1}, y_{1} in $[0,1]$, and let $t \in[0,1]$. Then we have the following classes:

- t-representable t-norms:

$$
\mathcal{T}_{T_{1}, T_{2}}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(x_{2}, y_{2}\right)\right],
$$

for all x, y in L^{I};

- pseudo-t-representable t-norms:

$$
\mathcal{T}_{T}(x, y)=\left[T\left(x_{1}, y_{1}\right), \max \left(T\left(x_{1}, y_{2}\right), T\left(x_{2}, y_{1}\right)\right)\right],
$$

for all x, y in L^{I};

- $\mathcal{T}_{T, t}(x, y)=\left[T\left(x_{1}, y_{1}\right), \max \left(T\left(t, T\left(x_{2}, y_{2}\right)\right), T\left(x_{1}, y_{2}\right), T\left(x_{2}, y_{1}\right)\right)\right]$, for all x, y in L^{I};
- $\mathcal{T}_{T}^{\prime}(x, y)=\left[\min \left(T\left(x_{1}, y_{2}\right), T\left(x_{2}, y_{1}\right)\right), T\left(x_{2}, y_{2}\right)\right]$, for all x, y in L^{I};
- $\mathcal{T}_{T_{1}, T_{2}, t}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(x_{2}, y_{1}\right)\right)\right]$, for all x, y in L^{I}, where T_{1} and T_{2} additionally satisfy, for all x_{1}, y_{1} in $[0,1]$,

$$
\begin{equation*}
T_{2}\left(x_{1}, y_{1}\right)>T_{2}\left(t, T_{2}\left(x_{1}, y_{1}\right)\right) \Longrightarrow T_{1}\left(x_{1}, y_{1}\right)=T_{2}\left(x_{1}, y_{1}\right) . \tag{1}
\end{equation*}
$$

In Theorem 5 of [7] it is shown that $\mathcal{T}_{T_{1}, T_{2}, t}$ is indeed a t-norm on \mathcal{L}^{I} if T_{1} and T_{2} satisfy (11). 1

Definition 2.5 We say that a t-norm \mathcal{T} on \mathcal{L}^{I} is

- a join-morphism if for all x, y, z in L^{I},

$$
\mathcal{T}(x, \sup (y, z))=\sup (\mathcal{T}(x, y), \mathcal{T}(x, z))
$$

- a meet-morphism if for all x, y, z in L^{I},

$$
\mathcal{T}(x, \inf (y, z))=\inf (\mathcal{T}(x, y), \mathcal{T}(x, z))
$$

[^0]- a sup-morphism if for all $x \in L^{I}$ and $\emptyset \neq Z \subseteq L^{I}$,

$$
\mathcal{T}(x, \sup Z)=\sup \{\mathcal{T}(x, z) \mid z \in Z\}
$$

- an inf-morphism if for all $x \in L^{I}$ and $\emptyset \neq Z \subseteq L^{I}$,

$$
\mathcal{T}(x, \inf Z)=\inf \{\mathcal{T}(x, z) \mid z \in Z\}
$$

Definition 2.6 Let $n \in \mathbb{N} \backslash\{0\}$. If for an n-ary mapping f on $[0,1]$ and an n-ary mapping F on L^{I} it holds that

$$
F\left(\left[a_{1}, a_{1}\right], \ldots,\left[a_{n}, a_{n}\right]\right)=\left[f\left(a_{1}, \ldots, a_{n}\right), f\left(a_{1}, \ldots, a_{n}\right)\right]
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in[0,1]^{n}$, then we say that F is a natural extension of f to L^{I}.
Clearly, for any mapping F on $L^{I}, F(D, \ldots, D) \subseteq D$ if and only if there exists a mapping f on $[0,1]$ such that F is a natural extension of f to L^{I}. E.g. $\mathcal{T}_{T, T}, \mathcal{T}_{T}, \mathcal{T}_{T, t}=\mathcal{T}_{T, T, t}$ and \mathcal{T}_{T}^{\prime} are all natural extensions of T to L^{I}, \mathcal{N}_{s} is a natural extension of N_{s}.

Example 2.2 Let, for all x, y in $[0,1]$,

$$
\begin{aligned}
T_{W}(x, y) & =\max (0, x+y-1) \\
T_{P}(x, y) & =x y \\
T_{D}(x, y) & = \begin{cases}\min (x, y), & \text { if } \max (x, y)=1 \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Then T_{W}, T_{P} and T_{D} are t-norms on $([0,1], \leq)$. Let now, for all x, y in L^{I},

$$
\begin{aligned}
\mathcal{T}_{W}(x, y) & =\left[\max \left(0, x_{1}+y_{1}-1\right), \max \left(0, x_{1}+y_{2}-1, x_{2}+y_{1}-1\right)\right] \\
\mathcal{T}_{P}(x, y) & =\left[x_{1} y_{1}, \max \left(x_{1} y_{2}, x_{2} y_{1}\right)\right]
\end{aligned}
$$

Then \mathcal{T}_{W} and \mathcal{T}_{P} are t-norms on \mathcal{L}^{I}. Furthermore, \mathcal{T}_{W} and \mathcal{T}_{P} are natural extensions of T_{W} and T_{P} respectively.

We will also need the following result and definition (see [2, 12, 14, 16, 17]).
Theorem 2.2 Let $\left(T_{\alpha}\right)_{\alpha \in A}$ be a family of t-norms and (]$a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ be a family of non-empty, pairwise disjoint open subintervals of $[0,1]$. Then the function $T:[0,1]^{2} \rightarrow[0,1]$ defined by, for all x, y in $[0,1]$,

$$
T(x, y)= \begin{cases}a_{\alpha}+\left(e_{\alpha}-a_{\alpha}\right) \cdot T_{\alpha}\left(\frac{x-a_{\alpha}}{e_{\alpha}-a_{\alpha}}, \frac{y-a_{\alpha}}{e_{\alpha}-a_{\alpha}}\right), & \text { if }(x, y) \in\left[a_{\alpha}, e_{\alpha}\right]^{2} \tag{2}\\ \min (x, y), & \text { otherwise }\end{cases}
$$

is a t-norm on $([0,1], \leq)$.
Definition 2.7 Let $\left(T_{\alpha}\right)_{\alpha \in A}$ be a family of t-norms and (]$a_{\alpha}, e_{\alpha}[)_{\alpha \in A}$ be a family of nonempty, pairwise disjoint open subintervals of $[0,1]$. The t-norm T defined by (2) is called the ordinal sum of the summands $\left\langle a_{\alpha}, e_{\alpha}, T_{\alpha}\right\rangle, \alpha \in A$, and we will write

$$
T=\left(\left\langle a_{\alpha}, e_{\alpha}, T_{\alpha}\right\rangle\right)_{\alpha \in A}
$$

Figure 2: The different positions of $x, y \in L^{I}$, where $\mathcal{T}_{\alpha}([0,1],[0,1])=[0,1], \mathcal{T}_{k}([0,1],[0,1])=$ $[0, t]$ and $\mathcal{T}_{\beta}([0,1],[0,1])=[0,0]$. The value of $(\mathcal{T}(x, y))_{2}$ is calculated at the ending points of the arrows.

Let A be an arbitrary countable index-set and \mathcal{T}_{α} a t-norm on \mathcal{L}^{I}, for all $\alpha \in A$. Define, for all $\alpha \in A$ and for all a_{α}, e_{α} in D with $a_{\alpha} \leq_{L^{I}} e_{\alpha}$, the following sets and mappings $]^{2}$

$$
\begin{aligned}
J_{\alpha}= & \left\{x \mid x \in L^{I} \text { and } a_{\alpha} \leq_{L^{I}} x \leq_{L^{I}} e_{\alpha}\right\} ; \\
J_{\alpha}^{*}= & \left\{x \mid x \in L^{I} \text { and } x_{1}>\left(a_{\alpha}\right)_{1} \text { and } x_{2} \leq\left(e_{\alpha}\right)_{2}\right\} ; \\
\Phi_{\alpha}: & J_{\alpha} \rightarrow L^{I}: \\
& x \mapsto\left[\frac{x_{1}-\left(a_{\alpha}\right)_{1}}{\left(e_{\alpha}\right)_{1}-\left(a_{\alpha}\right)_{1}}, \frac{x_{2}-\left(a_{\alpha}\right)_{2}}{\left(e_{\alpha}\right)_{2}-\left(a_{\alpha}\right)_{2}}\right], \forall x \in J_{\alpha} ; \\
\Phi_{\alpha}^{-1}: & L^{I} \rightarrow J_{\alpha}: \\
& x \mapsto\left[\left(a_{\alpha}\right)_{1}+x_{1}\left(\left(e_{\alpha}\right)_{1}-\left(a_{\alpha}\right)_{1}\right),\left(a_{\alpha}\right)_{2}+x_{2}\left(\left(e_{\alpha}\right)_{2}-\left(a_{\alpha}\right)_{2}\right)\right], \forall x \in L^{I} ; \\
\mathcal{T}_{\alpha}^{\prime}= & \Phi_{\alpha}^{-1} \circ \mathcal{T}_{\alpha} \circ\left(\Phi_{\alpha} \times \Phi_{\alpha}\right) .
\end{aligned}
$$

In Figure 2 the three smaller triangles are J_{α}, J_{k} and J_{β}. Assume that $J_{\alpha}^{*} \cap J_{\beta}^{*}=\varnothing$, for any $\alpha, \beta \in A$. Our aim is to construct a t-norm \mathcal{T} on \mathcal{L}^{I} such that $\left.\mathcal{T}\right|_{J_{\alpha}^{*} \times J_{\alpha}^{*}}=\mathcal{T}_{\alpha}^{\prime}$, for all $\alpha \in A$.

