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ABSTRACT 

Mesa-Arango, Rodrigo. Ph.D., Purdue University, May 2015. Algorithms for Bundling 
and Pricing Trucking Services: Deterministic and Stochastic Approaches. Major 
Professor: Satish V. Ukkusuri. 
 
 
Bundling and pricing trucking services is an important strategic decision for carriers. This 

is helpful when they consider the incorporation of new businesses to their networks, look 

for economic and optimal operations, and develop revenue management strategies. 

Reverse combinatorial auctions for trucking services are real-world examples that 

illustrate the necessity of such strategies. In these auctions, a shipper asks carriers for 

quotes to serve combinations of lanes and the carriers have to bundle demand and price it 

properly. This dissertation explores several dimensions of the problem employing state-

of-the-art analytical tools. These dimensions include: Truckload (TL) and less-than-

truckload (LTL) operations, behavioral attributes driving the selection of trucking 

services, and consideration of deterministic and stochastic demand. Analytical tools 

include: advanced econometrics, network modeling, statistical network analysis, 

combinatorial optimization, and stochastic optimization. The dissertation is organized as 

follows. Chapter 1 introduces the problem and related concepts. Chapter 2 studies the 

attributes driving the selection of trucking services and proposes an econometric model to 

quantify the shipper willingness to pay using data from a discrete choice experiment. 

Chapter 3 proposes an algorithm for demand clustering in freight logistics networks using 



xiii 

 

historical data from TL carriers. Chapter 4 develops an algorithmic approach for pricing 

and demand segmentation of bundles in TL combinatorial auctions. Chapter 5 expands 

the latter framework to consider stochastic demand. Chapter 6 uses an analytical 

approach to demonstrate the benefits of in-vehicle consolidation for LTL carriers. Finally, 

Chapter 7 proposes an algorithm for pricing and demand segmentation of bundles in LTL 

combinatorial auctions that accounts for stochastic demand. This research provides 

meaningful negotiation guidance for shippers and carriers, which is supported by 

quantitative methods. Likewise, numerical experiments demonstrate the benefits and 

efficiencies of the proposed algorithms, which are transportation modeling contributions. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Understanding the complex interactions of freight transportation systems is important 

for several stakeholders, i.e., shippers, carriers, researchers, transportation agencies and 

policy makers. However, this is a difficult task given the multiplicity of actors with 

different economic interactions, operations, policies, and objectives. Additionally, the 

availability of freight-related data is very limited due to the proprietary nature and 

complexity of freight transportation systems. Yet, there is a significant need to develop 

new paradigms for freight transportation and a great need to have a rigorous 

understanding of the behavior, operations, and strategies of actors in freight 

transportation markets. 

Trucking is the most important mode in freight, which accounts for 29% of the for-

hire-transportation market share (USDOT 2012). Trucking share is higher than the joint 

share for the second and third modes, i.e., air (16%), and rail (8.0%). There are two 

distinguishable actors in the trucking market: Shippers (demand), and carriers (supply). 

Shippers require moving their goods in lanes, i.e., flow of shipments between different 

geographies. Carriers (or transporters) own and operate transportation assets, which allow 

them to provide transportation services that satisfy shipper necessities. 
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A negotiation process (Figure 1.1) starts when the shipper asks carriers for quotes to 

transport its shipments. The shipper may require quotes for one or several lanes and these 

quotes can include different combinations (bundles) of lanes with unique prices. The 

carrier has to build these bundles and accompany them with attractive prices that also 

represent acceptable increased profits for its company. Then, bundles are analyzed by the 

shipper who selects the more attractive ones. Later on, it assigns lanes in the awarded 

bundles to the corresponding carriers, who have the right to serve them at quoted prices. 

 

Figure 1.1 Truck service negotiation. 

This dissertation focuses on developing methods to construct and price these bundles. 

Three elements drive bundle construction (Figure 1.2): 1. Shipper preferences, 2. Type of 

trucking operation, i.e., truckload (TL) or less-than-truckload (LTL), and 3. Lane flow 
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uncertainty. These concepts are expanded in Subsections 1.1.1, 1.1.2, and 1.1.3 

respectively. 

 

Figure 1.2 Three elements driving bundle construction. 

The motivation behind studying trucking service bundling and pricing is presented in 

Section 1.2. Different types of trucking operations and logistics structures result in 

different economies that can be exploited to cluster trucking services and develop 

revenue management strategies with a right balance between operational costs and prices, 

i.e. offering the right price for the right combination of lanes. These economies are 

examined in Subsection 1.1.2. Bundle construction is a complex task and complexity 

increases as more dimensions are added into the problem. This is a very interesting topic 

from an academic perspective but also has important applications in practice. Freight 

transportation combinatorial auctions exemplify the necessity of this framework in the 
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current business environment. Subsection 1.2.1 introduces these auctions and how 

carriers can benefit by using proper bidding advisory models based on service bundling 

and pricing. Optimizing asset utilization is not only beneficial to the finances of shippers 

and carriers but have positive socio-economic repercussions. A summary of these 

benefits are presented in Subsection 1.2.2. Subsection 1.2.3 presents a literature review 

that clearly identifies the gaps narrowed by this dissertation. Subsequently, the objectives 

and contributions of this research are clearly presented in Sections 1.3 and 1.4. Finally, 

Subsection 1.5 provides guidance through the next chapters of the dissertation. 

After providing an overview of this chapter, the three main elements driving bundle 

construction (Figure 1.2) are expanded, starting by the first one. 

1.1.1 Shipper preferences 

Shippers are firms that need to move goods, i.e. shipments or consignments, between 

origins and destination in their supply chains. In this research, they are classified as 

agents liable for this activity, e.g., freight producers, receivers, or third parties. Some 

shippers own transportation assets, i.e., fleets and specialized facilities, but others do not. 

When additional transportation capacity is required by the former shippers they outsource 

services from carriers. The latter shippers, who focus on their core businesses rather than 

transportation, procure these services when it is required. The freight transportation 

choice set available to shippers includes several modes like air, rail, water, intermodal, 

etc. Nonetheless, this research focuses on shippers that are captive to trucking, the most 

popular mode in freight. 

In general, the procurement of trucking services requires collecting quotes from 

carriers and selecting the best option. Therefore, carriers are responsible for developing 
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offers that are both, attractive to the shipper and profitable to themselves. But how is an 

attractive offer defined? Shippers have different valuations for the lanes that need 

transportation services. These valuations represent the willingness to pay (WTP) or 

maximum amount a shipper would pay for each lane. In many circumstances the shipper 

explicitly states this value in the negotiation saying it will pay no more than the amount 

 for shipments served in a lane . However, there are circumstances when this 

information is not explicitly available to the carrier, who must infer it, e.g., using 

econometric techniques, or assume it, i.e., trusting in its own criteria. 

This information is important for bundle design because each bundle is a cluster of 

lanes related to a unique price that will be charged to every shipment in it. The carrier can 

price their bundles either using cost-based or value-based approaches. The former 

estimates price as a margin of service cost and the latter based on the preferences of the 

client. In general, value-based pricing constitutes a more assertive way of pricing. In the 

context of lane bundling this concept is stated as follows. If bundle price is higher than 

the shipper WTP for any included lane, the shipper will reject the bundle as it would not 

pay such amount. On the other hand, if WTP for each bundled lane is less than or equal to 

the bundle price, the bundle will be considered by the carrier. Any bundle has to be 

priced (at most) at the lowest valuation for any included lane. For example, Figure 1.3 

exemplifies a shipper with 4 lanes related to geographies in the Midwest of the United 

States of America. They are sorted in decreasing order with respect to its WTP, i.e., 

. Following the bundling rule stated before, every bundle (or combination of 

lanes) should be priced at most at the amount related to the lane with lowest shipper WTP. 

For example, a bundle  including all lanes  will be priced at  because 
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lane 1 has the lowest valuation. The same happens with any combination of lanes 

including lane 1. This example presents 4 pricing possibilities  which are 

bounded above by the WTP of the lane with the lowest value. Following this example, 

the highest price for a bundle would be  in the case where only lane 1 is bundled, 

i.e., single-lane bundle . 

 

Figure 1.3 Example: relationship between lane WTP (shipper) and bundle price (carrier). 

Inferring shipper valuation requires an appropriate understanding of truck service 

selection behavior. Certainly, price is the most important attribute to determine whether 

to select a service or not. But it is not the only one. There are attributes that can make a 

service more attractive even if it is more expensive than the competition. As shown in 

Subsection 1.2.3, there is scant information about this behavior, which motivates the 
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development of a model to understand it. Such model will guide carriers when they 

require inferring lane WTP. 

Shipper preferences are critical for bundle design. Shipper behavior significantly 

affects the income of the carrier, who has to offer high prices that generate profits but are 

low enough to be attractive for the shipper. Furthermore, designing economic operations 

reduces operational costs giving more flexibility to price different combinations of lanes.  

Different economies are achieved by different types of operations, the second element 

driving bundle construction (Figure 1.2). 

1.1.2 Trucking operations: truckload and less-than-truckload  

Complementarities and synergies contribute to the economic prosperity of freight 

transportation and logistics firms. According to Sheffi (2013), competitive advantages in 

the freight transportation sector are accomplished by four types of economies. 

(i) Economies of scale: Achieved when the freight flow in a lane is high enough 

to operate and utilize large vehicles, which reduces the unitary shipment cost. 

(ii) Economies of density: Achieved when several low-flow lanes have similar 

origins and destinations and can be consolidated in order to enforce 

economies of scale. 

(iii) Economies of frequency: Achieved when large amounts of freight frequently 

enter/leave a specific location. This reduces idling cost. 

(iv) Economies of scope: Achieved when it is possible to find follow-up loads that 

reduce the fraction of shipment unitary cost related to empty repositioning. 
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Recognizing these economies is important to characterize the benefits related to each 

type of trucking operation: truckload (TL) and less-than-truckload (LTL), which are 

reviewed next, starting with TL. 

TL companies are well recognized by their flexibility. They serve direct shipments 

and are usually compared to taxis in passenger transportation. Undeniably, TL is the most 

popular type of operation for the most popular mode in freight, i.e., trucking. Setar 

(2013a, and 2013b) estimates that TL accounts for 61% of the 2013 US general trucking 

industry revenue ($193.4 Billion). The cost structure of these firms is significantly 

impacted by economies of scope (Caplice 1996, Jara-Diaz, 1981, and 1983, Chapter 6) 

and frequency (Sheffi, 2013) as a consequence of empty trips, which result from freight 

imbalances. 

 

Figure 1.4 Example: economies of scope. 
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Lane bundling is important for TL carriers in order to achieve economies of scope 

because they can combining follow up loads that minimize the cost per loaded shipment. 

Backhauls are intuitive examples of economies of scope. Likewise, trip-chains exemplify 

this concept. For example, assume a carrier serving a lane between Columbus OH  and 

St. Louis MS  over a route through Indianapolis IN  (Figure 1.4(a)). The price 

charged to a shipment in lane  [lane 1] must compensate the total cost of the round 

trip . If a new business occurs in lane  [lane 2] then this tour 

keeps a very similar cost while receiving two sources of income [lanes 1 and 2] and, 

hence, higher profits. This is the economic advantage of backhauls. Furthermore, if the 

new business is found in another lane, e.g. St. Louis MS  to Louisville KY  [lane 3], 

a new trip chain  (Figure 1.4(b)) with very similar total cost can also 

be served with more revenues [lanes 1 and 3] and potentially higher profits. However, 

notice that such economies are not achieved if, for example, the new lane is  [lane 4] 

because they will have to be served by independent routes (  and 

), i.e., they do not complement each other. Economies of frequency are 

captured when the flows of bundled lanes are similar, if there is an offset between them, 

then the idling truck should be repositioned elsewhere. But, how LTL differentiate from 

TL operations? 

LTL operation uses a network of facilities to collect, consolidate, and deliver 

shipments. So, they are fundamentally different and more complex than TL operations. 

Although the TL market is highly competitive, a smaller number of firms compete in the 

LTL one. The high investment cost associated with establishing a LTL network limits the 

number of players in this submarket. An analogy of LTL for passenger transportation 
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would be transit systems, e.g., subways or buses. Consolidation is crucial to achieve 

economies of scale and density (Caplice 1996, Jara-Diaz 1981, Jara-Diaz 1983, Chapter 

6). According to Caplice (1996) there are three types of consolidation: (i) at the origin, 

i.e., waiting for an appropriate size to be shipped; (ii) inside vehicles, i.e. sharing 

transportation with shipments from other origins; (iii) and/or in terminals, e.g. hub-and-

spoke operations. 

LTL carriers serve low-weight shipments, i.e., between  and . 

Shipment volume is also important when shipping LTL freight. In general, logistics 

service providers handle this using a dimensional weight that accounts for shipment 

density. They are computed dividing shipment volume, i.e., length x width x height  

by a dimensional factor . Such factors are defined from an ideal shipment 

density and vary among carriers, e.g. 125 FedEx, 139 DHL, and 194 USPS. Shipments 

are prized considering the highest value between actual and dimensional weight. 

LTL carriers collect these shipments and deliver them through a network commonly 

known as line-haul (Erera et al. 2008), or line-operations (Powell and Sheffi, 1989) 

network. This is a disassortative hub-and-spoke network (Figure 1.5), where end-of-line 

terminals (EOLs) describe the spoke nodes and breakbulk terminals (BBs) the hubs nodes. 

In some cases relay nodes (where drivers are relieved) are considered as part of the 

network. Drivers can be changed in any type of terminal though. Furthermore, arcs are 

described as long-haul feeders (Lin et al. 2009), where transportation assets are assigned 

to move freight. An arc exists whenever a BB is origin or destination for movements. Arc 

traversing time is usually shorter than the maximum legal driving time for a commercial 

vehicle. 
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Figure 1.5 General Illustration of the LTL Network 

EOLs serve small geographies and BBs serve the aggregation of areas encompassing 

several EOLs. EOLs are usually associated to their closest, or primary, BB. Shipments 

are collected periodically, sorted, and loaded to outbound trucks at the EOLs. These 

trucks are directed to the corresponding BB that also consolidates freight from other 

related EOLs and BBs. Here, shipments are once again unloaded, sorted and reloaded for 

the next haul. The amount of freight at each BB is large enough to send full trucks to 

other BBs. The next haul can be either to a destination EOLs, i.e., for final delivery, or 

other BBs, i.e., to continue in transit before final delivery. A typical shipment follows the 

path origin  EOL(origin)  BB(origin)  BBs(intermediate)  BB(destination)  

EOL(destination)  destination. The number of transferences at intermediate BB 

depends on factors like reducing repositioning and handling cost, increasing asset 
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utilization, and guaranteeing a predefined level of service (delivery time). In LTL 

terminology, a Load Plan describes the paths of shipments between each pair of terminals. 

As an operational constraint, all freight moved between a pair of terminals must follow 

the path in the Load Plan. 

When there is enough load to send full trailers, LTL carriers can schedule direct 

services (TL style) that omit the instructions of the Load Plan. In practice, this often 

happens between BB(origin) and EOL(destination). Although direct services between 

EOL(origin) and BB(destination) are possible, they are infrequent. Finally, carriers do not 

consider direct services between EOLs because they are rare. About 15% of shipments 

are performed directly (Powell and Sheffi, 1989). 

