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ABSTRACT 

 

 

Emergency medical service (EMS) systems provide medical care to pre-hospital 

patients who need rapid response and transportation. This dissertation proposes a new 

realistic approach for EMS systems in two major focuses: multiple unit dispatching and 

relocation strategies.  

This work makes recommendations for multiple-unit dispatch to multiple call 

priorities based on simulation optimization and heuristics. The objective is to maximize 

the expected survival rate. Simulation models are proposed to determine the optimization. 

A heuristic algorithm is developed for large-scale problems. Numerical results show that 

dispatching while considering call priorities, rather than always dispatching the closest 

medical units, could improve the effectiveness of EMS systems. Additionally, we extend 

the model of multiple-unit dispatch to examine fairness between call priorities. We 

consider the potentially-life-threatening calls which could be upgraded to life-threatening. 

We formulate the fairness problem as an integer programming model solved using 

simulation optimization. Taking into account fairness between priorities improves the 

performance of EMS systems while still operating at high efficiency.  

As another focus, we consider dynamic relocation strategy using a nested-

compliance table policy. For each state of the EMS systems, a decision must be made 

regarding exactly which ambulances will be allocated to which stations. We determine 

the optimal nested-compliance table in order to maximize the expected coverage, in the 

binary sense, as will be later discussed. We formulate the nested-compliance table model 
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as an integer program, for which we approximate the steady-state probabilities of EMS 

system to use as parameters to our model.  Simulation is used to investigate the 

performance of the model and to compare the results to a static policy based on the 

adjusted maximum expected covering location problem (AMEXCLP). Additionally, we 

extend the nested-compliance table model to consider an upper bound on relocation time. 

We analyze the decision regarding how to partition the service area into smaller sub-areas 

(districts) in which each sub-area operates independently under separate relocation 

strategies. We embed the nested-compliance table model into a tabu search heuristic 

algorithm. Iteration is used to search for a near-optimal solution. The performance of the 

tabu search heuristic and AMEXCLP are compared in terms of the realized expected 

coverage of EMS systems.  
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Emergency medical service (EMS) systems are health care systems that provide 

medical care and transportation of patients to hospitals when needed, thus potentially 

saving lives. Gibson [1] discussed the development of EMS systems. During the late 

1960s, early studies of EMS systems focused on planning for fire and police departments 

and on assigning appropriate ambulances to assist on-scene at an accident. Since then, 

literature related to planning of EMS systems has experienced substantial growth and 

development. EMS access to patients is crucial to developing new strategies to improve 

the current EMS systems. EMS planning is challenging because of the varying severity of 

emergency calls on the scene of accidents, uncertainty in response time of the 

ambulances, uncertainty in demand, etc.  The goal of EMS systems is to improve 

performance by increasing survival probability or reducing response time. Response time 

refers to the interval between the arrival of a call and the time at which the ambulance 

reaches the scene.  Therefore, rapid response to a call can have a dramatic effect on the 

outcome of the patient and the performance of EMS systems.  

Few research studies consider taking realistic features of EMS problems into 

account because many complexities will inherently be introduced into their formulations. 

However, these features cannot be ignored if the goal is to provide solutions that can be 

implemented in practice to real-world problem. This dissertation proposes two major 

models to improve efficiency of EMS systems by taking into account some realities. 
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Specifically, our primary focus is on improving the performance of EMS systems using 

multiple unit dispatching strategies and real-time relocation strategies. We investigate 

the benefits of our models via computational results based on datasets from real-world 

problems. 

The contribution of this dissertation is to improve the efficiency of EMS systems 

in two ways. One area provides the structure of optimal and near optimal multiple 

dispatching policies to multiple call priorities under realistic on-scene conditions when 

the goal is to maximize the expected survival probability. We also propose the fairness 

strategy between call priorities. The near optimal multiple dispatching policy is 

implemented for each call priority and each call zone. Another area of study is to propose 

the optimal nested-compliance table policy under real-time relocation conditions that 

maximizes the expected binary coverage. Later, when implementing the optimal nested-

compliance table policy whole service system is partitioned into small sub-systems, we 

determine the relocation time boundaries for the EMS system that maximizes the realized 

expected coverage.  Both the multiple dispatching policy and the nested-compliance table 

policy are pre-specified policies, which are implemented in practice in EMS systems. In 

short, we are able to improve EMS system performance under more realistic conditions 

that have thus far been ignored in the literature. 

When focusing on ambulance dispatching strategies, the dispatch center plays a 

key role in EMS systems. A dispatcher determines the severity of calls in order to 

dispatch the appropriate ambulance unit(s). Dispatchers typically have an ordered 
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preference list for each demand zone. The list assigns a ranking position to available 

ambulances so that the dispatcher would send the first unit on the ranking if available; or 

the second ambulance on the ranking if the first is busy, and so on. Dispatch decisions 

can largely impact system outcomes such as patient survival rate and response time.  

To improve the response time of the dispatch center, EMS systems may 

implement priority dispatch. Priority dispatch relies on the idea of properly matching 

servers with severity of calls when ambulances are limited. Priority dispatch helps 

increase the number of available ambulances, and it improves the utilization of resources, 

which in turn impacts patient outcomes. For example, Kuisma et al. [2] studied the 

impact of medical priority dispatch on pre-hospital mortality. The results showed that 

pre-hospital mortality of lower urgency calls did not depend on the order in which 

ambulances were dispatched. These results suggested that it may be possible to tailor 

responses to patients without hurting their chances of survival.  Nicholl et al. [3] 

discussed the call priority classification of the advanced medical priority dispatch 

(AMPD) system. AMPD classified emergency calls into four types based on severity and 

type of conditions, among other things. The suggested classifications were DELTA, 

CHARLIE, BRAVO and ALPHA levels. Nicholl et al. [3] compared AMPD 

classification with that of a review panel that categorized severity of calls. They 

discussed the aggregation of the AMPD classification into three levels. DELTA and 

CHARLIE were identifiers for life-threatening calls in which paramedic units and rapid 

transports were needed. BRAVO identified potentially-life-threatening calls that needed 

non-paramedic units and rapid transport. And ALPHA identified non-life-threatening 
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calls that needed non-paramedic units. For our research purposes, we consider two types 

of ambulances based on skills of staff and equipment: advanced life support (ALS), or 

paramedic, units and basic life support (BLS), or non-paramedic, units. Clawson et al. [4] 

suggested an example of response configuration of EMS systems where both ALS and 

BLS units would be dispatched in a critical situation (hot situation) in which rapid 

transport was needed. They referred to DELTA and CHARLIE calls. They suggested that 

the closest BLS unit was dispatched to respond to BRAVO calls whereas for ALPHA 

calls (non-critical situation - cold situation) a different decision would be made. 

Our goal is to determine an optimal policy for multiple unit dispatch and call 

priorities to increase the overall patient survival probability. We investigate how to 

improve the performance of EMS systems in two major areas; multi-unit dispatch and 

relocation strategies. The first two studies focus on multi-unit dispatch.  In the first study, 

proposed dispatching models are examined under stochastic behavior of emergency calls 

with three levels of priorities which need different medical care. In addition, we present 

some extensions to the model by considering real on-scene conditions, such as the fact 

that dispatch decisions can be changed. The simulation models for multiple unit dispatch 

with multiple call priorities are used to investigate the performance of all possible 

policies for dispatching ambulances by using an enumeration method. We study the 

optimal dispatch policies through several small examples. A heuristic algorithm is 

developed to dispatch ambulances for larger-scale problems.  These details are described 

in Chapter 2. In the second study, we extend the models in Chapter 2 by considering 

alternative policies for priority2 calls, which is located in Chapter 3. In this chapter, 
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simulation models with fairness constraints are formulated as integer programming 

models in order to obtain the optimal dispatching policy for priority2 calls. The objective 

is to maximize the overall survival probability.   

In another study, we consider the compliance table strategies for relocation of 

ambulances.  We determine the best compliance table to use for improving the 

performance of the EMS systems. The compliance table is a table that shows the assigned 

ambulance locations for a given number of busy ambulances. Most of the early EMS 

models allocated ambulances to only one fixed location. The main assumption of a static 

location model is a fixed home station base. The dispatched ambulance would return back 

to a home station base after providing service to patients. This differs from ambulance 

relocation models, which are developed to more closely mimic the operations of actual 

EMS systems. Ambulances are repositioned in real-time after their finished service on the 

scenes of accidents or at hospitals. The compliance table is a commonly implemented 

relocation strategy in practice.  Alanis et al. [5] analyzed the performance of EMS 

systems that repositioned ambulances under a compliance table policy. Their results 

showed that there were impacts of performance by changing the compliance table by 

analyzing a Markov chain with relocation model. In this paper, we study how to design 

the best compliance table to obtain the optimal expected coverage of EMS systems.  

There are a few studies in this area of research. In Chapter 4, we present an integer 

programming approach to the compliance table problem. The formulation applies a 

Markov chain model with relocation. The application of the Markov chain model with 

relocation is based on an approximation.  We investigate the performances of the EMS 
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systems by using real-world data. The objective is to maximize expected coverage. 

Repositioning ambulances is a powerful way to improve expected coverage. Analysis of 

real world problems suggests that the design of compliance tables should place an upper 

bound on the moving time of repositioning ambulances. Because of this, in Chapter 5 we 

study the repositioning of ambulances while restricting the areas in which they can move. 

We determine the districting areas for repositioning ambulances. We embedded the 

nested-compliance table model into a heuristic algorithm to examine districting and 

relocation strategies for EMS systems.The rest of this doctoral dissertation is organized 

as follows. In the following section, we review the related work on models for improving 

the performance of EMS systems. In Chapter 2, we describe the enhancement of a model 

of EMS systems by considering the real on-scene conditions. We present the 

recommendations for dispatching emergency vehicles under multi-tiered response via 

simulation. In Chapter 3, we describe an extension of the model of EMS systems that can 

aid in determining the reaction to real on-scene conditions of priority2 calls. A simulation 

model for fairly dispatching emergency vehicles under multi-tiered response is proposed 

in Chapter 3. In Chapter 4, we present a nested compliance table policy for EMS systems 

under relocation.  We propose an integer programming model for determining the best 

compliance table policy. In Chapter 5, we present a nested compliance table model 

embedded into a heuristic algorithm for districting and relocation strategies in EMS 

systems. In Chapter 6, we present conclusions and future work. 
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1.1 Literature Review 

Since the late 1960’s the rapid US population growth has generated an increasing 

demand for ambulance services.  In 1967, the study of EMS systems began to determine 

the distribution and workload of the existing systems.  King and Sox [6] were the first to 

conduct a study to evaluate the workload of EMS systems in order to improve 

performance. In 1972, EMS systems were analyzed in a study of a location model in 

order to minimize average response time, as seen in Carter et al. [7]. This study 

considered two ambulance units that were dispatched to respond to calls, given the 

different locations of the units. The study then determined the district boundary for each 

unit to respond to calls. The EMS planners then studied the number and type of 

ambulances to deploy to certain locations, as seen in Eaton et al. [8].  This study 

researched how to design the EMS systems to reduce cost. Two strategies were 

considered.  In the first strategy, the EMS system operated with two types of ambulances: 

basic life support (BLS) and advance life support (ALS). The BLS unit would respond to 

non-life threatening calls, while the ALS unit would respond to the life-threatening calls.  

The second strategy considered the number of station bases and how to allocate 

ambulances to their stations based on cost trade-off.  Later, in the early 1990s, the EMS 

systems began to use computer-aided dispatch (CAD) systems. CAD systems have been 

used to collect information from emergency calls. They monitor locations and availability 

of ambulances. The study of early implementation of the CAD systems, shown in 

Hougham [9], discussed the implementation of CAD to real-world problem. In 1996, 

collected data showed that 30 – 50 % of calls were non-life threatening calls. To improve 
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the performance of the system, EMS planners considered modeling the dispatch priority 

decision. Palumbo et al. [10] designed a comparison study of priority and non-priority 

dispatch systems. The results of this study indicated that the dispatch priority provided 

better performance in terms of lives saved on serious calls and increased the utilization of 

ALS units. Most previous work of EMS systems was focused on reducing response time, 

which has a crucial effect on the efficiency of EMS systems. 

As it is most related to the work presented in the remaining chapters, and since a 

more in-depth review will be conducted within each chapter, here we briefly outline the 

development of the most relevant literature.  This is presented in terms of the literature on 

dispatching strategies and the literature on relocation models. 

The previous literature studied EMS strategies based on dispatching the closest 

ambulances. When implementing dispatching strategies, the ordered preference lists for 

each demand zone are different in order to maximize outcomes of the EMS systems. The 

significant strategies to improve response include policies on how to send an appropriate 

ambulance according to severity of the call. There have only been a few studies 

conducted that considered the dispatch strategies of EMS systems. Considering the 

dispatch of EMS vehicles, one strategy is to make better use of available ambulances by 

having close-by ambulances respond to serious calls and sending farther ambulances to 

non-serious calls. The idea to study dispatch policies was proposed by Lim et al. [11]. 

They studied the impact of dispatch policies on the performance of EMS systems. The 

effect of dispatch strategies on the performance of EMS systems was based on the 
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urgency of calls. The Maine EMS Service and Emergency Medical Dispatch (EMD) 

center, 2011 guidelines provided the priority dispatch implementation. The guidelines 

discussed details for determining the severity level of calls. A successful priority dispatch 

depended on organization and communication between staff and dispatching planners. 

They discussed the results of the implementation of priority dispatch that provided better 

use of ambulances types to matching the requirement of patients. Most dispatching ALS 

units would respond to life-threatening calls whereas non-life-threatening calls could 

require basic ambulances.  

Only a few early studies of EMS systems dealt with ambulance relocation models. 

In reality, sometimes the closest ambulances are unavailable to respond to a call. The 

unavailable ambulances are a critical factor affecting the performance of EMS systems 

when a serious call arrives. Dynamic models were developed to reallocate idle 

ambulances to compensate for stations in which most of the ambulances are busy and 

unable to respond to arrivals of serious calls.  The first relocation model was introduced 

by Kolesar and Walker [12]. This model examined the relocation of fire resources. The 

recent work in relocation models deals with three classes of models: integer 

programming, simulation, and Markov decision process. Unfortunately, there were 

known weaknesses of implementing the relocation models. The optimal solution of the 

relocation model frequently changed the destinations of ambulances, which in return 

required more powerful technology to keep track of the ambulances’ current locations. 

Recently in the practice of EMS systems, computer-aided dispatch (CAD) systems are 

applied, making it possible to indicate the current locations of all ambulances. Therefore, 
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the increasing probability of available ambulances ready at their station bases provides a 

better performance measure of the EMS systems.  

While some recommendations exist, the national academy of emergency medical 

dispatch (EMD) guidelines provides no details for operating prioritization 

recommendations.  Thus, the priority dispatch problem motivates this research. In 

Chapter 2, to maintain fidelity to the real problem we propose to study simulation models 

with multiple unit dispatch and call priorities. We consider the optimal multiple unit 

dispatch strategies through several small examples in order to guide us in developing 

heuristic policies for use in real-world problems. The dispatch strategies of EMS systems 

are examined under stochastic behavior of the emergency calls with three levels of 

priority each needing different medical care. We consider two types of medical units, 

ALS and BLS units. Priority1 calls require multiple units. On the other hand, a single 

dispatch is used to respond to priority2 and 3 calls. The main focus of this paper is to 

develop a model showing how to dispatch two types of ambulances depending on the 

priorities.  In addition, we present some extensions of the model by considering real on-

scene conditions. For example, the fact dispatch decisions can be changed on the spot.  A 

heuristic algorithm is developed to dispatch ambulances on larger-scale problems.  This 

heuristic procedure is based on the hypercube model. The proposed heuristic uses the 

principle of balance of call volumes on servers. A comparison between the heuristic and 

the closest policy are demonstrated using real world data. 
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In Chapter 3, we also use a simulation model to determine the performance 

measure of EMS systems. We extend the model in Chapter 2 by considering real on-

scene conditions of priority2 calls. The dispatching decision can be changed to BLS 

upgrade when the BLS unit arrives on-scene to service priority2 calls. We evaluate two 

alternative policies of dispatching BLS unit; the dispatching BLS unit of priority2 calls 

should be treated like the dispatching BLS policy of priority1 or 3 calls. This is based on 

always sending the closest ALS unit for priority2 calls. The goals considered are the 

same outcomes from Chapter 2, where the goal was to maximize the patient survival 

probability. In addition, the equity between patient priorities and time is crucial for 

dispatching decisions. The dispatching ambulances to respond to priority 1 calls forces 

busy ambulances to respond to priority2 calls. The priority2 calls on-scene situation may 

be changed to life-threatening and require the care of an ALS unit. To improve inequities 

of EMS systems, finding the balance between dispatching ambulances for each priority is 

a challenge in this research. As an extension of this Chapter, we consider the notions of 

fairness between priority1 and 2 calls by limiting the wait time of first response for 

priority1 and 2 calls. The average waiting time of first response should be equalized 

between priority1 and 2 calls. As the main focus of the fairness problem, we determine 

how to dispatch ALS units to respond priority2 calls while the waiting time between 

priority1 and 2 calls is restricted.  

In Chapter 4, we focus on the compliance table strategies under a relocation 

policy. The compliance table is useful for relocation problems. Relocation problems refer 

to the dispatched ambulances that could travel back to different home station bases. There 
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are significant influences on relocation strategies when changing a compliance table. The 

decision of how we design the best compliance table, given number of available 

ambulances, is complicated. Therefore, in Chapter 4 we focus on developing compliance 

table strategies. Our goal is to maximize expected coverage. We formulate this problem 

as integer programming.  

In Chapter 5, we present the districting and the compliance table strategies under 

a relocation policy. The studied compliance table model in Chapter 4 showed adverse 

effects of the repositioning time of moving ambulance between stations to the 

performance of EMS systems. We consider an upper limit on repositioning time of 

moving ambulance as a districting problem. The decisions of how we determine the 

moving areas for repositioning ambulances and allocate the ambulances to each moving 

area are proposed. The compliance table model is embedded into a heuristic algorithm to 

obtain the better configuration of compliance table for each district. The EMS systems 

operate under districting and relocation strategies. 
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CHAPTER TWO 

RECOMMENDATIONS FOR DISPATCHING EMERGENCY VEHICLES 

UNDER MULTI-TIERED RESPONSE VIA SIMULATION 

 

 

2.1 Introduction 

Emergency medical service (EMS) systems are operated with the underlying goal 

of maximizing survival probability of patients. However, most EMS systems use 

measures of efficiency to evaluate their performance, such as average response time and 

expected coverage, which could in turn affect patient survivability. Coverage refers to the 

proportion of patients who can be attended by ambulances within a predetermined time or 

distance. Response time refers to the time from when an ambulance dispatches to when 

an ambulance arrives on scene (see Figure 2.1 below).  Most operations decisions 

involved in EMS systems affect response time, such as ambulance location, ambulance 

relocation and ambulance dispatching. As the main focus of this paper, we consider the 

ambulance dispatching decision; that is, our goal is to determine the appropriate 

ambulance/s to assign to respond to a call.  EMS systems operate in dynamic conditions. 

When a call arrives to the system, the dispatcher asks a series of questions to determine 

the severity level of the call. The dispatcher must then assign an ambulance (or set of 

ambulances) based on the severity and location of the call and on the availability and 

location of resources in the system.  

Our goal is to design dispatching strategies for multi-tiered responses that 

maximize patient survival probability. In this paper, we consider two types of ambulances 
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based on skills of staff and equipment: advanced life support (ALS), or paramedic, units 

and basic life support (BLS), or non-paramedic, units (usually these are staffed by 

EMTs). Several recommendations as well as current best-practices exist regarding which 

types of units should be sent to different types of calls. The dispatcher determines the 

severity level of the call using the answers to key questions from the initial phone call 

and additional information (e.g. weather). Clawson et al. [4], suggest that both a 

paramedic unit and basic life support unit be dispatched to the most serious calls 

(classified as DELTA and CHARLIE).  They suggest that the closest basic life support 

unit be assigned to respond to BRAVO, or not believed to be life-threatening calls. The 

ALPHA calls are considered non-critical. While standard practice is to send the closest 

BLS unit to these calls, dispatching a nearby ambulance to the lower priority patient may 

make ambulances unavailable for future nearby life-threatening calls. Thus, EMS systems 

managers need to make a decision about how to dispatch a basic life support unit for the 

ALPHA calls. Our work is motivated by determining the optimal policy for multiple-unit 

dispatch and call priorities in order to increase the overall survival probability of patients. 

As will be explained in Section 2.3, we focus on the decisions regarding how to dispatch 

a BLS unit for priority1 and priority3 calls, while assuming a fixed dispatching policy for 

priority2 calls. The dispatching strategies of EMS systems are examined under stochastic 

behavior of the emergency calls with three levels of priorities, each of which need 

different medical care. In addition, we allow for realistic on-scene conditions that are 

often ignored in the literature, such as the fact that dispatching decisions can be changed 
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as more information is revealed on-scene (ALS downgrade and/or the BLS upgrade).  

The details are described in Section 2.3. 

Call in 

Time

Dispatch 

Time

Arrival Time 

of Emergency 

Vehical

Return back to 

Station (leave 

hospital to home)

Transportation 

time (leave the 

scene to hospital)

Arrival Time 

of ambulance 

at hospital

Response Time Service Time

Transport patient to hospital if need. Some 

patients do not need this service

Transportation Time    Evaluation Time

Figure 2.1: The time line for calls to an EMS system 

 

In this study we: 

 Develop and analyze simulation models that consider how to dispatch two types 

of ambulances to three call priorities.  

 Use the simulation model to study the performance of all possible policies for 

small problems and study the structure of the best policy. 

 Propose a heuristic algorithm for designing dispatching strategies for large-scale 

problems. The hypercube model (HQM) is used to develop the iteration method 

for the heuristic algorithm. 

 Show, through the numerical results, how the heuristic compares with the closest 

dispatch policy in real world problems, and specify conditions under which it 

yields the highest improvements. 
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The rest of this paper is organized as follows. In Section 2.2 the relevant literature is 

discussed; in Section 2.3 we present the model for EMS systems with multi-tiered 

response; in Section 2.4 we show illustrative examples; in Section 2.5 we present the 

heuristic approach; in Section 2.6 we show the case study and computational results; and 

in Section 2.7 we present conclusions and outline future work. 

 

2.2 Literature Review 

The literature related to EMS systems is extensive.  Some models are descriptive, 

where the goal is to more accurately measure the performance of a system given known 

operating conditions, while in other models, decisions are made to allocate resources.  

These decisions are often ambulance location or ambulance dispatching.  First we present 

some descriptive models, and then models are categorized by the decision (e.g. location, 

dispatching) being made, though some look at multiple decisions. 

The hypercube model is a model that describes the queuing dynamics of EMS 

systems with multiple servers and allows for the evaluation of busy probabilities among 

non-identical servers.  Larson [13] introduced the hypercube model with a single 

dispatching problem to determine the busy probabilities of units of EMS systems.  Larson 

[14] later developed an approximation of the hypercube model by using an iterative 

procedure. His approximation procedure relied on the M/M/N queue and the M/M/N with 

0 queue to obtain approximate workload of servers as well as other performance 

measures. Larson [14] assumed one type of customer that was generated according to a 
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Poisson process. Jarvis [15] considered the Erlang loss system and generated an 

approximate workload of servers by using the hypercube model. He assumed multiple 

types of customers that arrive to the system according to a Poisson process. The 

approximation algorithm used an iterative procedure to obtain servers’ workloads.  More 

recently, Budge et al. [16] proposed approximating the dispatching probabilities by using 

an M/MN/N system. Their study is different from previous studies since multiple servers 

can be assigned to each station.  Chiyoshi et al. [17] provided a survey of the hypercube 

model applied to EMS systems. 

Early prescriptive works in EMS systems focused on ambulance location 

problems, many of which use the hypercube model approximations mentioned above to 

account for the busy probability of servers. In these problems there are a limited number 

of ambulances to be located at stations to maximize the coverage, or proportion, of calls 

responded to within a given time/distance standard.  Church and ReVelle [18] introduced 

the maximal covering location model. Daskin [19] developed the traditional maximum 

covering location model, incorporating the congestion phenomena by considering the 

busy probability of the servers. He formulated the maximum expected covering location 

problems (MEXCLP). Gendreau et al. [20] suggested a dynamic ambulance relocation 

model, referred to as the maximal expected covering relocation problem (MECRP) that 

allowed the number of ambulances in stations to be changed. ReVelle and Hogan [21] 

formulated an integer programming model for the maximal availability location problem, 

which sought to maximize the probability of an ambulance being available within a 

coverage standard. Because of the congestion of the system, calls can arrive while all 
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servers are busy. Marianov and ReVelle [22] developed the maximal availability location 

problem, in which the busy probability of servers is taken into account and the goal is to 

maximize the expected availability of servers. There are several extensions to location 

problems. Erkut et al. [23] formulated ambulance location problems incorporating a 

survival function, referred to as the maximal survival location problem (MSLP). They 

used the MECRP formulation of Daskin [19], extending the model to the maximal 

expected survival location problem (MEXSLP). Both the MSLP and the MEXSLP were 

developed by incorporating probabilistic response times. 

Other works combine the location decision with a relocation or districting 

decision.  Mendonça and Morabito [24] analyzed ambulance deployment on highways by 

using the hypercube model. They considered a list of two preferred ambulances for each 

demand zone. If both of ambulances were busy, then the call was said to be lost. The 

objective was to balance workload among bases and to minimize mean travel time. 

Atkinson et al. [25] analyzed EMS deployments on highways introducing two heuristic 

methods. Both heuristics had embedded the M/M/N queuing model with loss. Iannoni et 

al. [26] presented two decision problems related to EMS operation on highways. They 

developed an exact partial backup model, extending the work by Mendonça and Morabito 

[24]. The model was embedded into greedy algorithms to solve two small problems 

combining location and districting decisions.  

Other works consider the decision of which vehicle to dispatch to a call, given 

fixed vehicle locations. For the dispatching problem, recent papers focus on priority 
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dispatch in which ambulances are assigned based on the severity classification of each 

emergency call. Considering priority dispatching problems, McLay and Mayorga [27] 

examined how to optimally dispatch ambulances by using a Markov decision process 

(MDP) approach. They investigated the impact of response time thresholds (RTTs) on 

outcomes, as well as how the best dispatching policy changed according to a given RTT. 

Bandara et al. [28] formulated an MDP model for dispatching problems with call 

priorities to determine the optimal dispatching strategies. Their approach maximizes the 

overall expected survival probability. McLay and Mayorga [29] extended the basic MDP 

model. Their formulation focused on balancing the equity and efficiency of servers and 

other fairness constraints related to customers. They solved the MDP formulation by 

using equivalent linear programming models.  McLay and Mayorga [30] also considered 

an MDP approach for a system in which call priority assignments are subject to 

classification errors. The objective was to maximize the overall coverage rate. They noted 

that dispatching the closest vehicle is not always optimal.  In all of these previous works, 

it was assumed that there was one type of server and that only one vehicle was dispatched 

per call. 

Extensions of the priority dispatching model considering multiple-unit dispatch 

with call priorities have also been developed. Chelst and Barlach [31] introduced the 

hypercube model for multiple unit dispatch. They presented an exact and an approximate 

version of the hypercube model. The exact model is based on an M/M/N system given 

single and bulk arrivals. In addition, the approximate model was formulated by using the 

M/M/N/0 queuing model. They assumed independent servers. Gau and Larson [32] 
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developed the model for multiple unit dispatch for N-patrol-unit systems. They 

considered calls with two priorities. Type I calls needed only a single unit, and type II 

calls required two units. Each demand zone had a preference list for ranking the 

ambulances. They formulated the hypercube model for the exact solution. In addition, 

they developed approximate models that assumed a fixed-preference dispatching list. 

Iannoni and Morabito [33] analyzed the operation of EMS systems on highways with a 

zero queue. They presented two types of vehicles: medical units and rescue ambulances. 

Furthermore, they considered a single dispatch, either an ambulance or a medical unit, 

double dispatch and triple dispatch.  The dispatching policies depended on requirements 

of calls and call locations. In addition, they considered in-site service when patients could 

be served at the ambulance stations. Iannoni et al. [34] considered multiple unit dispatch 

by using the hypercube model. Assumptions were the same as those made by Iannoni and 

Morabito [33]. They verified their results by using simulation models. A genetic 

algorithm (GA) was presented to search for near optimal solutions. The GA approach 

produced configurations that provided input data to the hypercube model.  These 

previous works assumed that the real on-scene conditions could not be changed; in this 

paper, we consider that information available on-scene may be used to update or change 

the call priority.  