Let arbitrarily $k \in A$ and define the sets $A_{<}=\left\{\alpha \mid \alpha \in A\right.$ and $\left.a_{\alpha}<_{L^{I}} a_{k}\right\}$ and $A_{>}=$ $\left\{\alpha \mid \alpha \in A\right.$ and $\left.a_{\alpha}>_{L^{I}} a_{k}\right\}$. Assume furthermore that $\mathcal{T}_{\alpha}([0,1],[0,1])=[0,1]$, for all $\alpha \in A_{<}$, and $\mathcal{T}_{\alpha}([0,1],[0,1])=[0,0]$, for all $\alpha \in A_{>}$. For \mathcal{T}_{k} we do not impose any restriction, so $\mathcal{T}_{k}([0,1],[0,1])=[0, t]$ with $t \in[0,1]$. In [4, Theorem 4.2] it is shown that if \mathcal{T}_{α} is continuous for all $\alpha \in A$ and if we want to construct a t-norm \mathcal{T} on \mathcal{L}^{I} which satisfies the residuation principle and for which $\left.\mathcal{T}\right|_{J_{\alpha}^{*} \times J_{\alpha}^{*}}=\mathcal{T}_{\alpha}^{\prime}$ for all $\alpha \in A$, then there must exist a $k \in A$ such that the previously mentioned assumptions for $\mathcal{T}_{\alpha}([0,1],[0,1])$, for all $\alpha \in A$, hold.

[^1]Theorem 2.3 [4] Let, for all $\alpha \in A, T_{\alpha}:[0,1]^{2} \rightarrow[0,1]$ be the mapping defined by

$$
T_{\alpha}\left(x_{1}, y_{1}\right)=\left(\mathcal{T}_{\alpha}\left(\left[x_{1}, x_{1}\right],\left[y_{1}, y_{1}\right]\right)\right)_{1}, \forall\left(x_{1}, y_{1}\right) \in[0,1]^{2}
$$

and let T be the ordinal sum of $\left\langle\left(a_{\alpha}\right)_{1},\left(e_{\alpha}\right)_{1}, T_{\alpha}\right\rangle, \alpha \in A$. Define the mapping $\mathcal{T}:\left(L^{I}\right)^{2} \rightarrow L^{I}$ by, for all $x, y \in L^{I}$,

$$
\begin{aligned}
& (\mathcal{T}(x, y))_{1}=T\left(x_{1}, y_{1}\right), \\
& (\mathcal{T}(x, y))_{2} \\
& =\left\{\begin{array}{l}
\left(\mathcal{T}_{\alpha}^{\prime}\left(\left[\max \left(x_{1},\left(a_{\alpha}\right)_{1}\right), \min \left(x_{2},\left(e_{\alpha}\right)_{2}\right)\right],\left[\max \left(y_{1},\left(a_{\alpha}\right)_{1}\right), \min \left(y_{2},\left(e_{\alpha}\right)_{2}\right)\right]\right)\right)_{2}, \\
\left.\left.\quad \text { if }\left(x_{2} \in\right]\left(a_{\alpha}\right)_{2},\left(e_{\alpha}\right)_{2}\right] \text { and } y_{2}>\left(a_{\alpha}\right)_{2} \text { and } y_{1} \leq\left(e_{\alpha}\right)_{1} \text { and } \alpha \in A_{<}\right) \\
\text {or } \left.\left.\left(y_{2} \in\right]\left(a_{\alpha}\right)_{2},\left(e_{\alpha}\right)_{2}\right] \text { and } x_{2}>\left(a_{\alpha}\right)_{2} \text { and } x_{1} \leq\left(e_{\alpha}\right)_{1} \text { and } \alpha \in A_{<}\right) \\
\left.\left.\quad \text { or }\left(x_{1} \in\right]\left(a_{\alpha}\right)_{1},\left(e_{\alpha}\right)_{1}\right] \text { and } y_{2}>\left(a_{\alpha}\right)_{2} \text { and } y_{1} \leq\left(e_{\alpha}\right)_{1} \text { and } \alpha \in A_{>}\right) \\
\text {or } \left.\left.\left(y_{1} \in\right]\left(a_{\alpha}\right)_{1},\left(e_{\alpha}\right)_{1}\right] \text { and } x_{2}>\left(a_{\alpha}\right)_{2} \text { and } x_{1} \leq\left(e_{\alpha}\right)_{1} \text { and } \alpha \in A_{>}\right) \\
\text {or }\left(x_{2}>\left(a_{\alpha}\right)_{2} \text { and } x_{1} \leq\left(e_{\alpha}\right)_{1} \text { and } y_{2}>\left(a_{\alpha}\right)_{2} \text { and } y_{1} \leq\left(e_{\alpha}\right)_{1} \text { and } \alpha=k\right), \\
\min \left(x_{2}, y_{2}\right), \text { if the previous conditions do not hold } \\
\text { and }\left(x_{2} \leq\left(a_{k}\right)_{2} \text { or } y_{2} \leq\left(a_{k}\right)_{2}\right), \\
\min \left(x_{2}, y_{1}\right), \text { if the previous conditions do not hold and } x_{1} \leq y_{1}, \\
\min \left(y_{2}, x_{1}\right), \text { else. }
\end{array}\right.
\end{aligned}
$$

Then \mathcal{T} is a t-norm on \mathcal{L}^{I} called the ordinal sum of the summands $\left\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha}\right\rangle, \alpha \in A$, and we write

$$
\mathcal{T}=\left(\left(\left\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha}\right\rangle\right)_{\alpha \in A_{<}} /\left\langle a_{k}, e_{k}, \mathcal{T}_{k}\right\rangle /\left(\left\langle a_{\alpha}, e_{\alpha}, \mathcal{T}_{\alpha}\right\rangle\right)_{\alpha \in A_{>}}\right) .
$$

In Figure 2 the construction of $\left(\mathcal{T}\left(x_{i}, y_{i}\right)\right)_{2}$ is shown for $\left(x_{i}, y_{i}\right) \in\left(L^{I}\right)^{2}$ where $i \in$ $\{0, \ldots, 5\}$. The value of $\left(\mathcal{T}\left(x_{i}, y_{i}\right)\right)_{2}$ is calculated at the ending points of the arrows for each $i \in\{0, \ldots, 5\}$. In the figure, k is defined as in the paragraph before Theorem 2.3, $\alpha \in A_{<}$and $\beta \in A_{>}$.

In the following example we show that there exist different t-norms T_{1} and T_{2} on ($[0,1], \leq$) such that the mapping $\mathcal{T}_{T_{1}, T_{2}, t}$ defined in Example 2.1 is a t-norm on \mathcal{L}^{I}.
Example 2.3 Let \hat{T}_{1}, \hat{T}_{2} and \hat{T}_{3} be t-norms on $([0,1], \leq)$ such that $\hat{T}_{1} \leq \hat{T}_{2}$. Let furthermore $t \in[0,1]$. Define the t -norms T_{1} and T_{2} by

$$
\begin{aligned}
& T_{1}=\left(\left\langle 0, t, \hat{T}_{1}\right\rangle,\left\langle t, 1, \hat{T}_{3}\right\rangle\right), \\
& T_{2}=\left(\left\langle 0, t, \hat{T}_{2}\right\rangle,\left\langle t, 1, \hat{T}_{3}\right\rangle\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& T_{2}\left(x_{1}, y_{1}\right)>T_{2}\left(t, T_{2}\left(x_{1}, y_{1}\right)\right) \quad\left(=\min \left(t, T_{2}\left(x_{1}, y_{1}\right)\right)\right) \\
& \Longleftrightarrow T_{2}\left(x_{1}, y_{1}\right)>t \\
& \Longrightarrow \min \left(x_{1}, y_{1}\right)>t
\end{aligned}
$$

for all x_{1}, y_{1} in $[0,1]$. It can be easily verified that $T_{1} \leq T_{2}$ and $T_{1}\left(x_{1}, y_{1}\right)=T_{2}\left(x_{1}, y_{1}\right)$, for all x_{1}, y_{1} in $\left.] t, 1\right]^{2}$. Clearly, if $\hat{T}_{1} \neq \hat{T}_{2}$, then $T_{1} \neq T_{2}$.