28-ft trailers, a.k.a. pups, and 48-ft vans are characteristic assets in LTL operations. In 

general 28-ft trailers are preferable because the capacity of a tandem is almost equivalent 

to a 48-ft van, and it is easier to consolidate and send full single 28-ft trailers to a 

destination. Thus, operations are simplified to drop-and-hook maneuvers rather than 

loading/unloading procedures. Demand imbalances make empty repositioning inevitable 

and there are different types of repositioning: regular empty trucks or trailers (single or 

coupled), combination of empty and full trailers, and tractor movements with no 

containers (usual in intermodal systems). In practice, firms state minimum truck 

frequencies that have to be maintained between BBs, e.g., Powell and Sheffi, (1989) 

study a firm where 2 to 3 trailers per week are dispatched from terminals. 

Although LTL are rigid system, in-vehicle consolidation strategies can be developed 

by hybrid carriers to bundle services and take full advantage of both economies of scope 
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and scale. Such alternative is explored in this dissertation and its benefits are 

demonstrated in Chapter 6. 

In summary, profitable bundles are constructed by properly balancing revenues and 

costs. Expected revenues are determined by a pricing scheme that accounts for shipper 

preferences, and operational costs are directly related to the type of trucking operation 

and its corresponding economies. Out of these two elements (Figure 1.2), there is a third 

and final component driving bundle design.  

1.1.3 Lane flow uncertainty 

Carriers have to consider two types of lanes when bundling and pricing services, i.e., 

those that needed to be served (communicated by the shipper in the negotiation process), 

and those that are currently being served (to other shippers). The lanes that need to be 

served are important because they determine new sources of income for the carrier and 

can be combined in different ways to achieve the economies described in the previous 

subsection. Current lanes are important for TL carriers because they can be used to 

determine additional complementarities that account for economies of scope. On the 

other hand, they are important for LTL operations because they determine the current 

available capacity in the LTL network. 

However, flow in lanes (i.e., number of shipments or weight per unit of time between 

an OD pair) fluctuates significantly independent of the type of lane. This adds unwanted 

uncertainty to the bundle construction process. 

Carrier finance can be harmed significantly if such uncertainty is not overseen at the 

bundles are planned. Demand communicated in the negotiation process is obtained from 

projections developed by the shippers. Unfortunately, the actual realizations of flow are 
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considerably different to the forecasted ones (Caplice and Sheffi, 2006). Usually, 

shippers assign carriers the right to serve lanes in awarded bundles. This means that the 

winning carrier will have priority to serve shipments in an awarded bundle at the quoted 

price when demand realizes. However, if demand does not realize as expected, the carrier 

is not contacted and no income is perceived. Although this is an undesirable phenomenon, 

it is frequent, accepted by both parties, and occurs for several reasons. 

Lane flow is the result of economic interactions between freight agents. This flow is 

highly impacted by disruptions in the supply chain encompassing the lane. Unfortunately, 

disturbances propagate quickly in this context due to the underlying network structure of 

freight businesses. Although spatiotemporal disruptions occur for many different reasons, 

some examples include: seasonal changes (e.g., holydays or harvest), macroeconomic 

impacts (e.g., economic recessions or booms), disruptions in infrastructure systems (e.g., 

inclement weather or traffic effects), among others. 

Although the carrier cannot predict these variations with total accuracy, it can 

estimate scenarios and probabilities related to certain demand realization. A proper 

utilization of this information will help it to develop better bundles. 

After reviewing the main three elements driving the design of bundles and prices for 

trucking services, the next subsection shows its real world implementation, clearly 

demonstrates the benefits of this strategy, and shows the modeling gap in literature that 

motivates this dissertation. 

1.2 Motivation 

This section clearly presents the incentives that motivated the development of this 

dissertation. First the real world application of the bundling/pricing problem studied in 
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this research is contextualized, i.e., trucking combinatorial auctions (Subsection 1.2.1). 

Then socioeconomic benefits associated with bundling trucking activities are presented, 

which is an additional motivation to study this problem (Subsection 1.2.2). Finally, 

literature is reviewed seeking for models that address the bundling/pricing problem. It is 

found that these models (mainly developed in the context of combinatorial auctions) have 

limitations that motivate improvements developed in this research. 

1.2.1 Real world application 

Trucking combinatorial auctions (CA), an evolving market mechanism used to assign 

freight contracts to carriers, constitute the main application where truck service bundling 

and pricing is implemented in practice. This framework has shown significant cost 

reductions for both shippers and carriers. CA have been successfully implemented by 

several firms, e.g., Home Depot Inc., Wal-Mart Stores Inc., Compaq Computer 

Corporation, Staples Inc., The Limited, K-Mart Corporation, Ford Motor company, 

Reynolds Metal Company, Sears Logistics Services, among others (De Vries & Vohra 

2003, Elmaghraby & Keskinocak 2004, Moore et al. 1991, Porter et al. 2002, Sheffi 

2004). The main characteristics of trucking CA are presented next. 

A trucking CA is a reverse auction, i.e., auctioneers are buyers and bidders are sellers. 

Thus, a shipper auctions freight lanes, i.e., shipments to be transported between 

geographically distributed OD pairs, and a group of carriers bid for them. In general, the 

scope of these ODs corresponds to long hauls at the national level. The shipper explicitly 

communicates its WTP for every lane as reservation prices. The main characteristic of a 

CA is that, rather than bidding for individual lanes, carriers can bid for bundles or 

combinations of them. This is attractive to the shippers because the price of a shipment 
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served as part of a bundle is usually lower than or equal to the price of serving it 

individually. Once all the bids are collected, the shipper solves the Winner Determination 

Problem (WDP) to match lanes with the most appropriate carriers. Extensive research has 

been conducted to formulate and solve the WDP in CA (Abrache et al. 2007, Caplice & 

Sheffi 2006, Ma et al. 2010, Sandholm 2002). There are single-round and multiple-round 

TL CAs. In a single round CA, the shipper assigns the right to haul shipments to the 

winning carriers at the quoted prices. In a multiple round CA, the shipper updates 

reservation prices according to the best prices on each lane and carriers are asked to bid 

again. This repeats for several rounds, regularly 2 and no more than 4 rounds. But, what 

are the challenges for carriers in these auctions? 

Carriers are responsible for building and submitting bids that are attractive to the 

shipper. Competitive prices are usually achieved when the quoted lanes are 

complementary to the routes operated by the carrier. Trucking CA are frequently 

conducted in the procurement of TL services. Previous researchers propose bidding 

advisory models to solve this problem (Lee et al. 2007, Song and Regan 2003, and 2005, 

Wang and Xia 2005). Although TL CAs represent potential win-win situations for 

shippers and carriers, the construction of efficient bundles is a challenging task. Some 

auctions involve hundreds of lanes and the number of bundles grows exponentially with 

respect to lanes (Song and Regan, 2003 and 2005). Many carriers with limited analytics 

skills use behavioral rules, e.g., bundling only backhauls and bundling as many lanes as 

possible from a particular location, but the rigorous construction of good-quality bundles 

requires the implementation of analytical techniques. As will be show in Subsection 1.2.3 

the techniques used for bundle construction in previous research have a number of 
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limitations that motivate the development of the novel algorithms presented in this 

dissertation. 

Professionals working for carriers participating of CA can significantly benefit from 

efficient advisory models that facilitate service bundling and pricing in order to submit 

good quality bids that incorporate the three elements described before (Figure 1.2). 

Moreover, although TL CA are widely recognized in shipper/carrier interactions, few 

is known about its implementation and challenges for LTL systems. Therefore, an 

additional motivation for this research is properly characterizing CA in the LTL context. 

Furthermore, society indirectly benefits by the use and implementation of revenue 

management strategies based on demand bundling or clustering. Such benefits are 

another motivation to study this phenomenon and are illustrated in the next subsection. 

1.2.2 Socio-economic benefits 

Bundling is closely related to the concept of clustering. Governments recognize the 

economic importance of logistics clusters and increasingly provide incentives for firms to 

(re)locate into these facilities. However, this is a slow process. Sometimes it is not even 

an alternative for many shippers and carriers that face enormous relocation costs, off-

shoring issues, and potential detriment of relationships with clients. Additionally, 

logistics clusters might not be a feasible option because they have not emerged naturally, 

they are not a priority for local governments, or they are not suitable for unstable 

economic landscapes. In these cases, firms that can mimic the advantages of logistics 

clusters while increasing revenues for transporters and adding value to their clients can 

significantly impact the economic environment of the region they serve. Such benefits 
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can be achieved by the application of bundling and pricing strategies as those presented 

in this research. 

As shown before, the economies of bundling increase as empty trips and unused 

capacities are reduced. In practice, firms recognize these benefits. Companies like Best 

Buy, Coca-Cola Supply LLC, JB Hunt Transport, Johnson & Johnson, Walmart Stores, 

Inc, among others, have participated of the Empty Miles program (VICS, 2014) to share 

unused transportation capacity and reduce empty-trip inefficiencies (Belson, 2010). In 

2009, the chain of department stores Macy's cooperated with shippers and carriers to 

reduce 1,500 empty trips in the US. In average, they saved $25,000 transportation costs 

annually for each shared lane (VICS, 2009). JCPenney, another important department-

store chain, shared 41,000 backhauls that saved them $8.1 Million between 2008 and 

2009 (Andraski, 2010). Schneider National, the largest private TL carrier in North 

America, increased dedicated backhaul revenue by 25% on specific accounts thanks to 

this initiative (VICS 2009). 

Unfortunately, empty trips are not rare for trucking operations. 25% of the 2010 

truck-kilometers in Europe where traveled empty (De Angelis, 2011). Reduction of 

empty trips can significantly benefit society because they are related to serious 

externalities like emissions, traffic congestion, noise, accidents, and wear of roads. The 

monetary savings obtained by Scheider National also saved them 5,554 gallons of diesel 

fuel that eliminated 61.65 tons of carbon dioxide, 147.24 tons of articulate matter and 

1.47 tons of nitrous oxide. Similarly, JCPenny eliminated 9,750 tons of CO2 by utilizing 

20% of its empty miles in 2009 (4 million miles) and 6% (1.3 million miles) in 2008. One 

strategy to mitigate these externalities is to utilize unused capacity inside the trucks (EC-
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DGET, 2006; OECD, 2003; Sathaye et al., 2006; TFL 2007). Understanding and 

promoting economic mechanisms that improve truck utilization while enhancing profits 

for shippers and carriers can accelerate the acceptance and implementation of such 

strategies. 

The pragmatic need and socio-economic benefits of bundling and pricing motivate 

the development of modeling frameworks that appropriately handle the three elements 

driving this strategy. However, several limitations are encountered in models that address 

this problem in literature. 

1.2.3 Modeling gaps in literature 

This section reviews relevant literature for truck service bundling and pricing, which 

identifies the existing modeling gaps in literature. These gaps are fulfilled by the efforts 

developed in this dissertation. First, the lack of paradigms to properly understand shipper 

preferences regarding trucking services is highlighted. Then, additional evidences to 

improve current bundling models in literature are shown. 

User preferences and the corresponding WTP have been widely studied by 

transportation researchers to quantify the subjective value of time perceived by 

passengers traveling in a transportation network. The WTP for other attributes related to 

these services has received additional attention in the literature (e.g., Balcombe et al., 

2009; Basu and Hunt, 2012; Carlsson, 2003; Hensher, 1997; Hess et al., 2007). In 

contrast to passenger transportation, the WTP for attributes related to freight 

transportation services have received less attention. Recent works that study this problem 

mainly focus on freight trip choice (Hensher et al. 2007, Pucket and Hensher 2008, and 

Li and Hensher 2012), and the competition between different modes in freight (Anderson, 
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et al. 2009; Banomyong, and Supatn, 2011; Bray, et al. 2004; Brooks, et al. 2012; 

Danielis and Marcucci, 2007; Fries et al., 2010; Masiero and Hensher, 2010, 2011, and 

2012; Patterson et al. 2010; Puckett, et al. 2011; Train and Wilson, 2008; Zamparini, et al. 

2011). However, limited attention has been paid to the competition within the trucking 

mode. The work by Cavalcante and Roorda (2013) represents the closest approximation 

to this problem. However, they do not cover it entirely because their objective is to 

illustrate a meaningful data collection project rather than to develop and analyze a 

behavioral model. So, there is no work that estimates the shipper WTP for attributes 

driving trucking service selection in this context exclusively. It can be intuitively argued 

that shippers only consider the lowest-price option when procuring trucking 

transportation. So, why is it relevant to study other attributes? 

There is evidence of shippers assigning contracts to carriers that are not necessarily 

the cheapest ones. For example, Caplice and Sheffi (2006) show that some shippers on 

average forgo 50% of potential procurement savings in order to prioritize service 

requirements and other business constraints, i.e., they sacrifice 7% out of 13% average 

cost savings to maintain business constraints and performance factors. Similar insights 

are obtained from the work by Moore, et al. (1991), and Elmaghraby and Keskinocak 

(2002). Murphy and Hall (1995) recognize the importance that price and other attributes 

gained after the US motor carrier regulatory reform in 1980. While it has been 

acknowledged that price may not necessarily be the only criteria, the question of what 

pragmatic attributes are considered by shippers in the selection of trucking services is still 

not clearly answered. 
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Pragmatism is very important for managerial and operational decisions. Freight-

related choices are usually explained by important holistic variables like on-time 

reliability, damage risk, security risk, etc. However, this information is not explicitly 

available for operational choices. Instead, such concepts are hidden in information 

transferred during trucking transactions, e.g., reliability is ensured by the monetary 

refund offered if the service is not provided properly. 

At this point, the first gap in literature can be clearly stated as follows. 

· Gap 1. There is no work in literature studying shipper preferences towards the 

selection of trucking services when trucking is the only mode considered. 

Additionally, narrowing this gap implies stating a set of pragmatic attribute 

explaining truck service selection, and computing the WTP for these attributes. Next, 

gaps related to modeling trucking-service bundling and pricing (mainly for freight 

auctions) are detected. 

As shown in Subsection 1.2.1, truck service bundling and pricing has been studied by 

bidding advisory models in TL CA. The few bidding advisory models available in this 

literature are reviewed next. 

Song and Regan (2003) is one of the pioneering works in this area and the work by 

Song and Regan (2005) improves some limitations from their former research. These 

papers introduce key concepts for TL CA, e.g., lane valuation and economies of scope. 

They use an optimization-based framework that minimizes costs related to truck 

repositioning, i.e., empty movements, to construct bids. After defining bundles, prices are 

determined as a margin of the costs (cost-based pricing). Additionally, these models 

restrict bundles to serve either all the demand in a lane or nothing. 
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Wang and Xia (2005) propose a heuristic method for bid construction minimizing 

empty trip costs with the help of a novel synergy metric. However, pricing is simplified 

and relaxed. Moreover, lanes are selected as binary variables without flexibility to select 

fractions of demand. 

Lee, et al. (2007) present an advisory model that finds a single optimal bid that 

maximizes carrier profit, i.e., the difference between best lane prices and bundle costs in 

the current round of the auction. Considering current best lane price to compute profits is 

not consistent with a CA context, where all items in a bundle most keep the same price. 

Similar to other research, lanes are selected in a discrete fashion. Additionally, the 

outcome of this model is risky for the carrier because it is an optimal subset of all 

potential bids but adds no redundancy to the bidding process (important if other carriers 

have better prices for common lanes). 

Although these are important bundling models, they have several limitations. The 

first two are related to pricing and demand segmentation. What are the limitations of 

oversimplifying pricing? 