In several studies of priority dispatching models in realistic EMS systems, authors 

analyzed models by using heuristic and simulation approaches.  Andersson and Värbrand 

[35] proposed a new way to dispatch ambulances in which the outcome was 

preparedness. Call priorities were considered in their models. They formulated an integer 
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programming model to solve the ambulance relocation problem. A tree-search heuristic 

was used to solve these problems in reasonable computational running times. Simulation 

models were also used to evaluate dispatching strategies. Lee [36] considered a 

dispatching problem without including the priority of calls. The objective was to 

investigate the preparedness of the system given that there was a non-zero queue. 

Bandara et al. [37] studied the dispatch of a single type of ambulance considering call 

priorities and using simulation models. These models were developed to allow for a non-

zero queue. In addition, they used a heuristic approach to determine dispatching strategies 

for large problems. The results showed that considering call priorities provided higher 

efficiency for EMS systems than the use of the closest rule, regardless of the assumption 

of a zero-queue. Most of the previous work in the simulation approaches to the 

dispatching problem considered a single dispatch. In contrast to previous work, this paper 

considers the multiple unit dispatch. 

In this work we extend the priority dispatching strategies proposed by Bandara et 

al. [37]. The modification considers multiple-unit dispatch with multiple call priorities.  

Recent studies considering multiple-unit dispatch and partial backup were presented by 

Iannoni and Morabito [33] and Iannoni et al. [34]. Their performance measures included 

busy probability, loss probability and fraction of dispatch (of a specific server), among 

others.  However, our work differs in that our objective is to maximize expected survival 

probability. We include the multiple-unit dispatch in the model where the service time of 

units is not independent (one unit may need to wait for back-up). Our study requires the 

first ambulance to have to wait for arrival of a second or more appropriate unit before 
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returning to service. Furthermore, we allow for upgrades and downgrades based on on-

scene conditions. The second unit can be canceled based on information from the first 

unit.  

 

2.3 EMS Systems with Multi-tiered Response 

Given the characteristics of real EMS systems, we consider EMS systems with 

multiple-unit dispatch and multiple call priorities. We assume that there are three call 

priorities, indexed by (m), and two types of ambulances, indexed by (j), ALS units 

(j=1,..,J) and BLS units (j=J+1,…,J+K). The ALS units are paramedic units that can 

provide patient transport to hospitals. On the other hand, the BLS units cannot provide 

patient transport to hospitals. Furthermore, we allow system status updates at the scene of 

the accident; in other words, there is a chance that the severity of the situation can be 

changed. We consider ambulance dispatching policies that depend on call priorities and 

the availability of ambulances, while taking into account that on-scene updates are 

possible. We model this as a zero-queue system. That is, if a call arrives to the system 

when all ambulances are busy, the dispatcher transfers it to other systems (such as 

sending a fire truck or asking for assistance from a neighboring county). The sequence of 

events is described as follows: 

 Call arrivals: When a call from zone i arrives, we know the location and the priority 

of the call. The call priority (priority1, priority2 or priority3) is assigned during the 

initial phone call to emergency service by the dispatch operator. 
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 Vehicle dispatch decisions: We consider ambulance dispatching policies that depend 

on call priorities and available ambulances.  We assume that each ambulance is 

located at a fixed station. At least one ambulance is assigned to each call, if at least 

one ambulance is available. When a call with the highest priority (priority1) arrives, 

two types of medical units are dispatched if both of them are available. On the other 

hand, when a call with lower priority (priority2 or priority3) arrives, only a single 

unit is dispatched.  

 Response time: The time observed between the moments that ambulance/s 

dispatches until the first ambulance arrives on the scene of the accident is referred to 

as the response time (γ).  

 On-Scene: in the case of double-dispatch, when the first ambulance arrives on the 

scene, there is a chance that the severity of the situation can be changed. The model 

allows for BLS upgrade or ALS downgrade. There are four possible situations 

during a double-dispatch mode (in which both ALS and BLS units are sent). The 

EMS system process for priority1 calls is described in Figure 2.2 : 

1) Both ALS and BLS are available and ALS arrives first: The ALS provides care, if 

the patient truly needs ALS, the BLS unit is called off and the ALS transports to 

the hospital if needed.  If the ALS determines that BLS is sufficient then the ALS 

waits for the BLS, the ALS unit helps the BLS unit once it arrives on the scene to 

finish working on the patient together. Both units return to their original station 

when service is complete. 
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2) Both ALS and BLS are available and BLS arrives first:  BLS provides initial care 

and waits for the ALS unit.  When the ALS unit arrives it determines if the patient 

needs ALS & transport.  If BLS is sufficient, the ALS units stays with the BLS 

unit to provide training but both are able to return to their home station once 

service is complete.  If ALS transport is needed, the BLS unit takes over and the 

BLS unit returns to its home station while the ALS unit serves and then transports 

the patient. 

3) Only an ALS unit is available: The ALS unit is sent, and it serves and transports 

the patient if necessary.  No BLS unit is used in this situation.  

4) Only a BLS unit is available: The BLS will provide service and wait for the ALS 

unit to determine if patients need transportation to hospitals. Then we proceed as 

in case (2) above. 

The time that the first unit spends waiting for backup unit is referred to as the 

waiting time (ω).  The total time spent providing service to patients is referred to as 

the service time (µ). 

 Transportation: After providing service to patients, units will provide patient 

transport to hospitals if needed.  Upon completing service, the ambulance will return 

to its original (“home”) station. The time that the ambulance takes to return back to 

its original station, including the transportation time of the patients to hospitals if 

needed, is referred to as the transportation time (τ). 
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Figure 2.2: The EMS system process for priority1 calls 

 

2.3.1 Model Description 

Emergency calls in each zone i arrive to the system according to a Poisson 

process with rate λi, where λ represents the total call arrival rate and λi represent the call 

arrival rate from zone i. Calls are classified by priorities and mapped to the type of 

ambulance/s (ALS unit and BLS unit) required. The dispatching policies differ by call 

priority since the priority1 calls need two distinct ambulances (the ALS unit and the BLS 

unit), and priority2 and 3 calls need one ambulance (the BLS unit). As we describe 

below, for some calls the closest unit is sent, for other calls ambulances will be 

dispatched according to an ordered preference list.  An ordered preference list details the 
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preferred order in which to send units based on availability.  In other words, the unit that 

is first on the list is sent if it is available, otherwise the second on the list is sent, and so 

forth. If all backup units are busy, the call is transferred to another system. The objective 

is to maximize the overall expected survival rate of patients, which is related to the 

response time of the first ambulance to attend priority1 calls. The details of the multiple-

dispatch decision tree are described in Figure A.1, Appendix A.1 and a summary of the 

EMS process and dispatching policies for priority1 calls is described in Figure 2.2. The 

model notation and description are shown in Table 2.1. The multiple unit dispatching 

policies are given as follows (note that some policies are fixed, while others will be 

optimized; the policies we can control are shown in italics): 

(i) Priority1 calls require double dispatch. 

a. If both ALS and BLS are available, we dispatch both of them. However, if only 

one type of ambulance is available, we dispatch the available ambulance. We 

dispatch the closest ALS unit, while we select BLS units according to a rank 

ordered preference list to maximize the expected survival rate. 

b. If only one type of ambulance is available, we send the one which is available. The 

situation at the dispatching center will follow the “on-scene” scenarios listed 

above. 

(ii) Priority2 and 3 calls require a single dispatch (BLS unit). We assume that patients do 

not need transportation to hospitals in these types of calls. For priority2 calls, we 

dispatch the closest available BLS unit. To maximize the expected survival rate, we 

make the decision to dispatch a proper (not necessarily the closest) BLS unit 
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when priority3 calls arrive to systems. If all BLS are busy, the calls are transferred 

to other systems. 

Times between events in the EMS system are explained in Figure 2.1 The time 

between the dispatch of ambulance/s and the arrival of the first ambulance on-scene is 

referred to as response time, and it follows a Lognormal distribution with mean response 

time γij, which depends on the call zone i and the responding unit j. In addition, we allow 

a service time distribution of the EMS system that can depend on the call zones, the 

available ambulance types and the priority of calls.  The time during which ambulances 

provide medical care to patients is referred to as service time, and it follows an 

Exponential distribution with mean service time µmij which depends on the call priority m, 

the call zone i, and the unit providing service j.  The mean transportation time required 

for an ambulance to provide patient transport to a hospital if needed is assumed to follow 

a Lognormal distribution with mean transportation time τij which depends on the call 

zone i and the responding unit j.   
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Table 2.1: The parameters of multiple types of ambulances with multiple call priorities 
Notation  Description 

λ call arrival rate  

n total number of demand zones 

i indicator of demand zone  

m indicator of call priority as m = 1,2,3. 

J number of ALS medical units 

K    number of BLS medical units 

j indicator of medical unit with known location, ALS units are numbered  j = 1,…,J; BLS as j = 

J+1,…,J+K. 

µmij  mean service time of priority m calls for ambulance j for demand zone i 

γij  mean response time for ambulance j for demand zone i 

τij   mean transportation time for ambulance j for demand zone i 

λi call arrival rate from demand zone 

  
1

n

i

i

 


  

pi
m
  proportion of priority m calls from demand zone i: such that  

 

3

1

1m

i

l

p


  

q    probability that priority1 calls require the ALS medical unit on the scene. 

Additional parameters for the heuristic approach 

ρ traffic intensity or fraction of time server is busy 

r the expected offered load 

τ the expected total time for independent server 

pu probability u server are busy 

aiml the l
th

 preferred server for priority m of call zone i 

k = aiml  server k is assigned to priority m of call zone i for which it is l
th

 preferred is given  

λim,aiml arrival rate of priority m of call zone i is served by server aiml for which it is l
th

 preferred  

tim,aiml   the expected total time for  server aiml that dispatch to serve priority m of call zone i for which it is 

l
th

 preferred 

fim,aiml total rate from priority m of call zone i that server aiml is assigned to a call of priority m of call 

zone i. The server aiml is the l
th

 preferred server.  

gv the probability of the first v servers are busy 

υBLS:k total call volume that are served by server k (BLS) 

B mean absolute deviation of call volume are severed by BLS 

ru ϵ R    the rank of BLS matrix (1 x K) that call volumes are sorted from Max to Min 

k = ru    preferred as BLS: k is sorted as u
th

 in the matrix of rank of call volumes 

 υBLS: r1 ≥ υBLS: r2 ≥ υBLS: r3 ≥ … ≥ υBLS: rK 

rK preferred as BLS: K is sorted as a last server in the matrix of rank of call volumes 

z     position of the lowest call volume of server (rK) 

w position of the chosen server to swap (k) 

vdev  deviation of call volume between the lowest call volume of among servers and the chosen server 

to swap 

vol total increased call volume    

Q(K, ρ, v) the correction factor that indicate the probability of obtain v busy servers given by M/M/K 

systems 

Q*(K, ρ, v) the correction factor that indicate the probability of obtain v busy servers given by 

M/M/K/K systems 
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In this paper, the objective is to maximize the patient survival rate, where survival 

rate is defined based on the work of Larsen et al. [38]. They formulated multiple linear 

regressions from real data. The patient survival is a function of the response time tR. The 

patient survivability was represented by a probability which varied significantly between 

zero and one with respect to response times between zero and 9 minutes. Let s(tR) denote 

the probability of patient survival under response time tR. McLay and Mayorga [39] used 

the response time interval as a proxy for patient survival probability. They formulated the 

maximum expected coverage location model with multiple classes of patients and two 

types of servers. Knight et al. [40] considered the maximal expected coverage location 

problem with multiple call priorities. They proposed an iterative approach by using 

queuing theory to determine the utilization of ambulances. Bandara et al. [37] used the 

patient survival function based on the work of Larsen et al. [38] and McLay and Mayorga 

[39] as the objective function. Based on previously mentioned works, a fast response for 

priority1 calls affects the overall probability of survival of life-threatening patients. We 

consider the survival probability of patients as a function of the response time for 

priority1 calls using the equation shown below, a given in McLay and Mayorga (2010).  

    ( ) max[(0.594 0.055* ),0]R Rs t t             (2.1) 

2.3.2 Simulation Model 

Following the description provided in Section 2.3.1, we developed a discrete 

event simulation model of an EMS system. The simulation model was implemented using 

Arena Version14. The simulation model was then used to investigate the performance of 
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a given dispatching policy. The status of the EMS system is described by the state-space 

of multi-server queuing systems in order to represent each ambulance individually. The 

model consists of seven subsystems: call generating, dispatching, response, calculating 

the patient survival, waiting for another unit, waiting for next available ALS unit, service 

and transportation. The simulation flow chart is described in Figure A.2, Appendix A.1 

for priority1 calls and Figure 2.3 for priority2 and 3 calls. 
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Figure 2.3: Simulation flow chart of EMS systems for priority2 and 3 calls 
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(i) Call generating system: The inter-arrival time of calls is generated randomly based 

on a known distribution and total arrival rate. The calls are be assigned a specific 

priority, location and initial vehicle assignment based on attributes of the call.  

(ii) Dispatching system: The call is classified by its call zone and priority and assigned 

ambulance (which could be the closest available or based on an ordered preference 

list). This system considers the states of ambulances to make this decision. The 

potential states are: “idle” at station base, “busy” serving a priority1 call with 

double dispatch (status 1), “busy” serving a priority1 call with only available 

dispatch of ALS unit (status 2), “busy” serving a priority1 call with only available 

dispatch of BLS unit (status 4), “busy” serving priority2 call or priority3 call (status 

3). 

(iii) Response system: The ambulance is dispatched from its home station to the scene, 

given the response time distribution is based on call zone and home station of the 

ambulance. 

(iv) Calculating the patient survival rate: When the first ambulance arrives on the scene, 

we calculate the survival rate by using the response time of this ambulance for 

priority1 calls. The survival probability is calculated by using equation (2.1). 

(v) Waiting for another unit: For double dispatch, when the first ambulance arrives on 

the scene, the state of this ambulance is “waiting” for another unit. When the 

second unit arrives on the scene, the status of both of ambulances is changed to 

“busy” (offering service to patients). 



 32 

(vi) Waiting for next available ALS unit: If only BLS units are available to respond to a 

priority1 call, we dispatch a BLS unit. When the BLS unit arrives on the scene, the 

state of this ambulance is “waiting” for an available ALS unit. When an ALS unit 

becomes available, it is dispatched to the scene. Then the states of waiting BLS and 

ALS units are changed to “busy” again. 

(vii) Service and transportation systems: After the required ambulances arrive on the 

scene, the service and transportation times are generated randomly based on a 

known distribution. The state of ambulance is “busy” when they are in service and 

providing patient transport to a hospital. After an ambulance provides service to 

patients, patients are transported to a hospital in necessary, and then the ambulance 

return to its original station.  The state of ambulance is “idle” again.   

2.3.2.1 The state space of EMS systems 

There are J+K ambulances in the EMS system. The vector A = 

(a1,…..,aJ,aJ+1,....,aJ+K) is the state of the system, where aj: j ϵ [1,…, J]  contains 

information about the status ALS units and aj: j ϵ [J+1,…, J+K] contains information 

about the status of BLS units. We use a two – dimensional state to represent the status of 

each ambulance. The state of ambulance j is given by aj = (σj, βj) where σj is the status of 

the ambulance j and  βj is the associated ambulance unit which is dispatched with the 

ambulance j (in case of double dispatch) as described in Table 2.2. For example a1 = (1, 

3) represents the double dispatch of ALS unit1 and BLS unit3 to respond to a priority1 

call, a1 = (2, 0) represents that an available ALS unit is dispatched alone to respond to a 
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priority1 call (which would happen if all BLS units are busy), a1 = (5, 4) represents that 

ALS unit1 is dispatched to respond to a priority1 call after the system had only available 

BLS units, we dispatched BLS unit4, and the BLS unit4 is waiting for ALS unit1 at the 

scene of the accident, and a4 = (3, 0) represents the dispatch of BLS unit4 to respond to a 

priority2 or priority3 calls.  The state space of EMS systems is described be Table 2.2.  

Table 2.2: The possible status of ambulances in EMS systems 

Indicator σj  Status of ambulance 

j ε [1,…, J]: ALS 0 Idle at base 

  1 Double dispatch of ALS for priority1 calls 

  2 Only ALS unit dispatch to respond to priority1 calls 

  5 
ALS unit dispatched to priority1 call following a BLS 

unit which was sent when no ALS units were available 

j ε [J+1,…, J+K]:BLS 0 Idle at base 

  1 Double dispatch of BLS for priority1 calls 

  3 BLS unit dispatch to respond to priority2 or 3 calls 

  4 Only BLS unit dispatch to respond to priority1 calls 

 

 

2.4 Illustrative Example of an Optimal Policy 

In this section, we develop a simulation model and analyze its solution. We 

illustrate our model with an example of an EMS system with multiple-tiered responses of 

size 2x2x2. That is, we assume the EMS system has two demand zones, two ALS units 

and two BLS units. In addition, we assume the EMS system has two ambulance stations 

with one ALS unit and one BLS unit located at each station. We investigate the optimal 

dispatching policy for priority1 calls (how to dispatch BLS units given that we fix the 

closest dispatch for ALS units); and the optimal dispatching policy for prioirty3 calls 

(how to dispatch BLS units); whereas we fix the closest dispatch of BLS units for 
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prority2 calls. We enumerate all possible policies. There are (K!)
n
(K!)

n
 possible 

dispatching orders for EMS systems dealing with three priority types,  n call zones and K 

BLS units.  In this example, there are 16 possible dispatching policies. Suppose call 

arrivals follow a Poisson process with rate λ = 1 call per hour. We assign the proportion 

of calls for each priority type for each zone i to be pi
1
= 0.5 for priority1 calls, pi

2
= 0.25 

for priority2 calls and pi
3
= 0.25 priority3 calls. Let q, the probability that priority1 calls 

require the ALS medical care on the scene, be 0.5 of call arrivals. The EMS system 

operates 24 hours per day. Arena Version14 is utilized to develop a model that ran 336 

simulated hours for each replication to obtain a steady-state result. For each policy, we 

ran 1500 replications to obtain the expected survival rate with half-width less than 

0.0001. The input parameters are shown in Table 2.3. 

Table 2.3: Input parameters (Ambulances 1 and 2 are ALS units, and ambulances 3 and 4 

are BLS units) 
Zone i Response Times Service Times Transportation Times 

 

Ambulance  

1 and 3 

Ambulance  

2 and 4 

Ambulance 

1 and 3 

Ambulance 

2 and 4 

Ambulance 

1 and 3 

Ambulance 

2 and 4 

Zone 1 logn(9.07, 4.19) logn(14.03, 6.48) Expo(41) Expo(40) Expo(9) Expo(14) 

Zone 2 logn(14.03, 6.48) logn(9.02, 6.48) Expo(46) Expo(41) Expo(14) Expo(9) 

 

The results in Table 2.4 show the optimal dispatching policies for BLS units to 

respond to priority1 and priority3 calls compared with the closest dispatching policies 

given that we fix the closest dispatching policies for BLS units to priority2 calls. In 

addition, we also fix the closest dispatching policies for ALS units to priority1 calls. In 

Table 2.4, a dispatching policy for BLS units for priority1 calls is shown on the left.  For 

example, the numbers in the first row and column (3, 4) indicate that for the closest 

policy, the first choice assigned to call zone1 (when the percent of calls from zone1 is 
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10%) is the BLS3 (unit3), and the second choice assigned to call zone1 is the BLS4 

(unit4).  In other words, send unit3, and if it’s not available send unit4. We investigate the 

optimal dispatching policy by simulating all policies. When the optimal policy is the 

same as the closest policy for priority1 calls, they are underlined, and when the optimal 

and closest policies are the same for priority1 and 3 calls, they are underlined and bolded. 

The 95% confidence interval provides an estimate of the accuracy of the expected 

survival rate point estimates resulting from the optimal and closest policies. We use the 

statistical 95% confidence interval in testing the difference between optimal and closest 

policies; that is, if the intervals do not overlap we say the differences are significant. The 

results show that the closest policy is optimal in all instances for prority1 calls. In 

contrast, the closest policy is not always optimal for prority3 calls; it depends upon the 

proportion of calls to each zone. For priority3 calls, the optimal dispatching policies are 

the same for instances when the proportion of demand from zone 1 is between 10% and 

40%, in which case the optimal dispatching policy is always send BLS3 (unit3) first for 

calls from zone1 and zone2. When the proportion of demand from zone1 increases from 

40% to 50%, the optimal policy changes to the same as the closest dispatching policy.  

When the call volume from zone1 increases from 60% to 70%, the optimal dispatching 

policy changes to always send BLS4 (unit4) first for both demand zones. The boxed rows 

show that the optimal policy is the same as the closest dispatching policy for both 

priority1 and 3 calls when the call volume is balanced between demand zones (50%-60% 

of calls from zone1). Comparing these policies, the evidence suggests that the closest 

dispatching policy for BLS units for priority1 calls is optimal, whereas the optimal 
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dispatching policy for priority3 calls depends on the proportion of calls between demand 

zones. 

Table 2.4: Comparison of dispatching policies for BLS units between the closest policy 

and the optimal policy for priority1 and priority3 calls  

Dispatch  

policy 

Base policy of BLS medical 

units 

BLS medical units for 

priority1 calls 

BLS medical units for priority3 

calls 

Closest policy Optimal policy Optimal policy 

Call zone 1 Call zone 2 Call zone 1 Call zone 2 Call zone 1 Call zone 2 

Choice of 

dispatch 
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

P
er

ce
n

t 
o

f 
ca

ll
 z

o
n

e1
 (

%
) 

10 3 4 4 3 3 4 4 3 3 4 3 4 

20 3 4 4 3 3 4 4 3 3 4 3 4 

30 3 4 4 3 3 4 4 3 3 4 3 4 

40 3 4 4 3 3 4 4 3 3 4 3 4 

50 3 4 4 3 3 4 4 3 3 4 4 3 

60 3 4 4 3 3 4 4 3 3 4 4 3 

70 3 4 4 3 3 4 4 3 4 3 4 3 

80 3 4 4 3 3 4 4 3 4 3 4 3 

90 3 4 4 3 3 4 4 3 4 3 4 3 

Recommendations: underlined rows indicate optimal and closest policies are the same 

for priority1, bold rows indicate instances for which the optimal and closest policies are 

the same for priority3 calls, and boxed rows indicate where optimal and closest are the 

same for both priorities. 

 

In Figure 2.4 we show a comparison of the closest dispatching policies and the 

optimal dispatching policies for the 2x2x2 case in terms of the resulting expected 

survival rate and the expected response time for priority1 calls. The results show that 

the optimal policy performs better (statistically significant difference) when the 

percentage of calls from zone1 range from 0% to 20% and from 90% to 100%. In 

addition, when we consider minimizing response time for priority1 calls as the 

objective, the resulting optimal policies are the same as those when we consider 
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maximizing the expected survival rate.  
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(a) The expected survival rate (b) The expected response time  

for prority1 calls 

Figure 2.4: Comparison of the expected survival rate and the expected response 

time for priority1 calls under the closest dispatching policy versus the optimal 

dispatching policy 

 

In Figure 2.5, for each panel we fix the policy for priority1 calls (there are 4 

possibilities) and look at the performance of all possible policies for dispatching BLS 

units for priority3 calls.  There are 4 possibilities of how we dispatch BLS units for 

priority3 calls in each case. Therefore, there are 16 possible dispatching policies for 

dispatching BLS units for priority1 and 3 calls. The results in Figure 2.5(a) show that, 

regardless of the policy applied to priority3 calls, the system performance is best when 

the closest unit is sent to priority1 calls. In other words, the lines in 2.5(a) for each case 

are higher than the corresponding lines in 2.5(b)-2.5(d) for all possible call volume 

distributions. Results also indicate that the closest dispatching policy is not always 
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optimal for priority3 calls (the blue line is not always highest). However, when the call 

volume is balanced between zones (50% to 60% in zone1), the optimal dispatching 

policy for priority3 calls is the closest dispatching policy. 

 

 
(a) Priority1: Closest ALS and always send 
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(b) Priority1: Closest ALS and always send BLS4 

first to priority1 
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(c)    Priority1: Closest ALS and  always send BLS3 

first to priority1 

 
 

(d)     Priority1: Closest ALS and always send 

farthest BLS first to priority1 
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Figure 2.5: Comparison of the expected survival rate of dispatching policies for 

prirority3 calls given a fixed dispatching policy for priority1 calls 

 



 39 

2.5 Heuristic Approach 

In previous sections, we used simulation to study the nature of the optimal policy 

for multiple unit dispatch with call priorities. The model considered the situations of 

upgrade or downgrade, based on the on-scene conditions. There was a chance that the 

severity of the situation could be changed. Although the simulation model was flexible 

and allowed us to realistically represent the complexity of this problem, it was better 

suited for analyzing system performance than for optimization due to running time. 

Therefore, a heuristic approach was developed for realistic EMS system implementation. 

For example, the running time to find the optimal policy for the problem of size 2x2x2 

(16 possible dispatching policies) was 208 minutes, while the heuristic approach, which 

we will present, was 1 second for a problem of the same size. By studying the small 

problem, we learned that there are service time dependencies between the ALS and BLS 

medical units. After comparing the closest dispatching policy to the optimal policy, the 

results show that the closest dispatching policy of both ALS and BLS medical units for 

priority1 calls is optimal. However, when demand zones are not balanced, the closest 

dispatching policy is not optimal for priority3 calls. When congestion is considered (e.g., 

having busy servers), EMS systems approach the optimal survival rate of patients by 

trying to send nearby ambulances to respond to priority1 calls, and sending ambulances 

that are far away to respond to priority3 calls, when demand between zones is not 

balanced. In other words, the system tries to balance the workloads among ambulances 

when the arrival rate of each demand zone is imbalanced. This evidence shows that we 

approach the optimal policy by balancing workloads or call volumes among ambulances. 
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Therefore, a heuristic algorithm is developed to provide an ordered preference list for 

BLS units for priority3 calls, given that we dispatch the closest ALS and BLS units to 

respond to priority1 calls and dispatch the closest BLS unit to respond to priority2 calls. 

The main idea of the heuristic algorithm is to arrange the ordered preference list of 

priority3 calls to balance call volumes among servers.  

Our heuristic consists of several embedded iterative procedures.  The highest level 

is denoted as the “main” procedure.  In the main procedure, we update the candidate 

solution, which provides an ordered preference list of priority3 calls for each zone for any 

iteration. The main procedure is run until the stopping criterion is met or a fixed number 

of iterations are completed. Our main procedure has two steps as sub-routines: in Step I, 

we calculate the expected service time of servers (t), the approximated busy probability 

for servers (ρk ), the approximated call volume for servers (vBLS:k) and the mean absolute 

deviation of call volumes for servers (B). Within Step I, we use an iterative procedure to 

estimate the busy probability for servers. We update ρk for any iteration and for each 

server k until ρk approaches convergence for each server k.   In Step II, we improve the 

current solution by using a swapping procedure. The new arrangement of the ordered 

preference list of proirty3 calls minimizes the mean absolute deviation of call volumes 

for servers. The algorithm allows for acceptance of unimproved solutions when a better 

result is not found. Figure 2.6 shows the logic of the heuristic algorithm in a flowchart. 

The main procedure consists of the following steps:  
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Start

Initialize the order preference 

list by using random

Compute initial t using time of 

first ordered preference list

The best = Big M

Estimate ρk the particular 

busy probability

Compute the approximated call 

volume for servers υBLS:k for all k

Compute Q*(K, ρ, v) and 

fim,aiml=k 

Compute mean absolute deviation 

between call volume of servers (B)

Swapping step: Choose call zones and 

servers to swap the ordered preference list 

of priority3 by using algorithm in section 5.1.

Found the mean 

absolute deviation is less 

than the best.
Update:  the best = 

mean absolute deviation 

Check: swapping is not in 

prohibit list

Keep the call zones and servers that 

have been swapped in prohibit list.

Stopping criterion is 

met

Stop

Update 

interation

No

Yes

No

Yes

Yes

No

Compute Vk for all k and 

update ρk for all k

Max changing of ρk for all k 

is less than criterion

Yes

No

STEP I

STEP II

 
Figure 2.6: Flow chart describing the heuristic algorithm 

 

 “Main” Procedure Steps 

Step1: Initialization step, we start with initial solution by using a randomized ordered 

preference list for priority3 calls.  

Step2: Compute ρk and fim,aiml=k, using Step I(1) – I(8) below.  

Step3: Calculate the initial call volume (υBLS:k) for each server using (2.15).  

Step4: Compute the mean absolute deviation (B) by using (2.16) and (2.17). 

Step5: Use Step II. Swapping the arrangement of ordered preference list of prority3 calls 

by using the swapping procedure in Section 2.5.1. 
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Step6: Stop if the stopping criterion is met. Otherwise, we return to Steps 2 – 4. Compute 

ρk, fim,aiml and υBLS:k by using Step I(1) – I(8) below, and equation (2.15). Compute 

B by using equation (2.16) and (2.17). For our algorithm, the stopping criterion is 

met or the fixed number of iterations is completed.  