Define the mapping $\mathcal{T}_{T_{1}, T_{2}, t}$ by $\mathcal{T}_{T_{1}, T_{2}, t}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{1}, y_{2}\right)\right.\right.$, $\left.\left.T_{2}\left(x_{2}, y_{1}\right)\right)\right]$, for all x, y in L^{I}. Then $\mathcal{T}_{T_{1}, T_{2}, t}$ is a t-norm on \mathcal{L}^{I} (see Example 2.1).

Finally we need a metric on L^{I}. Well-known metrics include the Euclidean distance and the Hamming distance. In the two-dimensional space \mathbb{R}^{2} they are defined as follows:

- the Euclidean distance between two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2} is given by

$$
d^{E}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}
$$

- the Hamming distance between two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2} is given by

$$
d^{H}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right| .
$$

If we restrict these distances to L^{I} then we obtain the metric spaces $\left(L^{I}, d^{E}\right)$ and $\left(L^{I}, d^{H}\right)$. In these metric spaces, denote by $B(a ; \varepsilon)$ the open ball with center a and radius ε defined as $B(a ; \varepsilon)=\left\{x \mid x \in L^{I}\right.$ and $\left.d(x, a)<\varepsilon\right\}$. In the sequel, when we speak about continuity on \mathcal{L}^{I}, we mean continuity w.r.t. one of the above mentioned metric spaces.

3 Characterization of t-norms which are meet-morphisms

Since $([0,1], \leq)$ is a chain, any t -norm on the unit interval is a join- and a meet-morphism. Furthermore, it is well-known that continuous t-norms on ($[0,1], \leq$) are sup- and inf-morphisms. For t -norms on product lattices, the following result holds.

Theorem 3.1 [3] Consider two bounded lattices $\mathcal{L}_{1}=\left(L_{1}, \leq_{L_{1}}\right)$ and $\mathcal{L}_{2}=\left(L_{2}, \leq_{L^{2}}\right)$ and a tnorm \mathcal{T} on the product lattice $\mathcal{L}_{1} \times \mathcal{L}_{2}=\left(L_{1} \times L_{2}, \leq\right)$, where $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right) \Longleftrightarrow\left(x_{1} \leq_{L_{1}}\right.$ y_{1} and $\left.x_{2} \leq_{L_{2}} y_{2}\right)$, for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in $L_{1} \times L_{2}$. The t-norm \mathcal{T} is a join-morphism (resp. meet-morphism) if and only if there exist t-norms T_{1} on \mathcal{L}_{1} and T_{2} on \mathcal{L}_{2} which are join-morphisms (resp. meet-morphisms), such that for all $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in $L_{1} \times L_{2}$,

$$
\mathcal{T}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(x_{2}, y_{2}\right)\right] .
$$

On \mathcal{L}^{I}, the situation is more complicated. Not all t-norms on \mathcal{L}^{I} are join- and meetmorphisms. Consider the t-norm $\mathcal{T}_{T_{P}}^{\prime}$ given by $\mathcal{T}_{T_{P}}^{\prime}(x, y)=\left[\min \left(x_{1} y_{2}, x_{2} y_{1}\right), x_{2} y_{2}\right]$, for all x, y in L^{I}. Then we have $\mathcal{T}_{T_{P}}^{\prime}([0.2,0.5], \sup ([0.5,0.5],[0,1]))=\mathcal{T}_{T_{P}}^{\prime}([0.2,0.5],[0.5,1])=[0.2,0.5] \neq$ $[0.1,0.5]=\sup ([0.1,0.25],[0,0.5])=\sup \left(\mathcal{T}_{T_{P}}^{\prime}([0.2,0.5],[0.5,0.5]), \mathcal{T}_{T_{P}}^{\prime}([0.2,0.5],[0,1])\right)$. So $\mathcal{T}_{T_{P}}^{\prime}$ is not a join-morphism. Similarly the t-norm $\mathcal{T}_{T_{P}}$ is not a meet-morphism.

Gehrke et al. [10] used the following definition for a t-norm on \mathcal{L}^{I} : a commutative, associative binary operation \mathcal{T} on \mathcal{L}^{I} is a t-norm if for all x, y, z in L^{I},
(G.1) $\mathcal{T}(D, D) \subseteq D$,
(G.2) $\mathcal{T}(x, \sup (y, z))=\sup (\mathcal{T}(x, y), \mathcal{T}(x, z))$,
(G.3) $\mathcal{T}(x, \inf (y, z))=\inf (\mathcal{T}(x, y), \mathcal{T}(x, z))$,
(G.4) $\mathcal{T}\left(1_{\mathcal{L}^{I}}, x\right)=x$,
(G.5) $\mathcal{T}([0,1], x)=\left[0, x_{2}\right]$.

They showed that such a t-norm is increasing, so their t-norms are a special case of the t-norms on \mathcal{L}^{I} as defined in Definition 2.4

Clearly, commutative, associative binary operations on \mathcal{L}^{I} satisfying (G.1) (G.5) are tnorms on \mathcal{L}^{I} which are join- and meet-morphisms. The two additional conditions (G.1) and (G.5) ensure that these t-norms are t-representable, as is shown in the next theorem.

Theorem 3.2 [10] For every commutative, associative binary operation \mathcal{T} on \mathcal{L}^{I} satisfying (G.1) (G.5) there exists a t-norm T on $([0,1], \leq)$ such that, for all x, y in L^{I},

$$
\mathcal{T}(x, y)=\left[T\left(x_{1}, y_{1}\right), T\left(x_{2}, y_{2}\right)\right]
$$

We can extend this result as follows. First we need a lemma.
Lemma 3.3 [5] Let \mathcal{T} be a t-norm on \mathcal{L}^{I} which is a join-morphism. Then there exists a t-norm T on $([0,1], \leq)$ such that, for all x, y in L^{I},

$$
(\mathcal{T}(x, y))_{1}=T\left(x_{1}, y_{1}\right)
$$

Theorem 3.4 For any t-norm \mathcal{T} on \mathcal{L}^{I} satisfying (G.2) and (G.5) there exist t-norms T_{1} and T_{2} on $([0,1], \leq)$ such that, for all x, y in L^{I},

$$
\mathcal{T}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(x_{2}, y_{2}\right)\right]
$$

Proof. From Lemma 3.3 it follows that there exist a t-norm T_{1} on $([0,1], \leq)$ such that $(\mathcal{T}(x, y))_{1}=T_{1}\left(x_{1}, y_{1}\right)$, for all x, y in L^{I}. From (G.5) it follows that, for all x, y in L^{I},

$$
\begin{aligned}
(\mathcal{T}(x, y))_{2} & =(\mathcal{T}([0,1], \mathcal{T}(x, y)))_{2} \\
& =(\mathcal{T}(\mathcal{T}([0,1], x), \mathcal{T}([0,1], y)))_{2} \\
& =\left(\mathcal{T}\left(\left[0, x_{2}\right],\left[0, y_{2}\right]\right)\right)_{2}
\end{aligned}
$$

Hence $(\mathcal{T}(x, y))_{2}$ is independent of x_{1} and y_{1}, for all x, y in L^{I}. Let now $T_{2}\left(x_{2}, y_{2}\right)=$ $\left(\mathcal{T}\left(\left[x_{2}, x_{2}\right],\left[y_{2}, y_{2}\right]\right)\right)_{2}$, for all x_{2}, y_{2} in $[0,1]$. Similarly as in the proof of Lemma 3.3 given in [5] it is shown that T_{2} is a t-norm on $([0,1], \leq)$.

Clearly, (G.5) is a rather restrictive condition. We will show that if this condition is not imposed, then the class of t-norms on \mathcal{L}^{I} satisfying the other conditions is much larger.

For continuous t-norms on \mathcal{L}^{I} we have the following relationship between sup- and joinmorphism, and between inf- and meet-morphisms.

Theorem 3.5 Let \mathcal{T} be a continuous t-norm on \mathcal{L}^{I}. Then
(i) \mathcal{T} is a sup-morphism if and only if \mathcal{T} is a join-morphism;
(ii) \mathcal{T} is an inf-morphism if and only if \mathcal{T} is a meet-morphism.

Proof. Let \mathcal{T} be a continuous t-norm on \mathcal{L}^{I}. We prove the first statement, the second equivalence is proven in a similar way. Clearly, if \mathcal{T} is a sup-morphism, then \mathcal{T} is a joinmorphism.

Assume conversely that \mathcal{T} is a join-morphism. Let $x \in L^{I}, A$ be an arbitrary non-empty subset of L^{I} and $a=\sup A$. Since \mathcal{T} is increasing, we have that $\mathcal{T}(x, y) \leq_{L^{I}} \mathcal{T}(x, a)$, for all $y \in A$.