As Nagle et al. (2011) highlight, cost-based pricing is problematic for profit 

maximization and counterintuitive from a managerial perspective. In general, value-based 

pricing is a better option. Coyle et al. (2011) state that value-based pricing is more 

beneficial for trucking industries than the traditional cost-based tariffs. Similarly, Randall 

et al. (2010) show how the use of value propositions is increasing in the trucking industry. 

Thus, another limitation related to previous research can be stated. 

· Gap 2. There is no truck-service bundling/pricing model in literature that 

proposes a value-based pricing approach when bundling trucking services. 
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The second limitation is related to the impossibility of segmenting demand within 

bundles. In new trucking CA, carriers are allowed to combine lanes and determine the 

volume of demand that they are willing to serve within each bundle. This gives carriers 

the flexibility of bidding for volumes that increase their economies and allows shippers to 

increase the robustness of their businesses by splitting high-volume lanes into several 

carriers. Since bidding advisory models in literature do not consider this feature, the next 

gap can be stated as follows. 

· Gap 3. There is no truck-service bundling/pricing model in literature that 

considers demand segmentation within bundles. 

Although lane flow uncertainty plays an important role in the design of profitable 

bundles and prices (Subsection 1.1.3), it is not considered in the models available on 

literature. These models assume deterministic behavior for lane demand which represents 

potential losses when demand does not realize as expected. This justifies the fourth gap in 

literature. 

· Gap 4. There is no truck-service bundling/pricing model in literature that 

considers stochastic lane flow. 

The last gaps were identified after reviewing models developed for TL CA, which 

itself highlights a more fundamental gap stated next. 

· Gap 5. There is no truck-service bundling/pricing model for LTL operations. 

Thus, the developments of new LTL models should also overcome the limitations 

highlighted for TL models. 
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So far, the truck-service bundling/pricing problem have been contextualized and 

motivated. Likewise, gaps in previous literature were identified. Based on these gaps, the 

next section articulates the objectives of the dissertation  

1.3 Objectives 

The main objective of this dissertation narrow the modeling gaps in literature by 

developing a set of algorithms for bundling and pricing trucking services that properly 

account for shipper preferences, carrier operations, and lane flow uncertainty. The 

specific objectives are: 

· Objective 1. Understand shipper preferences toward truck-service selection using 

econometric analysis. 

· Objective 2. Develop a framework for demand clustering in TL networks based 

on historical data of lane flows and prices. 

· Objective 3. Develop a model for demand bundling in TL networks that considers 

value-based pricing, and demand segmentation. 

· Objective 4. Develop a model for demand bundling in TL networks that considers 

value-based pricing, demand segmentation, and stochastic lane flows. 

· Objective 5. Demonstrate the economic benefits of routing strategies considering 

in-vehicle consolidation in the development of bundles for trucking service. 

· Objective 6. Develop a model for demand bundling in LTL networks that 

considers value-based pricing, demand segmentation, and stochastic lane flows. 
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1.4 Contributions 

This dissertation provides the following contributions to the transportation 

community and the specific field of freight and logistics. 

Chapter 2 

· Understand the behavior behind the selection of trucking services by shippers that 

move truck shipments. 

· Postulate a set of pragmatic attributes to explain truck-service selection. 

· Quantify the shipper WTP for these attributes. 

· Provide meaningful negotiation guidance for shippers and carriers based on 

behavioral modeling. 

Chapter 3 

· Propose a systematic framework for demand clustering in freight logistics 

networks. 

· Incorporate economic interdependencies among clustered lanes considering 

network effects. 

· Consider historical market prices in the clustering process. 

· Integrate uncertainty associated to historical variations on lane prices and volume. 

· Develop a computationally efficient method for freight demand clustering.  

Chapter 4 

· Develop a bundling model for TL services that handles bundle generation and 

value-based pricing explicitly. 

· Specify the amount of flow that the carrier is willing to serve in each bundle. 
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Chapter 5 

· Develop a bundling model for TL services that combines low cost bundles with 

value-based pricing that maximize profits. 

· Determine the TL volume that the carrier is willing to serve within each bundle. 

· Incorporate demand uncertainty in the construction of bundles. 

Chapter 6 

· Demonstrating the benefits of considering in-vehicle consolidation strategies 

when bundling trucking services. 

Chapter 7 

· Combine available information to derive the taxonomy of LTL CA 

· Address for the first time the bundling/pricing problem from an LTL perspective 

· Develop a bundling model based on value-based pricing that properly handles 

valuation rules. 

· Segment demand to define the maximum lane flow that the carrier is willing to 

serve in each bundle. 

· Incorporate demand uncertainty in the construction of bundles. 

The following Section guides the reader through the different chapters in the 

dissertation. 

1.5 Dissertation organization 

This dissertation is organized as follows. Chapter 1 contextualizes the problem 

studied in this dissertation, i.e., of bundling and pricing trucking services, motivates its 

study, states the objectives and contributions. Chapter 2 studies the attributes driving the 
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selection of trucking services and quantifies the shipper's WTP. Chapter 3 proposes a 

framework for demand clustering in freight logistic services for direct shipments (TL). 

Chapter 4 presents a method to price and bundle TL services without considering lane 

flow uncertainty. This method is improved by the model in Chapter 5, which is able to 

capture such uncertainty. Chapter 6 demonstrates the benefits of in-vehicle consolidation 

for LTL related to bundle design. Chapter 7 presents a model to price and bundle LTL 

services. Finally, Chapter 8 summarizes this work and concludes the dissertation. 
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CHAPTER 2. ATTRIBUTES DRIVING THE SELECTION OF  
                         TRUCKING SERVICES AND THE QUANTIFICATION 

            OF THE SHIPPER’S WILLINGNESS TO PAY 

2.1 Introduction 

This chapter investigates the selection of trucking services by shippers that require the 

movement of truck shipments. A set of pragmatic attributes are postulated to describe 

trucking services. They are used in a stated choice experiment that collects data and 

preferences from shippers. A mixed logit model is estimated in order to test the attributes 

and quantifying the shipper willingness to pay (WTP) for them. The results are used to 

provide meaningful negotiation guidance for truck-related shippers and carriers, a 

significant contribution to literature in transportation, logistics, and supply chain 

management. A numerical example illustrates the use of the model. 

Knowledge about the WTP for trucking services can benefit several stakeholders. 

First, this information helps shippers to benchmark their current prices with respect to the 

average market, which is useful to negotiate contracts, detect cost saving opportunities, 

updating transportation service providers, forecasting costs for new businesses, and 

planning and designing transportation networks integrated to their supply chains. 
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Second, carriers can benefit by developing value-based pricing strategies, which have 

been widely used in industries such as airlines, groceries, e-markets, etc. Randall, et al. 

(2010) show that trucking companies are actually using value propositions when offering 

their services on internet, and Coyle, et al. (2011) highlight the benefits of this strategy 

over traditional trucking tariffs or cost-based pricing. The work by Özkaya, et al. (2010) 

is one of the few examples of value-based price modeling in the trucking industry (for 

less-than-truckload (LTL) services). 

Third, results from a truck service selection model and the shipper WTP help 

researchers and public agencies to improve their understanding of freight transportation 

markets. This behavior can be incorporated in game theoretic (e.g., Shah, and Brueckner, 

2012), and agent-based modeling (e.g., Roorda et al. 2010) frameworks to replicate 

market interactions and test different policies. Likewise, understanding this fundamental 

interaction can improve multimodal freight regulatory studies by providing specific 

details about the pragmatic variables considered by the shippers in the selection of 

trucking services. This, accompanied with analyses for other modes, might explain part 

of the unobserved heterogeneity obtained in their underlying models. 

In order to understand how shippers select carriers and to quantify the WTP for 

trucking services, a set of carrier attributes are postulated and presented to several 

shippers in a stated choice experiment (SCE). This information is complemented with 

shipper and shipment characteristics to develop a general mixed logit model for carrier 

selection. The discrete choice model is used to (i) test the statistical significance of the 

postulated attributes, (ii) estimate their marginal effects, and (iii) quantify the shipper 

WTP. 
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This chapter is organized as follows. Section 2.1 introduces and motivates the 

problem. Section 2.2 reviews literature on shipper WTP and postulates a set of attributes 

for trucking service pricing. Section 2.3 describes the survey design and sample 

characteristics. Section 2.4 describes the econometric approach applied. Section 2.5 

presents the model estimation and discusses the results. Section 2.6 shows an example of 

the application of the model. Finally, Section 2.7 concludes the work. 

2.2 Literature review 

This section presents a literature review of previous works related to the selection of 

freight transportation services and the corresponding shipper WTP. This illustrates the 

gap related to trucking service choice on literature. Additionally, attributes that were 

considered to explain similar choices are summarized in order to postulate the carrier 

attributes considered in this research. 

Several works have contributed to understanding the behavior of shippers and carriers 

in the context of trip/route choice for truck trips (Hensher et al., 2007; Li and Hensher, 

2012; Puckett and Hensher, 2008) and general freight trips (Masiero and Hensher, 2010; 

2011; and 2012; Patterson et al., 2010). Thus, the WTP for attributes of the transportation 

network has being quantified, e.g., travel time, congested time, etc., which is important 

for appropriate pricing of the system, e.g. toll-roads. There are certain communalities 

between these works and the selection of trucking services by shippers. However, these 

works study trip choice, which highly depends on operational characteristics of the 

transportation system. On the other hand, the selection of carrier by shippers is a more 

strategic decision that is conceptually and fundamentally related to mode choice. 
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Carrier selection and the shipper WTP for service attributes has being studied for the 

choice of freight transportation mode and facility, e.g., port. Moreover, studies that have 

explored general choices of logistics services are limited to specific geographies. Bray et 

al. (2004) surveyed shippers to study their WTP for water transportation services in the 

Ohio River Basin. They provided valuable qualitative conclusions that are not supported 

by statistical or econometric models. Puckett et al. (2011) investigated the impact of 

attributes in short sea shipping with a mixed logit model. Train and Wilson (2008) used a 

mixed logit model to study route/mode choice among six alternatives on the 

Columbia/Snake river. Anderson, et al (2009) estimated the WTP to avoid delays and 

increase reliability (frequency of transportation services) in United States ports for 

maritime transportation. Danielis and Marcucci (2007) evaluated the preferences of a 

subset of Italian shippers for freight services using randomly generated alternatives. 

Zamparini, et al. (2011) found the shipper WTP for quality attributes in Tanzania. 

Banomyong, and Supatn (2011) investigated the selection of third-party logistics (3PL) 

service providers in Thailand as a function of several attributes. However, they did not 

quantify the shipper WTP for these attributes. Brooks, et al. (2012) presented and 

Australian mode choice study that examined land-based transport and coastal shipping. 

However, many of these studies did not consider trucking-services in the mode choice 

and none of them studied the choice of trucking-services by shippers exclusively. 

The only study that considered choice within trucking services is the work by 

Cavalcante and Roorda (2013). They used a stated preferences (SP) web-based survey to 

collect data for motor-freight carrier choice. Since the core of their work is the 

development of a web-based tool for data collection, a simple multinomial probit model 
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that does not incorporate unobserved heterogeneity among respondents was used. 

Likewise, there was no discussion about the effect that these attributes have on the carrier 

choice process. The corresponding shipper WTP was also not quantified. Therefore, a 

work that exclusively studies carrier selection and shipper WTP for trucking services 

using state-of-the-art econometric tools is missing on literature. 

Table 2.1 Attributes for mode and service choice in freight transportation 

Work Attributes 
Danielis and Marcucci 
(2007) 

Price, time, late arrivals, loss and damage, flexibility, frequency, 
mode: road only and intermodal 

Train and Wilson (2008) Price, time, reliability,  
Anderson et al (2009) Price, time, reliability 
Puckett et al. (2011) Frequency 
Zamparini, et al. (2011) Time, flexibility, frequency, loss and damage, reliability. 
Banomyong, and Supatn 
(2011) 

Price, reliability, assurance, tangibility, empathy, responsiveness, 
accuracy of documents, EDI and e-commerce services, customer 
relationship management, customer care, updated freight rates, 
consolidation provision 

Brooks et al. (2012) Price, time, distance, direction (headhaul/backhaul), reliability 
Cavalcante and Roorda 
(2013) 

Price, carrier reputation, response to problems, quality of drivers, 
follow-up on service complains, billing accuracy, equipment 
availability, delivery reliability, lost/damaged products, past 
experience. 

 

Table 2.1 summarizes attributes considered for mode and service choice in previous 

freight transportation research. Identifying them is important to postulate a set of 

attributes used for the SCE design and subsequent model development. Attributes related 

to price, delivery time, reliability, frequency, loss and damage, and flexibility are 

considered regularly. Other attributes are related to customer relationship, electronic 

services, e.g., electronic data interchange (EDI), consolidation level, etc. Although in a 

different context, i.e., trip choice, attributes like experience and carrier assets have shown 

significant influence in freight-agent decisions (Hensher et al. 2007). However, in many 
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cases these variables are too coarse to understand the valuation that shippers assign to 

attributes offered in trucking services. A clear linkage between general freight attributes 

and those used in the actual shipper/carrier interactions is missing on literature. In this 

sense, Randall, et al. (2010), used data mining software and a value proposition 

qualitative framework to obtain insights of the different attributes offered by trucking 

companies in the internet. They found five essential elements in the current motor carrier 

industry: (i) time utility: moving freight at specific times, (ii) place utility: cargo types, 

capacity, and geographic scope; (iii) transaction value management: guaranty, flexibility, 

EDI capabilities; (iv) value-added extensions: provision of additional managerial and 

logistic services, e.g., consolidation; and (v) carrier-specific values: firm values. The next 

section presents the set of attributes used to model carrier selection based on this review. 

Furthermore, previous research on trucking service selection focuses on attributes of the 

transportation services but do not consider attributes of the decision maker (shipper) and 

context (shipment), which is important to develop well defined models that incorporate 

unobserved heterogeneity. Such attributes are considered in this work and also introduced 

below. 

The next section describes the SCE design and presents summary statistics for 

selected variables collected in the survey. 

2.3 Stated choice experiment design and sample description 

This research studies the selection of carriers by shippers that require trucking 

services. As in any freight-related study, collecting this type of data is extremely 

challenging because of its proprietary issues. A negligible response rate is expected if 

shippers are asked specific information about their actions. A SCE overcomes this 
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limitation by collecting stated preferences that do not compromise confidential 

information. Attributes for the SCE are chosen after literature review (Section 2.2). The 

selection of corresponding levels is justified below. The SCE is designed as an 

approximation of the optimal experiment design proposed by Street and Burges (2007). 

This section first presents technical characteristics of the SCE design followed by a 

description of its implementation, i.e., respondent profile, distribution, and data collection. 

The experiment is composed by a number of cases (choice sets)  that are presented 

to each shipper. Each case  is associated to  alternatives (hypothetical carriers), where 

each alternative  is described by  attributes, and each attribute  is associated to  

levels. 