In Step I, the hypercube model is applied to approximate the busy probability 

among servers based on the approximation for the hypercube model given by Larson 

[14].  We approximate the busy probabilities by considering a general M/M/K/K system 

(multi-server with zero queue) for which the EMS system operates in steady-state. A 

summary of the heuristic parameters is given in Table 2.1. We estimate ρ, or average 

offered load per server, by ρ = r/K, where r is average server utilization (λ/τ), and K is the 

number of BLS units. In addition, we estimate the average server workload ρk for all k by 

ρ (1- pK), where pK is the busy probability for all servers based on an M/M/K/K system. 

The service rate τ is determined based on servers, priorities and call zones where t is the 

average service time. The tim,aiml is the expected service time at which priority m of call 

zone i is assigned to server aiml (i.e. server k = aiml ).  The server aiml is the l
th

 preferred 

server. The server aiml is available for priority m of call zone i, and the first (l-1) preferred 

servers are busy. The initial approximated t is calculated by using the expected service 

time of the first ordered preference list given by 

1 1

3

, ,
1 1

( / )
im im

n

im a im a
i m

t t 
 

    for   i = 1, 2,…, n; m = 1, 2, 3; l = 1, 2,…,K    (2.2)   

1 / t               (2.3) 
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The busy probability that u servers are busy is then calculated based on the M/M/K/K 

system. Let p0 denote the probability that all servers are available and pu denote the 

probability that u servers are busy. The steady-state of an M/M/K/K system is given by 

1 1
1

0
0

1
[ ( ) ]

! 1 !

K K K uK

u

r r
p

K u




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




 


             (2.4)  
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u w

   



 
   

 
  for   u = 1, 2,..., K (2.5)   

We start the procedure by calculating the initial values of particular busy probabilities for 

each server. We estimate ρk as the busy probability of server k, assuming one server per 

station. We assume that the system operates with t average service time for the M/M/K/K 

system. We use equation (2.6) for approximating the busy probability for each server. 

 (1 ) /k Kt p K      for   k = 1, 2,..., K         (2.6) 

Our model begins with the server independence assumption. The fim,aiml is the total rate at 

which priority m of call zone i are assigned to server aiml (i.e. server k = aiml ). The server 

aiml is the l
th

 preferred server. The server aiml is available for priority m of call zone i, and 

the first (l-1) preferred servers are busy. Larson [14] developed the approximation 

method for fim,aiml as given by 

fim,aiml   ~   gl-1 · λim,aiml  for l =1, 2,…, K-1       (2.7)  

Estimating the probability gv that the server v+1 is available and the first (v) servers are 

busy as given by  

vg  ~ 
, 1

1

0 1

*( , , ) (1 )
im v iml

vK

a a
v l

Q K v  




 

     for v =0, 1, 2,…, K-1           (2.8)   
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For example, to estimate gl-1 from equation (2.7) where l
th

 is 3
rd

, we use equation (2.8), 

where gv is gl-1 (gv = g3-1= g2). The correction factor Q*(K, ρ, v) indicates that the 

probability of obtaining v servers are busy. The ρ is the average offered load per server. 

Let Q*(K, ρ, 0) be 1 given by the M/M/K/K system. Larson [14] developed a correction 

factor Q*(K, ρ, v) for M/M/K/K systems based on the expression of the correction factor 

Q(K, ρ, v) for the M/M/K system. Larson [14] defined Q*(K, ρ, v) as 
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  for v =0, 1, 2,…, K-1   (2.10) 

Next, we use an iterative procedure as developed by Jarvis [15]. For any iteration, we 

update ρk, the particular busy probability for each server until the maximum change in ρk 

is less than the convergence criterion. We update ρk(new) by using equations (2.11) and 

(2.12). 

 ( ) /(1 )k k knew V V      for k = 1, 2,..,K                (2.11)       

Where Vk is given by   
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     for k = 1, 2,..,K    (2.12)   

In addition, similar to Jarvis [15], we approximate t at the end of any iteration by 

  
1 1 2 2

3
, , , ,

, ,1 1

( / ) ( / ) ...
( )

( / )

im im im im

imK imK

n
im a im a im a im a

im a im ai m

f t f t
t new

f t

 

 

    
  

  
 

      (2.13)   



 45 

 ( ) ( ) /new t new K              (2.14) 

Each iteration of Step I consists of the iterative algorithm for approximating ρk, the 

particular busy probability for each server. The procedure consists of the following steps: 

Step I: 

Step 1: Initialize t and ρ using (2.2) and (2.3).  

Step 2: Compute p0, pu for all u and ρk for all k, using (2.4) – (2.6).  

Step 3: Compute Q*(K, ρ, v) for v =0, 1, 2,…, K-1, using (2.9) and (2.10). 

Step 4: Compute fim,aiml=k by using (2.7) and (2.8). 

Step 5: Compute Vk for all k, using (2.12) where fim,aiml=k is obtained from Step I(2.4). 

Step 6: Update ρk for all k, using (2.11). 

Step 7: Stop if maximum change in ρk for all k is less than criterion. Otherwise, update 

t(new) and ρ(new), using (2.13) and (2.14). 

Step 8: Return to Step I(2.2). 

The result of Step I is the approximated busy probability for servers (ρk) and the 

final value of fim,aiml=k. The evaluation of the heuristic algorithm uses the mean absolute 

deviation of call volumes for servers (B). The approximated call volumes are calculated 

in each iteration by using the equation below.  
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f


  

 

   
  

 
 

   for υBLS:1 , υBLS:2 ,…, υBLS: K          (2.15)  

The mean absolute deviation of call volumes for servers is calculated by 

:
1

K

BLS k BLS
k

B  


             (2.16) 
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Where  :
1

/
K

BLS BLS k
k

K 


 
  
 
            (2.17) 

2.5.1 Step II: Swapping Procedure  

We improve a current solution by swapping the arrangement of the ordered 

preference list for priority3 calls. The heuristic parameters are given in Table 2.1. The 

swapping procedure reorders the preference list by evaluating the increase in the call 

volumes (vol) for each server resulting from moving the server with the current lowest 

call volume (rK) to a different position on the preference list. In Figure 2.7, we show an 

illustrative example of the swapping procedure executed for a problem of size 2x2x3 (2 

demand zones, two ALS units and 3 BLS units). For this instance, suppose we have 3 

BLS units (numbered 3, 4 and 5) in the ordered preference list with proportion for 

priority3 calls for each zone to be p1
3 

= 0.10 and p2
3 
= 0.15.  Information about the current 

solution is given in panel A, including the current preference list, call volumes per unit, 

deviation in call volumes between all units and the unit with the current lowest call 

volume, the fitness value, and the probability of the first v-1 servers being busy (gv). The 

fitness is the mean absolute deviation of call volumes for servers (B), calculated using 

equation (2.15).  In the current solution, the server with the lowest call volume is server 

5.  Since there are three BLS units, for each zone, we have 2 possible swaps in the 

ordered preference list ((3, 5) and (4, 5)). Next we evaluate the effects of these swaps, as 

shown in Panels B and C. If we swap the pair (3, 5), the increase in value of call volumes 

to unit 5 from zone1 (vol) is 0.049 and the increase in call volume to unit 5 from zone2 is 



 47 

0.016. The total increase in volume to unit 5 from both zones is 0.065, which is less than 

the current deviation in call volumes between units 3 and 5 (vdev (3, 5) = 0.113). 

Therefore, swapping the order between units (3, 5) for both zones becomes a candidate 

solution. Next, we consider the pair of (4, 5) in the same fashion. The equation for 

calculating the increased call volume is given in (18).  In general, we evaluate swapping 

unit rK with all other units that are higher up in the preference list for each zone.  We only 

allow swapping the order in the preference list for zones in which increasing the call 

volumes (vol) is less than the value of the deviation of call volumes between swapping 

pairs (vdev). Then we choose the best solution of all possible solutions, based on the 

fitness value. The algorithm allows for acceptance of unimproved solutions, in terms of 

better fitness (compared to the current solution), though the new solution will be the best 

among all possible options. A more detailed description of the swapping algorithm is 

shown in Appendix A.2. 

Increased call volume (vol) = 1 2
1

( )
vol vdev

im w z
i

g g


 


     for   i=1, 2, 3,…,n   (2.18) 

where gw-1 the probability of the first w-1 servers are busy 

  gz-2 the probability of the first z-2 servers are busy 

 w      the w
th

 preferred server in which server rK is assigned to respond to 

priority m of call zone i (the server rK is the position w
th

 in the rank of 

ordered preference list for priority3 calls) 
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z the z
th

 preferred server in which server k is assigned to respond to priority 

m of call zone i (the server k is the position z
th

 in the rank of ordered 

preference list for priority3 calls ) 

Current Solution 

Preference List Zone 1 {    3,       4,       5} 

Zone 2 {    4,       3,       5} 
Call volume per 

unit 
{0.353, 0.427, 0.240}, Unit 5 has lowest call volume 

Fitness value: 0.200 

gv g1 = 0.571 , g2 = 0.186 , g3 =  0.079 

Deviation in call 

volumes 

vdev  (3, 5): (0.353 - 0.240) = 0.113;  

vdev  (4, 5): (0.427 - 0.240) = 0.187 

Evaluate Swapping Location on Preference list of Unit 3 with Unit 5 

 

                  vol    vdev 

zone1 
{ 5,   4,    3  

} 
0.10 *(0.571 - 0.079) = 0.0492 

 <  

0.113 

               

zone2 
{ 4,   5,    3  

} 
0.15 *(0.186 - 0.079) = 0.01605 

 < 

0.113 

  
 Sum vol = 0.06525 

 < 

0.113 

Candidate solution: swap (3, 5) for both zone1 and 2 

Evaluate Swapping Location on Preference list of Unit 4 with Unit 5 

    vol    vdev 

 

zone1 { 3,   5,    4  } 
0.10 *(0.186 - 

0.079) = 
0.0107 

 <  

0.187 

   rK                 k  vol    vdev 

zone2 { 5,   3,    4 } 
0.15 *(0.571 - 

0.079) = 
0.0738 

 < 

0.187 

   
 Sum vol = 0.0845 

 < 

0.187 

Candidate solution: swap (4, 5) for both zone1 and 2 

Next, we will calculate the fitness value and choose the better of these two candidate solutions 

Figure 2.7: An illustrative example of the swapping procedure for  

a problem of size 2x2x3 

 

In the swapping procedure, we use a prohibit list to avoid selecting a previously-

considered solution. We record the old solutions in a prohibit list. This list consists of 

zones and pairs of swapped servers. In each iteration, we create a new solution that is not 
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in a prohibit list. The size of the list is managed to provide a better solution while not 

resulting in too much additional computational time (list size is between 4 and 15).  

 

Illustrative Example of the Heuristic Policy Implementation 
 

Here, we briefly compare the results of the heuristic policy with the optimal 

policy for several small problems of size 2x2x2. We use the same input parameters as the 

examples in Section 2.4. Our heuristic algorithm is programmed in the Java programming 

language. The NetBeans IDE 7.3.1 is used to implement on an Intel® Core(TM)2 Duo 

CPU. The results in Table 2.5 show the heuristic dispatching policies compared with the 

optimal dispatching policies for BLS units to respond to priority3 calls where we fix the 

closest dispatching policies for BLS units to respond to priority1 and 2 calls. In Table 2.5, 

the results show that the heuristic dispatching policies are the same as the optimal 

dispatching policies. It does not depend upon the proportion of calls to each zone. There 

are two instances in which the results of the heuristic dispatching policies are not the 

optimal dispatching policies. They are underlined. However, these results show that there 

are small deviations between results of the heuristic dispatching policies and the optimal 

dispatching policies with average percent error 0.10%. Comparing the running times, the 

heuristic approach takes < 1 second to find a solutions in all cases, the simulation models 

finds the optimal policy by enumerating all possible policies, which takes 208 minutes on 

the problem of size 2x2x2.  Therefore, it suggests that the heuristic approach could 

improve more the survival rate for EMS systems when the enumeration of all possible 

policies is not practical, as is the case in most real world problems.  
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Table 2.5:  Comparison of dispatching policies for BLS units between the optimal policy 

and the heuristic policy for priority3 calls (underlined rows indicate instances for which 

the optimal and heuristic policies are different policies) 

Dispatch    

policy 

Optimal Policy Heuristic Policy 

% 

Error 

Closest policy Optimal policy 

E[Sur. 
Rate] 

/100 

calls 

Closest policy Optimal policy 

E[Sur. 
Rate] 

/ 100 

calls 

Call 

zone 1 

Call 

zone 2 

Call 

zone 1 

Call  

zone 2 

Call 

zone 1 

Call 

zone 2 

Call 

zone 1 

Call  

zone 2 

Choice 

of 

dispatch 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

P
er

ce
n

t 
o

f 
ca

ll
 z

o
n

e1
 (

%
) 

10 3 4 4 3 3 4 4 3 22.1 3 4 4 3 3 4 3 4 22.1 0.00 

20 3 4 4 3 3 4 4 3 21.9 3 4 4 3 3 4 3 4 21.9 0.00 

30 3 4 4 3 3 4 4 3 21.7 3 4 4 3 3 4 3 4 21.7 0.00 

40 3 4 4 3 3 4 4 3 21.5 3 4 4 3 3 4 3 4 21.5 0.00 

50 3 4 4 3 3 4 4 3 21.0 3 4 4 3 3 4 4 3 21.0 0.00 

60 3 4 4 3 3 4 4 3 20.6 3 4 4 3 4 3 4 3 20.5 0.49 

70 3 4 4 3 3 4 4 3 20.1 3 4 4 3 4 3 4 3 20.1 0.00 

80 3 4 4 3 3 4 4 3 19.5 3 4 4 3 4 3 4 3 19.5 0.00 

90 3 4 4 3 3 4 4 3 18.9 3 4 4 3 4 3 3 4 18.8 0.53 

The average % error = 0.10% 

 

2.6 Case Study and Computational Results 

Real-world data was collected from Hanover Fire and EMS department, which is 

located in Hanover County, Virginia.  The data was collected in 2007 and consists of 

approximately 10,000 calls. The system operates 24 hours per day to respond to 911 calls 

in an area of about 474 square miles with a population of approximately 100,000.  We 

partitioned this area into twelve demand zones and considered four rescue stations. The 

four rescue stations are shown in Figure 2.8. We studied the performance of the system as 

we varied the number and locations of the ALS units. The ALS and BLS units were 

randomly allocated to four stations.  We varied the number of ALS units between 1 and 3 

and fixed the number of BLS units at 3. We considered three call priorities (priority1, 2 

and 3 calls) and allowed the proportion of calls from each priority to vary by call zone.  

We assume that the probability that a priority1 call requires the ALS medical unit on the 

scene is 0.5 for priority1 calls. All input parameters are shown in Appendix A.3, where 
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response times and transportation time used a distribution by based on call zones. We 

noted that the mean service time for priority1 calls is higher than the mean service time 

for priority2 and 3 calls.  

 
Figure 2.8: Map of fire and rescue stations in Hanover County, Virginia 

 

Table 2.6 shows results for different number of ALS units and a fixed number of 

BLS units. We allocate the BLS units to four fixed stations and allocate the ALS units to 

different possible stations. We compare the results of using the heuristic policy to always 

sending closest dispatching policy, with a varied number of calls per hour. We observe 

that dispatching units according to the heuristic policy provides better outcomes for the 

mean absolute deviation of the busy probability of BLS units, as shown in column11 of 

Table 2.6. These outcomes imply that the heuristic policy achieves better balance in 
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utilization of BLS units as compare to the closest dispatching policy. We observe that 

dispatching multiple units according to the heuristic policy can increase the survival 

probability in comparison to always sending closest policy. Table 2.6 shows the 

improvement in terms of number of lives saved per 10,000 calls (the approximate annual 

call volume in Hanover) when using the heuristic approach in comparison to always 

sending closest dispatching policy (last column). The results show that the heuristic 

policy can increase the number of lives saved. We also observe that the number of ALS 

units provides a large effect to the number of lives saved according to the heuristic policy 

in comparison to always sending closest dispatching policy. Fewer available ALS units 

results in a larger difference in outcomes between the heuristic and closest policies. That 

is, given that there is one ALS unit, the results in Figure 2.9 show a larger difference in 

outcomes when using the heuristic policy in comparison to always sending closest 

dispatching policy. When there are three ALS units in the system, the results show only a 

slight difference between the heuristic and closest policies. These results suggest that the 

efficiency of the heuristic algorithm depends on the number of ALS units in the system. 

This implies that the heuristic policy provides more value in resource-constrained 

systems (limited number of ambulances). In addition, Figure 2.9 shows a decreasing 

function relationship between the number of lives saved per 10,000 calls and call arrival 

rate, which is due to the increasing busy probability of servers as the call arrival rate 

increases. We also observe that as call volume increases, the number of lives saved will 

decrease in a non-monotone fashion depending on the number of ALS units in the 

system. When there are two ALS units (in 10(a)), in comparison to one ALS unit (in 
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10(b)), an increase in call arrivals per hour decreases the benefit of the heuristic policy. 

This observation suggests that when a system is close to capacity, increasing the number 

of ALS units results in only slight improvements.  

Table 2.6: Comparison of performance of heuristic policy to closest policy as we vary 

the number of ALS units and call arrival rate 

I

D 

Deman

d 

(calls/hr

) Policy Utilization 

Mean 

utilizatio

n of 

BLS 

 

Mean 

absolut

e 

deviatio

n of 

BLS 

# of 

lives 

saved  

/10,00

0 calls % Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

3 ALS 3 BLS 12 Zones           

      

ALS1

:St4 

ALS2

:St1 

ALS3: 

St 3 

BLS4

: St 4 

BLS5:  

St1 

BLS6

: St1   

 

      

1 

  Closest 14.43 3.10 6.244 23.87 12.601 3.123 13.196 21.3385 1629     

0.25 Heuristic 14.42 3.18 6.171 16.16 13.762 11.37 13.764 4.7899 1656 1.657 27 

2 

 Closest 33.29 14.78 22.837 43.81 35.008 21.38 33.398 24.0423 1468   

0.50 Heuristic 33.07 14.92 22.088 33.29 31.402 36.99 33.890 6.1885 1507 2.657 39 

3 

  Closest 57.16 40.37 49.713 64.76 62.512 51.87 59.713 15.6815 1278     

0.75 Heuristic 55.96 39.03 48.152 57.72 60.973 58.61 59.100 3.7473 1316 2.973 38 

4 

 Closest 75.57 64.12 72.76 81.18 81.396 76.43 79.671 6.4729 1141   

1.00 Heuristic 75.22 64.09 72.406 77.43 81.101 80.59 79.707 4.5529 1163 1.928 22 

5 

  Closest 84.89 76.00 83.859 88.94 90.008 87.32 88.757 2.8823 1050     

1.25 Heuristic 84.58 76.12 83.661 87.23 90.070 89.08 88.792 3.1342 1069 1.810 19 

2 ALS 3 BLS 12 Zones           

      

ALS1

: 

St3 

ALS2

: 

St1 

ALS3 BLS4

: St 4 

BLS5: 

St1 

BLS6

: 

St1           

1 

  Closest 27.92 15.41 N/A 30.77 22.017 12.35 21.712 18.7269 1303     

0.25 Heuristic 27.80 15.21 N/A 23.80 23.044 19.34 22.059 5.4439 1340 2.840 37 

2 

  Closest 67.35 60.69 N/A 69.87 66.125 57.87 64.623 13.5071 1114     

0.50 Heuristic 66.74 59.24 N/A 63.48 63.774 64.39 63.880 1.0173 1163 4.399 49 

3 

 Closest 85.30 82.72 N/A 86.91 85.847 81.59 84.782 6.3778 1014   

0.75 Heuristic 84.96 82.43 N/A 84.62 85.796 83.66 84.692 2.2065 1047 3.254 33 

4 

  Closest 92.06 91.14 N/A 93.26 92.810 90.76 92.279 3.0342 948     

1.00 Heuristic 91.97 90.86 N/A 91.81 92.732 91.92 92.153 1.1574 982 3.586 34 

5 

 Closest 94.64 94.46 N/A 95.70 95.656 94.28 95.213 1.8590 903   

1.25 Heuristic 94.69 94.59 N/A 95.23 95.762 94.99 95.328 0.8683 924 2.326 21 

1 ALS 3 BLS 12 Zones           

      

ALS1

:St1 
ALS2 ALS3 

BLS4

: St 4 

BLS5: 

St1 

BLS6

:St1           

1 

  Closest 61.25 N/A N/A 62.07 56.415 50.27 56.253 11.9599 1098     

0.25 Heuristic 60.81 N/A N/A 57.84 56.421 53.98 56.078 4.2067 1134 3.279 36 

2 

  Closest 89.43 N/A N/A 89.18 87.246 83.81 86.744 5.8728 957     

0.50 Heuristic 89.18 N/A N/A 87.08 86.205 86.59 86.623 0.9145 1011 5.643 54 

3 

 Closest 95.40 N/A N/A 95.05 94.148 92.19 93.796 3.2167 877   

0.75 Heuristic 95.01 N/A N/A 93.69 93.588 92.83 93.367 1.0841 922 5.131 45 

4 

  Closest 97.44 N/A N/A 97.09 96.598 95.37 96.353 1.9659 818     

1.00 Heuristic 97.28 N/A N/A 96.25 96.267 95.97 96.161 0.3840 887 8.435 69 

5 

 Closest 98.31 N/A N/A 97.95 97.625 96.77 97.448 1.3489 794   

1.25 Heuristic 98.21 N/A N/A 97.47 97.485 97.05 97.336 0.5693 833 4.912 39 
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Next, we also investigated how the locations of ALS units impacted our results, as 

shown in Figure 2.10. Given that there are two ALS units in the system, the graph shows 

that the heuristic policy yields an improvement (over the closest policy) when the ALS 

units are sited in station 3 and station 1. Even though locating the ALS units to stations 3 

and 1 is the worst location options in terms of survivability, allocating units properly can 

improve system survival. In addition, the heuristic policy still provides improvement in 

the number of lives saved when we allocate one ALS unit to station 1. However, locating 

the unit at station 1 provides the least reward in comparison to other locations. These 

results imply that the heuristic policy provides gains in the number of lives saved 

regardless of where the ALS units are located, and it provides the highest gains in the 

number of lives saved when the ALS units are poorly located. These results are shown in 

Appendix A.4. However, the results also show that the locations of ALS units have a 

stronger impact on the number of lives saved. Therefore, in future work we will 

incorporate joint location into our multiple dispatching model.  
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Figure 2.9: Comparison of the efficiency of the heuristic policy with closest policy for 

different numbers of ALS units 

 

 
(a) Efficiency comparison: the heuristic policy 

versus closest policy (with 2 ALS units) 
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(b) Efficiency comparison: the heuristic policy 

versus closest policy (with 1 ALS unit) 
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Figure 2.10: Comparison of the efficiency of the heuristic policy with closest dispatching 

policy for different locations of the ALS unit 
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2.7 Conclusions and Future Research 

In this paper, we developed a simulation model for multiple unit dispatch. 

Emergency calls are classified into three types based on their perceived severity, which 

require different response modes. We consider that these classifications can be changed 

based on information on-scene of accidents. The simulation is formulated given particular 

dispatching policies such as single and multiple dispatching of ALS and BLS ambulance 

types. First, we study the optimal policy for small problems by using the full enumeration 

approach, taking into account the survival probability of priority1 calls. We present the 

comparison of the closest dispatching policy with the optimal policy. Numerical results 

on these instances show that the closest dispatching policy of both ALS and BLS medical 

units for priority1 calls is the optimal policy. However, the closest dispatching policy is 

not optimal for priority3 calls. The optimal policy tends to send father ambulances for 

priority3 calls to balance workloads among servers. A heuristic algorithm has been 

proposed for multiple unit dispatch in large-scale problems. In this heuristic, we dispatch 

the closest available ALS unit and the closest available BLS unit for priority1 calls given 

that we dispatch the closest available BLS for priority2 calls. The hypercube model is 

adapted to determine the busy probability for servers. We developed the heuristic 

algorithm by following the balanced call volume for servers. The proposed rule provides 

an ordered preference list for priority3 calls to minimize the deviation in the busy 

probability of servers by sending a less busy BLS unit.  
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We have demonstrated the heuristic algorithm by using data supplied from 

Hanover Fire and EMS department, in Hanover County, Virginia. The case study shows 

that fewer ALS units provide more efficiency in the heuristic policy than a larger of the 

number of ALS units. The number of ALS units in the system has a strong effect on the 

efficiency of the heuristic policy. This study highlights the importance of acquiring the 

proper number of ALS units that are reasonable within a limited budget. We present other 

sensitivity analyses, which show that the location of ALS units has a large effect on the 

benefit of the heuristic policy. 

In future research, we will develop an exact Markov Chain Model for multiple 

tiered responses with consideration for different on-scene conditions of accidents. 

However, the model will likely be complex.  In addition, we will further expand upon the 

multiple dispatching model by using a weight for each patient priority, or by using 

multiple coverage criteria. In addition, the results indicate that investigating a 

redeployment problem would improve the efficiency of EMS systems.  We will develop a 

dynamic ambulance location (deployment) problem. Work is in progress to address these 

issues. 
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CHAPTER THREE 

A SIMULATION MODEL FOR FAIRLY DISPATCHING EMERGENCY 

VEHICLES UNDER MULTI-TIERED RESPONSE 

 

 

3.1 Introduction 

Medical priority dispatching is used to improve efficiency of EMS systems.  The 

strategy of medical priority dispatching is to consider a faster response time to life-

threatening patients. The study of pre-hospital mortality in EMS systems by Kuisma et al. 

[2] showed that dispatching a far ambulance to low priority patients does not negatively 

impact pre-hospital mortality rates. Therefore, the decisions regarding how to dispatch 

ambulances do not adversely affect low priority patients in terms of survival rates, since 

these patients are non-critical. Medical priority dispatching may make the closest 

ambulances unavailable to non-serious patients. Emergency calls are classified into three 

priority levels upon dispatch, and their classification may be updated once a responder 

reaches the scene and makes further assessment. For example, BRAVO calls (prioirty2) 

are potentially life-threatening calls that could be upgraded to life-threatening (priority1). 

In this case, priority2 calls need a paramedic unit and rapid transport.  

In this chapter, balancing equity between priorities while still providing a high 

efficiency is investigated. We consider fairness in patient outcomes; that is, the waiting 

time until the first response should be balanced between life-threatening calls (priority1) 

and potentially life-threatening calls (priority2). Considering the decision regarding how 

to dispatch ambulances based on assumptions of Chapter1, the optimal policy tended to 
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dispatch nearby ambulances to the priority1 calls and a father ambulances to the priority2 

calls. However, in this chapter we allow for priority2 calls that could be upgraded to life-

threatening. Dispatching the father ambulance to the priority2 calls may affect the death 

rate of priority2 calls that are later upgraded. The fairness in patient waiting times will 

enforce the first response time of priority1 and priority2 calls that result in increasing a 

probability of nearby ambulances available to respond to priority2 calls and decreasing 

the first response time of priority2 calls, potentially saving lives of priority2 patients.   

Fairness or equity may be impacted by the dispatching decision, as seen in Marsh 

[41]. Many fairness measures were suggested in several works investigating the facility 

location problem. The study regarding how to allocate resources to facilities in order to 

improve efficiency of systems leads to inequities for customers. The works on equity 

considered distributional equity, which may still improve of the overall outcomes, as seen 

in Savas [42], Bodily [43] and Henderson and Schilling [44].  Other studies analyzed 

fairness between customers. Keeney and Winkler [45] presented different ways to 

evaluate equity as both ex-ante customer equity and ex-post customer equity. How 

ambulances were allocated to stations resulted in unfairness between patients of different 

priorities in EMS systems. A review of equity measurements in facility location was 

presented in Marsh [41]. Several measures were proposed on the issue of fairness. Marsh 

analyzed how to choose the equity measurement alternatives based on several criteria.  

The decision regarding which ambulances to dispatch while incorporating equity was 

presented in McLay and Mayorga [29]. They formulated a model of dispatching 

ambulances given a set of equity constraints. Four different equity measures were 
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considered. The first equity measure considered the fraction of calls for which the closest 

ambulances could be dispatched to patients. The second equity measure considered the 

patient survival rates. The third equity measure evaluated server busy probabilities 

between a lower bound and an upper bound. The last equity measure considered the 

proportion of instances in which servers respond to life-threatening calls. In this chapter, 

we consider fairness in patient outcomes when the waiting time until the first response 

should be balanced between life-threatening calls and potentially life-threatening calls.  