From Theorem 2.1 it follows that there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}^{*}}$ in A such that $\left(y_{n}\right)_{1}>$ $a_{1}-\frac{1}{n}$, for all $n \in \mathbb{N}^{*}$. Let $y^{*}=\lim _{n \rightarrow+\infty} y_{n}$, then clearly $y_{1}^{*}=a_{1}$ and $y_{2}^{*} \leq a_{2}$. Similarly, there exists a sequence $\left(z_{n}\right)_{n \in \mathbb{N}^{*}}$ in A such that $\left(z_{n}\right)_{2}>a_{2}-\frac{1}{n}$, for all $n \in \mathbb{N}^{*}$. Let $z^{*}=\lim _{n \rightarrow+\infty} z_{n}$, then $z_{2}^{*}=a_{2}$ and $z_{1}^{*} \leq a_{1}$. Since \mathcal{T} is a join-morphism, $\mathcal{T}(x, a)=\sup \left(\mathcal{T}\left(x, y^{*}\right), \mathcal{T}\left(x, z^{*}\right)\right)=$ $\left[\max \left(\left(\mathcal{T}\left(x, y^{*}\right)\right)_{1},\left(\mathcal{T}\left(x, z^{*}\right)\right)_{1}\right), \max \left(\left(\mathcal{T}\left(x, y^{*}\right)\right)_{2},\left(\mathcal{T}\left(x, z^{*}\right)\right)_{2}\right)\right]$.

Assume that $(\mathcal{T}(x, a))_{1}=\left(\mathcal{T}\left(x, y^{*}\right)\right)_{1}$ (the case $(\mathcal{T}(x, a))_{1}=\left(\mathcal{T}\left(x, z^{*}\right)\right)_{1}$ is similar). Since \mathcal{T} is continuous, we have in particular that

$$
\begin{aligned}
& \left(\forall \varepsilon_{1}>0\right)\left(\exists N \in \mathbb{N}^{*}\right)\left(\forall n \in \mathbb{N}^{*}\right) \\
& \left(n>N \Longrightarrow\left|\left(\mathcal{T}\left(x, y_{n}\right)\right)_{1}-\left(\mathcal{T}\left(x, y^{*}\right)\right)_{1}\right|+\left|\left(\mathcal{T}\left(x, y_{n}\right)\right)_{2}-\left(\mathcal{T}\left(x, y^{*}\right)\right)_{2}\right|<\varepsilon_{1}\right)
\end{aligned}
$$

So, for any $\varepsilon_{1}>0$, there exists an $n \in \mathbb{N}^{*}$ such that $\left(\mathcal{T}\left(x, y^{*}\right)\right)_{1}-\varepsilon_{1}<\left(\mathcal{T}\left(x, y_{n}\right)\right)_{1} \leq$ $\left(\mathcal{T}\left(x, y^{*}\right)\right)_{1}=(\mathcal{T}(x, a))_{1}$. Hence, for any $\varepsilon_{1}>0$, there exists an element $y \in A$ such that $(\mathcal{T}(x, y))_{1}>(\mathcal{T}(x, a))_{1}-\varepsilon_{1}$. Similarly, for any $\varepsilon_{2}>0$, there exists a $z \in A$ such that $(\mathcal{T}(x, z))_{2}>(\mathcal{T}(x, a))_{2}-\varepsilon_{2}$. From Theorem 2.1 it follows that $\mathcal{T}(x, a)=\sup _{y \in A} \mathcal{T}(x, y)$.

In the following theorem the t-norms on \mathcal{L}^{I} which satisfy the residuation principle and an additional border condition are characterized in terms of the class of t-norms $\mathcal{T}_{T_{1}, T_{2}, t}$ given in Example 2.1.

Theorem 3.6 [7] Let $\mathcal{T}:\left(L^{I}\right)^{2} \rightarrow L^{I}$ be a t-norm such that, for all $x \in D, y_{2} \in[0,1]$, $\left(\mathcal{T}\left(x,\left[y_{2}, y_{2}\right]\right)\right)_{2}=\left(\mathcal{T}\left(x,\left[0, y_{2}\right]\right)\right)_{2}$. Then \mathcal{T} satisfies the residuation principle if and only if there exist two left-continuous t-norms T_{1} and T_{2} on $([0,1], \leq)$ and a real number $t \in[0,1]$ such that, for all $x, y \in L^{I}$,

$$
\mathcal{T}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(y_{1}, x_{2}\right)\right)\right]
$$

i.e. $\mathcal{T}=\mathcal{T}_{T_{1}, T_{2}, t}$, and, for all x_{1}, y_{1} in $[0,1]$,

$$
\begin{cases}T_{1}\left(x_{1}, y_{1}\right)=T_{2}\left(x_{1}, y_{1}\right), & \text { if } T_{2}\left(x_{1}, y_{1}\right)>T_{2}\left(t, T_{2}\left(x_{1}, y_{1}\right)\right) \\ T_{1}\left(x_{1}, y_{1}\right) \leq T_{2}\left(x_{1}, y_{1}\right), & \text { else. }\end{cases}
$$

We extend Theorem 3.6 to t-norms on \mathcal{L}^{I} which are join-morphisms. The proof of the following theorem is analogous to the proof of Theorem 3.6 given in [7].

Theorem 3.7 Let $\mathcal{T}:\left(L^{I}\right)^{2} \rightarrow L^{I}$ be a t-norm such that, for all $x \in D, y_{2} \in[0,1]$, $\left(\mathcal{T}\left(x,\left[y_{2}, y_{2}\right]\right)\right)_{2}=\left(\mathcal{T}\left(x,\left[0, y_{2}\right]\right)\right)_{2}$. Then \mathcal{T} is a join-morphism if and only if there exist two t-norms T_{1} and T_{2} on $([0,1], \leq)$ and a real number $t \in[0,1]$ such that, for all $x, y \in L^{I}$,

$$
\mathcal{T}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(y_{1}, x_{2}\right)\right)\right]
$$

i.e. $\mathcal{T}=\mathcal{T}_{T_{1}, T_{2}, t}$, and, for all x_{1}, y_{1} in $[0,1]$,

$$
\begin{cases}T_{1}\left(x_{1}, y_{1}\right)=T_{2}\left(x_{1}, y_{1}\right), & \text { if } T_{2}\left(x_{1}, y_{1}\right)>T_{2}\left(t, T_{2}\left(x_{1}, y_{1}\right)\right) \\ T_{1}\left(x_{1}, y_{1}\right) \leq T_{2}\left(x_{1}, y_{1}\right), & \text { else } .\end{cases}
$$

Now we characterize the t-norms on \mathcal{L}^{I} belonging to the class $\mathcal{T}_{T_{1}, T_{2}, t}$ which are meetmorphisms. First we need some lemmas.

Lemma 3.8 Assume that $\mathcal{T}_{T_{1}, T_{2}, t}$ is a meet-morphism. Then $T_{2}\left(t, y_{1}\right)=\min \left(t, y_{1}\right)$, for all $y_{1} \in[0,1]$.

Proof. Let arbitrarily $y_{1} \in[0,1]$. Then

$$
\begin{aligned}
\mathcal{T}_{T_{1}, T_{2}, t}\left([0,1], \inf \left(\left[y_{1}, y_{1}\right],[0,1]\right)\right) & =\mathcal{T}_{T_{1}, T_{2}, t}\left([0,1],\left[0, y_{1}\right]\right) \\
& =\left[0, T_{2}\left(t, T_{2}\left(1, y_{1}\right)\right)\right] \\
& =\left[0, T_{2}\left(t, y_{1}\right)\right] .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\mathcal{T}_{T_{1}, T_{2}, t}\left([0,1], \inf \left(\left[y_{1}, y_{1}\right],[0,1]\right)\right) & =\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}\left([0,1],\left[y_{1}, y_{1}\right]\right), \mathcal{T}_{T_{1}, T_{2}, t}([0,1],[0,1])\right) \\
& =\inf \left(\left[0, \max \left(T_{2}\left(t, y_{1}\right), y_{1}\right)\right],[0, t]\right) \\
& =\inf \left(\left[0, y_{1}\right],[0, t]\right) \\
& =\left[0, \min \left(y_{1}, t\right)\right] .
\end{aligned}
$$

Hence $T_{2}\left(t, y_{1}\right)=\min \left(t, y_{1}\right)$, for all $y_{1} \in[0,1]$.