Table 2.2 Carrier attributes  and levels  in the stated choice experiment 

 Attribute description  Level description 
1 Price 1 

2 
3 
4 

30% less than regular 
10% less than regular 
10% more than regular 
30% more than regular 

2 Delivery time  1 
2 
3 

Minimum accepted 
Average accepted 
Maximum accepted 

3 Fleet Size (Power Units) (carrier 
specific values) 

1 
2 
3 

100 
1,000 
10,000 

4 Average  model of trucks (carrier 
specific values) 

1 
2 
3 

2001 
2006 
2012 

5 Refund if service not provided as agreed 
(loss and damage) 

1 
2 
3 

50% price 
80% price 
110% price 

6 Experience with the carrier (customer 
relationship) 

1 
2 
3 

No experience 
Satisfactory experience 
Unsatisfactory experience 

7 Type of shipment (consolidation level) 1 
2 

Direct (TL) 
Consolidated (LTL) 

8 Service between origin-destination (OD) 
(frequency) 

1 
2 

Regular/Usual 
Irregular/Unusual 
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 Attribute description  Level description 
9 Flexible to changes in capacity and/or 

equipment (flexibility) 
1 
2 

Yes 
No 

10 EDI 1 
2 

Available 
Not available 

 

This research postulates  attributes (Table 2.2) to influence the trucking 

carrier choice. Attributes q are selected based on the literature review (Table 2.1 , and 

Randall et al., 2010). Levels  are proposed based on a combination of literature review, 

and authors' experience/criteria. These are complemented with conversation to agents in 

the trucking market. Price  and delivery time  are the most evident 

attributes for any analysis of transportation services.  are based on the savings reported 

by Caplice and Sheffi (2006).  are based on the regular operation of shippers. 

Loss/damage is explicitly captured by the refund attribute .  are based on the 

research by Randall et al. (2010). Flexibility is taken into account by the attribute . 

 are also based on Randall et al. (2010). Discrete levels are required to properly deal 

with the multidimensionality of flexible services (flexibility to capacity, equipment, 

additional features, etc.), which turns the use of continuous levels unmanageable for the 

experiment. Frequency is approximated by the regularity of the service . Again 

 are discretized to encapsulate regular/irregular services and reduce design complexity. 

Fleet size and average model of trucks  represent carrier specific values that 

provide reliability to the customer.  are based on the report by Transportation Topics 

(2011) and  on data by RITA (2013). Customer relationship is taken into account by 

the experience attribute .  are based on the findings by Caplice and Sheffi 

(2006). Consolidation and value-added extensions are encapsulated by the type of 
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shipment attribute . Finally, the impact of new technologies is captured by the 

EDI attribute .  and  are based on the work by Randall et al. (2010).  

The optimal experiment design approach proposed by Street and Burgess (2007) is 

used to determine an optimal number of cases . Each case with a unique combination of 

levels for each attribute. After analyzing and testing the design it is found to be too long 

for the current study. So, a heuristic technique is used to select a good-quality subset of 

 cases from the optimal design. This is a delicate task because it is easy to sample 

combinations of cases without sufficient variability for the levels of the attributes., e.g., a 

level appears most of the times in the sampled cases. To overcome this bias, a simulated 

annealing metaheuristic is implemented to search for samples that minimize the 

summation of variance associated to level counts. Details of this method are presented in 

Appendix A. 
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Finally the experiment considers  cases and  hypothetical carriers. is an 

example of one of the cases presented to the shippers. 

Table 2.3 Sample carrier selection choice set 

Attribute Carrier A Carrier B Carrier C Carrier D 
Price * 30% below 30% above 10% below 10% above 
Delivery time * Maximum Average Average Minimum 
Fleet Size 
(Power Units) 

100 1,000 10,000 10,000 

Average model of trucks 2001 2001 2012 2006 
Refund if service not 
provided as agreed 

50% price 50% price 110% price 80% price 

Experience with the carrier Unsatisfactory 
experience 

No 
experience 

Satisfactory 
experience 

Satisfactory 
experience 

Type of shipment Direct 
(TL) 

Direct 
(TL) 

Consolidated 
(LTL) 

Consolidated 
(LTL) 

Service for this OD Irregular/ 
Unusual 

Irregular/ 
Unusual 

Regular/ 
Usual 

Regular/ 
Usual 

Flexible to changes in 
capacity and or equipment 

No No Yes Yes 

EDI Available Available Not avail. Not avail. 
* These values are with respect to information previously provided 
Choice-set context: "For the truck shipment that you just described, suppose that you have narrowed down your choice of carriers to 
the following 4 options. Please review the attributes of each carrier and select the one that you would choose." 

 

An online survey is implemented in Qualtrics (ITaP, 2014) to present the SCE to 

respondents and collect additional data. Respondents are professionals with experience in 

the procurement of trucking services. The flow of the survey is shown in Figure 2.1. First, 

the respondent is asked to describe an average shipment in the most recent trucking 

contract and the SCE is presented based on it (Segment 1). The SCE shows 18 cases to 

the respondent. Levels are properly varied case after case. Table 2.3 is an example of one 

of them. For each case the responded is asked to select the most convenient carrier 

(trucking service) for the stated shipment. To reduce the error induced by respondents 
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waiting for carriers that exactly match their experiences, shippers are informed that these 

are the only four carriers available after narrowing down all the possibilities in the market. 

Then, general characteristics of the firm where this shipment took place are collected 

(Segment 2), followed by general characteristics of the shipments managed there 

(intermodal in Segment 3 and only truck in Segment 4). These are the shipment/shipper 

attributes that are not considered in these models by previous researchers. Additional 

information is available in the website developed for this survey (Mesa-Arango, Ukkusuri 

2013). Professionals in all transportation areas were invited to respond to the survey via 

email using the large LexisNexis databases available at Purdue University. Likewise, the 

invitation was posted on selected Linked-In groups, a popular social network for 

professionals. About 300 people responded to the invitation but only 72 had the 

respondent profile and completed the survey. Respondent profile was strictly checked 

ensuring that only professionals with trucking procurement were surveyed. Notice that 

each respondent faces 18 hypothetical selection scenarios for a total of 1296 observations. 

Table 2.4 presents summary statistics for selected variables of the shipments and 

shippers covered by the survey. The average shipment price is roughly $1,400, 0.6% of 

the average shipment value (about $250,000), and 5% of the inventory cost (about 

$30,000). The average accepted delivery time is one week. The average minimum and 

maximum acceptable delivery times are 4 days and about 2 weeks respectively. On 

average, these shipments are associated to a volume of 4,000 shipments per month. 48% 

of the shipments in the dataset are related to a pull-only strategy, i.e., shipments are sent 

in direct response to customer orders (make to order). This shows the high effect that 

real-time demand information has in the new supply chains and how information 
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technologies are playing an important role in new business. About 44% combines push, 

i.e., shipments are sent in anticipation to orders (make to stock), with some level of pull 

strategy, showing that firms are combining hybrid supply chain models to optimize their 

distribution channels. Only 8% of the respondents managed pull-only shipments. 

Although 47% of the respondents represent large firms, there is sufficient representation 

of respondents from smaller firms. 

Table 2.4 Summary statistics for selected variables of the shippers and shipments 

Variables of shippers and shipment Mean Std. Dev Min Max 
Shipment Price ($) 1,435.9 1,939.2 9.8 15,000 
Minimum accepted delivery time (day) 4.117 8.424 0.3

3 
48 

Average accepted delivery time (day) 7.358 12.680 1 48 
Maximum accepted delivery time (day) 13.548 24.921 1 120 
Shipment weight (ton) 14.519 9.929 0.0

2 
45.0 

Value of goods in shipment ($) 250,86
7 

1,750,91
0 

100 15,000,00
0 

Shipment inventory cost ($) 29,749 175,423 0 1,500,000 
Shipments per month (shipments/month) 3,974 14,064 1 100,000 
Pull-only strategy (bin) 0.479 0.503 0 1 
Firm yearly income less than $25 Million (bin) 0.306 0.461 0 1 
Firm yearly income between $25 and $100 Million 
(bin) 

0.222 0.416 0 1 

Firm yearly income greater than $100 Million (bin) 0.472 0.499 0 1 
(bin) Binary variable     

 

Although the sampled population has an acceptable level of representativeness, some 

aspects have to be considered when analyzing the results: Shippers paying high prices, 

with highly frequent shipments, and with heavy loads are underrepresented in the dataset. 

Table 2.5 presents summary statistics for the attributes of the hypothetical carriers 

selected by respondents in the SCE. Notice that they provide general insights but specific 

conclusions can only be drawn from the model developed in Section 2.5. Likewise, these 
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summary statistics should be analyzed carefully from the context of the experiment itself. 

Again, this is not a problem for the results of the subsequent model. It is observed that 

shippers do not always select the cheapest option, this happens in 60% of the cases. There 

is a trend to select low-price options though, i.e., 40% and 38% of the selected services 

are priced 30% and 10% below the average price respectively. Still, 14% and 7% of the 

selected carriers correspond to services priced 10% and 30% above the average. These 

interesting results show that although shippers are looking for low-price options to reduce 

their transportation procurement costs, some of them are willing to select services with 

higher price to maintain certain attributes of the services in combination to characteristics 

of the shipments. This is also supported by the findings in the work by Caplice and Sheffi 

(2006). 

Table 2.5 Summary statistics for attributes of the hypothetical carriers selected in the 
SCE 

Attributes offered by carriers selected in the SCE* Mean Std.Dev 
Price is 70% of the average shipment price  0.403 0.491 
Price is 90% of the average shipment price  0.383 0.486 
Price is 110% of the average shipment price  0.142 0.350 
Price is 130% of the average shipment price  0.072 0.258 
Delivery time is the average accepted 0.415 0.493 
Delivery time is the minimum accepted 0.310 0.463 
Delivery time is the maximum accepted 0.275 0.447 
Fleet of 10000 trucks  0.457 0.498 
Fleet of 1000 trucks  0.259 0.438 
Fleet of 100 trucks  0.285 0.451 
Fleet with 2001 as average make year  0.267 0.443 
Fleet with 2006 as average make year  0.307 0.462 
Fleet with 2012 as average make year  0.425 0.495 
Refund is 50% if the service is not provided as agreed 0.301 0.459 
Refund is 80% if the service is not provided as agreed 0.365 0.482 
Refund is 110% if the service is not provided as agreed 0.334 0.472 
No Previous experience with the carrier 0.357 0.479 
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Attributes offered by carriers selected in the SCE* Mean Std.Dev 
Previous satisfactory experience with the carrier 0.499 0.500 
Previous unsatisfactory experience with the carrier 0.144 0.351 
LTL carrier 0.452 0.498 
Irregular/Unusual service for this OD 0.467 0.499 
Flexible to changes in capacity and/or equipment 0.510 0.500 
EDI availability 0.565 0.496 
* Indicator variables equal to one if the description of the attributes is satisfied, zero otherwise 

 

Looking at the delivery times, in the majority of the cases (42%) shippers select 

services that correspond to the average accepted. The second largest segment corresponds 

to the minimum accepted delivery time (31% of the cases). Although some shippers 

prefer fast service, average times are more desirable because they are related to 

synchronized operations. Accelerated deliveries might involve additional inventory costs 

that reduce the value of the supply chain as a whole. On the other hand, the maximum 

accepted delivery time is selected in 27% of the cases. This is lower because long 

delivery times incur opportunity costs related to the risk of delaying the supply chain 

orchestration and hence loosing future business when supplies are not delivered on time. 

In many cases shippers prefer carriers with a large fleet and recent trucks (46% for 

carriers with 10,000 trucks and 42% for trucks where the average make year is 2012) 

because they are related to more reliable services when a large number of trucks is 

quickly available and newer vehicles have a reduce number of technical incidents on the 

roads. 

As expected, shippers tend to select carriers with whom they had previous 

satisfactory experience (50% of the cases). Remarkably, they select new carriers in more 

cases than carriers with whom they had unsatisfactory experiences (36% versus14%). 

This significant finding tells trucking carriers that quality of service is a very important 
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aspect in current business and customer satisfaction dramatically draws the line between 

keeping businesses and losing them to new carriers. 

The analysis of the main types of trucking systems, i.e., truckload (TL) and LTL, 

shows that there is a slightly preference for the former (55% of the cases). This follows 

the market trends where TL has higher shares than LTL services. In the United States, it 

is estimates that TL accounts for 61% of the 2013 general trucking industry revenue 

$193.4 Billion (Setar, 2013a, 2013b). 

EDI allows exchanging documents between shippers and carriers via internet. This 

reduces the inconvenience of other channels, e.g., faxes, mails, or phone calls, and the 

transmission of errors by multiple manipulations of the documents. EDI simplifies the 

process of shipper service request, carrier response, shipment tracking, payment and 

invoice. In the new environment surrounded by advances in information technology, EDI 

is expected to be a competitive advantage for the carriers. In fact, the summary statistics 

shows that in 57% of the cases carriers with this service are preferred. 

It is expected that shippers prefer carriers providing services over regular or familiar 

routes since this would increase the reliability of the service as carriers are aware of 

disruptions and general conditions of these routes. This is supported by the general 

statistics where these carriers are selected in 53% of the cases. However, the number of 

choices for the opposite carriers (serving unfamiliar or irregular routes) is very similar 

(47%) indicating that there are other attributes that might have higher relevance. 

Likewise, the general statistics indicate that in 51% of the cases shippers prefer carriers 

with flexibility to changes in capacity and/or equipment. This is expected because this 

reduces the risk of not having the right truck if demand and businesses fluctuate. Again, 
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the number of choices for not-flexible carriers is similar (49%). Finally, there is no clear 

trend with respect to the attribute for service refund. This will be analyzed in Section 2.5. 

The following subsection describes the econometric approach followed to understand 

carrier selection and shipper WTP. 

2.4 Econometric approach 

In the experiment described before each shipper is asked to consider a set of 

hypothetical cases and each case is a choice set of hypothetical carriers. Since the 

responses for each shipper share independent unobserved effects, they constitute a panel 

of data. The methodology below follows the work by Train (2009) with respect to mixed 

logit models for panel data. 

Discrete choice models offer an econometric framework suitable to model the 

selection of trucking carriers. The multinomial logit (MNL) model is widely used for this 

purpose. However, the MNL neither allows considering random taste variation nor 

correlation of unobserved factors, and it has restrictive substitution patterns. These 

limitations are overcome by the mixed logit model. The utility  of selecting 

alternative  in the hypothetical case  by shipper  is presented in Equation (2.1), where 

 is a vector of variables,  is a vector of estimated parameters, and  is a random 

term (iid extreme value). 

  (2.1) 

For panel data and since  are independent among shippers, the probability  

of selecting alternative  in case  conditional on  is given in Equation (2.2), where  is 

the total number of panels, i.e., shippers. 
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  (2.2) 

The unconditional probability  (Equation (2.3)) is the integral of the product in 

Equation (2.2) over all values of . Here  is the continuous density function of . 

Notice that can follow any distribution, e.g., normal, lognormal, uniform, triangular, 

gamma, etc. Thus, the estimation of the model requires finding the distribution and 

structural coefficients of , e.g., for the normal distribution  

estimated coefficients are: mean  and standard deviation . 

  (2.3) 

The estimation of the mixed logit model for panel data is similar to the estimation of 

the regular mixed logit.  is computed by generating draws of  from . This 

process is repeated for a sufficient number of draws and the results are averaged to obtain 

a simulated  that is used to compute the likelihood function, which is maximized to 

estimate . As shown by Bhat (2003) and Train (1999), Halton draws are more efficient 

than purely random draws. More details about simulation-based maximum likelihood 

methods are found in the following works: Boersch-Supan and Hajivassiliou (1993), 

Brownstone and Train (1999), Geweke et al. (1994), McFadden and Ruud (1994), and 

Stern (1997). 

After a model is estimated, the corresponding marginal effect  that describes 

how unitary changes in variable  affect the outcome probability  is estimated using 

Equation (2.4). 
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  (2.4) 

Furthermore, marginal rates of substitution can be computed as presented in Equation 

(2.5) to determine the relative magnitude of any two parameters  and  estimated in 

the model. When  correspond to the parameter estimated for the price, the estimated 

 indicates the WTP for a unitary change in the attribute related to . 