In this chapter, we extend the model of multiple unit dispatch from Chapter 2. We 

consider EMS systems with multiple unit dispatch, multiple call priorities, and a zero-

queue. We assume that once the ambulances complete their service, they return to their 

original (“home”) station. The proposed simulation model determines how to dispatch a 

basic life support unit (BLS unit) for prority2 calls by considering two alternative 

policies. In the case of using a single dispatch in response to priority2 calls, we take into 

account the changing situations on-scene based on information of the first arriving 

ambulance. We examine the condition of BLS upgrade in which the patients need ALS 

care (an advance life support unit). In this case, the BLS unit provides initial care and 

waits for the arrival of the next available ALS unit. In addition, we examine an 

ambulance dispatching policy for the ALS unit for the priority2 calls that affect the death 

rate for priority2 calls. We extend the model by considering how to dispatch the ALS unit 

for priority2 calls in order to improve the outcome of EMS systems. We determine the 

better dispatching policy for dispatching the ALS unit for priority2 calls while balancing 

the waiting time until the first response between patient priorities. The simulation model 
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of multi-tiered responses is formulated by incorporating fairness constraints into the 

model.  

 

3.2 Literature Review 

Fairness is of critical importance to the management in EMS systems. The study 

of distributional equity introduced by Mandell [46] showed trade – offs between 

efficiency and equity. They formulated a bi-criteria mathematical programming model 

for how to allocate resources. The objectives were overall output and equity.  Ogryczak 

[47] considered multiple criteria models for the location problem. These performance 

measures were evaluated under the view of the clients. They introduced the model for the 

location problem that incorporated an inequality measurement. The objective was to 

minimize total distance while minimizing the three inequality measures in the model. The 

inequality measures shown were; the maximum deviation, the mean deviation and the 

mean difference. Felder and Brinkmann [48] considered the equity – efficiency trade off 

in EMS systems. The equity measure was the difference in cost across the regions. 

Several research studies of the equity issues were then presented to multiple criteria 

optimization problem by incorporating equitable criteria into assumptions. Kostreva et al. 

[49] studied the equity problem through a capital budgeting problem. They used the 

Pareto – optimality to present equity into their model.   Heshmati [50] reviewed 

inequalities measured in economics. They suggested that the inequalities of two different 

areas: income and non – income. The income inequity was the output or efficiency of 

systems that were easily evaluated while the non-income inequality was skills, education, 
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opportunities, etc. The result from the review showed how to account for the relationship 

between inequality in income and non-income measures.  

The study of equity measures in EMS systems has been mostly done in terms of 

the location problem. The primary objective was to maximize equality. The median 

function was introduced in Hakimi [51] evaluated equity of the location problem. Other 

works, such as Halpern [52] presented the median and center function. Ogryczak [53] 

considered the location model by analyzing the model of two criteria: mean overall 

efficiency and mean equity measure. He generated multiple criteria minimization. The 

outcome was to minimize distance as the equity measure was incorporated into the 

model. He discussed the direct use of general inequity measures that might contradict 

minimization of efficiency.  The results of multiple criteria optimization that considered 

both the Pareto – efficiency and inequity measures provided a good solution for the 

location problem. Furthermore, he focused on several inequity measures and showed how 

the optimal solution of several inequity measures can be incorporated in the location 

model. Lorenz [54] introduced the Lorenz curve to measure equitable distribution. This 

graph presented the cumulative proportion of demand based on the cumulative proportion 

of income. The Lorenz curve was a convex function which the area between this curve 

and the straight equity line was the inequity measure of resource to demand. The Gini 

coefficient, introduced by Gini [55], was the ratio of area between the Lorenz curve and 

straight equity to the whole area below the equity line. The adaptation of the Gini 

coefficient into location models was presented by Drezner et al. [56].  They analyzed the 

model of the location problem that incorporated equity measures. The Gini coefficient 
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was used to measure inequity distribution. The objective was to minimize the sum of the 

Gini coefficient which represented the deviation between the income of each demand 

point and the income of other demand points. The income was the distance between 

demand point and the closest facility. The median problem (DOMP) was introduced by 

Marín et al. [57].  The objective was to minimize the median cost. The median function 

was a function of weight on cost in which resources at each location satisfied the total 

demand from each zone. In addition, Drezner et al. [58] considered the facility location 

problem by minimizing the deviation of equality among demand groups. In multiple 

facilities location, they presented a tabu search that was based on descent solutions to 

obtain an improved solution.  Marín [59] proposed a facility location problem that 

considered the equity measure into the model. He considered the equity by calculating the 

difference between the maximum and minimum number of customers allocated to any 

plant. The two integer programming formulations were then developed. The first 

formulation considered the p-median problem which included variables representing the 

maximum and minimum number of customers allocated to any plant. The second 

formulation was used to obtain a different way the maximum and minimum numbers of 

customers allocated to any plant. He considered the constraints that ensured each 

customer was allocated to the closest plant. Bertsimas et al. [60] proposed resource 

allocation problems with fairness considerations. They enforced a bound on fairness for 

both maximum and minimum proportional fairness. Their results showed the relative 

outcome loss under fairness measures. Chanta et al. [61] considered the minimum p-envy 

for equity in EMS systems. The decision was to allocate ambulances to stations. The 
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“envy” of each demand zone was a level of customer’s dissatisfaction which compared to 

other demand zones. Toro-Díaz et al. [62] considered the combination of the location and 

dispatching problem which included the fairness performance indicator in their 

conclusion. They formulated the combined an integer programming model representing 

location and dispatching problems. They developed the optimization based on genetic 

algorithms.  

In other related works of fairness, Bertsimas et al. [63] proposed the allocation of 

donor kidneys to patients on a waiting queue. They considered the incorporation of 

fairness and efficiency in the model. The ordered rank of patients was considered the 

priority criteria. They formulated the maximum medical efficiency that included the 

fairness constraints, a lower bound on the percentage of kidneys that were allocated to 

each patient priority. Noyan [64] considered a stochastic model of a location problem 

where demand was uncertain. They developed two stochastic optimizations that included 

risk measures into their models. The risk constraint was the magnitude of violation in 

coverage. The two stage problem was then formulated with the constraint being change 

of risk.  

In this work we extend the multiple-unit dispatch with multiple call priorities 

proposed in Chapter 2. The modification considers the fairness between priorities into the 

model. Recent studies considered the fairness among demand zones was presented by 

Chanta et al. [61]. Several previous works relevant to fairness above analyzed model by 

not taking account the real conditions at on-scene of accidents into the model. However, 

our work differs in which we consider the realistic on-scene conditions that the 
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potentially-life-threatening calls might need the paramedic unit. We also considered the 

fairness outcomes between call priorities which rapidly responding to the potentially-life-

threatening calls requires in the model. 

 

3.3 Model Description 

In this section, we discuss the EMS systems which are extended from the original 

model in Chapter 2. This chapter proposes the multiple unit dispatch of EMS systems 

while considering on-scene conditions. The systems have three call priorities and two 

types of ambulances (the ALS unit and BLS units).  The response area is partitioned into 

demand zones, each with a distinct dispatch preference list.  When a call arrives at the 

dispatch center, the dispatch planners make the decision about which ambulances to 

assign in response to the call according to the preference lists. In the case when all 

ambulances in the preference list are busy, the call will transfer to another dispatch 

center. The classification of call priorities are also considered in this chapter.  The 

dispatching of different types of ambulances depends on call priorities. The 

characteristics of the EMS systems, described in Chapter 2, showed that priority1 calls 

require a double dispatch of the ALS unit and the BLS unit. Single dispatching of the 

BLS unit is when the BLS unit is assigned to respond the priority2 or 3 calls.  In this 

chapter, we consider the dispatching policy for priority2 calls. The configuration of the 

EMS system process with BLS-upgrade of priority2 calls is described in Figure 3.1. The 

main assumptions of priority1 and 3 calls are the same as the original studied in Chapter 
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2, except for the situation of on-scene upgrades/downgrades for priority2 calls. The 

adapted models of possible situations at on-scene priority2 calls are: 

(i) Vehicle dispatch decisions: Priority2 calls require a single dispatch (BLS unit). We 

dispatch the available BLS unit for priority2 calls according to two possible policies; 

priority1 (closest policy) or 3 (heuristic policy) calls in which the inputs for the 

dispatching policies of priority1 or 3 calls are based on results from Chapter 2. To 

obtain high efficiency of EMS systems, we compare the two alternative policies. We 

make a decision to dispatch the BLS unit by choosing the policy that provides the 

better overall expected survival probability of life-threatening patients.  If the first 

ambulance in the rank of ordered preference list is busy, the next one will be 

dispatched. In case of all BLS unit are busy, a call would be transferred to another 

dispatch center.   

(ii) On-Scene: If patients require BLS care at on-scene priority2 calls, BLS serves and 

then returns back to the home station base.  However, if patients require ALS care, 

judged by the BLS personnel, the BLS unit will provide the initial care, wait for the 

ALS unit to determine if patients need transportation to hospitals, and then head back 

to their original station. The dispatch of the ALS unit is assigned according to the 

available ALS units in rank of the ordered preference list for prirority2 calls. We 

refer to this as BLS-upgrade. 
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Figure 3.1: The EMS system process with BLS upgrade for priority2 calls 

  To dispatch different types of ambulances depends on the severity levels of calls. 

We introduced a specific dispatching preference list to each priority type and each type of 

required different type of ambulances. Table 3.1 shows the policies for dispatching 

ambulances for each call priority.  Different performance measures are considered when 

we make a decision on how to dispatch the BLS unit for priority2 calls that should be 

treated like priority1 or 3 calls. The objective is to maximize the expected survival 

probability by comparing two alternative policies. We consider the expected survival 

probability of patients as a function of priority1 calls response time, as discussed in 

Chapter 2.  

Table 3.1: Types of calls, types of ambulances and their corresponding dispatching 

policies 

Types of call Types of ambulances 

  ALS unit BLS unit 

priority1 closest policy closest policy 

priority2 closest policy policy of priority1(closest) or priority3 (heuristic) 

priority3 not needed heuristic policy 

 

3.3.1 Simulation Model 

The simulation models are implemented using Arena Version14. The designed 

simulation models are then used to investigate the performance of a given dispatching 
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policy. The status of EMS systems is described by the state of each ambulance. The states 

could be: “idle” (at station base), “busy” (on the way to respond a call), or “busy” 

(serving and providing transportation a call). Table 3.2 shows the state space of EMS 

systems. We consider integer numbers to represent status of the ambulances. The 

definition of state space in this table is described in Chapter 2. We generate different 

modules to dispatch ambulances according to attributes of the calls (priority and 

location).  When a call arrives on scene, we assign a call priority and a demand zone. In 

addition, the dispatch centers will decide which units to dispatch depending on call 

priorities. We then assign a status to dispatch ambulances according to the state of 

ambulances shown in Table 3.2. Double dispatch is when assigning a pair of dispatched 

ambulances. When the first ambulance arrives on the scene, we calculate the survival rate 

by using the response time of the first ambulance to priority1 calls. The survival 

probability is then calculated using equation (2.1) in Chapter 2. Considering a single 

dispatch for prority2 calls with status3, as the BLS arrives on-scene of accident, the state 

would be “waiting” for another unit with status4, if patients need ALS care. When the 

ALS unit arrives on scene, the status of both ambulances would be changed to “busy” 

(offering service to patients). After the ambulances provide service to the patients and go 

head to their original stations the state would become “idle” again.  We investigate the 

better dispatch policy when the EMS systems reach the steady-state.  
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Table 3.2: The status of ambulances in EMS systems  

Indicator σj  Status of ambulance 

j ε [1,…, J]: ALS 0 Idle at base 

  1 Double dispatch of ALS for priority1 calls 

  2 Only ALS unit dispatch to respond to priority1 calls 

  5 
ALS unit dispatched to priority1 or 2 calls following a BLS unit 

which was sent when no ALS units were available 

j ε [J+1,…, J+K]:BLS 0 Idle at base 

  1 Double dispatch of BLS for priority1 calls 

  3 BLS unit dispatch to respond to priority2 or 3 calls 

  4 

Only BLS unit dispatch and waiting for ALS unit to respond to 

priority1 calls 

Waiting for ALS unit to respond to priority2 calls 

The simulation models analyze different dispatching policies and evaluate patient 

survival probability. The simulation flow chart is described in Appendix A.2. When a 

priority2 call arrives to systems, we dispatch the BLS unit according to the dispatching 

policy like prirority1 or 3 calls. When the BLS unit arrives on the scene of an accident, 

dispatchers make a decision to upgrade or not. In case of no upgrade, BLS unit provides 

care to patient and then return back to home station. If BLS upgrade occurs, we will 

dispatch the ALS unit according to the policy where the closest ALS is always sent. In 

the case where all ALS units are busy, the BLS unit provides initial care and waits for the 

next available ALS unit. The simulation models assume they operate 24 hours per day.  

In this study, we investigate the better policy of dispatching BLS unit for priority2 calls, 

where we treat the policy of dispatching the BLS unit for priority2 calls like the policy 

for priority1 or 3 calls. The Process Analyzer in Arena Version14 is used to obtain the 

better policy. These simulators run 1800 replications per one simulation with half width 

of 0.0001 the 95% confidence interval around the survival probability. Each replication 
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runs 10 weeks to reach steady-state results. The performance of two alternative policies is 

compared to obtain the better policy.  

 

3.4 Computational Results with Dispatching Policy of the BLS Unit for Priority2 

Calls 

In this section, we investigated the alternative policies by using collected real- 

world data at Hanover Fire and EMS department. The system operates 24 hour per day. 

The data set contains response time and transportation time from 4 stations to 12 demand 

zones seen in Table 3.3. The service times are shown in Table 3.4. We study the 

performance of systems in which the number of ALS and BLS units are fixed at three. 

They are located at different stations: ALS1 is located at Station4, ALS2 is located at 

Station1, and ALS3 is located at Station3. In addition, BLS4 is located at Station4, BLS5 

is located at Station1, and BLS6 is located at Station1. There are three priorities where a 

proportion of call priorities depends on the demand zone.       

Table 3.3: Response times (Lognormal distribution), transportation times and proportion 

of calls from each zones  
Demand 

Zone Call proportion Station 1 Station 2 Station 3 Station 4 

zone1 0.226034 (13.42,12.47) (12.344,11.47) (10.704,9.95) (6.424,5.97) 

zone2 0.019513 (25.71,23.89) (25.712,23.89) (15.896,14.77) (25.712,23.89) 

zone3 0.060281 (18.98,17.64) (7.936,7.38) (10.736,9.97) (15.072,14.01) 

zone4 0.043914 (21.01,19.52) (25.712,23.89) (20.856,19.38) (12.312,11.44) 

zone5 0.02657 (13.51,12.56) (19.648,18.26) (13.728,12.76) (22.752,21.14) 

zone6 0.09327 (8.06,7.48) (13.056,12.13) (25.712,23.89) (12.472,11.59) 

zone7 0.326744 (20.02,18.61) (7.88,7.32) (11.344,10.54) (12.032,11.18) 

zone8 0.065128 (15.06,13.99) (25.712,23.89) (10.992,10.21) (20.632,19.17) 

zone9 0.007525 (25.71,23.89) (25.712,23.89) (21.872,20.32) (16.72,15.53) 

zone10 0.077626 (10.08,9.36)  (15.696,14.59) (11.704,10.87) (10.16,9.44) 

zone11 0.029886 (18.38,17.08)  (14.624,13.59) (15.816,14.70) (15.752,14.63) 

zone12 0.023509 (25.71,23.89) (14.904,13.85) (25.712,23.89) (15.776,14.66) 
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Table 3.4: Service times (Exponential distribution) and proportion of priority1, 2 and 3 

calls  

Demand 
Zone 

Proportion of 

Priority1 
calls 

Proportion 

of Priority2 
calls 

Proportion of 

Priority3 
calls 

Service times 

Priority1  Priority2,3 

zone1 0.394 0.098 0.508 67.07 60.24 

zone2 0.452 0.113 0.435 100.32 90.29 

zone3 0.394 0.098 0.508 62.44 55.86 

zone4 0.425 0.106 0.469 66.90 59.42 

zone5 0.409 0.102 0.489 65.25 57.76 

zone6 0.404 0.101 0.495 56.32 49.78 

zone7 0.443 0.111 0.446 54.18 48.36 

zone8 0.438 0.109 0.453 84.42 75.5 

zone9 0.417 0.104 0.479 104.31 92.93 

zone10 0.442 0.111 0.447 58.27 51.82 

zone11 0.434 0.109 0.457 81.38 72.32 

zone12 0.446 0.112 0.442 59.60 52.49 

 

Regarding the improvements from Chapter 2, we fixed the closest policy for 

priority1 calls and the heuristic policy for priority3 calls. Note that we obtained the 

heuristic policy from the results in Chapter 2. We study the policy of priority2 calls that 

could be treated like priority1 or 3 calls by varying the percent of BLS upgrade for 

priority2 calls. Similar to a previous study, the objective is to maximize the patient 

survival probability. Table 3.4 showed the comparison of two alternative policies with the 

closest policy. In addition, Table 3.5 showed the “busy” probability of each ambulance 

given the different policies for priority2 calls. The underlines indicate the expected 

survival probability according to the closest policy, and bolded indicate the expected 

survival probability according to the better dispatching policy for each case. When the 

proportion of priority1 and 3 calls were close to balanced, the better policy for priority2 

calls was to treat them like priority3 calls.  However, when systems provided service for 

higher demand rate such as 1.25 calls per hour, the better policy for priority2 calls was 

treating them like priority1 calls. 
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Table 3.5: Comparison of two alternative policies and closest policy for priority2 calls 

with 30% upgrades. 

ID 

Arriva

l rate 

Calls / 
hr. 

Policy 

Treat 
like 

Resp. 

time 

P1 
:mins 

Resp. 

time 

P2 
:mins 

Resp. 

time 

P3 
:mins 

Percent 

of 
covere

d P1   

( < 9 
mins) 

Percent 

of 
covere

d P2 

 ( < 15 
mins) 

Percent 

of 
covere

d P3  

( < 22 
mins) 

Percent 

of total 

covera
ge 

Sur. 
Prob. 

% 
Imp. 

# of the 

imp. of 
lives 

saved  

/10,000 
calls 

1 0.25 

Closest 7.28 13.31 13.25 0.7373 0.7161 0.8449 0.7799 0.2545     

Priority1 7.19 12.85 17.52 0.7425 0.7299 0.7517 0.7451 0.2576     

Priority3 7.17 17.55 17.49 0.7442 0.587 0.7524 0.7322 0.2584 1.532 39 

2 

 

0.50 

Closest 8.22 14.27 14.19 0.7046 0.6871 0.8273 0.7457 0.2354     

Priority1 8.08 13.63 17.66 0.7142 0.7075 0.7488 0.7212 0.2398     

Priority3 8.03 17.67 17.61 0.7167 0.5807 0.7505 0.7119 0.2411 2.421 57 

3 0.75 

Closest 9.72 14.79 14.72 0.6647 0.6724 0.8162 0.7018 0.2112     

Priority1 9.56 14.28 16.88 0.6742 0.692 0.764 0.6905 0.2149     

Priority3 9.59 16.80 16.82 0.6743 0.6022 0.7648 0.6827 0.2149 1.752 37 

4 1.00 

Closest 11.06 15.08 15.01 0.6273 0.6718 0.8118 0.6621 0.1919     

Priority1 10.89 14.62 16.88 0.6379 0.6865 0.7616 0.6556 0.1958     

Priority3 10.82 16.98 16.87 0.6409 0.5966 0.763 0.6507 0.1967 2.501 48 

  

1.25 

Closest 11.83 15.25 15.16 0.6001 0.6601 0.808 0.6369 0.1811     

5 

Priority1 11.70 14.90 16.56 0.6087 0.6749 0.7698 0.6327 0.1842     

Priority3 11.73 16.48 16.51 0.6077 0.6084 0.7717 0.6271 0.1837 1.712 31 

In Figure 3.2 we investigated the two alternative policies and the closest policy. 

There were slight differences in performance of priority2 calls when we treated them like 

priority1 or 3 calls. In Table 3.4, the proportion of priority2 calls was very low when 

compared with priority1 and 3 calls. The results indicated that there was a slight impact 

on number of lies saved. When the percent of BLS upgrade was changed, the trends in 

the graphs showed no difference between upgrades at 20 and 30 percent. 

Table 3.6 showed the comparison of the “busy” probabilities for two alternative 

policies and the closest policy. We observed that multiple unit dispatch for priority2 calls 

according to the heuristic policy could increase the patient survival probability as 

compared to the closest policy. We observed the “busy” probability of each ambulance in 

Table 3.6. The better policy for priority2 calls from changed from being treated like 

priority3 calls to being treated like priority1 calls when the busy probability of each 
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server was over 78 percent. When systems were full there was no difference between the 

closest policy and the heuristic policy. 

 
Figure 3.2: Comparison of the expected survival probability for two alternative policies 

and the closest policy 

 

Table 3.6: Utilization of each ambulance under two alternative policies and the closest 

policy for priority2 calls with 30% upgrades 

ID 

Demand 
(calls 

/hour) 
Policy 

Treat like 

Utilization 
 

 

 
Survival 

Prob. 
% 

Imp. 

# of the 

improveme

nt of lives 

saved  

/10,000 

calls ALS1 ALS2 ALS3 BLS4 BLS5 BLS6 

1 0.25 

Closest 14.57 3.44 6.36 22.94 12.08 2.778 0.2545     

Priority1 14.47 3.49 6.24 15.25 13.06 10.74 0.2576     

Priority3 14.51 3.46 6.24 13.69 13.67 12.12 0.2584 1.532 39 

2 0.50 

Closest 33.22 15.83 23.13 42.61 33.88 20.82 0.2354     

Priority1 33.23 15.47 22.89 32.35 29.42 37.00 0.2398     

Priority3 32.82 15.15 21.99 29.66 28.90 39.13 0.2411 2.421 57 

3 0.75 

Closest 58.29 42.13 51.21 65.33 62.39 52.69 0.2112     

Priority1 57.46 42.55 50.87 59.34 61.81 59.24 0.2149     

Priority3 57.75 40.96 50.86 57.74 62.23 60.33 0.2149 1.752 37 

4 1.00 

Closest 76.07 65.19 74.60 81.99 81.92 77.09 0.1919     

Priority1 76.11 66.12 74.89 78.84 81.63 81.47 0.1958     

Priority3 75.76 65.16 73.59 77.50 81.15 81.23 0.1967 2.501 48 

  

1.25 

Closest 84.93 78.12 85.43 89.82 90.65 87.88 0.1811     

5 

Priority1 84.62 78.91 85.49 88.59 90.63 89.70 0.1842     

Priority3 84.06 78.06 85.12 88.12 90.54 89.50 0.1837 1.712 31 
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3.5 Fairness and Efficiency of EMS Systems 

Fairness is a crucial factor in deciding on how to dispatch ambulances. An 

important consideration of fairness arises when a serious call arrives to EMS systems, 

then the closest available ambulances are dispatched to respond. This makes the closest 

units unavailable to other patients. When a lower priority could be upgraded to a highest 

priority, the level of faster response needed between priorities is a critical issue in 

decision making. Dispatching far away ambulances to respond to the upgraded patients 

might increase the number of pre-hospital deaths for the lower patient priority.  In this 

section, we consider fairness in patients waiting time for first response between priority1 

and 2 calls. We focus on the mathematical formulation of constraints to balance fairness. 

The better dispatching policy on how to dispatch the ALS unit for priority2 calls is 

considered to maximize the expected patient survival probability. We modified the 

simulation model in the previous section by adding some constraints which indicate the 

ranked ordered preference lists of ALS unit for priority2 calls. The fairness measures, 

analyzed in the simulation models, added an equity constraint which is not a linear 

constraint.   

The objective of multiple unit dispatch is to maximize the expected patient 

survival probability, as shown in Equation (3.1). This outcome is a response value that is 

obtained from running the simulation model. Equation (3.2) is the function of survival 

probability based on the work of Larsen et al. [48]. The response variable of fairness e 

represents the equity of waiting times for the first response between priroirty1 and 2 calls. 
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Equation (3.3) is a fairness constraint in which the difference of waiting time for the first 

response between priroirty1 and 2 calls is less than e.  Equation (3.4) – (3.6) work 

together to indicate the rank ordered preference list of dispatching ALS unit for priority 2 

calls. Equation (3.4) ensures that each ALS unit is assigned by exactly one rank order in 

the preference list for each priority and each demand zone. Equation (3.5) ensures that 

each rank of l
th

 order in the list is exactly one ALS unit for each priority and demand 

zone. The control variable xmilj is a binary variable that indicates whether an ALS unit j is 

the l
th

 rank order in the preference list in order to assign a priority m call and demand 

zone i.  Equation (3.6) assigns the rank order preference list to simulation models where 

the control variable ALSpolicymil would be assigned to a call. The ALS unit is dispatched 

according to attribute of a call.   

The maximum expected patient survival probability with fairness model: 

Maximize  ( ) ( )Rf x g t           (3.1) 

Subject to: 

( ) max(0.594 0.055 ,0)R Rg t t          (3.2) 

2 1wt wt e             (3.3) 

1

1
J

milj
l

x


     i = 1, 2,..., n  j = 1, 2,..., J m = 1, 2  (3.4) 

1

1
J

milj
j

x


     i = 1, 2,..., n  j = 1, 2,..., J m = 1, 2  (3.5) 

1

J

mil milj
j

ALSpolicy jx


    i = 1, 2,..., n  j = 1, 2,..., J m = 1, 2  (3.6) 
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Where: 

miljx    1  if ALS unit j is assigned to priority m zone i in the l
th

 preferred server. 

 0 otherwise 

milALSpolicy = j if ALS unit j is assigned to priority m zone i in the l
th

 preferred 

server. 

mwt  average waiting time for priority m that waits for service from ALS unit. 

( )Rg t  the survival probability of patients as function of response time for priority1 calls. 

Rt  the response time of first ambulance arriving on the scene for priority1 calls.  

e the upper bound of deviation between waiting time for ALS unit for priority1 and  

2 calls 

n total number of demand zones 

m  indicator of priority as m = 1, 2, 3 

l indicator of ranked in preference list as l = 1, 2, 3,.., K 

i indicator of demand zone  

 j indicator of a ALS medical unit with known locations as j = 1,2,…,J. 

k      indicator of a BLS medical unit with known locations as k = J+1,J+2,…,J+K. 

J number of ALS medical units 

K     number of BLS medical units 
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3.5.1 OptQuest for Simulation Model 

OptQuest is a powerful tool in Arena Version14 which searches for the better 

dispatching solution for the simulation model. We find a solution which satisfies the 

constraints using OptQuest.  OptQuest uses the outputs from running the simulation 

model to be response values which are inputted into an optimization model. The 

OptQuest adapts a Meta–heuristic method to find the better dispatching solutions by 

using the stopping criteria. The simulation models will then be stopped when stopping 

criteria is met. We use a stopping criteria based on improvement, specifically, we stop 

when the solutions do not improve within 100 simulations. The efficiency of finding the 

best solution depends on many factors. We use a closest dispatching policy for initial 

values of control variables. The initial values are located in the suggested values of 

control variables in OptQuest. OptQuest starts to search for the best solution by 

evaluating the initial values first.  

 

3.6 Computational Results with Fairness Constraints 

In this section, we implemented the simulation model with fairness constraints to 

real-world data. The data set from Hanover Fire and EMS department, Hanover County, 

Virginia was the same as the one implemented data set in Chapter 2. The city area was 

partitioned into twelve demand zones with four rescue stations. The illustration of the 

Hanover Fire and EMS department was shown in Figure 2.8. The 3 ALS units and 3 BLS 

units were randomly allocated to different four stations, as presented in Section 3.4. 
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Whereas we implemented the resulting policies from Chapter 2 for priority1 and 3 calls, 

we used the heuristic policy for priority2 calls for dispatching policy of the BLS unit at a 

call arrival rate of 1 call per hour. We considered the better dispatching policy of the ALS 

units for priority2 calls.  
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Figure 3.3: Comparison of the expected survival probability under the better dispatch 

policy with equity constraints and without equity constraints and the closest dispatching 

policy for priority2 calls 

Figure 3.3 showed the results for 3 ALS units and 3 BLS units with upgrade 

priority2 calls to life-threatening at 20 and 30 percent. That is, we assumed that at on-

scene of accidents the priority2 calls required ALS care 20 or 30 percent of the time. We 

studied the performance of EMS systems as we varied the allowable difference in waiting 

time of first response time between priority1 and 2 calls. We compared the results of 

using the better dispatch policy for priority2 calls with equity constraint and no equity 

constraint, and dispatch policy of always sending the closest ALS unit. We observed that 

dispatching ALS units according to the better dispatch policy with equity constraints 
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provided better outcome over the closest dispatch policy as the deviation of the first 

response time between priority1 and 2 calls changed within 5 to 6 minutes. When we 

forced the fairness constraints to 4 minutes, the results showed outcome lower than the 

closest dispatch policy. In addition, the results showed no difference between upgrade 20 

and 30 percent for priority2 calls.  
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Figure 3.4: Comparison of the expected response time under the better dispatch policy 

with equity constraints and without equity constraints and the closest dispatching policy 

for priority2 calls with upgrade 20% 

 

Figure 3.4 showed results of the expected response time for priority1 and 2 calls 

for 3 ALS units 3 BLS units with upgrade priority2 calls at 20 percent. We compared the 

results of using the better policy with equity constraints, the better policy without equity 

constraints and the closest dispatching policy. The results showed that the equity 

constraints provided better outcomes than no equity constraints and the closest 

dispatching policy in terms of the expected response time for priority2 calls. These 

Priority1 

Priority2 
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observations indicated that we could reach on-scene of accident for priority2 calls faster 

resulting in increasing the expected survival probability of priority2 calls. However, 

imposing equity constraints increased the expected response time resulting in decreasing 

the expected survival probability for priority1 calls but still offers improvement over the 

closest dispatching policy when we enforced the deviation of response time between 

priority1 and 2 calls at 5 and 6 minutes.    