Corollary 3.9 Assume that $\mathcal{T}_{T_{1}, T_{2}, t}$ is a meet-morphism. Then there exists two t-norms \hat{T}_{1} and \hat{T}_{2} on $([0,1], \leq)$ such that

$$
T_{2}=\left(\left\langle 0, t, \hat{T}_{1}\right\rangle,\left\langle t, 1, \hat{T}_{2}\right\rangle\right)
$$

Proof. Define, for all x, y in $[0,1]$,

$$
\begin{align*}
& \hat{T}_{1}(x, y)=\frac{T_{2}(t x, t y)}{t} \\
& \hat{T}_{2}(x, y)=\frac{T_{2}(t+(1-t) x, t+(1-t) y)-t}{1-t} \tag{3}
\end{align*}
$$

Then it is easy to see that \hat{T}_{1} is commutative, associative and increasing. Since from Lemma 3.8 it follows that $T_{2}(t, y)=\min (t, y)$, for all $y \in[0,1]$, we obtain that $\hat{T}_{1}(1, y)=y$, for all $y \in[0,1]$. So \hat{T}_{1} is a t-norm. Similarly, we obtain that \hat{T}_{2} is a t-norm on $([0,1], \leq)$.

Let arbitrarily x, y in $[0,1]$ such that $x<t<y$ (the case $y<t<x$ is similar). Then we obtain that $x=\min (t, x)=T_{2}(t, x) \leq T_{2}(x, y) \leq T_{2}(1, x)=x$, so $T_{2}(x, y)=\min (x, y)$. It now easily follows that T_{2} is equal to the ordinal sum of $\left\langle 0, t, \hat{T}_{1}\right\rangle$ and $\left\langle t, 1, \hat{T}_{2}\right\rangle$.

Lemma 3.10 Assume that $\mathcal{T}_{T_{1}, T_{2}, t}$ is a meet-morphism. Then the t-norm \hat{T}_{2} in the representation of T_{2} given in Corollary 3.9 is equal to the minimum.

Proof. Let arbitrarily x_{1}, z_{1} in $[t, 1]$. From Lemma 3.8 it follows that $T_{2}\left(t, z_{1}\right)=\min \left(t, z_{1}\right)=$ t. Furthermore, from Corollary 3.9 it follows that $T_{2}\left(x_{1}, z_{1}\right) \geq t$. So, we obtain

$$
\begin{aligned}
\mathcal{T}_{T_{1}, T_{2}, t}\left(\left[x_{1}, 1\right], \inf \left([0,1],\left[z_{1}, z_{1}\right]\right)\right) & =\mathcal{T}_{T_{1}, T_{2}, t}\left(\left[x_{1}, 1\right],\left[0, z_{1}\right]\right) \\
& =\left[0, \max \left(T_{2}\left(t, z_{1}\right), T_{2}\left(x_{1}, z_{1}\right)\right)\right] \\
& =\left[0, \max \left(t, T_{2}\left(x_{1}, z_{1}\right)\right)\right] \\
& =\left[0, T_{2}\left(x_{1}, z_{1}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{T}_{T_{1}, T_{2}, t}\left(\left[x_{1}, 1\right], \inf \left([0,1],\left[z_{1}, z_{1}\right]\right)\right) \\
& =\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}\left(\left[x_{1}, 1\right],[0,1]\right), \mathcal{T}_{T_{1}, T_{2}, t}\left(\left[x_{1}, 1\right],\left[z_{1}, z_{1}\right]\right)\right) \\
& =\inf \left(\left[0, \max \left(t, x_{1}\right)\right],\left[T_{1}\left(x_{1}, z_{1}\right), \max \left(T_{2}\left(t, z_{1}\right), T_{2}\left(x_{1}, z_{1}\right), z_{1}\right)\right]\right) \\
& =\inf \left(\left[0, x_{1}\right],\left[T_{1}\left(x_{1}, z_{1}\right), z_{1}\right]\right) \\
& =\left[0, \min \left(x_{1}, z_{1}\right)\right] .
\end{aligned}
$$

So $T_{2}\left(x_{1}, z_{1}\right)=\min \left(x_{1}, z_{1}\right)$. From (3) it easily follows that $\hat{T}_{2}=\min$.

Corollary 3.11 Assume that $\mathcal{T}_{T_{1}, T_{2}, t}$ is a meet-morphism. Then there exists a t-norm \hat{T}_{1} on $([0,1], \leq)$ such that

$$
T_{2}=\left(\left\langle 0, t, \hat{T}_{1}\right\rangle,\langle t, 1, \min \rangle\right) .
$$

Lemma 3.12 Assume that there exists a t-norm \hat{T}_{1} on $([0,1], \leq)$ such that $T_{2}=\left(\left\langle 0, t, \hat{T}_{1}\right\rangle\right.$, $\langle t, 1, \min \rangle)$, then $\mathcal{T}_{T_{1}, T_{2}, t}$ is a meet-morphism.

Proof. Let arbitrarily x, y, z in L^{I}. If $y \leq_{L^{I}} z$ (the case $y \geq_{L^{I}} z$ is similar), then $\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\mathcal{T}_{T_{1}, T_{2}, t}(x, y)=\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)$. So, let $y_{1}<z_{1}$ and $y_{2}>z_{2}$ (the case $y_{1}>z_{1}$ and $y_{2}<z_{2}$ is similar). Then we have the following cases:

- $\max \left(x_{1}, y_{1}, z_{1}\right) \leq t:$

From the fact that $T_{2} \leq$ min it follows that $T_{2}\left(x_{1}, z_{2}\right) \leq t$ and $T_{2}\left(x_{2}, y_{1}\right) \leq t$, so $T_{2}\left(x_{1}, z_{2}\right) \leq \min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right)=T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)$. Since $T_{2}\left(x_{2}, y_{1}\right) \leq T_{2}\left(x_{2}, z_{1}\right) \leq$ $T_{2}\left(x_{2}, z_{2}\right)$, we obtain similarly that $T_{2}\left(x_{2}, y_{1}\right) \leq T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)$. Thus,

$$
\begin{aligned}
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z)) & =\mathcal{T}_{T_{1}, T_{2}, t}\left(x,\left[y_{1}, z_{2}\right]\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{1}, z_{2}\right), T_{2}\left(x_{2}, y_{1}\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right] .
\end{aligned}
$$

On the other hand, we obtain similarly that

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\inf \left(\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right)\right],\left[T_{1}\left(x_{1}, z_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right]\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right],
\end{aligned}
$$

using the fact that T_{2} is increasing, $y_{1}<z_{1}$ and $y_{2}>z_{2}$.

- $\max \left(x_{1}, y_{1}\right) \leq t<z_{1}$:

Similarly as in the previous case, we have that

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right]
$$

and

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\inf \left(\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right)\right],\left[T_{1}\left(x_{1}, z_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right]\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), \max \left(\min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right)\right] .
\end{aligned}
$$

We have two cases:

1. $x_{2} \leq t$: in this case, we have that $T_{2}\left(x_{2}, z_{1}\right)=\min \left(x_{2}, z_{1}\right)=x_{2} \leq t$, so $T_{2}\left(x_{2}, z_{1}\right) \leq$ $\min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right)=T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)$. Hence

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right] .
\end{aligned}
$$

2. $x_{2}>t$: in this case, $T_{2}\left(x_{2}, z_{1}\right)=\min \left(x_{2}, z_{1}\right)>t$, so $T_{2}\left(x_{2}, y_{2}\right) \geq T_{2}\left(x_{2}, z_{2}\right) \geq$ $T_{2}\left(x_{2}, z_{1}\right)>t$. Thus,

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& \left.=\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(\min \left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), t\right]
\end{aligned}
$$

and

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right]=\left[T_{1}\left(x_{1}, y_{1}\right), t\right] .
$$

- $x_{1} \leq t<y_{1}\left(<z_{1}\right)$:

We have that $T_{2}\left(x_{1}, z_{2}\right) \leq x_{1} \leq t$, so $T_{2}\left(x_{1}, z_{2}\right) \leq \min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right)=T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)$. We obtain

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{2}, y_{1}\right)\right)\right]
$$

and similarly

$$
\begin{aligned}
\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)=\inf ([& \left.T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{2}, y_{1}\right)\right)\right], \\
& {\left.\left[T_{1}\left(x_{1}, z_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right]\right) . }
\end{aligned}
$$

We have two cases:

1. $x_{2} \leq t$: in this case, we have that $T_{2}\left(x_{2}, y_{1}\right) \leq t$, so, using the fact that $y_{1}<z_{1} \leq$ $z_{2}, T_{2}\left(x_{2}, y_{1}\right) \leq \min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right)=T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)$. Thus,

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right] .
$$

Similarly, we obtain that $\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}\right.\right.\right.$, $\left.z_{2}\right)$)].
2. $x_{2}>t$: from the representation of T_{2} it follows that $T_{2}\left(x_{2}, y_{2}\right) \geq T_{2}\left(x_{2}, z_{2}\right) \geq$ $T_{2}\left(x_{2}, z_{1}\right) \geq t$. So, using the fact that $T_{2}(t, a)=\min (t, a)$ for all $a \in[0,1]$, we obtain