  (2.5) 

The next section presents and discusses the results of the mixed logit model, marginal 

effects and shipper WTP. 

2.5 Estimation Results 

This section presents the results of the estimated mixed logit model for trucking 

service carrier selection. Then, the marginal effects and shipper WTP for attributes of the 

services are computed. 

After several iterations, the mixed logit model that represents the best specification 

for truck service selection is presented in Table 2.6. The software used for model 

estimation is LIMDEP 9 (NLOGIT 4). Variables in the model are significant and have 

intuitive signs. Random parameters follow a normal distribution. The mean is presented 

over the standard deviation (in parenthesis). 
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Table 2.6 Mixed logit model for carrier selection 

Variable Parameter t-stat 

Fixed parameters   

Service Price ($) -13.76 

Delivery time offered by the carrier * shipment weight (day * ton) -2.861 

Shipment value * {LTL carrier} ($)  -2.769 

Shipment inventory cost * {Carrier serves irregular/unusual route} ($)  -2.743 

{Some-level-of-push shipment} * {Flexible carrier} (bin) 3.88 

{Low-income shipper} * {Satisfactory experience with carrier} (bin)  7.189 

{High-income shipper} * {Satisfactory experience with carrier} (bin) 6.518 

{Low-income shipper} * {Unsatisfactory experience with carrier} (bin) -3.465 

{High-income shipper} * {Unsatisfactory experience with carrier} (bin)  -10.392 

{Carrier with EDI availability} (bin)  5.497 

{High-income shipper} * Carrier fleet size (trucks)  2.286 

Refund if service is not provided as expected ($)  4.033 

{Carrier offers maximum accepted delivery time} (bin)  -1.275 
Random parameters   

Ln(Number of similar shipments per month )* {LTL carrier} 
(shipments/month)  

-0.941 
7.484 

Current year – Average make model of carrier’s fleet (years) 
 

-4.272 
3.289 

1296 Observations 
Log likelihood at convergence = -1329.277 
Log likelihood at zero = -1796.63 

 
Adjusted  
Random parameters are associated to a normal distribution and estimated with 400 Halton draws 
(Standard deviations in parenthesis) 
{A} is an indicator function equal to 1 if condition A is satisfied, zero otherwise 
(bin) Binary variable 

 

The likelihood ratio is used to test the overall significance of the mixed logit model, 

i.e., unrestricted model  (Table 2.6), over the corresponding MNL, i.e., restricted model 

. The likelihood ratio test statistic is presented in Equation (2.6), where 

 is the log-likelihood at convergence of the corresponding MNL, and 

 is the log-likelihood at convergence of the mixed logit Model. 

  (2.6) 
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(2.7) 

The chi-squared  is distributed with two degrees of freedom (two more 

parameters estimated in the mixed logit model, i.e., standard deviations of random 

parameters). The right-tailed probability of this  distribution is . Thus, using 

a 98.5%level of confidence, the MNL can be rejected and the mixed logit is preferred. 

Equation (2.7) presents the econometric specification of the model in Table 2.6, 

where  is the utility of selecting the trucking service , Variables related to the 

alternative  are: the service price  ($), delivery time  (days), fleet size for the carrier 

 (trucks), refund offered if  is not provided as agreed , average age of carrier’s 

fleet  current year – average make model of carrier’s fleet (years), and binary 

indicator variables  if  is LTL,  if  is a regular origin-destination (OD) 

served by the carrier,  if the carrier is flexible to changes in capacity and/or 

equipment,  if the shipper has satisfactory experience with the carrier, 

 if the shipper has unsatisfactory experience with the carrier,  if the carrier has 

EDI availability,  if delivery time is associated to the maximum time accepted 
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by the shipper,  otherwise 

(respectively). On the other hand, variables related to the decision maker (shipper) are: 

shipment size  (ton), shipment value e  ($), shipment inventory cost  ($), 

shipments per month in this contract  (Shipments/month), and binary indicator 

variables  if the shipper has some level of push supply-chain strategy,  

if shippers annual income is less than $50 million,  is shipper annual income is 

more that $50 million. Notice that there is no loss of generality by using  and  

together for model estimation because it is an unlabeled experiment and these attributes 

are properly interacted with attributes of the alternatives. Notation  indicates that 

variable  is associated to a random parameter that is normally distributed with mean  

and standard deviation . 

Table 2.7 Marginal effects and WTP for attributes in the mixed logit model for carrier 
selection 

Variable 

 

 

WTP  [$] WTP  [$] 
Fixed parameters    

Service Price ($) -0.214 
(0.217) 

-- -- 

Refund if service is not provided as expected ($) 0.046 
(0.055) 

-- 0.254 

{Carrier with EDI availability} (bin) 0.0300 
(0.035) 

-- 298.922 

{High-income shipper} * {Unsatisfactory experience with 
carrier} (bin) 

-0.025 
(0.053) 

904.667 -- 

Shipment value * {LTL carrier} ($) -0.023 
(0.047) 

0.007 -- 

{High-income shipper} * {Satisfactory experience with carrier} 
(bin) 

0.022 
(0.042) 

-- 399.498 

{Low-income shipper} * {Satisfactory experience with carrier} 
(bin) 

0.016 
(0.053) 

-- 695.524 

Shipment inventory cost * {Carrier serves irregular/unusual 
route} ($) 

-0.016 
(0.183) 

0.007 -- 

Delivery time offered by the carrier * shipment weight (day * ton) -0.016 
(0.045) 

3.058 -- 

{Some-level-of-push shipment} * {Flexible carrier} (bin) 0.015 
(0.031) 

-- 305.412 



50 
 

 

Variable 

 

 

WTP  [$] WTP  [$] 
{High-income shipper} * Carrier fleet size (trucks) 0.008 

(0.014) 
-- 0.014 

{Low-income shipper} * {Unsatisfactory experience with carrier} 
(bin) 

-0.006 
(0.021) 

422.784 -- 

{Carrier offers maximum accepted delivery time} (bin) -0.004 
(0.007) 

74.809 -- 

Random parameters    

Ln(Number of similar shipments per month )* {LTL carrier} 
(shipments/month) 

0.057 
(0.096) 

722.154* 629.027** 

Current year – Average make model of carrier’s fleet (year) -0.029 
(0.026) 

69.298* 18.643** 

Random parameters associated to a normal distribution 
(Standard deviations in parenthesis) 
{A} is an indicator function equal to 1 if condition A is satisfied, zero otherwise 
bin: Binary variable 
* Two standard deviations below the mean 
** Two standard deviations above the mean 
* and ** Cover 95% of the observations 
WTP  Indicates the shipper WTP for an unitary reduction in the corresponding variable 
WTP  Indicates the shipper WTP for an unitary increment in the corresponding variable 
(bin) Binary variable 
 

Table 2.7 presents the corresponding marginal effects , used to quantify the effect 

that a unitary change in a variable of the model has in the carrier selection probability, 

and marginal rates of substitution , to quantify the shipper WTP for these attributes. 

Variables in this table are sorted in descending order with respect to absolute value of the 

. So, variables in the top have higher impact in the carrier selection probability than 

variables in the bottom. Fixed and random parameters are also differentiated. 

Results are similar to previous research for different freight contexts, where high 

price reduces the probability of a freight choice (Anderson et al. 2009, Brooks et al. 2012, 

Cavalcante and Roorda 2013, Danielis and Marcucci, 2007, Fries et al. 2010, Masiero 

and Hensher, 2010, 2011, and 2012, Patterson et al. 2010, Pucket et al. 2011, Train and 

Wilson, 2008), increased delivery time reduces the attractiveness of a freight alternative 

(Anderson et al. 2009, Brooks et al. 2012, Danielis and Marcucci, 2007, Masiero and 
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Hensher, 2010, 2011, and 2012, Fries et al. 2010, Train and Wilson, 2008), heavy 

weighted shipments prefer options with shorter deliveries (Masiero and Hensher, 2012), 

reliable freight alternatives are more likely to be selected (Brooks et al. 2012, Cavalcante 

and Roorda 2013, Danielis and Marcucci 2007, Fries et al. 2010, Masiero and Hensher, 

2010, 2011, and 2012, Patterson et al. 2010, Train and Wilson, 2008), damage risk 

decreases the probability of selecting a freight choice (Cavalcante and Roorda 2013, 

Danielis and Marcucci, 2007, Masiero and Hensher 2012, Patterson et al. 2010), 

intermodal services -similar to LTL in this context- overall reduces selection probability 

(Patterson et al. 2010), and flexible freight services are more likely to be selected 

(Danielis and Marcucci, 2007). In the following analysis, variables are classified in five 

groups related to price and time, reliability, experience with the carrier, and carrier-

specific characteristics. 

2.5.1 Price and time 

The first group of variables is service price and time, indispensable for any 

transportation analysis. Price is the main attribute driving the choice of carriers and has a 

negative effect on its selection probability. So, as the price offered by a carrier increases 

the probability of selecting it decreases. From the marginal effects computed in Table 2.7 

it is observed that $1 increment in price, on average reduces the probability of selecting a 

carrier by 21.4%. Intuitively, given a set of homogeneous trucking carriers and services, 

the one offering the lowest price has the highest probability of being selected. However, 

as carriers show more heterogeneous features and services, probabilities change and the 

cheapest will not be the most desired one. 
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The temporal dimension is captured by the product between delivery time offered by 

the carrier and the shipment weight. This variable has a negative effect in the carrier 

selection probability. A unitary change in this product on average decreases the 

probability of selecting a carrier by 1.6%. So for a fixed shipment, carriers offering faster 

deliveries are preferred. Notice that the weight incorporates characteristics of the 

shipment that are useful when analyzing different types of business. Furthermore, on 

average a shipper would pay $3 per ton for each day of delivery time saved. Notice that 

small shipments require higher time savings than large shipments to take full advantage 

of this, e.g., the shipper WTP for a day saved by 1-ton shipment is equivalent to half day 

saved for 2 ton. Following this idea, carriers offering the maximum delivery time are less 

desirable. This is supported by the negative sign of the corresponding parameter in the 

model. On average, carriers offering this time decrease their selection probability by 

0.4%. Shippers are willing to pay $75 for services where the delivery time is lower than 

the maximum accepted. There is potential opportunity cost related to the maximum 

accepted delivery time. If shipments are delayed above the maximum delivery threshold 

the supply chain processes are potentially delayed and there is risk for perishable 

products to get damaged. This affects the image of the agent coordinating transportation 

and increases the likelihood of losing future businesses. So, although shippers would 

perceive lower prices for these carriers, they must be aware of these risks when selecting 

them. On the other hand, carriers should prefer to providing services with delivery times 

that do not approximate to the maximum accepted by the shipper. 
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2.5.2 Reliability 

The second group of variables is related to reliability. Variables related to service 

refund and route irregularity are used as proxies of reliability in order to provide 

transferable insights and avoid subjectivities related to this concept. Carriers offering 

refund if the service is not provided as expected are more likely to be selected. The 

positive sign in the model indicates that the probability of being selected increases as the 

amount refunded increases. On average $1 refunded increases the selection probability by 

4.6% and shipper are willing to pay $0.25 for every dollar offered in refund. Shippers 

want reliable services and they would pay more to carriers offering refunds. These are 

good news for carriers with reliable and very predictable services because they can 

increase their revenues by offering high refunds, and, hence, high prices. Randall, et al. 

(2010) found that some carriers are offering refunds greater than or equal to the service 

price. However, this strategy is risky for carriers and services where there is a high 

probability of providing a low level of service, e.g., unfamiliar routes, unpredictable 

weather or traffic, low capacity or flexibility, among others. Carriers with these 

conditions should be cautious using high refunds as a justification for increased prices. 

Shippers do not favor carriers serving routes that are irregular or unusual for them. 

The probability of selecting a carrier decreases proportionally to the amount of inventory 

cost associated to the shipments. This is supported by the negative sign of the parameter 

for the corresponding variable in the model. On average, $1 increment in inventory cost 

reduces the selection probability of these carriers by 1.6%. Shippers would pay on 

average 0.7 cents for every dollar of inventory cost in order to avoid carriers with these 

characteristics. This highlights the importance of reliability for shippers, who are willing 
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to pay more in order to avoid carriers that are not familiar with the route between the OD 

of the shipment. These carriers have few experience with the condition of this route and 

are likely to pickup or deliver shipments at undesired times. This translates into 

additional inventory costs when shipments are delayed. Shippers can use this important 

result to benchmark prices as suggested for other variables above. Carriers can benefit 

because they can price higher for services related to familiar routes and increase the price 

for shipments with high inventory costs. 

2.5.3 Experience 

The third group of variables captures the effect that experience with the carriers has in 

its selection probability for future contracts. Unsatisfactory experience with the carrier is 

not desired by the shippers. However, it is more undesirable for high-income shippers, 

i.e., yearly income greater $20 million. This is supported by the negative sign of the 

parameters related to these variables. On average, unsatisfactory experience with the 

carrier decreases its selection probability by 2.5% for high-income shippers and 0.6% for 

low-income shippers (yearly income less than $20 million). Thus, high-income shippers 

are willing to pay $905 more for new carriers or carriers that do not represent 

unsatisfactory experience. Low-income shippers would pay $423 instead (53% less). In 

contrast, the positive parameter associated to the variables for satisfactory experience 

with the carrier show that, on average, their selection probability increases by 2.2% for 

high-income shippers, and 1.6% for low-income shippers. High-income shippers would 

pay $399 and low-income carriers would pay $695 for this feature. Interestingly, for 

high-income shippers the WTP to avoid a carrier with unsatisfactory experience is higher 

than the WTP to maintain a carrier with satisfactory experience. The opposite happens for 
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low-income shippers, i.e., the WTP to avoid a carrier with unsatisfactory experience is 

less than the WTP to maintain a carrier with satisfactory experience. So, low-income 

shippers are more familiar with unsatisfactory experiences and highly valuate carriers 

with high standards. This information can be used by shipper in a negotiation process, 

e.g., if a carrier with unsatisfactory experience offers low prices to a shipper she can take 

this as a benchmarking price to negotiate with other carriers. Experience is private 

information of the shipper, so other carriers would be pressured to reduce their prices to 

compete with the benchmarking price. Again, there is a risk if the benchmarking price is 

associated to a carrier with a negative reputation because other carriers would not take it 

as a serious competitor. In this example, economies would be higher for high-income 

shippers. It is easy to set a similar negotiation example for a carrier with satisfactory 

experience. On the other hand, carriers planning new business or carriers maintaining 

good level of service with shippers can use this information to price higher for their 

services. Although for new business carriers can price higher to low-income shipper than 

high-income shippers, they can expect higher revenues (related to high prices) if they 

maintain satisfactory experiences with high-income shippers. 

2.5.4 Carrier-specific characteristics 

The last set of variables aggregates features specific to the services provided by the 

carrier, i.e., EDI, consolidation (LTL), flexibility, fleet size, fleet age. Two of the 

variables in this group are related to random parameters. Shippers prefer carriers that 

provide EDI in their services, as supported by the positive sign in the model. On average, 

a service with EDI availability increases the carrier selection probability by 3.0%. The 

average WTP for this feature is $299. EDI represents benefits for both shippers and 
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carriers because they correct billing errors and exchange information and money in real 

time. This is important for shippers because they can easily systematize and synchronize 

their supply chains. New technologies are penetrating all economic sectors and trucking 

cannot be the exception. This important finding tells carries that they can incorporate EDI 

into their business and, in turn, price higher for this feature, which covers investment cost 

and provides additional future revenues. 