 

 

3.7 Conclusions and Future Research 

In this chapter we analyzed a simulation model for multiple unit dispatch in EMS 

systems. We consider classifications of call priorities and two types of ambulances. The 

simulation model is formulated as a model given a particular dispatching policy. We 

consider the dispatching policy of BLS units based on possible situations that can be 

changed at on-scene of accidents for priority2 calls. We compare two alternative 

dispatching policies of BLS units for priority2 calls. Numerical results showed that the 

dispatching policy of the BLS unit for priority2 calls treated like priority3 calls (heuristic 

policy) provided improvement over the closest dispatching policy. When average busy 

probability of servers was over 80 percent, there was no difference between the heuristic 

and the closest dispatching policy for priority2 call.   

We consider the simulation model with fairness by using the OptQuest. We 

implement the model using a real world example. The simulation model with a linear 

programming model is formulated for EMS system. The observations showed that the 

equity constraints decreased the expected survival probability but still offered 
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improvements over the closest dispatch policy for priority1 calls. The results also showed 

that the equity constraints decreased the expected response time, resulting in increasing 

the expected survival probability, for priority2 calls. The results suggested that imposing 

equity constraints often leads to an infeasible solution and that we should be careful in 

trying  to enforce the deviation of first response time between priority1 and 2 calls while 

improving survivability of EMS systems. In future work, we will expand the dispatching 

model to consider the location of ambulances that lead to increasing the expected survival 

probability of EMS systems.  
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CHAPTER FOUR 

A NESTED-COMPLIANCE TABLE POLICY FOR EMERGENCY MEDICAL 

SERVICE SYSTEMS UNDER RELOCATION 

 

4.1 Introduction 

The goal of emergency medical service (EMS) systems is to save the lives of 

emergency patients. The potential for improving performance of EMS systems is directly 

related to reducing response time, which is in turn related to increasing coverage. The 

decisions regarding ambulance location strategies can improve expected coverage. The 

ambulance location problem refers to the assignment of a limited number of ambulances 

to maximize coverage, given that the system has a fixed number of potential locations, 

and a demand zone is considered to be covered when an ambulance is located within a 

predetermined time standard. However, in reality the demand changes over time. 

Dynamic ambulance relocation can improve the performance of systems in situations 

with fluctuating demand. The growth and development of EMS systems literature shows 

a drastic increase in the percentage of dynamic strategies used.  This is discussed in 

Alanis et al. [5]. The current analysis of relocation strategies deals with a compliance 

table. A compliance table refers to a particular table that shows the number of available 

ambulances in relation to the choices of open stations. That is, a compliance table shows 

where ambulances should be located when there are a certain number of ambulances 

available.  Considering the example in Table 4.1 below; in this case, when only one 

ambulance is available, it is located at station A.  In scenario 1, once a second ambulance 

becomes free, it will go to station C, and the first ambulance will stay at station A.  In 
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scenario 2, once the second unit becomes available, ambulance 1 will need to relocate so 

that stations B and C can be open.  Scenario 1 maintains what we refer to as a nested 

structure, which we will discuss later in further detail. One way to operationalize a 

relocation policy, which is not too computationally intensive, is via a compliance table 

policy.  That is, vehicles will be relocated as calls come in and vehicles become available, 

but the policy is pre-determined and thus is easy to implement in real time. The challenge 

for EMS planners is that it may be difficult to identify the best compliance table. 

Table 4.1: Sample compliance table 
#of available units Open stations Scenario 1 Open Stations Scenario 2 

1 A A 

2 A, C B, C 

3 A, B, C A, B, C 

 

In this paper, we determine the best nested-compliance table for dynamic 

strategies in EMS systems. The compliance table policies in dynamic ambulance 

relocation include consideration for the real-time movement of idle ambulances to new 

locations. The decision to assign new locations to the available ambulances depends on 

the compliance table. To assess the best compliance tables, we consider only the possible 

compliance tables in a set of nested-compliance tables. Suppose we have K number of 

ambulances and v number of busy ambulances. A nested-compliance table refers to a 

compliance table in which the set of open stations when there are K-v-1 available 

ambulances is a subset of the open stations when there are K-v available ambulances, as 

shown in scenario 1 in Table 4.1. The original available ambulances from the previous 

state will be sent to their original home station, while a newly available ambulance will 

be given choice of stations. The benefit of nested policies is that only one ambulance, 
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which is already on the move, is relocated, avoiding unnecessary moves that can result in 

more accidents. We consider a single type of ambulance (paramedic units) and a single 

type of call priority when determining the best compliance table policy. We formulate an 

integer programming model to maximize the expected coverage with respect to the best 

compliance table. Real world data is used to validate the models.  

In this study we: 

 Modify a Markov chain model based on Alanis et al. [5] that considered the 

steady-state probabilities of EMS system in order to approximate coverage.  

 Propose the nested-compliance table formulation as an integer programming 

model to determine the maximum expected coverage using a binary notion of 

coverage. 

 Show, through the numerical results, how the solutions from our nested-

compliance table formulation compare with a static (non-relocation) policy based 

on the adjusted maximum expected covering location problem (AMEXCLP) of 

Batta et al. [65] in real world problems. 

This chapter is organized as follows. In Section 4.2 we review the related work on the 

nested-compliance table problem in EMS systems. Section 4.3 presents a description of 

EMS systems with relocation strategies and explains how to implement the nested-

compliance table in EMS systems. Section 4.4 presents the application of a Markov chain 

model with relocation. Section 4.5 presents an integer programming approach to 

obtaining the optimal nested-compliance table with relocation. Section 4.6 presents the 
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efficiency of the nested-compliance table solutions. Finally, Section 4.7 presents 

conclusions and a discussion of future works. 

 

4.2 Literature Review 
 

The literature related to EMS vehicles is extensive.  We limit our discussion to 

works related to ambulance location problems. We categorize models in terms of the 

decisions (e.g. location, relocation) being made, the objective (e.g. minimum number of 

servers, maximum coverage) function, and the methods (e.g. integer programming model, 

heuristic model, and Markov chain model) used. 

In essence, the decision of a compliance table model deals with the ambulance 

location. One of the early works related to location decisions is the set covering problem, 

introduced by Hakimi [51]. The objective was to minimize the sum of distances between 

locations and nodes. The first mathematical formulation was developed by Toregas et al. 

[66] and Toregas and ReVelle [67].  The location set covering problem (LSCP) was to 

minimize number of vehicles which required to covering all demand nodes. The decision 

was where the resources were to be located in order to cover all demand nodes. The 

objective was to minimize the total number of resources. Aly and White [68] further 

developed the LSCP; they considered a random variable of location of call arrivals into 

model. In the LSCP, the goal is to minimize the number of resources; on the other hand, 

several facility location problems seek to minimize some cost with a fixed number of 

resources.   Ingolfsson et al. [69] considered the location problem with random delay and 
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travel times. The objective was to minimize the number of ambulance so as to maintain a 

specified service level. 

Other works considered the extensions of LSCP. The p-center and p-median 

problems are two common objectives in facility location problems, for reviews see 

(Tansel et al., [70] and [71], Krarup and Pruzan, [72]). The objective of the p-center 

problem is to minimize the maximum distance between nodes and their closest locations, 

while the objective of p-median is to minimize the total distance between nodes and their 

closest locations. Brandeau et al. [73] provided an overview of location problems. They 

focused on optimization problems such as p-center, p-median and other location 

problems. Other works considered a probability of set covering problem as probabilistic 

location set covering problem (PLSCP). ReVelle and Hogan [21] considered conditions 

when servers were busy during arrival of calls. They denoted α as reliable service, while 

the objective was to mini-max time between nodes and locations. Beraldi and 

Ruszczynski [74] developed PLSCP. The objective was to maximize the minimum 

reliable services. They considered the random binary ξ (0, 1). If ambulances were 

available at station bases, the random binary ξ was equally one. The results show that 

some discrete distributions provide an extremely large number of p, reliability level of 

available ambulances. Saxena et al. [75] considered the mixed integer programming for 

PLSCP. They use the PLSCP formulation of Beraldi and Ruszczynski [74], extending the 

model to improve the PLSCP. The random variable ξ could be decomposed into L blocks 

say {ξ
1
,…, ξ

L
} as ξ

t
 still being a 0-1 random for t ϵ {1…L}.  
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In many other facility location problems, the objective is to maximize some 

notion of coverage, with a fixed number of resources. Church and ReVelle [18] proposed 

the maximal covering location problem (MCLP). This model assumed no “busy” 

ambulances in the systems. Daskin [19] introduced an extension of the MCLP, known as 

the Maximum Expected Coverage Location Problem (MEXCLP), by considering the 

“busy” probability for resources. This model assumed that all servers in the systems had 

the same “busy” probability.  They used the binomial distribution to estimate the busy 

probability. ReVelle and Hogan [21] considered the Maximal Availability Location 

Problem (MALP). They assumed that server availability was independent of the number 

of servers. Batta et al. [65] relaxed some assumptions of the MEXCLP; such as, servers 

operating independently, and same busy probabilities for servers. This model referred to 

the Adjusted Maximum Expected Coverage Location Problem (AMEXCLP). The “busy” 

probability for servers was estimated using the hypercube queuing model. They presented 

the heuristic procedure for this adjusted model. The hypercube model was a model with 

multiple servers that described the queuing dynamics of systems. Larson [13] introduced 

the hypercube model to determine the busy probability according to a particular 

preference list for dispatch servers for each demand zone. Jarvis [15] generated the 

approximate workload of servers by using the hypercube model. Pirkul and Schilling [76] 

expanded the MCLP by incorporating capacities on servers and prioritized s for 

emergency calls. Marianov and ReVelle [22] developed the queuing maximal availability 

location problem (Q-MALP) based on ReVelle and Hogan [21] This model considered 

that the demand nodes were classified as covered when the probability of an ambulance 
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being available within time standard was at least α. The parameter α is referred to 

reliability level of available ambulances. Gendreau et al. [77] proposed a location 

problem using a double standard model (DSM). In the DSM all demand must be covered 

by ambulances located within r1 time, and a proportion of demand α must be covered by 

ambulances located within r2 time. They formulated the linear programming model, in 

which the objective was to maximize the total coverage of demand. A tabu search 

heuristic was developed for real world problems. Roberto et al. ([78] and [79]) 

considered the similarities and dissimilarities between the MEXCLP and the MALP, and 

presented an extension of the MALP, coined EMALP. Erkut et al. [80] also provided 

comparisons of existing maximum covering location models and developed an extension 

to the MEXCLP by considering the probability that demand node i was covered by the 

ambulance sited in j
th

 preferred station. Erkut et al. [81] also extended the Q-MALP by 

allowing for multiple servers at some stations and combined dispatch probability. The 

works discussed above did not consider relocation models. The relocation of emergency 

medical service (EMS) systems is the one possible strategy to increase coverage and 

improve patient outcomes. The use of relocation strategies could improve performance 

measures of EMS systems. Relocation strategies may be used to determine if available 

ambulances should relocate to better cover densely populated locations that have been 

left vulnerable by buy ambulances. In the relocation models dispatched ambulances 

might return back to a new station different from their originating station.  

Early work of the relocation problem began with the formulation of an exact 

model in 1972. Kolesar and Walker [82] studied the dynamic relocation of fire resources.  
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Later, Gendreau et al. [83] proposed the dynamic double standard model (DDSM) which 

solves the repositioning problem based on the objective of the DSM. They considered a 

parallel tabu heuristic search to solve the DDSM in a reasonable computer running time. 

They developed a model of real time decisions on two levels; allocation problem and 

redeployment problem. The allocation problem determines which ambulance responds to 

a call using the closets dispatch. The redeployment problem relocates available 

ambulances to new locations to be better prepared to respond to future calls. They used a 

simulation model to evaluate the efficiency of the heuristic. Anderson and Varbrand [35] 

proposed the development decision tools for dispatching ambulances under dynamic 

ambulance relocation. The aim was to increase the preparedness for arrival of emergency 

calls. A tree search algorithm was used to find a solution for the dynamic relocation 

problem. In addition, Rajagopalan et al. [84] considered the covering location model for 

dynamic redeployment problem. The objective was to minimize the number of 

ambulances. They formulated the dynamic available coverage location (DACL) model 

under fluctuating demand and considered the “busy” probability of servers using Jarvis’ 

[15] algorithm. The decision variable was the number of ambulances at each location at a 

certain time period. The large scale problems were then solved by using a search 

algorithm. A simulation model was used to validate the mathematical model.   Recent 

work on the relocation problem focused on how to formulate the model for large scale 

problems. Majzoubi et al. [85] proposed the dispatching ambulance problem with 

relocating ambulances for EMS systems.  Their model allowed for serving more than one 

patient per dispatch. The objective was to minimize the total costs to the EMS systems. 
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They formulated a non-linear program and developed a linear programming model 

approximation to obtain the solutions. Most previous works focused on integer 

programming and heuristic models. To maintain fidelity to the real problem of ambulance 

relocation problem, others use Markov Decision Process (MDP) models to analyze the 

EMS system 

Berman [86] considered the repositioning of emergency units using an MDP 

formulation. The state of systems was represented by the status of each ambulance. The 

decision was to design where and when the EMS planners would move the servers to 

other locations from any possible state. Maxwell et al. [87] proposed an approximate 

dynamic programming model for redeployment of EMS systems. The objective was to 

maximize the number of covered calls. They formulated a state space that represented the 

status of each ambulance with two components; the first component was information on 

ambulances and second component was the number of waiting calls. The multiple 

dimensional states represented the status of ambulances; “idle” or “busy”, original 

locations, destination locations, and starting time of movement for each ambulance. 

Alanis et al. [5] analyzed Markov chain models of EMS systems to analyze their 

performance under repositioning. They presented a two-dimensional state space to 

represent the status of the EMS systems. The first component was the number of “busy” 

ambulances and the second component represented whether the system was in 

“compliance” or not. They validated the mathematical model using simulation models. 
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In this work we extend the relocation strategies proposed by Alanis et al. [5]. The 

modification determines the best of nested-compliance table with a single type of 

ambulance and a single type of call priority. Recent studies of Alanis et al. [5] determined 

the steady-state probabilities and estimated all service rates according to where exactly 

ambulances were located for any state of EMS system. However, our work differs in that 

we determine the steady-state probabilities and estimate all service rates independent of 

where exactly ambulances are located for any state of EMS system. We apply the output 

of steady-state probabilities based on Alanis et al. [5] as input parameters to our integer 

programming model. Our approximated formulation finds the nested-compliance table 

that maximizes the coverage of EMS systems. 

 

4.3 EMS Systems with a Nested-Compliance Table Policy 

In this section, we discuss EMS systems which are operated under relocation 

policies based on a nested-compliance table. We consider EMS systems with a single unit 

type and a single type of call. We assume that there is one ambulance located at each 

station.  The EMS systems are a zero-queue system. When a call arrives at the dispatch 

center, the dispatch planners assign the closest ambulance in response to the call. In the 

case when all ambulances in the system are busy, the call will transfer to another dispatch 

center. As stated in Section 4.1, a compliance table is a nested-compliance table. Table 

4.2 provides an example of a nested-compliance table. There are two events that could 

result in a repositioning move: call arrivals and call completions. 
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 Call arrivals: When a call from zone i arrives, the closest ambulance responds to call 

requiring service. If the closest is busy, the second closest responds to the call and so 

on.  

 Relocation via call arrivals: When the number of busy ambulances changes, the 

dispatchers consider which ambulance to move (if any) to be better pre-positioned, 

since the dispatched ambulance may have left some critical areas uncovered.   For 

example, based on Table 4.2, suppose a call arrives to a system with zero busy 

ambulances, and the ambulance in station 2 responds to the call. The system state 

changes from zero busy ambulances to one busy ambulance. The located ambulance in 

station 12 moves to replace the ambulance at station 2 in the new system state.  

 Service time: We define the service time as the time between the EMS staff arriving 

on-scene and completing service, including providing transportation to a hospital if 

needed. 

 Relocation via call completions: After the EMS staff has completed service to patients 

the ambulance may return to any open station, not necessarily its previous station.  The 

dispatchers consider which station the now available ambulance should be located to. 

The system state changes to decrease number of busy ambulances. During this time 

the ambulance is free, but cannot be assigned to a new call. If a call arrives, it will 

transfer to the next closest ambulance. For example, in Table 4.2, while the system 

state is two busy ambulances, the dispatched ambulance travels back to station11. The 

system state changes from two to one busy ambulance. 
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Other important times in the EMS system include Response time and travel time between 

stations. 

 Response time: The travel time between the stations of a dispatched ambulance to the 

scene of the incident. 

 Travel time between stations: The travel time between the original stations to the new 

stations when system states are changed. 

Table 4.2: The nested-compliance table  

# of busy 

servers 

Stations 

1 2 3 4 5 6 7   8 9 10 11 12 13 14 15 16 

0   1 1 1 1 1   1 1   1 1       1 

1   1 1 1 1 1   1 1   1         1 

2   1 1 1 1 1   1 1             1 

3   1 1   1 1   1 1             1 

4   1 1     1   1 1             1 

5   1 1     1     1             1 

6   1       1     1             1 

7   1       1     1               

8   1             1               

9                 1               

 

 

4.4 The Application of a Markov Chain Model with Relocation for EMS Systems  

To assess the performance of a specific compliance table in terms of coverage, we 

need to approximate the steady-state probabilities of an EMS system.  To approximate 

the steady-state probabilities, we build upon a Markov chain model with relocation 

developed by Alanis et al. [5]. They formulated the model as a finite, continuous time 

Markov chain according to a compliance table policy. The state variable V(t) denoted the 

number of busy ambulances at time t, and the state variable C(t) denoted the status of the 

EMS system, whether the system was in compliance or out of compliance at time t. The 
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state space of V(t) was given by the set V(t) = (0, 1, 2, …, K) and C(t) was given by the 

set C(t) = (0, 1). The C(t) = 0 indicated when the system was out of compliance and C(t) 

= 1 indicated when the system was in compliance. In compliance referred to all available 

ambulances being at their assigned stations. On the other hand, out of compliance 

referred to the status that not all available ambulances are at their assigned stations; that 

is, an ambulance being en-route to its home station.  They assumed that the arrival 

process of calls to EMS systems was Poisson and all service times were exponentially 

distributed. They assumed a zero-queue system. When calls arrived to system when all 

ambulances were busy, they would transfer to another system.  They assumed that the 

system reached out of compliance when a call arrived to systems or an ambulance 

completed service at on-scene. In work of Alanis et al. [5], they considered the relocation 

model where the state transitions occurred due to one of three event types, call arrival, 

call completion and a moving ambulance reaching compliance. Suppose we were in state 

(v, 1), in compliance with v busy ambulances. The transition to reach out of compliance 

state (v+1, 0) occurred via a call arrival, where λ was call arrival rate. The transition to 

reach out of compliance state (v-1, 0) occurred via a call completion with rate vμ
1
, where 

μ
1
 was the completion rate given that the system was in compliance state. Similarly, 

suppose we were in state (v, 0), out of compliance with v busy ambulances. The transition 

to reach out of compliance state (v+1, 0) occurred via call arrival. The transition to reach 

out of compliance state (v-1, 0) occurred via a call completion with rate vμ
v, 0

 where μ
v, 0

 

was the call completion rate given that system was out of compliance state.   When the 

system was out of compliance in state (v, 0), the transition rate γ resulted in a transition to 



 95 

state (v, 1), in compliance state. While the ambulance moved to new home station, the 

ambulance could not be dispatched to respond to a new call. When a call arrived to 

system during this time, it would transfer to the next closest ambulance. The details of 

these transitions were explained in Alanis et al. [5].  Table 4.3 shows the notation of the 

parameters of the nested-compliance table model under relocation. 

In this paper, we formulate a nested-compliance table model under the same 

assumptions as those studied in Alanis et al. [5].  However, our work differs in that we 

approximate the transition rates not according to the exact nested-compliance table 

policy, but rather based only on the number of busy ambulances. If the approximation of 

transition rates is known and not according to an exact nested-compliance table policy, 

the nested-compliance table model can be solved as an integer programming model. 

Otherwise, we have to consider a meta-heuristic or enumerate all solutions which require 

long computational running time. When estimating the transition rates, we relax the 

assumption of approximating parameters given by Alanis et al. [5] such that our 

approximation of transition rate γ, μ
1
 and μ

v,0
 are independent of the exact nested-

compliance table. The approximations of transition rates are calculated based on the total 

covered arrival intensity for each station, as discussed in Section 4.4.1.  Figure 4.1 

illustrates our modification of the transition diagram of Markov chain model with 

relocation based on Alanis et al. [5] for K= 5, number of ambulances. 

We describe the process related to situations of the EMS system with the state-

transition network in Figure 4.1. The system starts with all idle ambulances at assigned 
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stations in state (0, 1). As a call arrives, the state reaches out of compliance immediately 

resulting in increasing the number of busy ambulances to 1, a transition to state (1, 0) and 

potentially relocating an ambulance to replace at station of the dispatched ambulance.  

Suppose no new call arrives in the meantime and we relocate the ambulance completely 

before the dispatched ambulance finishes at on-scene of accident, the system reaches 

compliance at rate γ, resulting in a transition to state (1, 1). However, in case we could 

not relocate the ambulance to replace at station of the dispatched ambulance completely 

resulting in system state still out of compliance state while the ambulance completes to 

reach at on-scene of accident and completely provides service to patients with call 

completion rate μ
1,0 resulting in decreasing number of busy ambulances and a transition 

to state (0, 0). Similarly when system is in state (1, 1) and the ambulance completely 

reaches on-scene of accident and completely provides service to patients resulting in 

transition to state (0, 0). After the call completion, the ambulance travels back a home 

station (possible new home station) with relocation rate γ resulting in a transition to state 

(0, 1). As another possible situation, suppose a new call arrives when in state (1, 0) or (1, 

1) both result in out of compliance immediately and a transition to state (2, 0). Therefore, 

we need to relocate an ambulance to new home station in order to achieve compliance 

state.  
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Table 4.3: The parameters of the nested-compliance table model under relocation 

Notation  Description 
i       indicator of demand zone 

m    indicator of station 

v     indicator of the state of EMS system-- number of busy servers 

c     indicator of the status of EMS system 

    = 0 system is out of compliance 

          = 1 system is in compliance 

λ     call arrival rate  

λi call arrival rate from demand zone i 

K    total number of ambulances in the EMS system 

M  total number of stations 

γ   the rates at which compliance is reached 

μ
v, 0

  the service rate or call completion rate at which each individual busy ambulance completes its call,   

given that system is out of compliance 

μ
1   the service rate or call completion rate at which each individual busy ambulance complete its call, 

given that system is in compliance 

πv,0  the steady-state probability that the system is out of compliance and in state v 

πv,1  the steady-state probability that the system is in compliance and in state v 

 

The notations for the approximation of parameters 
 

fdm   the total covered arrival intensity for station m. 

Pr(Am)   the probability of covered arrival intensity for station m. 

rim   the response time from station m to demand zone i. 

tjm   the travel time from station j to station m. 

dim    the travel time between station m and demand zone i 

aim  indicator of ambulance at station m can respond to demand zone i within specified response time 

  RTT the specified response time thresholds (RTTs) 

aim   =  0 if dim > RTT   a server at station m does not cover demand zone i  

            =  1   if dim ≤ RTT  a server at station m covers demand zone i  

Tm  the mean travel time between any station to station m 

αv  the rates of call arrival into state (v, 0). 

βv  the rates of call completion into state (v, 0). 

τ0, arrival  the mean service time to enter the state (v, 0) via a call arrival  

τ0, completion  the mean service time to enter the state (v, 0) via a call completion 

τ0,arrival,i   the composition of the expected travel time entering state (v,0) via a call arrival from any 

station to demand zone i and the expected service time at on-scene of accident 

τ0,completion,i  the composition of the expected travel time entering state (v,0) via a call completion from 

demand zone i to any station and the expected service time at on-scene of accident 

E[Si, on-scene] estimated from empirical data which is the composition of the service time on-scene and 

the time to transport patients to hospital if needed. 

E[Ri]    the mean response time of any station to demand zone i. 

E[S0,Travel,i|(v, 0) entered via a call arrival] the expected travel time entering state (v,0) via a 

call arrival from any station to demand zone i.   

E[S0,Travel,i|(v, 0) entered via a call completion]  the expected travel time entering state (v,0) via a 

call completion from demand zone i to any station  
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Figure 4.1: The modified state transition of EMS systems with relocation, 

 based on Alanis et al. [5] 
 

The Markov chain model with relocation was applied to approximate the steady-

state probabilities πv,c based on the model given by Alanis et al. [5]. They formulated the 

flow balance equations for state (v, 1) and (v, 0) that were given by 
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 for   v  =0, 1, 2,…, K-1 (4.1) 
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 for   v  =0, 1, 2,…, K-1 (4.2) 

In order to compute the steady-state probability, Alanis et al. [5] used the 

recursive method by starting with state (K, 0) and the normalization method in the last 

step so that the sum of the steady-state probabilities equaled to one.  The steady-state 

probabilities could be obtained by using the following recursive algorithm which 

presented in Alanis et al. [5].  

In order to determine the steady-state probability, we need to approximate the 

completion rate μ
1
and the rate to reach compliance, γ, which will be shown in Section 
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4.4.1. In this section, we consider how to calculate the completion rate μ
v, 0

. Alanis et al. 

[5] discussed the rate μ
v, 0 which depended on a particular compliance table. Our work 

differs in that we use the total arrival intensity to weigh service time. However, Alanis et 

al. [5] considered the two possible situations to reach out of compliance state (v,0) via a 

call arrival and a call completion. They defined two parameters αv and βv as the rates of 

call arrival and call completion into state (v, 0). The rate μ
v, 0 were obtained by weighing 

these two parameters. The rate αv and βv are shown in equation (4.3) and (4.4). The τ0, 

arrival is the service time to enter the state (v, 0) via a call arrival.  The τ0, completion is the 

service time to enter the state (v, 0) via a call completion. Alanis et al. [5] estimated the 

τ0, arrival and τ0, completion depending on system state v. However, we estimate τ0,arrival and τ0, 

completion do independent of the system state v. The estimation of τ0, arrival and τ0, completion are 

discussed in Section 4.4.1.2. We modify the algorithm A based on the work in Alanis et 

al. [5] to determine the service rate μ
v,0 in that not according to the exact nested-

compliance table policy. The service rate μ
v,0 can be obtained by using the iterative 

algorithm A as following.  

 1,0 1,1( )v v v        (4.3) 

 1,0 1,0 1 1,1( 1)( )v v v vv           (4.4)  

 ,0
0, 0,

v v
v

v arrival v completion

 


   





   (4.5)  

where τ0, arrival:  E[S0| any state (v, 0) entered via a call arrival]  

 τ0, completion:  E[S0| any state (v, 0) entered via a call completion] 
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Algorithm A (Modification based on Alanis et al. [5]) 

Set for all πv,c = 1/(2K+1) 

Step1: Set μ
K, 0

= 1/ τ0,arrival 

Step2: Compute αK by using equation (4.3)  

Step3: Decrease v from K to K-1, using equation (4.4) to compute βK-1 

Step4: Use equation (4.5) to obtain the value of the rate μ
K-1, 0   

Step5: Compute αK-1 by using equation (4.3)  

Step6: Decrement v from K-1 to 0 in step of 1, using equation (4.4) to obtain the value of 

βv, using equation (4.5) to obtain the value of the rate μ
v, 0 

and using equation (4.3) 

to obtain the value of αv 

4.4.1 Parameters Approximating for the Markov Chain Model 

The purpose of this section is to describe of how we calculate the service time and 

the travel time between stations (relocation time) of EMS systems.  The Markov chain 

model requires estimating average service times and average travel time between stations 

as input parameters. In Alanis et al. [5] defined the average travel time between stations 

as the rates at which in compliance states were reached, γ. The γ depended on exactly 

where the available ambulances were located and depended on the system state v. 