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(t, T_{2}\left(x_{2}, y_{1}\right)\right)\right]
$$

and

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(\max \left(t, T_{2}\left(x_{2}, y_{1}\right)\right), \max \left(t, T_{2}\left(x_{2}, z_{1}\right)\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(t, T_{2}\left(x_{2}, y_{1}\right)\right)\right]
\end{aligned}
$$

- $\left(y_{1}<\right) z_{1} \leq t<x_{1}$:

Similarly as in the previous case, we obtain that

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{1}, z_{2}\right)\right)\right]
$$

and

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)=\inf ([\left.T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{1}, y_{2}\right)\right)\right] \\
& {\left.\left[T_{1}\left(x_{1}, z_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{1}, z_{2}\right)\right)\right]\right) }
\end{aligned}
$$

We have two cases:

1. $y_{2} \leq t$: we obtain that $T_{2}\left(x_{1}, z_{2}\right) \leq T_{2}\left(x_{1}, y_{2}\right) \leq t$, so $T_{2}\left(x_{1}, y_{2}\right) \leq \min \left(t, T_{2}\left(x_{2}\right.\right.$, $\left.\left.y_{2}\right)\right)=T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right)$ and similarly for $T_{2}\left(x_{1}, z_{2}\right)$. Thus

$$
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right]
$$

and

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\inf \left(\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right)\right],\left[T_{1}\left(x_{1}, z_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right]\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right)\right]
\end{aligned}
$$

2. $y_{2}>t$: we have that $T_{2}\left(x_{1}, y_{2}\right) \geq t \geq \min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right)$ and $T_{2}\left(x_{1}, y_{2}\right) \geq T_{2}\left(x_{1}\right.$, $\left.z_{2}\right)$, so

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(T_{2}\left(x_{1}, y_{2}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{1}, z_{2}\right)\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{1}, z_{2}\right)\right)\right] \\
& =\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z)) .
\end{aligned}
$$

- $y_{1} \leq t<\min \left(x_{1}, z_{1}\right)$:

We have that $T_{2}\left(x_{2}, y_{1}\right) \leq y_{1} \leq t \leq T_{2}\left(x_{1}, z_{2}\right) \leq T_{2}\left(x_{1}, y_{2}\right)$, so

$$
\begin{aligned}
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z)) & =\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(\min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right), T_{2}\left(x_{1}, z_{2}\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(x_{1}, z_{2}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\inf \left(\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(x_{2}, y_{1}\right)\right)\right],\right. \\
& \left.\quad\left[T_{1}\left(x_{1}, z_{1}\right), \max \left(T_{2}\left(x_{1}, z_{2}\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right]\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \min \left(T_{2}\left(x_{1}, y_{2}\right), \max \left(T_{2}\left(x_{1}, z_{2}\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right)\right] .
\end{aligned}
$$

We have two cases:

1. $x_{1}<\min \left(x_{2}, z_{1}\right)$: in this case, we have that $T_{2}\left(x_{1}, z_{2}\right)=\min \left(x_{1}, z_{2}\right)=x_{1}<$ $\min \left(x_{2}, z_{1}\right)=T_{2}\left(x_{2}, z_{1}\right)$ (using Corollary 3.11), so

$$
\begin{aligned}
& \min \left(T_{2}\left(x_{1}, y_{2}\right), \max \left(T_{2}\left(x_{1}, z_{2}\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right) \\
& =\min \left(T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(x_{2}, z_{1}\right)\right) \\
& =\min \left(x_{1}, y_{2}, x_{2}, z_{1}\right) \\
& =x_{1}=\min \left(x_{1}, z_{2}\right)=T_{2}\left(x_{1}, z_{2}\right)
\end{aligned}
$$

2. $x_{1} \geq \min \left(x_{2}, z_{1}\right)$: since $z_{2} \geq z_{1} \geq \min \left(x_{2}, z_{1}\right)$, we have that $T_{2}\left(x_{1}, z_{2}\right)=\min \left(x_{1}\right.$, $\left.z_{2}\right) \geq \min \left(x_{2}, z_{1}\right)=T_{2}\left(x_{2}, z_{1}\right)$, so

$$
\begin{aligned}
& \min \left(T_{2}\left(x_{1}, y_{2}\right), \max \left(T_{2}\left(x_{1}, z_{2}\right), T_{2}\left(x_{2}, z_{1}\right)\right)\right) \\
& =\min \left(T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(x_{1}, z_{2}\right)\right) \\
& =T_{2}\left(x_{1}, z_{2}\right)
\end{aligned}
$$

since $y_{2}>z_{2}$.

- $t \leq \min \left(x_{1}, y_{1}, z_{1}\right)$:

From Lemma 3.8 and Corollary 3.11 it follows that

$$
\begin{aligned}
\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z)) & =\mathcal{T}_{T_{1}, T_{2}, t}\left(x,\left[y_{1}, z_{2}\right]\right) \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(\min \left(t, T_{2}\left(x_{2}, z_{2}\right)\right), \min \left(x_{1}, z_{2}\right), \min \left(x_{2}, y_{1}\right)\right)\right] \\
& =\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(\min \left(x_{1}, z_{2}\right), \min \left(x_{2}, y_{1}\right)\right)\right]
\end{aligned}
$$

On the other hand, we obtain similarly that

$$
\begin{aligned}
& \inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right) \\
& =\inf \left(\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(\min \left(x_{1}, y_{2}\right), \min \left(x_{2}, y_{1}\right)\right)\right]\right. \\
& \left.\quad\left[T_{1}\left(x_{1}, z_{1}\right), \max \left(\min \left(x_{1}, z_{2}\right), \min \left(x_{2}, z_{1}\right)\right)\right]\right)
\end{aligned}
$$

Clearly, it holds that $\left(\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))\right)_{1}=T_{1}\left(x_{1}, y_{1}\right)=\min \left(T_{1}\left(x_{1}, y_{1}\right), T_{1}\left(x_{1}, z_{1}\right)\right)=$ $\left(\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)\right)_{1}$. For the second projection, we have two cases:

1. $x_{1}<\min \left(x_{2}, z_{1}\right)$: in this case, we have that $\min \left(x_{1}, z_{2}\right)=x_{1}<\min \left(x_{2}, z_{1}\right) \leq$ $z_{2}<y_{2}$. So, $\left(\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))\right)_{2}=\max \left(x_{1}, \min \left(x_{2}, y_{1}\right)\right)$. On the other hand

$$
\begin{aligned}
\left(\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)\right)_{2} & =\min \left(\max \left(x_{1}, \min \left(x_{2}, y_{1}\right)\right), \min \left(x_{2}, z_{1}\right)\right) \\
& =\max \left(x_{1}, \min \left(x_{2}, y_{1}\right)\right) \\
& =\left(\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))_{2}\right.
\end{aligned}
$$

using the fact that $y_{1}<z_{1}$ and $x_{1}<\min \left(x_{2}, z_{1}\right)$.
2. $x_{1} \geq \min \left(x_{2}, z_{1}\right)$: in this case, we have that $x_{1}=x_{2}$ or $x_{1} \geq z_{1}$, so $\min \left(x_{1}, z_{2}\right) \geq$ $\min \left(x_{2}, z_{1}\right)$. If $x_{1}=x_{2}$, then $\left(\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))\right)_{2}=\min \left(x_{1}, z_{2}\right)$, because $z_{2} \geq$ $z_{1}>y_{1}$. On the other hand, $\left(\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)\right)_{2}=\min \left(\min \left(x_{1}, y_{2}\right)\right.$, $\left.\min \left(x_{1}, z_{2}\right)\right)=\min \left(x_{1}, z_{2}\right)$.
If $x_{1} \geq z_{1}$, then $\left(\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))\right)_{2}=\max \left(\min \left(x_{1}, z_{2}\right), y_{1}\right)=\min \left(x_{1}, z_{2}\right)$, because $y_{1}<z_{1} \leq x_{1} \leq x_{2}$. On the other hand, $\left(\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)\right)_{2}=$ $\min \left(\max \left(\min \left(x_{1}, y_{2}\right), y_{1}\right), \min \left(x_{1}, z_{2}\right)\right)=\min \left(x_{1}, z_{2}\right)$, using the fact that $z_{2}<y_{2}$. So again $\left(\inf \left(\mathcal{T}_{T_{1}, T_{2}, t}(x, y), \mathcal{T}_{T_{1}, T_{2}, t}(x, z)\right)\right)_{2}=\left(\mathcal{T}_{T_{1}, T_{2}, t}(x, \inf (y, z))\right)_{2}$.