Consolidated services (LTL carriers) are less preferred than direct services (TL 

carriers). The probability of selecting an LTL carrier decreases proportionally to the 

value of the shipment. This is supported by the negative sign of the parameter for this 

variable. On average, $1 increment in shipment value decreases the probability of 

selecting an LTL carrier by 2.3%. A shipper would pay 0.7 cents less for every $1 of 

shipment value for a consolidated service than a direct one. The high level of 

manipulation for LTL shipments increases its damage risk. Hence, this result is similar to 

other research where damage risk decreases the selection probability of a specific freight 

choice. Naturally, damage is more relevant for expensive shipments. Shippers expect 

LTL services to be cheaper than TL. So, they can benchmark saving opportunities by 

comparing TL and LTL prices, the closer they are the higher the savings they obtain by 

selecting TL, especially for high-value shipments. From the carrier perspective this 

indicates that LTL carriers potentially charge lower than TL but they are very 

competitive for low-value shipments. 

Shippers with shipments associated to some level of push strategy prefer carriers that 

are flexible to changes in capacity and/or equipment. This is supported by the positive 

parameter of the corresponding variable in the model. On average for these shipments, 
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the probability of selecting a carrier increases by 1.5% if it is flexible. In this case, 

shippers would pay $305 for this feature. Pure push strategy is related to planned, ideally 

regular, and predictable shipments. However, these ideal conditions are not the standard 

in freight markets driven by demand uncertainty, seasonality effects, network disruptions, 

irregular macroeconomics and market conditions. Thus, shippers adjust the operation of 

their supply chains by adding some levels of pull strategy, i.e., there is some level of 

regularity on shipments but they also adjust to variant conditions. This new trend in 

supply chain management justifies the selection of flexible carriers. Additionally, if 

carriers want to be competitive in the new economic environment, they have to provide 

flexibility in their services. Although this is easier for large trucking companies, it is 

challenging for small carriers who should consider cooperation strategies (with other 

carriers), or joining the pool of carriers available to third-party logistics (3PL) companies 

that agglomerate small trucking firms in order to be more competitive. 

High-income shippers, i.e., yearly income greater $25 million, increase the 

probability of selecting a carrier proportionally to its fleet size. This is supported by the 

positive sign of the parameter for this variable in the mixed logit model. On average, an 

additional truck increases the carrier selection probability by 0.8% for high-income 

shippers. These shippers would pay 1.4 cents for each additional truck. This could be also 

a proxy of reliability perceived by shippers. High-income shippers are less myopic to 

prices and compensate capacity availability (larger fleet) with higher prices. This is 

important for high-income shippers to benchmark savings when negotiating services with 

carriers that have different fleet sizes. Truckers benefit because they can justify fleet 

increments with price increments. 
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Heterogeneous tastes are observed by the shippers when selecting consolidated (LTL) 

services. This is supported by the random parameter associated to the indicator variable 

equal to the natural logarithm of the number of shipments per month if the carrier is LTL 

and zero otherwise. Such variability is associated to unobserved heterogeneity among 

respondents, an important feature of the underlying mixed logit model used to understand 

shipper behavior. For 44.5% of the shippers the probability of selecting LTL increases 

with respect to the number of shipments per month and for 55.5% of them it decreases. 

Therefore, the shipper WTP has mixed values. 95% of the observations are in the range 

between paying $722 per unitary increment of this variable to avoid LTL carriers to 

paying $629 per unitary increment to have them. Some reasons for the unobserved 

heterogeneity are captivity, few or no experience with a type of carrier, multiplicity of 

contractual agreements, business constraints, among others. This is an interesting 

motivation for future research extensions aiming to understand attributes that are relevant 

in the selection of consolidated (LTL) services. 

For the majority of shippers (86%), the probability of selecting a carrier decreases as 

the average age of its trucks increases. However, the opposite happens for a low segment 

of shippers (12.4%), i.e., probability decreases as age decreases. This is evidenced by the 

random parameter for age-of-trucks estimated in the model. Similar to the previous case, 

this special capability of the mixed logit model allows the consideration of mixed tastes 

and unobserved heterogeneity. On average, shippers would pay $27 for a year reduction 

in the age of the fleet. However, for 95% of the cases this value ranges from paying $69 

per year reduction to $18 per year increment. So, carriers can benefit at a large extent by 

having newer trucks in the sense that they can price higher for their services as compared 
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to old-fleet carriers. However, they must be aware that some shippers would expect lower 

prices for newer trucks, because the efficiency of recent fleets reduces the operational 

costs of the carriers, and shipper would expect this savings to be reflected in their prices. 

This knowledge is relevant for shippers in a procurement process because they have 

arguments to negotiate prices for recent fleets from the efficiency perspective. 

The estimated parameters, , and WTP provide general insights of the interaction 

between shippers and carriers. Furthermore, the model estimated in this Chapter can be 

used by shippers to rank carriers over a set of candidates for a transportation contract. 

The next section provides a numerical example to illustrate its application. 

2.6 Numerical example 

A numerical example is presented to illustrate the application of the mixed logit 

model and its importance for shippers and carriers. Consider a company (shipper) with 

$50 million average yearly income ( ). A professional in charge of 

transportation procurement for this company is seeking carriers for a shipment with the 

characteristics presented in Table 2.8. 

Table 2.8 Numerical example: shipment attributes 

Shipment characteristics Value 
Maximum accepted delivery time (days) 8 
Shipment weight  (tons) 15 
Value of goods in shipment  ($) 250K 
Shipment inventory cost  ($) 30K 
Shipments per month  (Shipments/month) 4K 
Supply change strategy  (binary) Pull-only 
K: Thousand  
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After a comprehensive search, the professional narrows down the procurement 

possibilities to four candidate carriers (  and ) with the attributes summarized in 

Table 2.9. 

  (2.8) 

Equation (2.7) defines the average utility function  associated to carrier 

. Utility functions are estimated through Monte Carlo simulation. For each 

iteration, random parameters are sampled from the corresponding distribution and the 

probability  of selecting carrier  is determined by the logit formula in Equation (2.8). 

Probabilities are computed for 1,000 iterations. 

Table 2.9 Numerical example: attributes of the carriers 

Attribute 

Carrier 

    

Price  ($) 1K 1K 750 750 

Delivery time  (days) 7 8 5 6 

Fleet Size  (truck) 120K 85K 50K 110K 

Current year – Average make model of 

carrier’s fleet  (years) 

3 1 2 5 

Refund if service not provided as agreed  

($) 

400 0 1.1K 700 

Satisfactory  or unsatisfactory  
experience with the carrier: (binary) 

Unsatisf. Satisf. Satisf. None 

Type of shipment  (binary) TL TL* 
LTL** 

TL* 
LTL** 

TL 

Service for this OD  (binary) Regular Irregular Regular Irregular 

Flexible to changes in capacity and/or 

equipment  (binary) 

Yes No No Yes 

EDI availability  (binary) Available Not 
available 

Available Not 
available 

* First scenario, Figure 2.2(a) 
** Second scenario, Figure 2.2(b), (c), and (d) 
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Figure 2.2 Simulated probabilities for (a) 4 TL carriers, 2 TL (I and IV) and 2 LTL 
carriers (II and III) with (b) unrestricted, (c) negative, and (d) positive random parameter 

sign. 

In the first scenario all carriers offer consolidated services (TL). On average the 

selection probabilities are 11.6% for carrier , 14.1% for carrier , 44.4% for carrier , 

and 29.8% for carrier . High preference for carriers  and  is attributed to the 

combination of low prices with fast delivery times. Although carrier  has a small fleet, 

it is a slightly better option because of its higher refund, lower fleet age, satisfactory 

previous experience, regular service for this OD, and EDI availability. On the other hand 

carriers  and  are less desirable because they offer higher prices, slower delivery times, 

and low refunds. Notice that the effect of these attributes is not sufficient to compensate 

other positive features like large and recent fleets, satisfactory experience (carrier ), 
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regular OD service and EDI availability (carrier ). Furthermore, carrier  is highly 

penalized because of its unsatisfactory experience with the shipper. The simulated 

probabilities for this scenario are presented in Figure 2.2(a). 

In the second scenario carriers  and  are assumed to offer consolidated (LTL) 

services. Other attributes remain the same. On average the selection probabilities are 18.0% 

for carrier , 14.6% for carrier , 21.7% for carrier , and 45.6% for carrier . This is 

because on average LTL carriers are less desirable than TL and this low desirability is 

reinforced by the high shipment value and number of shipments per month considered in 

this example. Carrier  –who was the most attractive in the first scenario– is replaced by 

carrier  –with similar features but consolidated shipments– and has a selection 

probability similar to the one for carrier   –least desirable in the first scenario–. Carrier  

falls to the last position. However, from the simulated probabilities computed for this 

scenario (Figure 2.2(b)) it is observed that in few cases LTL carriers have a high chance 

of being selected over TL carriers while in others they are not considered at all. This is 

the result of unobserved heterogeneity captured by the random parameter. 

Notice that some shippers have preferences towards TL or LTL carriers. So, they can 

use the random parameter as a fine tuning coefficient by weighting its sampled values. 

This idea is illustrated with the following examples. First, assume a shipper with low 

desirability for LTL carriers. This shipper can sample only negative values from the 

normal distribution of the LTL-related random parameter and analyze the results under 

this condition. This technique is applied to the previous example and the resulting 

simulated probabilities are reported in Figure 2.2(c). Here the average selection 

probabilities are 28.4% for carrier , 0.3% for carrier , 1.1% for carrier , and 70.1% 
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for carrier . Evidently there is a preference for TL carriers and carrier  is the most 

desired one. Second, a shipper with high tendency to LTL carriers can sample only 

positive values for the LTL-related random parameters. The resulting simulated 

probabilities from this technique are presented in Figure 2.2(d). In this case the average 

selection probabilities are 8.0% for carrier , 27.9% for carrier , 43.6% for carrier , 

and 20.5% for carrier . Although there is a remarkable preference for LTL carriers, still 

TL has a significant chance to be selected. In this scenario carrier  takes back the first 

position mainly because of its initial attractive features and those added by the preference 

of the shipper towards LTL carriers. 

This numerical example shows the flexibility of the model for shippers. Additional 

uses include employing alternative specific constants that weight decisions towards 

labeled choices. Nonetheless, these constants should be properly calibrated combining 

revealed preferences, adjusting labeled utilities and rescaling price and feature utilities 

(Ben-Akiva et al. 1994, Brownstone et al. 2000, Gilbride et al. 2008). The following 

section summarizes the work and findings of this research. Likewise, presents limitations 

and future research directions. 

2.7 Conclusions 

This Chapter investigates the selection of carriers for trucking services and the 

corresponding shipper WTP. A SCE is designed to collect data from shippers in one of 

the toughest fields for transportation surveys: freight. A set of variables are postulated to 

describe features of the trucking services offered by carriers. A discrete choice mixed 

logit model is estimated to determine the variables that are relevant in this process. The 

estimation of random parameters in this model allows the consideration of mixed tastes 
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among respondents and unobserved heterogeneity. Several variables of the shipper, 

shipment, and carrier, are found to be significant in this choice. Marginal effects are used 

to rank the importance of attributes with respect to the carrier selection probability. 

Marginal rates of substitution are used to estimate the shipper WTP. A detailed 

discussion of findings is provided to advise shippers and carriers in the negotiation of 

trucking services. A numerical example is presented to illustrate the application of the 

model. 

The results herein are of significant importance with respect to transportation, 

logistics and supply chain management. The contributions of the Chapter are fourfold: (1) 

studying service choice by shippers that require trucking services, (2) postulating 

pragmatic attributes explaining this decision, (3) quantifying the corresponding WTP, and 

(4) providing meaningful negotiation guidance for shippers and carriers. 

Shippers can use the results from this model to guide the negotiation of trucking 

services. They can compare prices with respect to tangible and implied features of 

themselves and the services offered by the carriers. Carriers can use these results to 

develop segmented pricing strategies that vary according to their characteristics, features 

of their services, characteristics of the shipper, and characteristics of other carriers 

competing for contracts. Table 2.10 summarizes key elements of the services preferred by 

shippers and pricing strategies for carriers, an incremental contribution to literature on 

transportation and logistics. 

These insights are important for transportation researchers and policy makers in the 

sense that providing reliable, resilient, and efficient transportation networks can 

potentially affect the bottom line of business between shippers and carriers. 
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Table 2.10 Key elements for shippers and carriers regarding trucking-services and prices 

Services preferred by shippers Trucking-service pricing by carriers 
Price and time 

Low price services but willing to pay 
additionally for valuable features. 

Do not be afraid to price higher than other 
carriers if the service increases value for 
the shipper. 

Short delivery times (heavy shipments value it 
more than light ones). 
 

Price higher for services with reduced 
delivery times. Heavy shipments would 
pay more for time savings than light ones. 

Delivery times that are not the maximum 
accepted by the shipper. 

Price lower if the company can only 
guarantee the maximum expected delivery 
time. 

Reliability 
Large refunds if services are not provided as 
expected. 

Increase price proportionally to the refund 
offered if service is not provided as 
expected (consider failure risk and be 
cautious). 

Carriers serving regular routes (especially for 
shipments with high inventory costs). 

Price higher in regular routes and lower in 
irregular ones. 

Experience 
Good experience with the carrier is better than 
no experience (more pronounced for small 
shippers). 

Always provide services that are 
satisfactory for the shipper because this 
allows higher prices for future contracts. 

No experience with the carrier is better than 
unsatisfactory experience (more pronounced 
for large shippers) 

In the case of unsatisfactory experiences, 
prices have to be lower for future 
contracts. 

Carrier-specific characteristics 
EDI availability. Price higher if the company offers EDI. 
Direct services (TL carriers).* Price higher for direct services (TL 

carriers).* 
Flexibility to changes in capacity or equipment 
(shipments with some level of push strategy). 

Price higher if the company guarantees 
flexibility to changes in capacity or 
equipment and it is known that the shipper 
has some level of push strategy. 

Carriers with large fleets (for large shippers). When negotiating with large shippers, 
price higher if the carrier has a large fleet. 

Carriers with recent fleets.** Price higher if the carrier has recent fleets 
but be aware that a small group of shippers 
will expect low prices for this feature.** 

* On average consolidated (LTL) services as less preferable (especially for high value shipments) but there is high variability on 
preferences (particularly for contracts with high volume of shipments) 
** There is variability on this trend as some shippers prefer older fleets. 
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2.9 Appendix - Heuristic to reduce cases from optimal design 

For each attribute , let  be the corresponding set of levels,  the 

number of times that level  appears in the optimal design , 

 the set containing all such counts, and 

 the mean of the counts. The variance for the counts for each 

attribute is presented in Equation (2.9). 

 
 (2.9) 

Furthermore, a good-quality subset of  cases is the one that minimizes the 

objective function in Equation (2.10). 

 
 (2.10) 

The metaheuristic based on simulated annealing is presented in Algorithm 1. 

Simulated annealing (Chong and Zak, 2013) is a search procedure in which a new 

solution is searched in the neighborhood of the current one iteratively. In an iteration  

there are two possibilities to update the current solution: (1) move to the new solution 
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with a probability  if the objective function of the new solution  is less than 

the current one , or (2) move to the new solution with a probability 

, where the so called temperature  is a 

positive sequence that reduces with the number of iterations, and the problem dependent 

constant  is selected such that  is large enough to move to a solution with higher cost. 

 is a sufficiently large number of iterations. Notice that the probability of moving to the 

new solution associated to  decreases as the difference  increases and 

the number of iterations  increases, i.e.  decreases. 