However, our model is different in that we estimate the average travel time between 

stations by using the covered arrival intensity for each station in order to weigh located 

ambulances to stations. In addition, the Markov chain model with relocation of Alanis et 

al. [5] assumed the transition states occurred at rate vμv,0 when in state (v, 0) and rate vμ1 
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when in state (v, 1). In work of Alanis et al. [5], the service rate μv,0 depended on exactly 

where the available ambulances were located. However, our model considers the covered 

arrival intensity for each station to estimate the probabilities where stations will be 

assigned the available ambulances to. The transition state of entering state (v, 0) occurs 

via a call arrival and a call completion. Therefore, we have to compute the expected 

service time entered state (v, 0) via a call arrival and the expected service time entered 

state (v, 0) via a call completion. However, the service rate μ1 is the average rate of call 

completion, from arrival of a call to service completion.  

4.4.1.1 Approximating Relocation Time between Stations  

For the average travel time between stations (relocation time), we consider the 

rate γ which does not depend on where the available ambulances are located exactly. We 

estimate the probability of which available ambulances are located to station m by using 

total covered arrival intensity for station m. Suppose that λ1, λ2,…, λn are proportion of 

call arrivals from demand zones1 through n. The fdm refers to the total covered arrival 

intensity for station m. The Pr(Am) refers to the probability of covered arrival intensity for 

station m.  

1

Pr( ) m
m M

m
m

fd
A

fd





 for   m = 1, 2,…, M (4.6) 

1

n

m im i
i

fd a 


   for   m = 1, 2,…, M (4.7) 
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aim  =  0 if dim > RTT  a server at station m does not cover demand zone i  

           1   if dim ≤ RTT  a server at station m covers demand zone i  

dim   the travel time between station m and demand zone i 

Estimating the γ, the travel rate per hour is simply calculated by the mean travel 

time between stations of M stations. The Tm refers to the mean travel time between any 

station to station m. The tjm refers to the travel time from station j to station m. The γ is 

obtained by using equation (4.8) and (4.9) 

160 /

m

M

m

T

M
 


 (4.8) 

1

Pr( )m j m

M

j
j

T A t


  (4.9)  

4.4.1.2 Approximating Service Time 

The Markov chain model with relocation requires to estimate the service times 

where the system enters out of compliance via a call arrival, τ0,arrival, and system enters 

out of compliance via a call completion, τ0,completion, and service rate per hour where the 

system enters in compliance, μ1.  The parameter estimation for Markov chain model is 

modified to approximate the average service times based on the approximation given by 

Alanis et al. [5]. They estimated the services time and service rate τ0,arrival, τ0,completion and  

μ1 depending on exact location configurations of compliance table being in any the K – v 

available ambulance states. However, our approximations differ in that we estimate these 

service times and service rate does not depend on the location configurations of 
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compliance table. Our estimating τ0,arrival, τ0,completion and μ1 depend on the covered arrival 

intensity of each station. We consider the covered arrival intensity to each station in order 

to weigh average response time from any station to a demand zone. We assume that the 

service time at on-scene and the time of transportation to hospital is the same for all 

demand zones. The service rate at which the system enters in compliance, μ1 is simply the 

arithmetic mean of the n demand zones for total service time of the expected response 

time and the expected service time at on-scene. It is straightforward to estimate the 

expected response time to demand zone i, E[Ri] from the mean response time of the M 

stations to demand zone i. The expected service time E[Si, on-scene] is estimated from 

empirical data that is the composition of the service time on-scene and the time to 

transport patients to hospital if needed. We describe how we estimate μ1 in Equation 

(4.10) and (4.11). 
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Where rim: response time from station m to demand zone i. 

The service times, where the system enters out of compliance via a call arrival, 

τ0,arrival is simply the arithmetic mean service time of the n demand zones. We estimate 

the service time entered out of compliance via call arrival corresponding to demand zone 

i, τ0,arrival,i from the composition of the expected service time entered out of compliance 
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via call arrival, E[S0,Travel,i|(v, 0) entered via a call arrival] and the expected service time at 

on-scene of accident, E[Si, on-scene] corresponding to demand zone i. For the purpose of 

estimating the E[S0,Travel,i|(v, 0) entered via a call arrival], Alanis et al. [5] assumed a 

known the configurations of ambulance locations specified in the compliance table. 

However, our model differs in that we estimate the E[S0,Travel,i|(v, 0) entered via a call 

arrival] by using the probability of covered arrival intensity for station m. The Pr(Am) is 

used in order to weigh average travel time from any station m  to demand zone i. The rim 

refers to response time from station m to demand zone i. In using equation (4.12) - (4.14), 

we obtains the τ0,arrival.  
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Similarly, to estimate the τ0,completion, we use the probability of covered arrival 

intensity for station m, Pr(Am) in order to weight average travel time from a demand zone 

i to station.  The service time where system entered out of compliance via a call 

completion, τ0,completion is also the mean travel time of the n demand zone. We estimate the 

service time entered out of compliance via call completion corresponding to demand zone 

i, τ0,completion,i from the composition of the expected service time entered out of compliance 

via call complete,  E[S0,Travel,i|(v, 0) entered via a call completion] and the expected 
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service time at on-scene of accident, E[Si, on-scene] corresponding to demand zone i. The 

E[S0,Travel,i|(v, 0) entered via a call completion] is composed of the mean travel time from 

demand zone to ambulance station and the mean travel time between stations. The T,m 

refers to the mean travel time between any station to station m by using equation (4.9). 

The rim refers to response time from station m to demand zone i. We use equation (4.15) – 

(4.17) for estimating τ0,completion. 
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4.5 The Formulation of the Nested-Compliance Table Model 

 

The Markov chain model with relocation was a powerful tool that could be used 

to approximate the steady-state probability of systems based on Alanis et al. [5]. This 

model provided the approximation of performance measure of EMS systems as well, 

such as response time distribution for a given compliance table policy (knowing exactly 

where ambulances are located for each state v). Therefore, if we knew the distribution of 

response time, we could estimate the expected coverage. However, the exact expected 

coverage cannot practically be used in an optimization framework. The expression will 

be a non-linear formulation. In this paper, we develop the nested-compliance table model 
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given the output of the Markov chain model with relocation, such as steady-state 

probabilities.  The steady-state probabilities can be approximated independent of the 

exact compliance table policy. Consequently, the steady-state probabilities will be input 

parameters to the nested-compliance table formulation. The objective is to determine the 

maximum expected coverage using a binary notion of coverage. The covered calls refer 

to the calls in which an ambulance from stations can respond to the call within a specified 

amount of time. We calculate the expected coverage not considering the variability of 

response time. Figure 4.2 shows the flow process of the compliance table model. 

 

Approximation of 

parameters γ,  μv,0 , μ1

Call arrival rate λ

Markov chain model 

with relocation 

Integer programming 
model: Nested-

compliance table 
formulation

The expected 
coverage and 

nested-compliance 
table policy

Output

Output

Steady-state 

probability πv,c 

Input

Input

 
Figure 4.2: The process flow of the nested-compliance table model 

 

In this section, we formulate the nested-compliance table model for the 

ambulance relocation problem. We consider a single type of patient calls and a single 

type of ambulances (paramedic units). The nested-compliance table model under 

relocation problem is introduced as an integer programming model. A Markov chain 

model is applied to approximate the steady-state probabilities when system state is in 

compliance πv,1 and out of compliance πv,0 for each state v (number of busy ambulances) 
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based on our modification of Alanis et al. [5].We consider the nested-compliance table 

model with n demand zones, K ambulance units and M ambulance stations. We assume 

that the EMS system operates with a relocation policy according to a nested-compliance 

table. We assume that one ambulance is located in each station for each state of system. 

When a call arrives to system, the closest ambulance responds to a call. If the first closest 

ambulance is busy, the second will respond to a call and so on. We assume that the EMS 

system operates as a zero-queue system. The model is formulated as an integer linear 

programming model with the approximate steady-state probabilities serving as an inputs 

to the model. We define the decision variable xmv as a binary variable. If xmv = 1, it 

indicates that an ambulance is located at station m when the system is in state v. The 

decision variable yi,v is binary variable also. If yiv = 1, it indicates zone i is covered when 

the system is in state v, For each demand zone, we define Mi as the set of ambulance 

stations that can respond to calls from demand zone i within a specific time. We use the 

following notation: 

Indices 

i = 1, 2,…, n demand zone  

m  = 1, 2,…, M ambulance station 

v = 0, 1, 2,…, K-1 state of EMS system (number of busy vehicles) 

Parameters 

λ  call arrival rate  

n  total number of demand zones 

K number of paramedic units  
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M total number of ambulance stations 

Mi set of locations that can respond to calls at demand zone i within the specific time  

λi  call arrival rate from demand zone i, such that  

  
1

n

i

i

 


  

πv,0 the steady-state probability  that the system is out of compliance when in state v 

(number of available servers is K-v) 

πv,1 the steady-state probability that the system is in of compliance when in state v 

(number of available servers is K-v) 

Decision Variables 

mvx  = 1 if an ambulance is located to station m when system being in state v (number 

of available servers is K-v) 

 = 0 otherwise 

ivy   = 1 if demand zone i is covered when system being in state v (number of available 

servers is K-v), if all vehicles are at their assigned locations 

   = 0 otherwise 

Objective function:  

Maximize  
1

,1 ,0
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   for   v = 0, 1, 2, …, K-1  (4.19) 

i

iv mv
m M

y x


    for   i = 1, 2,…, n  for   v = 0, 1, 2, …, K-1  (4.20) 

               

, 1m v mvx x   for   m = 1, 2,…, M  for   v = 1, 2, 3, …, K-1  (4.21) 
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mvx {0, 1} ivy {0, 1} 

The maximum expected coverage of the nested-compliance table model under 

relocation is introduced as an integer programming model. The objective function is to 

maximize the demand that is covered as shown in equation (4.18). The equation consists 

of products of the decision variable yi,v and the probability of covering call zone i when 

the system is in state v,  and the proportion of calls from demand zone i.  The parameter 

πv,1 indicates the probability that all available ambulances are at their assigned stations 

(the system is in compliance). Therefore, if a call from demand zone i arrives, all 

available ambulances K-v are at their assigned stations, thus we know which demand 

zones are covered directly from yi,v. On the other hand, the system will be out of 

compliance in state v with probability πv,0.  We do not know of which ambulance is not at 

its located station.  We assume that it is equally likely that one ambulance from K-v 

available ambulances is not available at its located station. The term (K-v-1)/(K-v) 

indicates the likelihood of K-v-1 available ambulances being in their stations and one 

ambulance being in en-route to its home station when the system is in state v. The 

constraint (4.19) ensures that we allocate the number of ambulances equal to the number 

of available ambulances K-v for each state of the EMS system. Constraint (4.20) indicates 

that the demand zone i is covered when at least one ambulance is located in a station in 

set Mi at each state v. Mi is the set of locations that can cover demand zone i. Constraint 

(4.21) ensures that the optimal solution is in the set of the nested-compliance table 

solutions.  The integer programming model requires us to approximate the steady-state 

probabilities of the system being out of compliance πv,0 and of the system being in 



 110 

compliance πv,1 for each state v. We discussed how to calculate these steady-state 

probabilities in Section 4.4.  

 

4.6 The Efficiency of Nested-Compliance Table Model under Relocation 

In this section, we present the results of our model applied to real-world data. The 

data was collected from Hanover Fire and EMS department, Hanover County, Virginia. 

The data consisted of approximately 12,000 calls per hour. The city covered is an area of 

about 474 square miles with 122 demand zones and has a population of about 100,000. 

We considered an EMS system with varied number of ambulances from 6 to 10 

ambulances, 16 station bases. The EMS system operated 24 hours per day.  The data set 

matched our assumption that call arrivals were Poisson during peak times, with a mean 

arrival rate of 1.5 calls per hour. The data set includes the distances between stations and 

demand zones. We assume that ambulances use vehicle speed 50 miles per hour to travel 

between stations to demand zones or stations to stations. The response time was an 

exponential distribution, with rates which depend on call zones and stations of dispatched 

ambulances. The service time was the total time in which ambulances were busy on-

scene of the accident and provided transportation to hospital if needed.  Service times 

were also assumed to be exponentially distributed. We assumed that the service time did 

not depend upon call zones and stations of dispatched ambulances. The returning time 

also followed an exponential distribution based on call zones and which station a 

traveling ambulance would return to in the new system state.   The Markov chain model 

with relocation was programmed in the Java programming language. The NetBeans IDE 
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7.3.1 was used to implement the model. The outputs of the Markov chain model with 

relocation were inputs to integer programming model, which we programmed in IBM 

ILOG CPLEX Optimization Studio 11.2.  

4.6.1 Nested-Compliance Table Model Validation 

We developed a discrete event simulation to validate the integer programming 

model. The simulation model was implemented using Arena Version14, running on an 

Intel® Core(TM)2 Duo CPU. We used the previously described data set from Hanover 

Fire and EMS department. We formulated the simulation model where data sets being 

along with our assumptions; call arrival rate was Poisson distribution and all interval 

times were exponential distribution. The objective is to maximize the expected coverage 

using a binary notion of coverage. The binary coverage refers to a call being covered if 

we dispatch an ambulance from stations within a pre-specified response time threshold 

(RTT) to respond to the call. We calculate the expected coverage not considering 

variability in response time. We used the closest policy to respond to calls. We ran the 

simulation model with 1680 simulated hours for each replication, and 500 replications. 

The simulated time was 19 minutes for each policy, compared to the integer 

programming model taking 20 seconds to obtain the optimal policy. The input parameters 

are shown in Appendix A.3.  

We compared the results of integer programming model to the results of the 

simulation model. Table 4.4 shows the absolute error and percent error of the coverage in 

comparison between the integer programming model and simulation model based on 
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same the nested-compliance policy. These results indicated the average percent error 

2.2% with the mean service time 60 minutes and 3.2% with the mean service time 70 

minutes for systems with an arrival rate of 1.5 calls per hour and a response time 

threshold of 9 minutes. Thus the approximation of our objective function used in the 

integer programming model was close to the coverage obtained from simulation model.  

The percent errors tended to be higher when the mean service time was increased.  These 

results suggest that when ambulances spend more time providing service to patients, the 

resulting increases in the busy probabilities result in increasing percent error of the 

approximated coverage using our Markov model.  

Table 4.4: Comparison of the results of the integer programming model to results of the 

simulation model at arrival rate 1.5 call per hour, and response time threshold (RTTs) of 

9 minutes 

Service 
Time 

(mins) 

# of 

Servers 

Relocation Model with  

Nested Cons.  Service 
Time 

(mins) 

# of 

Servers 

Relocation Model with  

Nested Cons.  

Math Simu. 

Abs. 

error 

% 

error Math Simu. 

Abs. 

error 

% 

error 

60 6 0.88 0.91 0.03 3.18 70 6 0.86 0.90 0.05 5.19 

  7 0.92 0.95 0.02 2.27   7 0.90 0.94 0.03 3.46 

  8 0.95 0.96 0.02 1.79   8 0.94 0.96 0.03 2.74 

  9 0.96 0.98 0.02 2.21   9 0.95 0.98 0.02 2.33 

  10 0.97 0.98 0.02 1.70   10 0.96 0.99 0.02 2.51 

 

Figure 4.3a and 4.3b showed that the expected coverage increases with increasing 

the number of ambulances. They also showed that the error of our approximated coverage 

was higher for a larger RTT (7 compared to 9 minutes) for both 60 and 70 minute service 

times. These observations suggested that the impact of the nested-compliance table model 

on the expected coverage of systems was how to set the response time thresholds (RTTs) 

in which a smaller RTT provided higher accuracy and a smaller service time provided 

higher accuracy of the nested-compliance model. The results also showed when a system 
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has larger number of ambulance, the results of the simulation model provided better than 

the results of the integer programming model. These observations resulted from the 

likelihood of out of compliance state. We assumed that ambulance being in en-route 

cannot respond to a call. In realistic condition, we might dispatch back up ambulance to 

respond to the call that simulation model allows for this assumption. However, when the 

system has a fewer number of ambulances, there is higher possibility that backup 

ambulance is not available or cannot respond to the call within pre-specified response 

time thresholds (RTTs). Therefore, the backup ambulance does affect to accuracy of our 

nested-compliance table model in case of the larger number of ambulances but in case of 

the fewer number of ambulances do not affect to accuracy of the model. 

(a) Service Time 60 minutes 
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(b) Service Time 70 minutes 
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Figure 4.3: Comparison of the coverage of 1.5 calls per hour under the integer 

programming model versus the simulation model 
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4.6.2 Comparison with Non-Relocation Model based on the Adjusted Maximum 

Expected Covering Location Model 

While our model seeks to determine the nested-compliance table through the 

Markov chain model with relocation embedded into an integer programming model, we 

have to verify the efficiency of the nested-compliance model for use in real-world EMS 

system. That is, we wish to know if there is any benefit of relocating vehicles.  In this 

section, we compared the nested-compliance table model to a traditional adjusted 

maximal expected covering location problem (AMEXCLP) based on Batta et al. [65]. 

They modified the MEXCLP objective function developed by Daskin [19]. Their idea 

was to relax the independence assumption of server busy probabilities for the hypercube 

model. The correction factors, Q(M, p, v) based on Larson [14] were included in the 

MEXCLP model.  The correction factors indicated that the probability of having v busy 

servers. The adjusted maximal expected covering location problem (AMEXCLP) was 

formulated as a baseline for non-relocation model to compare the expected coverage. The 

objective function was to maximize the expected proportion of demand that could be 

covered. The formulation of AMEXCLP was showed below.  
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AMEXCLP Model  

Objective function:  

Maximize   
1

1 1

( / ) ( , , 1)(1 )
n K

v
i vi

i v

Q K p v p p y  

 

          (4.22) 

Subject to 

1 1

0
K K

vi vi v
v v

y a x
 

     i          (4.23) 

1

K

v
v

x K


             (4.24) 

vx {0, 1}   v    

viy {0, 1}   ,v i  

avi  =  1   if dvi > D   a server at station v does not cover demand zone at i  

          0    if dvi ≤ D   a server at station v covers demand zone at i  

yvi  =  1 if demand zone i is covered by at least v servers  

          0    otherwise 

xv   =  1 if server locates at  station v 

          0    otherwise 

p    server busy probability 

K   number of servers to be located 

n    number of demand zones  

We used the real-world data from Hanover Fire and EMS department to compare 

the two models. We consider two instances of the data set, where the first data set is data 

from real world problem and the second is data set from random proportions of demand 
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zones based on the first data set. We compared the results of integer programming model 

of AMEXCLP to results of the simulation model. Figure 4.4 showed the expected 

coverage with varied number of ambulance from 6 to 10. These results indicated the 

average percent error 1.5% with the mean service time 70 minutes. These observations 

showed that the approximations of AMEXCLP are pretty close to the simulated 

AMEXCLP policies.  Figure 4.5a showed results from real world problem and Figure 5b 

showed results from random proportions of demand zones. We varied the number of 

ambulances from 7 to 10 given that response time thresholds were 7 and 9 minutes.  We 

compared the results of our nested-compliance table model to non-relocation model 

based on the AMEXCLP, with call arrival rate 1.5 call per hour and the mean service 

time 70 minutes.   

0.75

0.80

0.85

0.90

0.95

1.00

5 6 7 8 9 10 11

C
o

v
er

ag
e 

fo
r 

1
.5

 c
al

ls
 p

er
 h

o
u
r

Number of ambulances

 RTT < 9 mins: Math of AMEXCLP
 RTT < 9 mins: Simulation

  
Figure 4.4: Comparison of the coverage at 1.5 calls per hour and RTT < 9 minutes under 

the AMEXCLP math model versus the simulated AMEXCLP policy 
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(a)      Dataset from real world problem 
 

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

5 6 7 8 9 10 11

C
o

v
er

ag
e 

fo
r 

1
.5

 c
al

ls
 p

er
 h

o
u
r

Number of ambulances

Case1: (7 mins) Nested Relocation Model

            Non-Relocation Model (AMEXCLP)

Case2: (9 mins) Nested Relocation Model

            Non-Relocation Model (AMEXCLP)

Covered < 9 mins 

Covered < 7 

mins 
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Figure 4.5: Comparison of the coverage of 1.5 calls per hour and service time 70 mins 

under the nested-compliance table model versus the non-relocation model (AMEXCLP) 

 

These results showed improvement in outcomes when using the nested-

compliance table model in comparison to non-relocation policy based on the AMEXCLP, 

coverage is calculated in the simulation model (since the AMEXCLP provides a different 

approximation of coverage which does not account for relocations). In Figure 4.5a when 

we used the criteria of response time threshold 9 minutes, the results showed 

improvement average 2.8% of the nested-relocation policies in comparison to non-

relocation policies. When we reduced the criteria of response time threshold to 7 minutes, 

the results showed the slightly decreasing of the benefit of our nested-relocation policies 

to 2.1% improvement in comparison to non-relocation policies (AMEXCLP). These 

results showed higher efficiency of our nested-compliance model over the non-relocation 

based on AMEXCLP. In Figure 4.5b, we used the data set from random proportions of 
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demand zones based on the first data set. The results indicated that percent improvement 

of the nested-relocation policies in comparison to non-relocation policies were average 

6.1% in which there were more percent improvement than dataset from real world 

problem. The observations of the data set from random proportions of demand zones 

showed lower number of stations that could cover for high proportion of demand zones 

than the data set from real world problem. These results suggested that the efficiency of 

the nested-compliance table model depends on number of stations that could cover for 

high proportion of demand zones. This implied that dataset of lower number of stations 

that could cover for high proportion of demand zones would provide more efficiency of 

the nested-relocation policies. The intuition behind this result can be explained in the 

following manner.  In an EMS systems where there are fewer stations that can cover a 

high proportion of demand zones, if a call arrives to system, and the first closest 

ambulance is not available, without relocation, there is a higher probability that the 

second closest ambulance was not located in a station that could cover that demand zone. 

If we relocated an ambulance to stations that could cover this call, we would increase the 

expected coverage of EMS systems.  

 

4.7 Conclusions and Future Research 

In this paper, we formulated and validated a nested-compliance table model of an 

EMS system under relocation. We modeled the nested-compliance table as integer 

programming model. The model requires outcomes of steady state probabilities from a 

Markov chain model with relocation to be input parameters for our integer programming 
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model. The solutions were validated with data set from real-world problem. The 

mathematical model provided solutions the pretty close solutions to simulation solutions 

based on an objective of the maximum expected coverage using a binary coverage. The 

calls are covered if the assigned ambulance is located to station within a pre-specified 

response time. The validation showed that the nested-compliance table provided 

estimates of average error 2% - 3%. We have demonstrated the efficiency of the nested-

compliance table model in comparisons to results from the non-relocation (AMEXCLP) 

model.  The results showed that our model provided improvement of solutions over the 

results of the non-relocation (AMEXCLP) model of average 2.8% based on original data 

set from real-world problem and 6.1% based on data set from random proportion of 

demand zones.  The performance of the nested-compliance table model depended on the 

pre-specified response time threshold (RTT) to calculate the expected coverage and data 

set of problems.  

Implementing solutions to real-world problem suggests that the solutions of the 

nested-compliance table model provided improvement over the non-relocation 

(AMEXCLP) model depended on where the binary coverage is used. In the realistic 

problem, the distribution of response time might affect the realized expected coverage. 

The observation of results showed that the efficiency of the nested-compliance model 

depends on the average travel time between stations (relocation time). The application of 

the nested-compliance table model should be limiting the relocation time between 

stations. Thus, the possible way to impose an upper bound of relocation time is to 

partition service time in to small sub-areas (districts). The relocation rules which 
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allowing an ambulance moving within its district will further expend of the nested-

compliance table model. 
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CHAPTER FIVE 

 

A NESTED-COMPLIANCE TABLE MODEL EMBEDDED INTO A TABU 

SEARCH HEURISTIC FOR DISTRICTING AND RELOCATION  

IN EMS SYSTEMS 

 

 

 

5.1 Introduction 

 

The goal of emergency medical service (EMS) systems is to save the lives of out-

of-hospital patients. The most common performance measure used to evaluate the 

efficiency of EMS systems is coverage, which is the proportion of calls that can be 

responded to within some pre-specified time standard. Coverage is related to the 

allocation of ambulances to stations to service areas in potential demand zones. 

Relocation, which involves moving ambulances to replace ambulances that have become 

busy in order to prevent some demand areas from being uncovered, is a well-known 

strategy to improve the performance of EMS systems. However, in Chapter 4 the 

objective of our work was to maximize the expected coverage using a binary notion of. A 

call will be covered if we dispatch an ambulance from a station within a pre-specified 

response time threshold (RTT) to respond to the call. In realistic EMS systems, the results 

of realized expected coverage (whether the call was actually reached within the time 

standard, not whether it should have been reached) might be different. The observation in 

Chapter 4 suggests that limiting relocation time is important for implementation of a 

relocation model in real-world systems based on the realized expected coverage measure. 

Long relocation time can result in the loss of calls that arrive during the move of an 

ambulance to a new station.  Therefore, the decisions regarding relocation could be 
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improved by imposing some limitation on relocation time. One possible way to impose a 

relocation time restriction is to partition the whole service area into districts. In this work, 

we incorporate the districting problem into our relocation model.  The service area is 

partitioned into small sub-areas (districts). Each sub-area operates under a particular 

relocation strategy based on a compliance table policy.  

Our major contribution is to determine districting strategies that maximize the 

overall realized expected coverage among districts. The realized coverage refers to a call 

being covered if an ambulance responds to a call within a pre-specified response time 

threshold (RTT) that is coverage is calculated post, not pre, ambulance arrival.  We 

calculate the expected coverage considering variability of response time.  The decisions 

are two-fold.  First, we determine how to partition service areas into districts and allocate 

ambulances to each district. Then, we determine the compliance table policy for each 

district; that is, we embed a relocation strategy into the districting model. The compliance 

table is a table that shows the choices of open stations depending upon the number of 

available ambulances. The details of the compliance table are presented in Chapter 4. The 

EMS systems operate under a dynamic strategy. Each district operates individually based 

on its own compliance table policy. We fix the dispatching policy to always send the 

closest ambulance to respond to a call.  We consider an intra-district policy, which does 

not allow for ambulances to cross districts. The benefit of an intra-district policy is that 

relocating ambulances is forced to occur within a single district, which allows us to 

impose a limiting relocation time constraint. Thus, it is possible to increase the 

probability of availability of ambulances at potential locations.  In this paper, we consider 
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a single call priority and a single type of ambulance (paramedic units). We combine two 

main decisions: districting and relocation. The algorithm is formulated by taking into 

account the compliance table model and embedding it into a tabu search heuristic. The 

objective is to maximize overall expected coverage. 

In this study we: 

 Develop a districting model for EMS systems that considers the number of 

districts and the allocation of ambulances to districts. 

 Propose a tabu search heuristic to determine the maximum overall realized 

expected coverage using a searching method based on the optimization of the 

nested-compliance table formulation in Chapter 4. 

 Show, through the numerical results of simulated realized coverage, how the  

solutions from our combination of districting and relocation strategies compare 

with the non-district and non-relocation strategies based on the adjusted 

maximum expected covering location problem (AMEXCLP) of Batta et al. (1989) 

in real world problems. 

This article is organized as follows. In Section 5.2 we provide a brief review of 

the districting problem in service systems applications. Section 5.3 presents a description 

of EMS systems with districting and relocation strategies, as well as a description of  how 

we developed the model. Section 5.4 presents the tabu search and nested-compliance 

table algorithms. Section 5.5 presents a more detailed discussion of the tabu search 

approach. Section 5.6 presents the efficiency of the districting and relocation solutions. 

Finally, Section 5.7 presents the conclusion and a discussion of future work. 
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5.2 Literature Review 

 

Initial work described in service systems, Hess et al. [88] considered the service 

area of police patrol system into small sub-areas.  It was referred to as a “districting 

problem” in which the region was partitioned into districts in order to improve outcomes 

of service systems. An integer programming model was formulated to minimize the sum 

of the squared distance given a particular number of districts. The decision was to assign 

the population to districts.  Similar work of Gass [89] used a heuristic for police patrol 

problem presented by Hess et al. [88]. Bertolazzi et al. [90] formulated the districting 

problem as an integer programming problem. The objective was to minimize the overall 

travel time while providing workload balance. The decision was the allocation of calls to 

the stations. an application of the districting problem to transportation problem, Marlin 

[91] considered the districting problem to minimize total travel cost. The decisions were 

to assign locations and workload to districts. They considered upper and lower bounds of 

total workload for each district. They formulated the model as a linear programming 

model. Fleischmann and Paraschis [92] considered the application of districting problem 

in design of sales territories. They formulated an integer programming model. The 

objective was to minimize the total scores of products with distance between center 

coordinate and center locations of sales territories. Schoepfle and Church [93] considered 

the districting problem which applied to school systems. They introduced a network flow 

problem which was equivalent to a districting problem. They formulated their model as a 

linear programming model. They referred to it as the Generic Districting Problem 

(GDiP). Hojati [94] considered the optimal political districting problem given tolerance 
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of districts. The decision was to assign populations to districts by applying the 

transportation problem. They resolved the problem by splitting problem until 

convergence occurs. Geroliminis et al. [95] extended the districting problem to consider 

spatial and temporal demand. Their model accounted for the probability that a server is 

not available. The model considered server rate which is dependent on districting and 

dispatching policies. They formulated the model as an integer programming model using 

an embeded spatial queuing model. Several works considered restricting the districting 

problem by only allowing redistricting to occur between adjacent districts, which are 

more realistic, to improve the efficiency of systems. 

