1,274 research outputs found

    Algorithms for bundling and pricing trucking services: Deterministic and stochastic approaches

    Get PDF
    Bundling and pricing trucking services is an important strategic decision for carriers. This is helpful when they consider the incorporation of new businesses to their networks, look for economic and optimal operations, and develop revenue management strategies. Reverse combinatorial auctions for trucking services are real-world examples that illustrate the necessity of such strategies. In these auctions, a shipper asks carriers for quotes to serve combinations of lanes and the carriers have to bundle demand and price it properly. This dissertation explores several dimensions of the problem employing state-of-the-art analytical tools. These dimensions include: Truckload (TL) and less-than-truckload (LTL) operations, behavioral attributes driving the selection of trucking services, and consideration of deterministic and stochastic demand. Analytical tools include: advanced econometrics, network modeling, statistical network analysis, combinatorial optimization, and stochastic optimization. The dissertation is organized as follows. Chapter 1 introduces the problem and related concepts. Chapter 2 studies the attributes driving the selection of trucking services and proposes an econometric model to quantify the shipper willingness to pay using data from a discrete choice experiment. Chapter 3 proposes an algorithm for demand clustering in freight logistics networks using historical data from TL carriers. Chapter 4 develops an algorithmic approach for pricing and demand segmentation of bundles in TL combinatorial auctions. Chapter 5 expands the latter framework to consider stochastic demand. Chapter 6 uses an analytical approach to demonstrate the benefits of in-vehicle consolidation for LTL carriers. Finally, Chapter 7 proposes an algorithm for pricing and demand segmentation of bundles in LTL combinatorial auctions that accounts for stochastic demand. This research provides meaningful negotiation guidance for shippers and carriers, which is supported by quantitative methods. Likewise, numerical experiments demonstrate the benefits and efficiencies of the proposed algorithms, which are transportation modeling contributions

    Optimal Parking Planning for Shared Autonomous Vehicles

    Full text link
    Parking is a crucial element of the driving experience in urban transportation systems. Especially in the coming era of Shared Autonomous Vehicles (SAVs), parking operations in urban transportation networks will inevitably change. Parking stations will serve as storage places for unused vehicles and depots that control the level-of-service of SAVs. This study presents an Analytical Parking Planning Model (APPM) for the SAV environment to provide broader insights into parking planning decisions. Two specific planning scenarios are considered for the APPM: (i) Single-zone APPM (S-APPM), which considers the target area as a single homogeneous zone, and (ii) Two-zone APPM (T-APPM), which considers the target area as two different zones, such as city center and suburban area. S-APPM offers a closed-form solution to find the optimal density of parking stations and parking spaces and the optimal number of SAV fleets, which is beneficial for understanding the explicit relationship between planning decisions and the given environments, including demand density and cost factors. In addition, to incorporate different macroscopic characteristics across two zones, T-APPM accounts for inter- and intra-zonal passenger trips and the relocation of vehicles. We conduct a case study to demonstrate the proposed method with the actual data collected in Seoul Metropolitan Area, South Korea. Sensitivity analyses with respect to cost factors are performed to provide decision-makers with further insights. Also, we find that the optimal densities of parking stations and spaces in the target area are much lower than the current situations.Comment: 27 pages, 9 figures, 9 table

    A Markov Decision Process Model for the Optimal Dispatch of Military Medical Evacuation Assets

    Get PDF
    We develop a Markov decision process (MDP) model to examine military evacuation (MEDEVAC) dispatch policies in a combat environment. The problem of deciding which aeromedical asset to dispatch to which service request is complicated by threat conditions at the service locations and the priority class of each casualty event, assuming MEDEVAC requests arrive sequentially, with the location and the priority of each casualty known upon arrival. The United States military uses a 9-line MEDEVAC request system to classify casualties using three priority levels. An armed escort may be required depending on the threat level indicated by the request. The proposed MDP model indicates how to optimally dispatch ambulatory helicopters to casualty events in order to maximize the steady-state system utility. Utility depends on casualty numbers, priority classes, and the locations of MEDEVAC units and casualty event. Instances of the dispatching problem are solved using a value iteration dynamic programming algorithm. Computational examples investigate optimal dispatch policies under different threat situations and potential armed escort delay

    STRATEGIES TO IMPROVE THE EFFICIENCY OF EMERGENCY MEDICAL SERVICE (EMS) SYSTEMS UNDER MORE REALISTIC CONDITIONS

    Get PDF
    Emergency medical service (EMS) systems provide medical care to pre-hospital patients who need rapid response and transportation. This dissertation proposes a new realistic approach for EMS systems in two major focuses: multiple unit dispatching and relocation strategies. This work makes recommendations for multiple-unit dispatch to multiple call priorities based on simulation optimization and heuristics. The objective is to maximize the expected survival rate. Simulation models are proposed to determine the optimization. A heuristic algorithm is developed for large-scale problems. Numerical results show that dispatching while considering call priorities, rather than always dispatching the closest medical units, could improve the effectiveness of EMS systems. Additionally, we extend the model of multiple-unit dispatch to examine fairness between call priorities. We consider the potentially-life-threatening calls which could be upgraded to life-threatening. We formulate the fairness problem as an integer programming model solved using simulation optimization. Taking into account fairness between priorities improves the performance of EMS systems while still operating at high efficiency. As another focus, we consider dynamic relocation strategy using a nested-compliance table policy. For each state of the EMS systems, a decision must be made regarding exactly which ambulances will be allocated to which stations. We determine the optimal nested-compliance table in order to maximize the expected coverage, in the binary sense, as will be later discussed. We formulate the nested-compliance table model as an integer program, for which we approximate the steady-state probabilities of EMS system to use as parameters to our model. Simulation is used to investigate the performance of the model and to compare the results to a static policy based on the adjusted maximum expected covering location problem (AMEXCLP). Additionally, we extend the nested-compliance table model to consider an upper bound on relocation time. We analyze the decision regarding how to partition the service area into smaller sub-areas (districts) in which each sub-area operates independently under separate relocation strategies. We embed the nested-compliance table model into a tabu search heuristic algorithm. Iteration is used to search for a near-optimal solution. The performance of the tabu search heuristic and AMEXCLP are compared in terms of the realized expected coverage of EMS systems
    • …
    corecore