Algorithm 1: simmulatedAnnealing ( ) 
1  

2  random sample of  choice sets from  

3  compute  only for choice sets in  

4  

5 While  

6   

7   random sample of  choice sets from  

8   compute  only for choice sets in  

9   

10   random number,  

11  If  

12    

13  If  

14    

15   

16  If  

17    

18 Return  
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CHAPTER 3. DEMAND CLUSTERING IN FREIGHT LOGISTICS NETWORKS 

3.1 Introduction 

Demand clustering in freight logistics networks is an important strategic decision for 

carriers. It is used to incorporate new business to their networks, detecting potential 

economies, optimizing their operation, and developing revenue management strategies. A 

specific example of demand clustering is truckload combinatorial auctions where carriers 

bundle lanes of demand and price them taking advantage of economies of scope. This 

research presents a novel approach to cluster lanes of demand based on historical 

sampling and a series of network transformations. Latin-hypercube sampling collects 

plausible scenarios based on historical information and dependence between shipment 

volumes and prices. Community detection is used to cluster the emergent network finding 

profitable collections of demand. Numerical results show the advantages of this method. 

The concept of demand clustering has been approached in similar works in literature. 

Bidding advisory models have been developed to bundle lanes in TL combinatorial 

auctions (CA) (Song and Regan, 2003 and 2005, Wang and Xia, 2005, Lee, et al 2007). 

Additionally, geographic clustering has been used to reduce the computational 

complexity of vehicle routing problems (Bowerman et al., 1994, Bodin and Golden, 1981, 

Dondo and Cerda, 2007, Özdamar and Demir, 2012, Schönberger, 2006, Simchi-Levi et 

al. 2005). 
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Similarly, clustering has been used to understand the distribution of freight demand 

and simplify logistics operations (Cao and Glover, 2010, Sharman and Roorda 2011, 

Singh et al. 2007, Qiong et al, 2011). However, these works present several limitations. 

In many cases revenues are not considered -or highly simplified- when demand bundles 

are constructed. Furthermore, uncertainty related to lane price and volume is not captured. 

On the other hand, clustering approaches used in the past focus on geographic proximity 

that cannot capture network effects resulting from the complex interdependencies among 

lanes. The main objective of this chapter is proposing a systematic framework for 

demand clustering in freight logistics networks that overcomes these limitations. 

This chapter is organized as follows. Section 3.1 introduces and motivates this 

research. Section 3.2 clearly defines the problem to be solved. Section 3.3 presents the 

methodology to solve it. Section 3.4 presents numerical results and advantages. Section 

3.5 summarizes the work. 

3.2 Problem definition 

This section describes the economic relationships in freight logistics networks served 

by TL carriers. Then the problem to be solved is clearly defined. 

In general, the clients of TL companies are known as Shippers. Let a lane be defined 

as the volume of truckloads per unit of time between an origin-destination (OD). Shippers 

are responsible for several lanes associated to their supply chains. They require 

transportation because they do not own transportation assets or because they own fleets 

but require additional capacity. TL carriers serve lanes of demand. A carrier can serve all 

or a subset of lanes for a specific shipper, and can work for many of them at the same 

time. TL companies operate over transportation networks (TNs). Their profits are 
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determined by the right combination of prices and operational costs. Variable costs are 

related to loading/unloading activities, loaded, and empty movements. Clearly, TL 

carriers are only paid for loaded movements. So, minimizing empty trips by guaranteeing 

follow-up loads is vital for profitable operations. Deploying vehicles in places where 

little freight originates is undesirable. Although fixed costs impact firm finances, Nagle et 

al. (2011) suggest that it is sufficient to consider variable costs only when developing 

effective revenue management strategies. So, fixed costs are not considered in the 

analysis. Successful carriers explore economies of scope by strategically serving demand 

with the right balance between volume and topology. 

Uncertainty affects the operation of businesses because forecasted demand and prices 

are used to cluster demand based on vehicle routing strategies. However, if the actual 

demand significantly differs from the forecasted one there are economic losses and 

discontent from the carrier, who might compensate by reducing its level of service. This, 

in turn, affects the regular operation of the shipper and its supply chain. A good 

understanding of demand uncertainty helps the carrier developing proper clusters of 

demand. A highly competitive environment forces TL carriers to choose market prices 

that are significantly interrelated to lane volumes. These elements are affected by 

common sources of uncertainty. 

Table 3.1 Mathematical notation 

Notation Definition 
 Traversing cost associated to each arc  

 Set of all lanes considered in the problem 
 Set of current lanes served by the carrier  
  cluster of lanes.  

 Normal cumulative distribution function for mean  and standard deviation  
 Mapping from  to .  such that demand in lane  
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Notation Definition 
is picked–up at  and delivered at . 

 Transportation network (TN) composed by a set of nodes  connected by the 
set of traversing arcs  

 Demand super network composed by a set of demand nodes  connected by 
the set of traversing arcs  

 Mapping from  to .  such that  is the 
delivery node associated demand in lane  and  is the pickup node 
associated to demand in lane . 

 Mapping from  to .  such that demand in lane  
is picked–up at  and delivered at . 

 Total number of clusters found by the algorithm 
 Number of samples selected for the Latin Hypercube Sampling process 
 Numbers of historical observations of prices the corresponding shipment 

flows available to the carrier 
  matrix of samples for each shipment price associated to lane . 
  matrix of observations for each shipment price associated to lane 

. 
 Vector of mean prices.   
  matrix of samples for each volume of shipments associated to lane 

. 
  matrix of observations for each volume of shipments associated to 

lane volume . 
 Vector of mean volume of shipments.   
 Loading / unloading cost associated to serving lane  
 Covariance matrix for the observations  
 Number of available vehicles (fleet size) 

 Demand super network composed by a set of demand nodes  and a set of 
undirected weighted links  (interconnections) 

 Flow of trucks repositioned to serve demand  after serving demand 
.  

 Flow of trucks traversing arc  

 

The problem solved by this research is clearly stated below. Table 3.1 summarizes 

mathematical notation. This Chapter considers a carrier serving a set of lanes  and 

looking for the possibility of incorporating new lanes  into its logistics operation (  

are all lanes considered in the problem). For each lane  historical observations of 

shipment prices  and lane volumes  are available. They are organized in the  

matrices  and  respectively, where  is the number of observations. The carriers 

operates over a TN , where,  are pickup/delivery nodes, and  are directed arcs 
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connecting these nodes. Arcs  are associated to traversing costs . 

(Loaded/Empty) and nodes  to pickup/delivery costs . The carrier has a 

fleet of trucks of size . Given these characteristics of the carrier and TN, we are asked 

to find the clusters of demand  that represent increased expected profits 

for the carrier. 

3.3 Methodology 

This section presents preliminary concepts of carrier economies and network 

clustering. This justifies the proposed methodology, which is based on a series of 

methods applied over network transformations. Subsequently, the algorithmic framework 

to reveal hierarchical clusters in freight logistics networks is properly defined. 

Finding groups of demand with synergetic properties in freight logistics networks is very 

important for strategic analysis, decision making, and business improvement at TL firms. 

However, detecting these lanes is not an easy task. Analysing the exponential number of 

all the possible combinations of lanes (Song and Regan, 2003), prices and desired 

volumes is a hard combinatorial problem known as the lane bundling problem, where 

demand is grouped based on complementary characteristics. This problem has been 

studied by bidding advisory models in TL CAs (Song and Regan, 2003 and 2005, Wang 

and Xia, 2005, Lee, et al 2007). The underlying concept behind lane bundling is 

achieving economies of scope (Caplice 1996, Jara-Diaz 1983, Jara-Diaz 1981). 

Economies of scope are achieved by strategically positioning trucks such that follow-

up loads are guaranteed and routing costs are distributed among several shipments. 

Backhauls are basic examples of economies of scope (Figure 3.1). If a truck delivers a 
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shipment from  to  with price , cost , and returns empty to  (cost ), the expected 

profit will be . However, if there is a backhaul (loaded return) the 

profit is  where any price  increases profits ( ). 

 

Figure 3.1 Example of economies of scope 

In this work, the lane bundling problem is addressed using a clustering approach 

where subsets of elements sharing similar characteristics are grouped into clusters. In the 

last few years researchers and practitioners have used clustering methods to aggregate 

elements based on their proximity in multidimensional spaces, e.g., hierarchical, k-means, 

two-step, ad-hoc clustering, among others. Several vehicle routing problems (Bowerman 

and Calamai, 1994, Bodin and Golden, 1981, Dondo and Cerda, 2007, Özdamar and 

Demir, 2012, Schönberger, 2006, Simchi-Levi et al. 2005) take advantage of these 

methods by dividing the original network into subsets of geographically-close nodes 

where finding optimal routes is less cumbersome. Additionally, freight logistics problems 

have used clustering to understand the geographic distribution of demand and simplify 

logistics operations (Cao and Glover, 2010, Sharman and Roorda 2011, Singh et al. 2007, 

Qiong et al, 2011) However, there are three limitations when proximity-based methods 

are used to cluster elements with an underlying network structure (Fortunato, 2010): (1) 

clustering points in a network requires at least a similarity metric for each pair of nodes, 
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so storage space grows exponentially, (2) defining metric spaces to describe proximity in 

graphs is not trivial and significantly increases computational complexity, and (3) 

numerical experiments show that clusters highly depend on the type of metric defined. 

Community detection algorithms (CDAs) (Girvan and Newman, 2002; Blondel et al., 

2008, Fortunato, 2010) overcome this limitation. They are developed to unmask highly 

interconnected elements in a network. Although they have been used to analyse several 

complex networks (e.g., social and biological networks, the World Wide Web, the 

international trade network), they are scarcely used in transportation applications. Nejad 

et al. (2012) is one of the few examples of using CDAs to understand transportation 

problems. To the best of the authors’ knowledge, community detection has neither been 

used in trucking research nor for the lane clustering problem. Nonetheless, CDAs are 

extremely important to consider network effects between lanes, i.e., economies of scope. 

Applying CDAs in this context requires defining the elements to cluster and their 

level of interconnectivity. In this work these elements are lanes. For each pair of lanes the 

interconnectivity metric is defined as the utility of having them in the same cluster, i.e., 

served by the same trip-chain. Fan et al. (2006) also propose using utility functions to 

determine the proximity of clustered vehicles in vehicular ad-hoc networks (VANETS). 

They hypothesize utility functions based on available information. However, in this 

research utility is not explicitly available in the original TN. Hence, a series of network 

transformations are required to construct an interconnectivity network (IN) suitable for 

community detection. 
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Figure 3.2 Conceptual representation of network transformations. 

An algorithmic approach is proposed to solve the problem in Section 3.2, which is 

based on a series of network transformations illustrated in Figure 3.2. Table 3.2 

summarizes the pseudo code for the main algorithm which is supported by four modules. 

Intuitively, the TN is composed by a set of nodes (pickup or delivery according to the 

lane distribution). Directed arcs between these nodes indicate traversing costs for loaded 

and empty trips (repositioned after delivering). Likewise, each shipment in a lane is 

associated to a price and pickup/delivery costs. Historical observations of prices and 

demand are used to design a number of scenarios according to their likelihood of 

occurrence and joint dependency. This is achieved using a Latin hypercube sampling 

method that accounts for dependency among sampled variables, i.e., price and demand 

level. Each sample determines an instance of prices and demand (truck volume) for the 

analysed lanes. For each instance, a demand super network (DSN) -where nodes are lanes 

and directed arcs represent the repositioned flow of trucks between lanes- is constructed. 

A profit maximization linear program (LP) is used to find the optimal distribution of 

loaded and empty trips in the DSN. Each lane can be part of a trip-chain that connects 

several lanes and provides economies of scope to the carrier. However, there are two 

issues for proper demand clustering at this point: (1) flows are aggregated so it is not 

possible to differentiate trip-chain, and (2) -assuming trip-chains can be found- there is no 
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evident connection between all lanes in a trip-chain (only the downstream and upstream 

connections are known). So, a novel method is proposed to detect and disaggregate trip-

chains, i.e., tours composed by synergetic lanes in the DSN. The joint utility between 

every pair of demand in these tours is computed and used to generate an interconnectivity 

network (IN) where each pair of lanes is weighted using the bilateral utility of having 

them in the same tour. This network is updated after running each sampled scenario. 

Then, when all scenarios are explored, a CDA is applied over the IN taking advantage of 

the rich information accumulated by the sampling process and revealing the 

corresponding clusters of profitable demand. 

Table 3.2 Main algorithm: demand clustering in freight logistics networks 

Step Description 

1  

2  Module 1 

3  matrix:  

4 For  

5  th row of , th row of  

6    Module 2 

7   Module 3 

8 End 

9 If ( ) 

10   

11 Else 

12   

13 End 

14      Module 4 

15 Return  
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Formally, the algorithm starts by computing the mean  and covariance  of 

historical observations  and  to generate  dependent samples from a Latin 

Hypercube sampling process, i.e.,  and  (Module 1). A 

sufficiently large number of samples  is defined by the modeler. For each sample 

 an instance of DSN is generated and a profit maximization network flow 

LP is solved to find the optimal distribution of trucks  that maximizes carriers profits 

(Module 2). Then, each resulting trip-chain is fathomed to determine the utility between 

duplets of lanes  and update the IN (Module 3). After properly standardizing , a 

CDA is used to unmask the demand clusters  (Module 4). 

3.3.1 Module 1: Latin hypercube sampling with dependent variables 

A sampling process is used to replicate stochastic demand and prices. Sampling is a 

common technique in experiment design and scenario testing. The Monte Carlo method 

(Metropolis & Ulam, 1949) is a popular procedure but it is expected to generate biased 

samples. The Latin hypercube sampling (McKay et al., 1979; Iman et al., 1981) 

overcomes this limitation by evenly distributing the multidimensional space (Latin 

hypercube) and selecting samples from each subdivision. However, this approach cannot 

capture flow and price dependency which is important as trucking volumes and prices are 

not independent. For example, fluctuations in the flow of trucks delivering the final 

demand of a product proportionally affect the movement of goods in the upstream supply 

chain. Similarly, economies of scope correlate prices and volumes, e.g., high volume of 

truckloads in one direction and low volume in the opposite one might result in lower 

prices for the backhauls. Stein (1987) proposes a variation of the Latin hypercube 
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sampling that considers dependency between variables. Therefore, that method is used in 

this module. 

Table 3.3 Module 1: Latin hypercube sampling with dependent variables 

Step Description 

1.1   matrix where each row is a sample with multivariate normal distribution ( ) 

1.2  matrix where  correspond to the ranking of  in the th column of  

1.3  

1.4  matrix where  corresponds to: 

 

1.5 Return  

 

Table 3.3 summarizes the pseudo code for this module. The vector of average values 

 and the corresponding covariance matrix  are used to generate  

samples from a multivariate normal distribution . These values are ranked 

column-wise to divide the space into  independent subdivisions, which are standardized 

in the interval  and assigned to the middle of each range . Finally, the 

matrix of samples  is populated using the values  for which the 

normal cumulative distribution function  is equivalent to . 

3.3.2 Module 2: demand super network linear program 

This module constructs the DSN first and then solves a network-flow LP to find the 

flow of trucks that maximizes profits in this network. 
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Table 3.4 Module 2: demand super network linear program 

Step Description 

2.1  matrix where  

2.2 Solve the following linear program 

2.2.1 
 

2.2.2 s.t. 