Several works related to the districting problem allow activities to cross district 

boundaries. Larson and Stevenson [96] introduced the response redistricting problem in 

EMS systems. They considered the redistricting problem associated with facility location 

allowing for response across district boundaries. They first introduce a system in which 

servers did not cross district boundaries.  Then, they assumed that a server might respond 

to a call from an adjacent district. Larson [97] considered a hypercube queuing model for 

location and redistricting problem. The model included inter-district (boundary crossing 

allowed) and intra-district (boundary crossing not allowed) response given dispatching 

policies. Traditional districting models considered the minimum sum of distance as 

objective functions; Plane [98] considered an alternative objective function in the 

redistricting problem. The alternative objective is to maximize interaction/minimize 

separation. The maximum interaction was referred to as the maximum intra-district 

spatial interaction or minimum intra-district interpersonal separation. The maximum 
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interaction was the maximization of total flow connecting all possible pairs of nodes with 

other districts. The minimum separation was the minimization of total flow connecting all 

possible pairs of nodes within districts. Justin and Williams [99] reviewed the 

redistricting problem. They mentioned the contribution of studied redistricting problem in 

several subtopics: possible criteria, methods (e.g. optimization, heuristic algorithm), and 

the extension of future works. 

Other studies considered an optimization based on heuristic approach or a 

heuristic approach to the districting problem. Mehrotra et al. [100] considered the district 

boundaries within the state of South Carolina, US. They proposed an optimization based 

heuristic algorithm to solve the districting problem while providing population equality.  

They developed a mathematical model to obtain the district policies and used a branch-

and-price method to determine the policy to yield equally size of populations for district. 

Muyldermans et al. [101] considered the districting problem in road networks. The road 

networks were partitioned to districts. The problem accounted for the different types of 

routing. The decisions were to choose the routing, balance in workload, configuration of 

sub-areas and center of the depot of each district. They considered the heuristic procedure 

for districting problem. Amico et al. [102] considered a redistricting problem to police 

command boundaries. They modeled the problem as a graph-partitioning problem subject 

to constraints of contiguity, compactness, convexity and size. The simulated annealing 

algorithm was proposed to search the partitions of districts. Bozkaya et al. [103] 

considered a political districting problem. The problem was modeled subject to several 

constraints such as contiguity, population equality, and compactness. The problem was 
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solved by using a tabu search algorithm. Ricca and Simeone [104] presented the 

districting problem for political elections. They applied a traditional political districting 

model to formulate their model. The mathematical model was very complicated. They 

used a local search heuristic to search a good solution. Iannoni et al. [105] consider the 

combination of location and districting problem on highway. The objective was to 

minimize average response time while considering balancing workload in systems. The 

problem approach used a spatial distributed queuing model embedded into a hybrid 

genetic algorithm.  

In this work we extend the relocation strategies proposed in Chapter 4. In 

particular, we developed a model which considers the partitioning of the service area into 

districts. We then applied the compliance table model into the sub-areas to maximize 

overall expected coverage. The decisions are number of districts, locations of ambulance 

for each district and the compliance table for each district. This work differs the previous 

work in that we consider the combination of districting and relocation in a single model.   

 

5.3 EMS Systems with Districting and Relocation 

 

EMS systems operate as a zero-queue system. We consider an EMS system with a 

single dispatch and single call priority. The EMS system operates under a relocation 

strategy with a nested-compliance table. That is, we consider a relocation policy in which 

we allow for relocation of at most one ambulance upon call arrivals and call completions. 

When the whole system operates as a single district, the nested-compliance table 
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approach may produce undesired relocation times. The upper bound on relocation time 

results in increasing the performance of implemented the nested-compliance model to 

EMS systems.  In this chapter, we present EMS systems in which the service area is 

partitioned into sub-areas to limit the relocation time. This is referred to as the 

“districting problem”. The districting model generates the service area to the small sub-

areas. The number of ambulances is given to each sub-area. Each sub-area operates as a 

distinguishable sub-system, responding to calls and relocating within its sub-area. Given 

the partitioned service area, we operate each sub-area under relocation policies based on 

the nested-compliance table.  Figure 5.1 provides an example of districting and the 

nested-compliance table model. We partition the whole service area into two districts 

given two ambulances for district A and three ambulances for district B shown in Figure 

5.1(a). The district A and B operate independently. Suppose a call of demand zones in 

responsibility area of district B arrives to a system, and the ambulance in station4 respond 

to the call shown in Figure 5.1(b).  The system state of district B changes to one busy 

ambulance. The located ambulance in station5 moves to replace the ambulance at 

station4 shown in Figure 5.1(c). No ambulances of district A in station1 and 2 are 

dispatched across district to respond the calls from demand zones in district B and no 

relocating ambulances of district A to replace the ambulance at stations in district B. The 

sequence of events of sub-system under relocation is discussed in Section 4.3, Chapter 4. 

The procedures and assumptions of how we approach the districting and the nested-

compliance table problem are described as follows.  Figure 5.2 shows the overall process, 

and is discussed in detail in Section 5.4  
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 Partitioning the service area: the service area is partitioned based on relocation time 

between stations. The model limits relocation time given the specified upper bound of 

relocation time. 

 Assigning number of ambulances: we determined the number of ambulance for each 

sub-area based on call volume. Given some possible number of ambulances for each 

sub-area, comparison between policies is demonstrated to obtain the better policy. 

 Determining the nested-compliance table policy: the optimization model of the nested-

compliance table based on previous work in Chapter 4 is used to determine the optimal 

nested-compliance table for each sub-area. The objective is to maximize the realized 

expected coverage for each sub-area. 

 Evaluating the solution: we consider the realized expected coverage based on the 

objective of the nested-compliance table under relocation model which is presented in 

Chapter 4 to evaluate the solution. 

 Developing solution: we consider the tabu search heuristic to develop the solutions. 

 Demonstrating model: the districting and the nested-compliance table models are 

demonstrated using real world data. A comparison between our model and adjust 

maximum expected coverage location problem (AMEXCLP) [24] is provided to show 

the efficiency of our tabu search heuristic.     
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          (a) Full ambulances at opened STs       (b) One ambulance busy for both district A and B 

                                                                                   

 
                                                                       (c)  Relocated one ambulance to replace higher 

call volume area for both district A and B 

Figure 5.1: The combination of the districting and relocation strategies  

 

 

5.4 Tabu Search Heuristic and Nested-Compliance Table Policy for EMS Systems 

In this section, we describe the algorithm of the nested-compliance table 

embedded into a tabu search heuristic for the districting and relocation problem. The tabu 

search is an iterative method to search for near optimal solutions where the objective 

function is to maximize the expected coverage throughout each solution. We classify 
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solutions into two categories: districting and nested-compliance table solutions. The 

efficiency of the algorithm to search for better nested-compliance table solutions depends 

on the districting solutions. In districting algorithm, the algorithm consists of two loops 

for improving two solutions: station solution and demand zone solution in which the loop 

of demand solution is contained inside the loop of station solution. The tabu search 

heuristic is a powerful tool for this nested problem structure while genetic algorithm 

requires generating large number of chromosomes for station solution and generating 

large number of chromosomes for demand zone solution that are contained inside of each 

chromosome for station solution resulting in longer computational running time.  Figure 

5.2 shows the flow process of our algorithm to search the solutions of districting and 

relocation problem. The procedure approach is described as follows: 

 Generating the initial districting solutions consists of two solutions: stations for each 

district and demand zones for each district given number of districts and number of 

ambulances for each district. 

 Generating the optimal nested-compliance table for each district, we use an 

optimization model of the nested-compliance table formulation to locate ambulances 

to stations for each state for each district given number of ambulances for each 

district. 

 Developing solution of the demand zone solutions for each district, we consider the 

tabu search heuristic whereas the algorithm incorporates the method to determine the 

optimal nested-compliance table solution inside. 
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 Developing solution of the station solutions for each district, we also consider the 

tabu search heuristic whereas the searching demand zone solutions and optimal 

nested-compliance table solutions are embedded into this algorithm.  

 

5.4.1 The Application of a Nested-Compliance Table Model 

 

The nested-compliance table is a particular table in which shows the number of 

busy ambulances associated with where exact ambulances are located to. The dynamic 

relocation deals with the real-time movement of one ambulance to new location. We 

describe the EMS systems as the two-dimensional state spaces. The first state variable 

V(t) denoted the status of number of ambulances busy at time t. The second state variable 

C(t) indicated the status of systems in compliance, C(t) = 1 or out of compliance, C(t) = 0 

at time t. The in compliance states mean all available ambulances are ready at their home 

stations to respond to call arrival, whereas out of compliance states mean one ambulances 

is not ready at its home station to respond to call arrival. It is during traveling to new 

home station. Suppose we have Kj ambulances in district j, there are particular 

combinations 2Kj-1 possible states to system where the (Kj, 1) does not existing because 

of no any ambulance available at station. The assumptions of the nested-compliance table 

model for EMS systems are: 

 The service area is partitioned into districts. Each district consists of demand zones 

which each district operates independent. Each demand zone i calls arrive according to 

a Poisson process. The λ is total call arrival rate and λi is call arrival rate of demand 

zone i. The calls require the dispatch of the closest ambulance within their district.  
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 There are K ambulances that are divided into Kj ambulances for each district. In 

general, the server has distinct mean service time depends on its home station, demand 

zone required service and the decision of a new home station which dispatched 

ambulance traveling back to. 

 Relocated an ambulance for each district occurs when the number of busy ambulances 

changes; call arrival and call completed service. The one ambulance has to move to the 

new home station in the new system state. We described the event of relocation in 

Section 4.3. 

 We determine the approximation steady-state probability πv,c(j) for district j based on 

our previous work in Sections 4.4. The assess of steady-state probability, we need to 

approximate some parameters; the average rate μv,0(j) of call arrival for district j when 

in state (v, 0), the average rate of call completion  μ1(j) for district j, and the average 

travel time between stations γ(j) for district j. The approximations of parameters of 

transition rates are described in Section 4.4.1 

In application of nested-compliance table formulation we have two decision 

variables. We formulated the nested-compliance table model as integer programming 

model based on our previous work in Section 4.5. The maximum expected coverage is 

determine individually for each district. The details of the objective function and 

constraints are described in Section 4.5.  
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 ( )mv jx  = 1 if an ambulance is located to station m in district j when system being in 

state v  

 = 0 otherwise 

( )iiv d jy    = 1 if demand zone i assigned to district j is covered when the system in district 

j is in state v if all vehicles are at their assigned locations 

   = 0 otherwise 

Objective function for each district j:  

Maximize  
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Table 5.1 The parameters of the nested-compliance table model and the tabu search 

heuristic 
Notation  Description 

n number of demand zones 

J number of districts 

Mj number of ambulance stations in district j 

Mi(di=j) set of locations in district j that can respond to calls at demand zone i within the specific time 

where demand zone i assigned to district j 

M number of ambulance stations in the EMS system 

λi  call arrival rate from demand zone i, such that  

di indicate the district of demand zone i 

J number of districts 

Kj number of paramedic units at district j 

K number of paramedic units  

i   indicator of demand zone as i = 1, 2,…, n 

j   indicator of district as j = 1, 2,…, J 

λ arrival rate 

λi(di = j) arrival rate of call zone i assigned to district j 

πv,0(j) the steady-state probability  that the system in district j is out of compliance when in state v 

(number of available servers is kj-v) 

πv,1(j) the steady-state probability that the system in district j is in compliance when in state v 

(number of available servers is K-v) 

 

5.4.2 Tabu Search Approach for Districting and Relocation Problem  

In this section, we describe the tabu search algorithm which is developed for the 

districting and relocation problem. The iterative procedure is used to search the 

maximum expected coverage throughout two searching and an optimization steps: 

determining the optimal nested-compliance table solution, searching the demand zone 

solution and searching the station solution. We keep results of the maximum expected 

coverage given by the optimal nested-compliance table solution to the loop of searching 

the demand zone solution. We also keep in memory the maximum expected coverage 

given by both the optimal nested-compliance table and demand zone solution to the loop 

of searching the station solution. We start with descriptions of the components of the tabu 

search heuristic for the station solution (main algorithm), the demand zone solution 
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(algorithm A) and the optimization model of the nested-compliance solution (algorithm 

B). Figure 5.2 shows the process flow of the nested-compliance table embedded into the 

tabu search heuristic.  

 

5.4.2.1 The Objective Function by Using the Nested-Compliance Table with 

Relocation Model  

An application of the nested-compliance table with relocation in Section 4.5, 

Chapter 4 is applied to obtain the objective function (fitness). The objective function is to 

maximize the expected coverage throughout all districts. The v is state of system which 

indicates number of busy servers, for each district. The parameter πv,1(j) is the steady-state 

probability of district j  that the system is in compliance when in state v. The parameter 

πv,0(j) is the steady-state probability of district j  that the system is out of compliance when 

in state v. The λ is total arrival rate. The λi(di=j) is the call arrival rate from demand zone i 

assigned to district j. The variable yiv(di=j) is 1, if demand zone i is in district j and covered 

in state v and otherwise is zero. We use the same notation following notations in Section 

4.5, Chapter 4. Table 5.1 shows notations of our algorithm. We consider the constraints 

following equation (4.19) – (4.20) to provide the feasible solutions.  The objective 

function is calculated by 
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Figure 5.2: The process flow of the nested-compliance table embedded into the tabu 

search heuristic algorithm 
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5.4.2.2 Generating an Initial Districting Solution  

The initial districting solution is generated by using a heuristic algorithm. The 

districting solutions found throughout the heuristic algorithm consist of three sequential 

steps.  

(a) We first start with a number of districts equal to two. Starting with first district, 

we first select the station at a corner of map to assign to the set of the first district. 

We then gradually select a station by selecting its closest adjacent units. We 

consider an upper bound of relocation time between current assigned station and 

the next station assigned into the same district. The district is completed when no 

adjacent station- is near-by within the upper bound of the relocation time. If no 

any station is located in the current district for which travel time from the current 

assigned station to them is within the upper bound of relocation time, we then 

start to consider the next district and so on. We then update the number of districts 

when all districts are completed and remaining stations cannot assign to  any 

district 

(b) We consider demand zones to assign to each district. We determine the demand 

zones for each district using the maximum number of covered stations for each 

demand zone. Suppose we consider demand zone i. If more than one district has 

number of stations which can cover demand zone- i equally, we use the closest 

stations.  The demand zone i will be allocated to the same district as its closest 

station.  
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(c) The number of ambulances is assigned to each district based on call volumes. We 

consider some possible solutions by increasing and decreasing number of 

ambulances. 

Algorithm Initial ST solutions 

begin  

 initialize number of district equal to two 

 for each district j 

 select the station at the corner of the map to assign to the first district (district j) 

 gradually select an adjacent station within relocation time which is the closest station  

 if no adjacent station is in relocation time, update number of districts 

 until all stations are assigned to district 

 if all districts are completed and remaining stations cannot assign to any district, update the – 

  number of district = number of district + 1 

 repeat for loop again 

end 

Algorithm Initial demand zone solutions 

begin 

 for each demand zone i 

for each district, count the number of stations which cover the demand zone i (respond to 

demand zone i within a given pre-specified RTT)  

select the district which contains the maximum number of stations which can respond to 

demand zone i within the given RTT, Suppose it is district j 

assign demand zone i to district j 

 if more than one district are selected, choose the closest station (Suppose the closest is in 

district k). We assign demand zone i to district k 

 until all demand zones are assigned to district 

end 

 

5.4.2.3 Solution representation 

The permutation representation is used to present our solutions. The 

representation shows three solutions in which there are relationships among three 

decisions: station solution, demand zone solution and nested-compliance table solution. 

Since the nested-compliance table solution depends on the station solution by considering 

the open stations of each district, which allows for assigned ambulances available to them 

for each state. While the demand zone solution provides the call arrival rates to calculate 
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the steady state probabilities of each district, we use this information to create the optimal 

nested-compliance table solution for each district. Figure 5.3 shows the instance of 

problem size n = 14, m = 9, and J = 3. The two servers are assigned to district A. The 

station solution is represented by station s2, s3 and s8 which are assigned to district A. 

The demand zone solution is represented by demand zone z1, z2, z4, z6 and z11 which 

are assigned to district A. The compliance table solution is represented by the ambulances 

available at station s2 and s8, when the system of district A is in state v = 0, and at station 

s8 where system of district A is in state v = 1. 

 

C A A C C B B A B

A A B A B A B

S1 S2 S3 S4 S5 S6 S7 S8 S9Station

District

B B B A C C C
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District
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1 0 1

S1 S2 S3 S4 S5 S6 S7 S8 S9State v

0

1 0 0 1

Station solution

Demand zone 

solution

Compliance 

table solution

 
Figure 5.3: Permuted representation of the district and relocation problem 

5.4.2.4 Improving process 

We consider the improving procedure which the best neighborhood solution as a 

candidate solution to compare with the current solution. If the candidate solution is better, 

the candidate solution will be the best so far solution and the candidate solution will be 

the current solution also. If the candidate solution is lower than the current solution, the 

candidate solution will be the current solution but the best so far solution does not 
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change.  In this section, we discuss the “neighborhood” solutions for each decision 

individually: the station solution, the demand zone solution and the optimal nested-

compliance table solution. 

5.4.2.4.1 Neighborhood of Main Algorithm 

We consider the neighborhood solutions of a station solution.  In Figure 5.4 we 

show the current solution and one of the neighborhood solutions. Each station (box) 

contains the letter that indicates its specified district. The neighborhood solution is to 

swap a pair of adjacent stations under a constraint. We consider the constraint of 

relocation time. The relocation time between a pair of swapping stations with other 

stations in the same district after swapped is less than the upper bound of relocation time. 

We consider all possible solutions in the neighborhood of the current solution. For 

example suppose we have four stations in Figure 5.4. The current solution {s3, s4} = {A, 

C} is swapped to {s3, s4} = {C, A} where relocation time between s1-s3 and s2-s4 are 

less than the upper bound of relocation time. 

5.4.2.4.2 Neighborhood of Algorithm A (demand zone assignment) 

We consider the neighborhood solutions of a demand zone solution.  Figure 5.4 

shows an example of a neighborhood solution of the demand zone solution. We start by 

randomly selecting a district for the swapping procedure. We examine a demand zone at 

a boundary area of the chosen district to swap with the demand zone of its adjacent 

district. Suppose we search the demand zone at the boundary area of the chosen district, 
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which we consider the demand zone: z2 (district A) which its adjacent demand zone: z3 

(district B) indicates in different district. Thus, we consider {z2, z3} = {A, B} to swap to 

{z2, z3} = {B, A}. We examine all the solutions in the neighborhood of the current 

solution with restrictions above. 

5.4.2.4.3 Algorithm B (compliance table assignment) 

We consider the optimal solution of a nested-compliance table solution.  The 

optimal solution is determined by using the formulation in Section 4.1. We determine the 

optimal nested-compliance table for each district. The overall expected coverage of 

current solution is composition of the expected coverage for each district.  

C A A C

A A B A B A B

S1 S2 S3 S4Station

District

z1 z2 z3 z4 z5 z6 z7Zone

District

Station solution

Demand zone 

solution

C A C A

S1 S2 S3 S4

A B A A B A B

z1 z2 z3 z4 z5 z6 z7

Figure 5.4: Permuted representation of swapping in the district and relocation problems 

 

In improving solution, we use a tabu lists to record the old solutions in the lists. 

We considered separate tabu lists for station solution, demand zone solution and 

compliance table solution. Each tabu list consists of pairs of swapped solutions. Islam 

and Eksioglu (1997) recommended that the tabu list size was too small, the algorithm 

might be cycling and too large, good solutions might be skipped. They suggested that the 

appropriate size of a tabu list was five – ten recorded solutions to provid the better 

solution. We choose seven pairs of recorded solutions. For other parameters of traditional 

tabu search algorithms, previous work suggested that the stopping rules the solution. In 
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this work we consider a maximum CPU time to determine the number of iterations. We 

limit the running time of our algorithm for a size problem of five servers at an hour. The 

TS is run for the station solution at 10 iterations, and the demand zone solution at 300 

iterations whereas the nested-compliance table solution we use the optimization model of 

formulation in Section 5.4.1. 

 

5.5 Computational Results 

 

In this section, we present computational results based on real-world data. A case 

study of data set from the Hanover Country Fire and EMS department, Hanover Country, 

Virginia is used to investigate our model. The service area of 474 square miles is 

partitioned into 122 demand zones and 16 station bases. The system handles 

approximately 1.2 calls per hour.   The assumptions of our model were the same as 

assumptions in Section 4.6, Chapter 4. We assumed that call arrivals were Poisson during 

peak time, with mean arrival rate of 1.5 calls per hour. The service time follows an 

exponential distribution, with mean service time of 70 minutes. The response time and 

the returning time follow a lognormal distribution. The relocation time between stations 

follow an exponential distribution based on the current station and a new home station in 

the new system state. The algorithm was programed in the Java programming language. 

The NetBeans IDE 7.3.1 was used to implement the algorithm.We considered an EMS 

system with varied number of ambulances from 5 to 10. We terminated the program 

using the stopping criteria which was presented in Section 5.4.  
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We developed a discrete-event simulation to compare our nested-compliance 

table embedded into tabu search heuristic model to non-districting and non-relocation 

model based on the adjusted maximum expected covering location problem 

(AMEXCLP). Table 5.2 shows the comparison of the results of our nested-compliance 

table embedded into the tabu search heuristic to the AMEXCLP model. We varied the 

arrival rate from 1.0 to 2.5 calls per hour in a system with 7 ambulances, given a mean 

service time of 70 minutes, a pre-specified response time threshold of 9 minutes and a 

fixed maximum relocation time of 9 minutes.  The column “Simu.” shows the simulated 

expected coverage as a result of implementing the policies produced by either model, 

while the column “Resp T” shows the simulated average response time.  These results 

show improvement in the realized expected coverage when using our algorithm over the 

AMEXCLP model. The observations of results indicate that the increasing of arrival rate 

results in increasing for the efficiency of our algorithm in which the average percent 

improvement was 3.26%. Figure 5.5 shows a comparison of our algorithm to the 

AMEXCLP model in terms of the resulting realized expected coverage and the expected 

response time. The results show that our algorithm provided the better statistically 

significant difference when the arrival rate was 1.5 to 2.5 calls per hour. The 

improvements are higher when the arrival rate is increasing or systems have higher busy 

probability of ambulances. Considering our model, as expected, when the arrival rate 

increased the expected coverage decreased while the expected response time increased 

(the slight decrease between arrival rate of 1.5 and 2.0 is not significant and is due to 

simulation uncertainty). This observation suggested that using the nested-compliance 



 145 

table model based on a binary coverage the solutions might be not the optimal solution 

for realized expected coverage, but our solutions still provided the benefits over the 

AMEXCLP solutions.  The results of applying the AMEXCLP solution to the simulated 

real system reveal unexpected results.  In particular, the expected coverage and expected 

response time are not monotone in the arrival rate (these differences are significant).  We 

believe this is driven by two assumptions of the AMEXCLP model which we relaxed in 

the simulation.  First, the AMEXCLP is based on the binary coverage in which the 

solutions might be not the optimal solution for realized expected coverage. Another effect 

resulted from the realized response time distribution following a lognormal distribution 

while the AMEXCLP assumed the response time following an exponential distribution. 

However, the distributions of response time did not affect to the nested-compliance table 

model because of the steady-state probabilities of our model were insensitive to the 

shapes of response time. If the composition of response time and service time (total 

service time) were state-independent and relocation time approves infinity, then the 

model approaches an Erlang loss model.  

Table 5.2: Comparison of the districting and relocation model (tabu search heuristic) to 

non-districting and non-relocation model (AMEXCLP) under varied arrival rate 

Total # of 

Servers 

 

 

# of 

Districts 

Arrival 

Rate: calls 

per hour. 

Districting and Relocation 

Based on Tabu Search 

Heuristic 

AMEXCLP- Non Districting 

and Non Relocation % 

Improved Simu. RespT Simu. RespT 

7 3 1.0 0.93 3.89 0.92 4.42 0.87 

   1.5 0.92 3.96 0.88 5.11 5.36 

   2.0 0.92 3.93 0.89 4.55 3.55 

   2.5 0.92 4.02 0.86 5.03 6.80 

 

 

     

3.26 
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Figure 5.5: Comparison of the expected coverage and response time of the districting and 

relocation model versus the non-districting and non-relocation model (AMEXCLP)  

Table 5.3 shows results for different number of ambulances. We compared the 

results of our algorithm to the AMEXCLP model with varied number of ambulances. We 

observed that the nested-compliance table embedded into the tabu search heuristic 

provided better outcomes for the realized expected coverage at average 2.29%. These 

outcomes showed that the smaller number of ambulances provided better efficiency of 

our algorithm than larger number of ambulances. These results suggest that when systems 

have higher busy probability of ambulances, the nested-compliance table embedded into 

the tabu search heuristic achieved better realized expected coverage. In cases of small 

number of ambulances (6 and 8 ambulances), the results of 6 ambulance showed a slight 

improvement and 8 ambulance showed negative improvement because of imbalance load 

between districts for assigned number of ambulances to districts. We can improve these 

solutions when implementing in practice by moving some demand zones to obtain 

balancing load between districts. The observations of our model showed that the results 
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of the realized expected coverage and the expected response time were not consistently a 

large improvement over the AMEXCLP solutions.  We believe this is resulting from the 

districting solutions which provided imbalance load solutions and using the nested-

compliance table model based on the binary coverage, that is, it is the nature of the 

heuristics algorithm which may not find the optimal solution. In Figure 5.6 presents in a 

different way the same results shown in Table 5.3. The graph shows an increasing 

function relationship between the number of ambulances and the realized expected 

coverage, which is related to decreasing busy probability of ambulances as the number of 

ambulance increases. These results showed decreasing the improvement of our algorithm 

over AMEXCLP when number of ambulances increased. The observations implied that 

decreasing busy probability of ambulances provided decreased benefit of our algorithm. 

When a call arrives to EMS systems with low busy probabilities, the dispatch center is 

likely to have available ambulances to respond to the call. Thus the relocation of 

ambulances will provide only a small benefit for these EMS systems. However, when 

EMS systems have small number of ambulances, the relocation of ambulances to 

potential high demand areas will provide higher benefit for EMS systems. 

Table 5.3: Comparison of the districting and relocation model (tabu search heuristic) to 

non-districting and non-relocation model (AMEXCLP) under varied number of the 

ambulances 

Total # of 

Servers 

Districting and Relocation Based 

on Tabu Search Heuristic 

AMEXCLP- Non Districting and 

Non Relocation 

% Improved Simu. RespT Simu. RespT 

5 0.92 4.10 0.85 5.47 7.84 

6 0.88 4.88 0.87 5.04 1.16 

7 0.92 3.96 0.89 4.77 3.76 

8 0.91 4.30 0.93 3.99 -1.78 

9 0.94 3.57 0.93 3.88 0.93 

10 0.94 3.71 0.94 4.02 0.23 

     

2.02 
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Figure 5.6: Comparison of the districting and relocation model versus the non-districting 

and non-relocation model (AMEXCLP)  

 

 
 

5.6 Conclusions and Future Research 
 

In this paper, we extend the nested-compliance table model to consider a 

combination of districting and relocation problem. We assumed that each district operates 

independently and in which each district operates under relocation. No ambulances are 

allowed across area boundaries. We developed the algorithm of the nested-compliance 

table model embedded into the tabu search heuristic for districting and relocation 

problem. The algorithm requires the optimization model of the nested-compliance table 

model throughout the searching method. The tabu search heuristic is used to search the 

solutions of districting problem; station solutions and demand zone solutions whereas 

each districting solution provides input parameters to determine the optimal nested-

compliance table solution for each district.  The results showed that optimization 
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embedded into the tabu search heuristic yields outcomes better than the AMEXCLP 

model policies for the realized expected coverage measure. The computational study 

showed that the realized expected coverage depends on number of ambulances and call 

arrival rate. When number of ambulances is smaller or call arrival rate is higher, our 

algorithm provides better outcome. We showed that there are higher benefits of combined 

districting and relocation problem when there are higher busy probabilities of ambulances 

in EMS systems. However, some results showed only a slight improvement of our 

algorithm compared to the AMEXCLP. We noted that implementing our algorithm in 

practice should consider the balancing load among districts which will provide more 

benefit.  