Now we obtain the main result.
Theorem 3.13 For any t-norms T_{1} and T_{2} on $([0,1], \leq)$ and $t \in[0,1], \mathcal{T}_{T_{1}, T_{2}, t}$ is a meetmorphism if and only if there exists a t-norm \hat{T}_{1} on $([0,1], \leq)$ such that

$$
T_{2}=\left(\left\langle 0, t, \hat{T}_{1}\right\rangle,\langle t, 1, \min \rangle\right) .
$$

Proof. This follows immediately from Corollary 3.11 and Lemma 3.12 .
If we assume that $T_{1}=T_{2}$, then we do not only obtain that T_{1} is the ordinal sum of two t-norms on ($[0,1], \leq$), but we can also write the t-norm $\mathcal{T}_{T_{1}, T_{1}, t}=\mathcal{T}_{T_{1}, t}$ as an ordinal sum of two t-norms on \mathcal{L}^{I}. This is shown in the next theorem.

Theorem 3.14 For any t-norm T on $([0,1], \leq)$ and $t \in[0,1], \mathcal{T}_{T, t}$ is a meet-morphism if and only if there exists a t-norm \hat{T}_{1} on $([0,1], \leq)$ such that

$$
\mathcal{T}_{T, t}=\left(\varnothing /\left\langle 0_{\mathcal{L}^{I}},[t, t], \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}\right\rangle /\left\langle[t, t], 1_{\mathcal{L}^{I}}, \mathcal{T}_{\min }\right\rangle\right),
$$

where, for all x, y in L^{I},

$$
\begin{aligned}
\mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}(x, y) & =\left[\hat{T}_{1}\left(x_{1}, y_{1}\right), \hat{T}_{1}\left(x_{2}, y_{2}\right)\right], \\
\mathcal{T}_{\min }(x, y) & =\left[\min \left(x_{1}, y_{1}\right), \max \left(\min \left(x_{1}, y_{2}\right), \min \left(x_{2}, y_{1}\right)\right)\right] .
\end{aligned}
$$

Proof. Assume first that $\mathcal{T}_{T, t}$ is a meet-morphism. From Theorem 3.13 it follows that there exists a t-norm \hat{T}_{1} on $([0,1], \leq)$ such that $T=\left(\left\langle 0, t, \hat{T}_{1}\right\rangle,\langle t, 1, \min \rangle\right)$.

Let $\phi:[0, t] \rightarrow[0,1]: x_{1} \mapsto \frac{x_{1}}{t}$ and $\hat{T}_{1}^{\prime}=\phi^{-1} \circ \hat{T}_{1} \circ(\phi \times \phi)$. Define for all x, y in L^{I},

$$
\begin{aligned}
\Phi_{1}(x) & =\left[\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right], \\
\Phi_{2}(x) & =\left[\frac{x_{1}-t}{1-t}, \frac{x_{2}-t}{1-t}\right], \\
\mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}^{\prime} & =\Phi_{1}^{-1} \circ \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}^{\prime} \circ\left(\Phi_{1} \times \Phi_{1}\right), \\
\mathcal{T}_{\text {min }}^{\prime} & =\Phi_{2}^{-1} \circ \mathcal{T}_{\text {min }} \circ\left(\Phi_{2} \times \Phi_{2}\right) .
\end{aligned}
$$

Note that $\mathcal{T}_{\text {min }}^{\prime}$ defined by the formula above is a transformation of $\mathcal{T}_{\text {min }}$ and not a member of the class of t -norms \mathcal{T}_{T}^{\prime} given in Example 2.1. Then, for all $x, y, x^{\prime}, y^{\prime}$ in L^{I} such that $x \leq_{L^{I}}[t, t], y \leq_{L^{I}}[t, t], x^{I} \geq_{L^{I}}[t, t]$ and $y^{\prime} \geq_{L^{I}}[t, t]$,

$$
\begin{aligned}
& \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}^{\prime}(x, y)=\left[\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), \hat{T}_{1}^{\prime}\left(x_{2}, y_{2}\right)\right], \\
& \mathcal{T}_{\min }^{\prime}\left(x^{\prime}, y^{\prime}\right)=\left[\min \left(x_{1}^{\prime}, y_{1}^{\prime}\right), \max \left(\min \left(x_{1}^{\prime}, y_{2}^{\prime}\right), \min \left(x_{2}^{\prime}, y_{1}^{\prime}\right)\right)\right] .
\end{aligned}
$$

We consider the following cases:

1. $\max \left(x_{2}, y_{2}\right) \leq t$: using Lemma 3.8, we obtain

$$
\begin{aligned}
\mathcal{T}_{T, t}(x, y) & =\left[T\left(x_{1}, y_{1}\right), \max \left(\min \left(t, T\left(x_{2}, y_{2}\right)\right), T\left(x_{1}, y_{2}\right), T\left(x_{2}, y_{1}\right)\right)\right] \\
& =\left[T\left(x_{1}, y_{1}\right), \max \left(T\left(x_{2}, y_{2}\right), T\left(x_{1}, y_{2}\right), T\left(x_{2}, y_{1}\right)\right)\right] \\
& =\left[\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), \hat{T}_{1}^{\prime}\left(x_{2}, y_{2}\right)\right] .
\end{aligned}
$$

2. $\max \left(x_{2}, y_{1}\right) \leq t<y_{2}$ (the case $\max \left(y_{2}, x_{1}\right) \leq t<x_{2}$ is similar): we obtain in a completely similar way that $\mathcal{T}_{T, t}(x, y)=\left[\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), \min \left(x_{2}, y_{2}\right)\right]=\left[\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), x_{2}\right]=$ $\left[\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), \hat{T}_{1}^{\prime}\left(x_{2}, t\right)\right]$.
3. $\max \left(x_{1}, y_{1}\right) \leq t<\min \left(x_{2}, y_{2}\right)$: we obtain that $T\left(t, T\left(x_{2}, y_{2}\right)\right)=\min \left(t, x_{2}, y_{2}\right)=$ $t, T\left(x_{1}, y_{2}\right) \leq x_{1} \leq t$ and $T\left(x_{2}, y_{1}\right) \leq y_{1} \leq t$. So $\mathcal{T}_{T, t}(x, y)=\left[T\left(x_{1}, y_{1}\right), t\right]=$ $\left[\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), \hat{T}_{1}^{\prime}(t, t)\right]$.
4. $x_{2} \leq t<y_{1}$ (the case $y_{2} \leq t<x_{1}$ is similar): we obtain that $T\left(t, T\left(x_{2}, y_{2}\right)\right)=$ $\min \left(t, x_{2}, y_{2}\right)=x_{2}, T\left(x_{1}, y_{2}\right)=\min \left(x_{1}, y_{2}\right)=x_{1}$ and $T\left(x_{2}, y_{1}\right)=\min \left(x_{2}, y_{1}\right)=x_{2}$. So $\mathcal{T}_{T, t}(x, y)=\left[T\left(x_{1}, y_{1}\right), x_{2}\right]=\left[\min \left(x_{1}, y_{1}\right), \min \left(x_{2}, y_{1}\right)\right]=\left[\min \left(x_{1}, y_{1}\right), \min \left(x_{2}, y_{2}\right)\right]$.
5. $x_{1} \leq t<\min \left(x_{2}, y_{1}\right)$ (the case $y_{1} \leq t<\min \left(y_{2}, x_{1}\right)$ is similar): we obtain that $T\left(t, T\left(x_{2}, y_{2}\right)\right)=\min \left(t, x_{2}, y_{2}\right)=t, T\left(x_{1}, y_{2}\right)=\min \left(x_{1}, y_{2}\right)=x_{1}$ and $T\left(x_{2}, y_{1}\right)=$ $\min \left(x_{2}, y_{1}\right)>t$. So $\mathcal{T}_{T, t}(x, y)=\left[T\left(x_{1}, y_{1}\right), \min \left(x_{2}, y_{1}\right)\right]=\left[\min \left(x_{1}, y_{1}\right), \max \left(\min \left(t, y_{2}\right)\right.\right.$, $\left.\left.\min \left(x_{2}, y_{1}\right)\right)\right]$.
6. $t<\min \left(x_{1}, y_{1}\right)$: we obtain that $T\left(t, T\left(x_{2}, y_{2}\right)\right)=\min \left(t, x_{2}, y_{2}\right)=t$, so $\mathcal{T}_{T, t}(x, y)=$ $\left[\min \left(x_{1}, y_{1}\right), \max \left(\min \left(x_{1}, y_{2}\right), \min \left(x_{2}, y_{1}\right)\right)\right]$.
We see that

$$
\left(\mathcal{T}_{T, t}(x, y)\right)_{1}=T\left(x_{1}, y_{1}\right)= \begin{cases}\hat{T}_{1}^{\prime}\left(x_{1}, y_{1}\right), & \text { if }\left(x_{1}, y_{1}\right) \in[0, t]^{2}, \\ \min \left(x_{1}, y_{1}\right), & \text { else. }\end{cases}
$$