In future research, we will develop the multiple-objectives for combination of 

districting and relocation problem. By partitioning the whole service area into small sub-

areas, the algorithm results in unfairness among sub-areas. The fairness objective could 

be considered into the model. The contribution of this model will be helpful for realistic 

EMS systems. 

 

 

 

 

 



 150 

CHAPTER SIX 

 

CONCLUSION AND DISCUSSION 

 

 

6.1 Conclusion 

The goal of Emergency Medical service (EMS) systems is to provide quick pre-

hospital care and transportation to patients, which in turn affects lives saved. The rapid 

response is important in reducing mortality rates of emergency patients. The purpose of 

this research is to improve the performance of EMS systems in terms of the expected 

survival probability and the expected coverage measures that are related to response time. 

We proposed two strategies to improve the efficiency of EMS systems: multiple unit 

dispatch and relocation strategies. Our primary focus is to consider models taking into 

account more realistic conditions; that is, we lift assumptions that are commonly made in 

the analysis of EMS systems. Multiple unit dispatching models are developed and 

analyzed to maximize outcomes based on dynamic conditions of real on-scene accidents. 

In another focus, we consider the relocation models that are implemented in real-world 

systems using the nested-compliance table policy.  We used the real-world data collected 

from Hanover Fire and EMS department in Hanover County, Virginia, to evaluate the 

performance of our models. 

First, we developed a discrete event simulation model for multiple unit 

dispatching and multiple call priorities. Emergency calls are classified into three types. 

We consider two types of medical units: ALS and BLS medical units. A decision must be 

made regarding how ambulances will be dispatched to respond to calls depending on call 
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priorities in order to maximize the expected survival probability.  We consider the 

situation based on conditions at the scene of the accident. We used the closest dispatching 

policy for priority2 calls. Numerical results showed that the closest dispatching policy of 

double dispatching is optimal for prority1 calls, whereas the optimal dispatching policy 

for prirority3 calls is not the closest dispatching policy. A heuristic is developed to 

determine the near optimal policy for priority3 calls in large-scale problems. The 

proposed heuristic is to provide an ordered preference list for priority3 calls. We 

developed the heuristic by following the balanced call volume among servers. The results 

showed the efficiency of the heuristic was better than the closest dispatching policy.  

We extend the model of multiple unit dispatching to consider fairness between 

call priorities. We consider the fairness in patient waiting time until the first response 

between pririty1 and 2 calls. We assumed that priority2 calls can be upgraded to priority1 

calls based on information on-scene. We developed the optimization model based on 

simulation. The objective was to maximize the expected survival probability. The results 

showed that the optimal dispatching policy is better than the closest dispatching policy, 

where the imposed restriction on the deviation of waiting time until the first response 

between prority1 and 2 calls was set at 5 and 6 minutes.  

Second, we formulated the nested-compliance table model under relocation as an 

integer programming model. The objective was to maximize the expected coverage based 

on binary coverage. We modified the Markov chain model with relocation based on 

Alanis et al. [5]. We approximated the transition rates by relaxing the assumption 
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proposed by Alanis et al. [5]. Our approximation of transition rates is independent of the 

exact nested-compliance table. We approximated the transition rates by using the covered 

arrival intensity to weigh potential stations. The benefit of our approximation is to 

calculate these parameters as input for the integer programming model.  We validated our 

formulation by using a simulation. The results showed that the percent error of the 

expected coverage is 2% - 3%. We verified the efficiency of the nested-compliance table 

model by comparing our results with the AMEXCLP solutions. The results showed that 

the nested-compliance table solutions are better than AMEXCLP solutions by2% - 3% 

based on using real-world data. 

Previous work with the nested-compliance table model considers binary coverage 

as the objective function, which may produce results that are different from the realized 

expected coverage. The results of the relocation model suggested that imposing an upper 

bound on relocation time can improve the performance of the system under relocation. 

Thus, we consider the whole service area that is partitioned into small sub-areas. We 

extend the nested-compliance table model to consider a districting problem.  Each sub-

area operates independently under its own nested-compliance table policy. We developed 

the nested-compliance table policy and embedded it into a tabu search heuristic. The 

objective was to maximize the realized expected coverage. We used an iterative method 

to search for near-optimal solutions to the districting problem, including station solutions 

and demand zone solutions. Each districting solution is used as input parameter for the 

nested-compliance table model. We determined the optimal nested-compliance table 

solution for each districting solution.  We compared our solution to the AMEXCLP 
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solutions. The results showed that our tabu search heuristic yields outcomes better than 

AMEXCLP solutions in terms of the realized expected coverage.  

 

6.2 Managerial Insights 

The purpose of this research is to develop strategies to improve the performance 

of EMS systems by attempting to take into account the realistic conditions in EMS 

systems that are often ignored in the literature. The goal is to deliver medical units to 

patients in rapid response time.  Several studies discussed the effect of delayed response 

time to survival probability of patients such as car crashes and cardiac arrest patients. The 

EMS administrators and providers continuously improve the performance of EMS system 

by focusing on decreasing the response time. The new strategies to dispatch rapid 

medical units to patients consider multiple unit dispatching and relocation strategies in 

practice. Suppose a cardiac arrest call arrives to EMS systems, we dispatch the closest 

two units to respond to the call. The direct effect is to increase survival probability of this 

patient.   

The multiple unit dispatching policy we proposed can be used to implement in 

real-world EMS problems. Our assumption considers the realistic on-scene conditions of 

EMS systems, in which situation on-scene can be changed based on information.   In 

term of improvement of performance measures, we found that implementing our multiple 

unit dispatching policy provides an additional 29 lives saved per 10,000 calls (3 ALS 

units 3 BLS units) and 49 lives saved per 10,000 calls (1 ALS unit 3 BLS units) in 
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comparison to a traditional policy (always send closest medical units). Our dispatching 

policy results in higher probability that the closest ambulance is available for life-

threatening calls.  In addition, our dispatching policy is easily implemented in EMS 

systems. The dispatch centers have only the ranked preference lists of dispatching 

medical units for each call priority.   Suppose dispatch centers know where exact stations 

of available ambulances are located to, they can dispatch the particular medical units 

according to the ranked preference list of arrival call priorities.  

Our combination of districting and relocation policy is possible to implement in 

practice by using the computer-aided dispatch (CAD) system and global positioning 

system (GPS).  We proposed the specified nested-compliance policy for each district. 

Each district operates following its own nested-compliance table. The nested-compliance 

table is a particular table that indicates the exact stations for each state for each district of 

EMS systems. This table shows the assigned ambulance stations related to number of 

busy ambulances. In practice, the dispatchers have their own nested-compliance table 

lists and monitors that can track of status of all ambulance in systems and their current 

stations. When the number of ambulances of EMS systems changes, the dispatcher looks 

at the monitor and relocates ambulances to new stations in the new system state. No extra 

training course is required for using our nested-compliance table policy. In terms of 

outcomes, our districting and relocation policy provides better solutions than non-

districting and non-relocation policy based on AMEXCLP model at 3.26% with 7 

ambulances.  
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In terms of the costs associated with implementation of our policies, the EMS 

administrators do not need to invest in installing any system or training course for using 

our multiple-unit dispatching policy.  Considering districting and relocation policy, the 

current practice of EMS systems already use the CAD systems. There is only investment 

for installing GPS to keep track of every ambulance; though since we only require the 

location of ambulances after service is complete, this can be achieved via radio. Thus we 

recommend that our multiple unit dispatching and combination of districting and 

relocation policies will provide high benefit to EMS systems.  
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Appendix A 

Additional Model and Results of Chapter 2 

 

A.1 Flow process chart of Section 2.3 
 

 

Call 

Arrival

Classified 

Level

Priority 1

Priority 2

Priority 3

Choices

Closest ALS 

available,

 selecting BLS 

available

ALS arrives 

on the scene 

first

BLS arrives 

on the scene 

first

Need ALS care,
ALS provide 

initial care, 

waiting BLS

Need both ALS 
&BLS care, ALS 

provide initial care,
waiting BLS

Selected BLS 

available

BLS get back to 

original station

ALS transport
ALS serves 

patients
ALS get back to 

original station

Both ALS & BLS 
serve patients

ALS get back to 

original station

ALS determines,
Need ALS care

BLS provides 

initial care, 

waiting ALS BLS get back to 

original station

ALS 

transport

ALS serves 
patients

ALS get back 

to original 

station

ALS determines,
Need both ALS 

&BLS care

ALS get back to 

original station

BLS 

transport

BLS serves 
patients

BLS get back to 

original station
BLS arrives 

on the scene

Both 
ALS & BLS 
available?

Yes

No

ALS 
available?

Selected BLS 

available

BLS serves 
patients,

waiting ALS

BLS arrives 

on the scene

Selected ALS 

available

ALS arrives on 

the scene

Yes

No

Closest BLS 

available

BLS arrives 

on the scene

BLS 

transport

BLS serves 
patients

BLS get back to 

original station

BLS get back to 

original station

Both ALS & BLS 
serve patients BLS get back to 

original station

ALS determines,
Need ALS care

BLS get back to 

original station

ALS 

transport

ALS serves 
patients

ALS get back 

to original 

station

ALS determines,
Need both ALS 

&BLS care

ALS get back to 

original stationBoth ALS & 
BLS serve 
patients

BLS get back to 

original station

ALS transport
ALS serves 

patients

ALS get back to 

original station

Figure A.1: The EMS system process 
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Call Arrival

Assign Call Priority & Call zone

Priority 1

Let j = {1,2,..,J} be preference list 

of ALS for zone i according to 

dispatch rule for priority1

jth choice Idle?

j = j +1

j > J

Let k = {1,2,..,K} be preference 

list of BLS for zone i according 

to dispatch rule for priority1

Let k = {1,2,..,K} be preference list of 

BLS for zone i according to dispatch rule 

for priority1

kth choice Idle?

Assign jth ALS & 

kth BLS to dispatch 

k = k +1

k > K

Assign only jth 

ALS to dispatch 
Set jth ALS & kth BLS are 

available, set status both are 1

Set jth ALS is busy. Set 

status is 2 jth ALS arrives to 

the scene first

Record response 

time of  jth ALS

Record response 

time of kth BLS

ALS-Downgrade?

BLS-Upgrade?

Waiting for the 

kth BLS

Waiting for the kth 

BLS

Waiting for 

the jth ALS
Waiting for the jth 

ALS

the kth BLS 

arrives?

the jth ALS 

serves 

patients

the kth BLS 

get back to 

original 

station

the jth ALS 

get back to 

original 

station

Set jth ALS 

is Idle

Set kth 

BLS is 

Idle

the kth BLS 

arrives?

the kth BLS 

serves patients

the  jth ALS 

transport 

to hospital 

& get back 

to original 

station

the kth BLS 

get back to 

original 

station

Set kth BLS 

is Idle

Set  jth ALS 

is Idle

the jth ALS 

arrives?

the jth ALS 

serves patients

the kth BLS 

get back to 

original 

station

the jth ALS 

get back to 

original 

station

Set jth ALS is 

Idle
Set kth BLS 

is Idle

the jth ALS arrives?

the kth BLS 

serves patients

the kth 

BLS get 

back to 

original 

station

Set kth BLS 

is Idle

Set  jth ALS 

is Idle

YES

YES

NO

NO

kth choice Idle?

Assign  kth BLS to dispatch and add 

queue for next ALS available (j)

k = k +1

k > K

Send to another 

system

Set kth BLS are busy

Set status is 4.

The kth BLS  arrives, 

Record response time of kth BLS

The jth ALS arrives, 

Record response time 

of jth ALS 

the jth ALS serves 

patients

the jth ALS get back 

to original station

Set jth ALS is 

Idle

the kth BLS serves 

patients

the kth BLS 

get back to 

original 

station

Set kth BLS 

is Idle

NO YES

YES

NO

YES

YES NO

NO

NO

YES

NO

YES
YESNO

NO

NO

NO

NO
YES

YES
YES YES

Call zone i

Waiting for the ALS (j) & Set 

ALS (j) is busy

the ALS(j) 

transport to 

hospital and get 

back to original 

station

Set ALS(j)  is 

Idle

the ALS (j) 

arrives

the  jth ALS 

transport to 

hospital & 

get back to 

original 

station

 

Figure A.2: Simulation flow chart of EMS systems 
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A.2 Swapping Procedure of Section 5 
 

We improve our solution by swapping the arrangement of the ordered preference list for priority3 

calls given that we have a fixed closest policy for priority1 and priority2 calls. 

Let   ai31, ai32,… , ai3K ϵ Ai    be a permutation of (1,2,…,K) that ranks in order preference list to 

respond priority 3 of call zone i 

 ci31, ci32,… , ci3K ϵ Ci    be a permutation of (1,2,…,K) that ranks in order preference list to 

respond priority 3 of call zone i 

 di31,di32,… , di3K ϵ Di    be a permutation of (1,2,…,K) that ranks in order preference list to 

respond priority 3 of call zone i 

 ru ϵ R    be the rank of BLS matrix (1 x K) that call volumes are sorted from Max to Min 

  k = ru    preferred as BLS: k is sorted as u
th
 in the matrix of rank of call volumes. 

    

Procedure Main { 

       Prohibit List ϵ  {ᶲ}  

      B = Big M; 

 for   k ϵ K  Do { 

      copy Ai to Ci       

   if  (k != rK) then { 

   vdev = υBLS:k - υBLS: rK 

   call Procedure swapping(k, rK, Ci ) 

  } 

  Loop to calculate busy probability {   

      calculate busy probability using  Step I 

  } 

  calculate the call volume using equation 15 

  calculate mean absolute deviation using equation 16 and 17 

  if   ( B B  ) then { 

   B B ; 

   copy Ci to Ai       

  } 

  }  

} 

Procedure swapping (k, rk, Ci ) { 
 B BigM   

 sum = 0; 

 For i ϵ N Do { 

   posk = position of server k in preference list of priority3 for call zone i 

   posrK = position of server rK in preference list of priority3 for call zone i 

 if (posk < posrK) then { 

   calculate the approximated  increasing of call volume for server  rK (denoted as vol) 

   if (posk = w && posrK = z) 

    vol=
1 2

( )
im w z

g g
 

   

if ( , , )Ki k r Prohibit List 

 sum = sum + vol 

 if   (sum <  vdev)  then           

  swap positions of ordered preference list between (k, rK) of call zone i 
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      ex. (...,k ,..., rK ,...)  swap to  (...,rK ,..., k ,...)  

   

copy new swapping to Di  

 }  } 

 calculate the busy probability using step2 

 calculate the call volume using step3 

 calculate the mean absolute deviation( ''B ) using step 4 

 if   ( B B  ) then { 

   ''B B  ; 

   copy Di to Ci       

 } 

 if (no call zone i can be swapped)            

  For i ϵ N Do { 

   posk = position of server k in preference list of priority 3 forcall zone i 

   posrK = position of server rK in preference list of priority 3 forcall zone i 

  if (posk < posrK) then { 

if ( , , )Ki k r Prohibit List  

  swap positions of ordered preference list between (k, rK) of call zone i 

      ex. (...,k ,..., rK ,...)  swap to  (...,rK ,..., k ,...)   

  copy new swapping to Di 

 

   calculate the busy probability using step2 

   calculate the call volume using step3 

   calculate the mean absolute deviation( B  ) using step 4 

    } 

  if   ( B B  ) then { 

   ''B B  ; 

   copy Di to Ci       

  } 

 }   

}           
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A.3 Input Data of Section 6 
 

Response Times, Transportation Times and Proportion of call zones: Lognormal Distribution 

Demand 
Zone 

Call 
proportion Station 1 Station 2 Station 3 Station 4 

zone1 0.226034 (16.77,12.47) (15.43,11.47) (13.38,9.95) (8.03,5.97) 

zone2 0.019513 (32.14,23.89) (32.14,23.89) (19.87,14.77) (32.14,23.89) 

zone3 0.060281 (23.72,17.64) (9.92,7.38) (13.42,9.97) (18.84,14.01) 

zone4 0.043914 (26.26,19.52) (32.14,23.89) (26.07,19.38) (15.39,11.44) 

zone5 0.02657 (16.89,12.56) (24.56,18.26) (17.16,12.76) (28.44,21.14) 

zone6 0.09327 (10.07,7.48) (16.32,12.13) (32.14,23.89) (15.59,11.59) 

zone7 0.326744 (25.03,18.61) (9.85,7.32) (14.18,10.54) (15.04,11.18) 

zone8 0.065128 (18.82,13.99) (32.14,23.89) (13.74,10.21) (25.79,19.17) 

zone9 0.007525 (32.14,23.89) (32.14,23.89 (27.34,20.32) (20.9,15.53) 

zone10 0.077626 (12.6,9.36)  (19.62,14.59) (14.63,10.87) (12.7,9.44) 

zone11 0.029886 (22.98,17.08)  (18.28,13.59) (19.77,14.70) (19.69,14.63) 

zone12 0.023509 (32.14,23.89) (18.63,13.85) (32.14,23.89) (19.72,14.66) 

 

 

Service times and Proportion of Priority1, 2 and 3 calls: Exponential Distribution 
 

Demand 

Zone 

Proportion of 

Priority1 

calls 

Proportion 

of Priority2 

calls 

Proportion of 

Priority3 

calls 

Service times 

Priority1  Priority2,3 

zone1 0.394 0.098 0.508 67.07 60.24 

zone2 0.452 0.113 0.435 100.32 90.29 

zone3 0.394 0.098 0.508 62.44 55.86 

zone4 0.425 0.106 0.469 66.90 59.42 

zone5 0.409 0.102 0.489 65.25 57.76 

zone6 0.404 0.101 0.495 56.32 49.78 

zone7 0.443 0.111 0.446 54.18 48.36 

zone8 0.438 0.109 0.453 84.42 75.5 

zone9 0.417 0.104 0.479 104.31 92.93 

zone10 0.442 0.111 0.447 58.27 51.82 

zone11 0.434 0.109 0.457 81.38 72.32 

zone12 0.446 0.112 0.442 59.60 52.49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 162 

A.4 Results of Section 6 

Comparison of performance of closest policy and heuristic policy                                                                                                                                                  
3 ALS 3 BLS 12 Zones 

ALS1: Station 4, ALS2: Station 1 and ALS6: Station 4   BLS3: Station 4, BLS4: Station 1 and BLS5: Station 1 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

Prob 

Survival 

% 

Imp. 

# of 

the 

imp. of 

lives 

saved  

/10,00

0 calls 

   

ALS1 

:St4 

ALS2 

:St1 

ALS3 

:St3 

BLS4 

: St 4 

BLS5 : 

St1 

BLS6: 

St1  

  

  

1 

 Closest 14.426 3.095 6.244 23.866 12.601 3.123 13.196 21.3385 0.1629   

0.25 Heuristic 14.418 3.178 6.171 16.159 13.762 11.372 13.764 4.7899 0.1656 1.657 27 

2 

 Closest 33.291 14.775 22.837 43.809 35.008 21.377 33.398 24.0423 0.1468   

0.50 Heuristic 33.070 14.919 22.088 33.285 31.402 36.985 33.890 6.1885 0.1507 2.657 39 

3 

 Closest 57.157 40.372 49.713 64.755 62.512 51.873 59.713 15.6815 0.1278   

0.75 Heuristic 55.962 39.028 48.152 57.720 60.973 58.605 59.100 3.7473 0.1316 2.973 38 

4 

 Closest 75.573 64.116 72.760 81.182 81.396 76.434 79.671 6.4729 0.1141   

1.00 Heuristic 75.222 64.093 72.406 77.431 81.101 80.589 79.707 4.5529 0.1163 1.928 22 

5 

 Closest 84.890 76.004 83.859 88.946 90.008 87.316 88.757 2.8823 0.1050   

1.25 Heuristic 84.580 76.115 83.661 87.225 90.070 89.081 88.792 3.1342 0.1069 1.810 19 

 

 2 ALS 3 BLS 12 Zones 

ALS1: Station 4 and ALS2: Station 1 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival 

% 

Imp. 

# of 

the 

imp. of 

lives 

saved  

/10,00

0 calls 

   

ALS1 

:St4 

ALS2 

:St1 ALS3  

BLS4 

: St 4 

BLS5 : 

St1 

BLS6: 

St1  

  

  

1 

 Closest 26.931 16.378 N/A 30.512 22.589 12.760 21.954 18.3876 0.1494   

0.25 Heuristic 26.263 16.299 N/A 23.783 23.418 19.366 22.189 5.6459 0.1519 1.673 25 

2 

 Closest 67.365 60.347 N/A 69.235 65.956 58.293 64.494 12.4033 0.1275   

0.50 Heuristic 67.490 59.504 N/A 63.693 64.032 65.339 64.355 1.9677 0.1307 2.510 32 

3 

 Closest 86.742 83.833 N/A 87.912 86.718 83.091 85.907 5.6315 0.1162   

0.75 Heuristic 85.753 82.718 N/A 84.994 85.984 84.395 85.125 1.7198 0.1188 2.238 26 

4 

 Closest 92.738 91.311 N/A 93.392 93.271 91.106 92.590 2.9681 0.1086   

1.00 Heuristic 92.546 91.064 N/A 92.160 92.956 92.503 92.540 0.8331 0.1106 1.842 20 

5 

 Closest 95.031 94.756 N/A 96.007 95.955 94.764 95.575 1.6233 0.1034   

1.25 Heuristic 95.417 94.834 N/A 95.468 96.101 95.478 95.682 0.8380 0.1049 1.451 15 

2 ALS 3 BLS 12 Zones    

ALS1: Station 4 and ALS2: Station 3 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1 

:St4 

ALS2 

:St3 ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 25.435 16.914 N/A 30.649 22.429 12.272 21.783 19.0231 0.1570   

0.25 Heuristic 25.967 17.424 N/A 24.491 23.549 20.124 22.721 5.1956 0.1589 1.210 19 

2 

 Closest 67.604 62.086 N/A 70.644 67.231 59.498 65.791 12.5863 0.1347   

0.50 Heuristic 67.950 62.404 N/A 65.697 66.291 67.171 66.386 1.5689 0.1382 2.598 35 

3 

 Closest 85.974 84.695 N/A 88.273 87.139 83.535 86.316 5.5612 0.1239   

0.75 Heuristic 85.763 84.093 N/A 85.972 86.999 85.280 86.083 1.8309 0.1257 1.453 18 

4 

 Closest 92.766 91.843 N/A 93.847 93.542 91.586 92.991 2.8111 0.1151   

1.00 Heuristic 92.318 91.912 N/A 92.715 93.411 93.086 93.070 0.7117 0.1180 2.520 29 

5 

 Closest 95.105 95.160 N/A 96.315 96.156 95.055 95.842 1.5743 0.1098   

1.25 Heuristic 95.087 95.050 N/A 95.690 96.204 95.605 95.833 0.7417 0.1109 1.002 11 
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2 ALS 3 BLS 12 Zones    

ALS1: Station 3 and ALS2: Station 1 

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1 

:St3 

ALS2 

:St1 ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 27.923 15.408 N/A 30.769 22.017 12.348 21.712 18.7269 0.1303   

0.25 Heuristic 27.797 15.208 N/A 23.796 23.044 19.337 22.059 5.4439 0.1340 2.840 37 

2 

 Closest 67.346 60.687 N/A 69.874 66.125 57.869 64.623 13.5071 0.1114   

0.50 Heuristic 66.737 59.242 N/A 63.477 63.774 64.389 63.880 1.0173 0.1163 4.399 49 

3 

 Closest 85.296 82.720 N/A 86.907 85.847 81.593 84.782 6.3778 0.1014   

0.75 Heuristic 84.964 82.425 N/A 84.623 85.796 83.659 84.692 2.2065 0.1047 3.254 33 

4 

 Closest 92.057 91.143 N/A 93.264 92.810 90.761 92.279 3.0342 0.0948   

1.00 Heuristic 91.967 90.856 N/A 91.810 92.732 91.918 92.153 1.1574 0.0982 3.586 34 

5 

 Closest 94.644 94.460 N/A 95.699 95.656 94.283 95.213 1.8590 0.0903   

1.25 Heuristic 94.692 94.589 N/A 95.234 95.762 94.988 95.328 0.8683 0.0924 2.326 21 

1 ALS 3 BLS 12 Zones 

ALS1: Station 4    

  

  

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1 

:St4 ALS2  ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 69.275 N/A N/A 70.302 66.066 61.373 65.914 9.0810 0.1357   

0.25 Heuristic 67.841 N/A N/A 65.875 64.920 62.982 64.592 3.2207 0.1395 2.800 38 

2 

 Closest 91.567 N/A N/A 91.715 90.276 87.687 89.892 4.4105 0.1180   

0.50 Heuristic 91.379 N/A N/A 90.065 89.449 89.848 89.787 0.6764 0.1208 2.373 28 

3 

 Closest 96.304 N/A N/A 96.231 95.604 94.144 95.326 2.3650 0.1065   

0.75 Heuristic 96.260 N/A N/A 95.498 95.475 94.970 95.314 0.6887 0.1104 3.662 39 

4 

 Closest 98.002 N/A N/A 97.890 97.540 96.647 97.359 1.4245 0.1013   

1.00 Heuristic 97.830 N/A N/A 97.224 97.270 97.086 97.193 0.2144 0.1050 3.653 37 

5 

 Closest 98.625 N/A N/A 98.491 98.268 97.634 98.131 0.9933 0.0958   

1.25 Heuristic 98.577 N/A N/A 98.166 98.195 97.913 98.091 0.3570 0.0992 3.549 34 

1 ALS 3 BLS 12 Zones 

ALS1: Station 1         

 

  

   

ALS1 

:St1 ALS2  ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

 

   

1 

 Closest 61.254 N/A N/A 62.072 56.415 50.273 56.253 11.9599 0.1098   

0.25 Heuristic 60.813 N/A N/A 57.838 56.421 53.975 56.078 4.2067 0.1134 3.279 36 

2 

 Closest 89.427 N/A N/A 89.180 87.246 83.808 86.744 5.8728 0.0957   

0.50 Heuristic 89.183 N/A N/A 87.081 86.205 86.585 86.623 0.9145 0.1011 5.643 54 

3 

 Closest 95.404 N/A N/A 95.053 94.148 92.188 93.796 3.2167 0.0877   

0.75 Heuristic 95.014 N/A N/A 93.689 93.588 92.825 93.367 1.0841 0.0922 5.131 45 

4 

 Closest 97.437 N/A N/A 97.090 96.598 95.370 96.353 1.9659 0.0818   

1.00 Heuristic 97.276 N/A N/A 96.248 96.267 95.969 96.161 0.3840 0.0887 8.435 69 

5 

 Closest 98.305 N/A N/A 97.945 97.625 96.774 97.448 1.3489 0.0794   

1.25 Heuristic 98.205 N/A N/A 97.472 97.485 97.052 97.336 0.5693 0.0833 4.912 39 

1 ALS 3 BLS 12 Zones  ALS1: Station 3        

ID 

Demand 

(calls/ 

hour) Policy Utilization 

Mean 

BLS 

 

Mean 

absolute 

deviation 

of BLS 

 

 

 

Prob 

Survival % 

Imp. 

# of the 

imp. of 

lives 

saved  

/10,000 

calls 

   

ALS1: 

St3 ALS2  ALS3  

BLS4 

: St 4 

BLS5 

: St1 

BLS6: 

St1  

  

  

1 

 Closest 64.919 N/A N/A 65.869 60.854 55.387 60.704 10.6329 0.1185   

0.25 Heuristic 65.274 N/A N/A 62.838 61.604 59.477 61.306 3.6579 0.1216 2.616 31 

2 

 Closest 90.411 N/A N/A 90.368 88.621 85.579 88.189 5.2199 0.1037   

0.50 Heuristic 89.947 N/A N/A 88.210 87.444 87.819 87.824 0.7702 0.1077 3.857 40 

3 

 Closest 95.902 N/A N/A 95.711 94.947 93.240 94.633 2.7849 0.0932   

0.75 Heuristic 95.524 N/A N/A 94.469 94.434 93.767 94.223 0.9125 0.0972 4.292 40 

4 

 Closest 97.507 N/A N/A 97.249 96.800 95.620 96.557 1.8726 0.0881   

1.00 Heuristic 97.639 N/A N/A 96.854 96.866 96.633 96.784 0.3032 0.0923 4.767 42 

5 

 Closest 98.423 N/A N/A 98.179 97.908 97.133 97.740 1.2143 0.0850   

1.25 Heuristic 98.371 N/A N/A 97.821 97.842 97.478 97.714 0.4722 0.0879 3.412 29 
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