So, the first projection of $\mathcal{T}_{T, t}$ is determined by the ordinal sum of $\left\langle 0, t, \hat{T}_{1}\right\rangle$ and $\langle t, 1, \min \rangle$. The second projection of $\mathcal{T}_{T, t}$ is given by

$$
\begin{aligned}
& \left(\mathcal{T}_{T, t}(x, y)\right)_{2} \\
& =\left\{\begin{array}{l}
\left(\mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}^{\prime}\left(\left[x_{1}, \min \left(x_{2}, t\right)\right],\left[y_{1}, \min \left(y_{2}, t\right)\right]\right)\right)_{2}, \\
\quad \text { if } x_{2}>0 \text { and } x_{1} \leq t \text { and } y_{2}>0 \text { and } y_{1} \leq t, \\
\left(\mathcal{T}_{\min }^{\prime}\left(\left[\max \left(x_{1}, t\right), x_{2}\right],\left[\max \left(y_{1}, t\right), y_{2}\right]\right)\right)_{2}, \\
\left.\left.\quad \text { if }\left(x_{1} \in\right] t, 1\right] \text { and } y_{2}>t \text { and } y_{1} \leq 1\right) \\
\left.\left.\quad \text { or }\left(y_{1} \in\right] t, 1\right] \text { and } x_{2}>t \text { and } x_{1} \leq 1\right), \\
\min \left(x_{2}, y_{2}\right), \text { if the previous conditions do not hold } \\
\text { and }\left(x_{2} \leq 0 \text { or } y_{2} \leq 0\right), \\
\min \left(x_{2}, y_{1}\right), \text { if the previous conditions do not hold and } x_{1} \leq y_{1}, \\
\min \left(y_{2}, x_{1}\right), \text { else. }
\end{array}\right.
\end{aligned}
$$

This corresponds to the formula in Theorem 2.3, in which $A=\{1,2\}, a_{1}=0_{\mathcal{L}^{I}}, e_{1}=a_{2}=$ $[t, t], e_{2}=1_{\mathcal{L}^{I}}, k=1, A_{<}=\varnothing$ and $A_{>}=\{2\}$. Hence $\mathcal{T}_{T, t}$ is the ordinal sum of the summands $\left\langle 0_{\mathcal{L}^{I}},[t, t], \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}\right\rangle$ and $\left\langle[t, t], 1_{\mathcal{L}^{I}}, \mathcal{T}_{\text {min }}\right\rangle$, with $k=1$.

Conversely, assume that $\mathcal{T}_{T, t}$ is the ordinal sum of the summands $\left\langle 0_{\mathcal{L}^{I}},[t, t], \mathcal{T}_{\hat{T}_{1}, \hat{T}_{1}}\right\rangle$ and $\left\langle[t, t], 1_{\mathcal{L}^{I}}, \mathcal{T}_{\min }\right\rangle$, with $k=1$. Then from Theorem 2.3 it follows that T is the ordinal sum of $\left\langle 0, t, \hat{T}_{1}\right\rangle$ and $\langle t, 1, \min \rangle$. Using Theorem 3.13 we obtain that $\mathcal{T}_{T, t}$ is a meet-morphism.

Corollary 3.15 Let T be a t-norm on $([0,1], \leq)$.

- If $t=0$, then $\mathcal{T}_{T, 0}$ is a meet-morphism if and only if $\mathcal{T}_{T, 0}=\mathcal{T}_{\text {min }}$.
- If $t=1$, then $\mathcal{T}_{T, 1}=\mathcal{T}_{T, T}$ is a meet-morphism for any T.

By combining Theorems 3.6 and 3.13 , we obtain the following result.
Theorem 3.16 Let $\mathcal{T}:\left(L^{I}\right)^{2} \rightarrow L^{I}$ be a t-norm such that, for all $x \in D, y_{2} \in[0,1]$, $\left(\mathcal{T}\left(x,\left[y_{2}, y_{2}\right]\right)\right)_{2}=\left(\mathcal{T}\left(x,\left[0, y_{2}\right]\right)\right)_{2}$. Then \mathcal{T} is a join-morphism and a meet-morphism if and only if there exist two t-norms T_{1} and T_{2} on $([0,1], \leq)$ and a real number $t \in[0,1]$ such that, for all $x, y \in L^{I}$,

$$
\mathcal{T}(x, y)=\left[T_{1}\left(x_{1}, y_{1}\right), \max \left(T_{2}\left(t, T_{2}\left(x_{2}, y_{2}\right)\right), T_{2}\left(x_{1}, y_{2}\right), T_{2}\left(y_{1}, x_{2}\right)\right)\right],
$$

T_{2} is the ordinal sum $\left(\left\langle 0, t, \hat{T}_{1}\right\rangle,\langle t, 1, \min \rangle\right)$, where \hat{T}_{1} is a t-norm on $([0,1], \leq)$, and, for all x_{1}, y_{1} in $[0,1]$,

$$
T_{1}\left(x_{1}, y_{1}\right)=T_{2}\left(x_{1}, y_{1}\right), \text { if } T_{2}\left(x_{1}, y_{1}\right)>t .
$$

4 Conclusion

In this paper we investigated t-norms in interval-valued fuzzy set theory which are meetmorphisms. First we showed that for continuous t-norms the notions of sup- and joinmorphism, respectively the notions of inf- and meet-morphism, collapse. We considered a general class of t-norms (given in [7]) and investigated under which conditions t-norms belonging to this class are meet-morphisms. We also showed that there exist non-trivial examples of t-norms in this class, i.e. t-norms which belong to this class but not to the class investigated in [5, 18]. Finally we gave a characterization of the t-norms which are both a join- and a meet-morphism and which satisfy an additional border condition.

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, New York, 1999.
[2] A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954) 631-646.
[3] B. De Baets, R. Mesiar, Triangular norms on product lattices, Fuzzy Sets and Systems 104 (1) (1999) 61-75.
[4] G. Deschrijver, Ordinal sums in interval-valued fuzzy set theory, New Mathematics and Natural Computation 1 (2) (2005) 243-259.
[5] G. Deschrijver, A representation of t-norms in interval-valued L-fuzzy set theory, Fuzzy Sets and Systems 159 (13) (2008) 1597-1618.
[6] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Transactions on Fuzzy Systems 12 (1) (2004) 45-61.
[7] G. Deschrijver, E. E. Kerre, Classes of intuitionistic fuzzy t-norms satisfying the residuation principle, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11 (6) (2003) 691-709.
[8] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2) (2003) 227-235.
[9] G. Deschrijver, E. E. Kerre, Implicators based on binary aggregation operators in interval-valued fuzzy set theory, Fuzzy Sets and Systems 153 (2) (2005) 229-248.
[10] M. Gehrke, C. L. Walker, E. A. Walker, Some comments on interval valued fuzzy sets, International Journal of Intelligent Systems 11 (10) (1996) 751-759.
[11] M. B. Gorzałczany, A method of inference in approximate reasoning based on intervalvalued fuzzy sets, Fuzzy Sets and Systems 21 (1) (1987) 1-17.
[12] S. Jenei, A note on the ordinal sum theorem and its consequence for the construction of triangular norms, Fuzzy Sets and Systems 126 (2) (2002) 199-205.
[13] F. Karaçal, D. Khadjiev, \vee-distributive and infinitely \vee-distributive t-norms on complete lattices, Fuzzy Sets and Systems 151 (2) (2005) 341-352.
[14] C.-H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965) 189-212.
[15] R. Sambuc, Fonctions Φ-floues. Application à l'aide au diagnostic en pathologie thyroidienne, Ph.D. thesis, Université de Marseille, France (1975).
[16] S. Saminger, On ordinal sums of triangular norms on bounded lattices, Fuzzy Sets and Systems 157 (10) (2006) 1403-1416.
[17] B. Schweizer, A. Sklar, Associative functions and abstract semigroups, Publ. Math. Debrecen 10 (1963) 69-81.
[18] B. Van Gasse, C. Cornelis, G. Deschrijver, E. E. Kerre, A characterization of intervalvalued residuated lattices, International Journal of Approximate Reasoning 49 (2) (2008) 478-487.
[19] G. Wang, W. Wang, Left-continuity of t-norms on the n-dimensional Euclidean cube, Applied Mathematics Letters 23 (4) (2010) 479-483.
[20] D. Zhang, Triangular norms on partially ordered sets, Fuzzy Sets and Systems 153 (2) (2005) 195-209.

[^0]: ${ }^{1}$ Note that the condition in Theorem 5 of 7 that T_{1} and T_{2} are left-continuous is not used to prove that $\mathcal{T}_{T_{1}, T_{2}, t}$ is a t-norm.

[^1]: ${ }^{2}$ In 4 it is shown that if $a_{\alpha} \notin D$ or $e_{\alpha} \notin D$, then there does not exist an increasing bijection Φ from J_{α} to L^{I} such that Φ^{-1} is increasing. In this case the ordinal sum construction cannot be extended to L^{I}.