2.2.3    

2.2.4     

2.2.5     

2.2.6     

2.2.7      

2.3 Return  

 

Table 3.4 summarizes the pseudo code for this module. Let  be the DSN 

where the set of super nodes corresponds to the set of lanes . Nodes in  are connected 

by a set of directed arcs , where  represents the trucks repositioned to serve 

demand  after serving demand . The following network transformations are 

illustrated in Figure 3.3. Each arc is associated to a repositioning utility defied as 

, where  is the current sampled price and  is the 

loading/unloading costs for lane , is the traversing cost of a truck 

repositioned from  (Node where demand  is delivered) to  (Node 

where demand  is picked up), and  is the traversing cost of a truck 

serving the downstream demand  picked up at  and delivered at . The 

mapping functions  and  are conveniently 

defined to make transformations between  and . 
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Figure 3.3 Arc representation in the DSN and its relationship with the TN. 

Subsequently, the LP in line 2.2 (Table 3.4) is solved. Here, the variables  

represent the flow of repositioned trucks. The objective function (line 2.2.1) maximizes 

the utility associated to the deployment of  over  such that: there is flow 

conservation for the trucks serving each lane  (line 2.2.3), demand in the set of lanes 

currently served by the carrier  most be served (line 2.2.4), demand in the set of 

potential lanes to be included in the carrier network  are optionally served (line 

2.2.5), there is a limited availability of trucks  to serve the network (line 2.2.6), and 

non-negativity of  (line 2.2.7). Notice that this LP can efficiently be solved by regular 

commercial software, e.g., CPLEX. 

3.3.3 Module 3: update interconnections 

This module finds each tour in the network and relates each duplet of demand  

with a weight  in the IN. The pseudo code presented in Table 3.5 describes this 

process. First each flow  in the DSN is associated with the corresponding flows in the 

TN, i.e.  and . Then arcs  in the TN are locally modified to 

consider only arcs with flow. The main loop searches trip-chains in the network. At each 



81 
 

 

iteration, the arc  with less flow  is selected and removed from . Then, the 

shortest path  from  to  is computed. Its cost is . Each flow  associated to arcs 

in , and arc  itself is reduced by . Subsequently a set of lanes  is generated to 

hold the demand elements associated to . Notice that the mapping function 

 is used to map elements from  to . Then, the average 

cost associated to each element in  is computed and the interconnectivity between 

elements in each tour is updated by adding the fractional income associated to the 

demand objects  and  minus the corresponding average cost. 

Table 3.5 Module 3: update interconnections 

Step Description 

3.1  matrix 

3.2  

3.3  

3.4  

3.5  

3.6  matrix:  

3.7 While  

3.8   

3.9   

3.10  compute shortest path from  to  over  

  using cost matrix . Return path  and its 

  corresponding cost . 

3.11   

3.12   

3.13   

3.14   

3.15  If  
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Step Description 

3.16    

   

3.17  Else 

3.18    

   

3.19  End 

3.20 End 

3.21 Return  

 

3.3.4 Module 4: clustering 

Module 4 (described by the pseudo code in Table 3.6) applies the community 

detection algorithm presented in Blondel et al. (2008). This algorithm is based on 

modularity maximization. It has being successfully and efficiently used to detect network 

clusters in several applications. The main input for this algorithm is the interconnectivity 

matrix , which is first added to its transpose to standardize directed weights to the 

undirected case. The algorithm starts assigning each demand  to a cluster . Then, 

initial clusters are recomputed based on modularity maximization sub-module (Sub-

module 5). Next, the main while loop runs and sequentially aggregates clusters up to 

finding the configuration with the maximum modularity. 

Table 3.6 Module 4: clustering 

Step Description 

4.1  

4.2  

4.3  
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Step Description 

4.4  

4.5 computeModularity( )    Sub-module 5 

4.6 While ( ) 

4.7   

4.8   

4.9   matrix.  

4.10   Weight of links between  and  

4.11   

4.12    Sub-module 5 

4.13 End 

4.14 Return  

 

Since carriers are interested in detecting new clusters inside previously found clusters, 

for every cluster  Module 4 is recursively applied. Thus, the initial clusters are defined 

as mega-clusters (MC). Each MC is composed by several interior sub clusters (SC). 

Consecutively, interior SCs are composed by smaller SCs and so on. This hierarchical 

clustering groups lanes in several strata. 

3.3.5 Sub-module 5: compute modularity 

This sub-module (Table 3.7), which is also described in Blondel et al. (2008), 

iteratively swaps nodes between clusters. When there is increment in modularity  by 

adding a node  to a cluster  this action is performed. The process stops when 

modularity cannot be increased. Although this is a greedy approach, it has shown to be 

very efficient in practical settings. 
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Table 3.7 Sub-module 5: compute modularity 

Step Description 

5.1  

5.2 While( ) 

5.3   

5.4  For  

5.5    

5.6    

5.7   For  

5.8     

5.9     

5.10     

    

5.11     

5.12 
    

5.13    If( ) 

5.14      

5.15      

5.16      

5.17    End 

5.18   End 

5.19  End 

5.20 End 

5.21 
 

5.22 Return  

 

In summary, clusters of lanes of are found using interdependent historical information 

for volume and price on every lane. Latin-hypercube is used to sample dependent 

volume/price scenarios. The optimal distribution of flow between lanes is determined for 
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each sample solving a profit maximization LP. Synergetic lanes are interconnected based 

on their bilateral utility generating an interconnectivity network that is updated iteratively. 

Finally, community detection is used to cluster the network that emerges and finding 

profitable demand collections. An important benefit of this method that it is flexible to be 

implemented in well-known programming platforms like Matlab, Python, C++, Java, 

among other. Furthermore, each module can be either developed or borrowed from 

available open sources or commercial software. For example, Latin hypercube sampling 

is available in platforms like Matlab, R, Python, SAS/JMP, etc. Linear programing can be 

solved using commercial software, e.g., AMPL/CPLEX, ILOG CPLEX, Gurobi, Lindo, 

Gams, Matlab, etc. Source code for community detection algorithms is available for 

Matlab, C++, Python, among other, and implemented in several network analysis 

software, e.g., NetworkC and Gephi. 

3.4 Numerical results 

This section presents a numerical example to illustrate the methodological framework. 

Then, a numerical experiment is performed to test its scalability. The suite of algorithms 

is coded in Matlab and run in an average desktop with Inter ® Core 2 Duo Processor 

(E8400) at 3.00 GHz and 4.00 GB of RAM. The open source code developed by Scherrer 

and Blondel (2014) is used for community detection. 

For the numerical example consider the TN in Figure 3.4(a). Each arc in the grid 

network has unitary cost. Without loss of generality assume that the cost for each lane 

(traversing plus loading/unloading) is equivalent to the sum of unitary costs for covered 

arcs. Repositioning costs correspond to the shortest path between lanes in the grid 

network. Currently, the carrier serves  lanes and is considering other  lanes 
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for new businesses. In total, this analysis considers  lanes. A number of 

 contemporaneous observations for price  and shipment volume  are 

available for each lane. The mean  and covariance  for these values are illustrated 

in Figure 3.4 (b). 

 

Figure 3.4 Numerical example: (a) TN and demand (left), (b) mean and covariance for 
price and truck volumes (right). 

The carrier selects  samples to undertake the analysis (Module 1). For each 

sample, the linear program in Module 2 is solved and the IN populated (Module 3). 

Figure 3.5 presents the resulting IN and shows that several lanes present synergies when 

operated together. However, these synergies are stronger for groups of them. For example, 

the new lane 7 is strongly related to the current lane 22, which is intuitive by the 

directionality of the flows in in Figure 3.4(a). Furthermore, current lanes 30 and 32 

complement these movements by reducing empties. Notice that the geographic position 

of 30 and 32 results in no direct interconnection between them but they have strong 

common allies, i.e., 7 and 22. Similarly, the new lane 15 forms a strong triplet with lanes 

23 and 25 giving continuity to the current traffic flows. On the other hand, there are 

isolated lanes with scarce interconnections but strong connectivity to themselves, i.e., 
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new lane 19 and current lanes 29, 35, 41. These lanes are characterized by backhaul 

movements and this can happen for several reasons, e.g., they are isolated or peripheral in 

the network, the topological characteristics of lanes in their neighbourhoods are not 

suitable for follow-up loads, neighbour lanes have stronger synergy with other lanes in 

the system. Interestingly, lane 29 has no interconnections but its self-strength is 

extremely high, i.e., it has no synergy but is very valuable for the carrier. This is because 

it is a profitable but peripheral lane. Other groups of lanes hidden in the IN are mined 

using community detection (Module 4). 

 

Figure 3.5 Numerical example: IN. 

The clustering algorithm reveals seven MCs (Figure 3.6(a)). Community detection 

reinforces the intuition presented below by unmasking synergies not distinguishable by 

observation. 22 MCs are observed, i.e., 7 aggregating more than two lanes and 15 are 

singletons. MC 1 is composed by lanes 7, 22, 30, 32 as noticed above. Synergies are 

complemented by the new lanes 4, 8, 3 and current lanes 26, 39. MC 2 is composed by 

lanes 15, 23, 25 -noticed before- and complemented with the current lane 37. Other 

clusters are MC 3 composed by new lanes 18, 9, 6, current lane 34, MC 4 by new lanes 
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11, 13, 16 only, MC 5 by new lanes 5, 2, current lane 27, by new lanes 1,17 only, MC 7 

by new lane 20, current lane 24. Each of the remaining lanes is a cluster itself. Lanes 19, 

29, 35, 41, mentioned above, are in this category. Interestingly, many current lanes are 

benefited by adding new lanes. On the other hand, clusters composed only by new lanes 

represent new business opportunities for the carrier.  

The hierarchical structure of the clusters is obtained by fathoming MCs. Figure 3.6(b) 

show the composition of the MCs and their corresponding SCs. MC 1 is divided in two 

SCs: SC 1.1 with strong interconnected lanes and SC 1.2 with other interconnected lanes 

that have less strength, MC 2 segregates lane 37 and creates SC 2.1 with the strong triad 

15, 23, 25. Furthermore, lanes 18 and 5 are separated from M3 and M5 creating new SCs. 

MCs 4, 6, 7 are strong by themselves and no disaggregation is needed. This example 

shows that analysing the freight demand clustering problem is considerably complex 

even for small instances. The proposed methodology reduces this complexity and is a 

viable alternative for carriers that face large instances of this problem in their regular 

operations.  

The scalability of the method is tested with a numerical experiment. The number of 

samples in the experiment is set to M=100. The geography of the transportation network 

is randomly generated with traversing cost equal to the Euclidean distance between nodes. 

Likewise, the set of lanes D and the corresponding sets of observation P and Q are 

synthetically generated following appropriate ranges avoiding inconsistencies. Table 8 

summarizes the experiment where demand varies from 25 to 500 lanes and the 

corresponding pickup/delivery nodes go from 50 to 1000. 
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Figure 3.6 Numerical Example: (a) MCs of demand (notation: [MC ID, lane ID]) (left), 
(b) hierarchical clustering (right). 

Table 3.8 shows that the method is suitable for sufficiently large instances. The 

modules that are spending the most computational time are the one related to the solution 

of the LP (Module 2) and the one where trip-chains are searched to update the IN 

(Module3). Likewise, modularity and number of clusters increases as the number of 

demand objects increases. In general, the number of MCs (computed before starting the 

recursive process described in Module 4) represents a large proportion of the total 

clusters found. 

Table 3.8 Scalability experiments 

Demand Nodes MCs Modularity 
Total 
clusters 

CPU Time (seconds) 
Inputs Module 1 Module 2 Module 3 Module 4 Total 

25 50 6 0.71 12 0.00 0.00 2.76 1.56 1.08 5.40 

50 100 21 0.83 32 0.11 0.02 8.44 7.46 1.19 17.21 

100 200 30 0.83 47 0.03 0.05 30.09 40.06 5.51 75.74 

200 400 108 0.83 135 0.47 0.31 189.17 233.03 19.00 441.98 

500 1000 284 0.90 340 1.22 4.06 2836.70 3212.40 28.83 6083.20 

 

There are several key insights from these results. Network effects most be considered 

when clustering freight demand. Although geographic proximity highly impacts 
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clustering, it is not the only and most important attribute. Bilateral utility between lanes 

determines their actual proximity, which is a function of the trip-chains encompassing 

them. Thus, topology (geography and directionality), shared profits (volumes, costs, and 

prices), and contemporaneity, are key elements for demand clustering in freight logistics 

networks affected by uncertainty. High bilateral utility is a key trait for clustering demand 

but it is not sufficient. The strength and degree of interconnectivities between lanes 

determine their actual closeness, in social networks jargon: “the friend of your friend is 

likely also to be your friend” (Newman, 2003). Furthermore, lanes complement at 

different levels. Those with higher synergies remain together over several sub-clusters. 

Lanes with less strength either disconnect leaving the stronger elements clustered, or 

agglomerate into new sub clusters with other synergetic lanes. Not all lanes are synergetic 

in the system. Some of them are not suitable to be clustered and they operate better alone. 

This happens because they are distant, i.e., geographically far, with opposite 

directionalities, or not competitive with respect to other lanes already clustered. Finally, 

the method is suitable for real world applications where large number of lanes need to be 

analysed. 

3.5 Conclusions 

This research considers the problem of clustering lanes of demand in freight logistics 

networks. This is motivated by the economies of scope achieved by important logistics 

clusters implemented over the world. Demand clustering is relevant for flexible 

transporters that need to identify groups of synergetic lanes. These lanes should be 

profitable under uncertain volumes and prices. Empty-trip reduction is critical to achieve 

this goal because it considerably decreases operational costs. Furthermore, this 
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phenomenon mitigates negative externalities to society. The clustering problem is 

approached from a truckload (TL) perspective. TL is the most popular and flexible type 

of operation for freight transportation. 

Demand clustering in logistics networks is important for several reasons. First, it 

facilitates the analysis and prioritization of demand for TL carriers, which is essential to 

detect new business opportunities that can be included into their current networks 

efficiently. Thus, clusters have to be carefully built in order to add synergies that reduce 

empties and increase profits. Furthermore, optimizing routing and scheduling over the 

complete network covered by large carriers is computationally demanding. An 

appropriate clustering approach is vital to detect sub-networks that can be optimized 

efficiently. Finally, knowledge about lanes that perform well when served together is 

important to develop pricing and revenue management strategies that add value to the 

business of their clients, i.e., shippers. For example, two lanes from two separate shippers 

served in isolation would be individually expensive. However, if economies of scope are 

achieved and they are part of the same cluster, the carrier can price them lower without 

monetary loses. This makes the current service competitive (low price), and reduces 

transportation expenses for the shippers. 

This Chapter proposes a novel algorithmic approach to cluster lanes of demand, 

which is based on dependent sampling over historical data and a series of network 

transformations. Briefly, Samples for price and volume are collected using the Latin-

hypercube technique. A profit maximization linear program is solved to find the optimal 

distribution of trucks associated to each sample. Based on these flows, trip-chains are 

mined to determine the bilateral utility of synergetic lanes. Finally, these utilities are used 
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to populate an interconnectivity network, which is explored with a community detection 

algorithm to cluster demand lanes. The main contributions of this work are (1) proposing 

a novel framework to consider interdependencies between lanes, (2) incorporating market 

prices in a revenue management fashion, (3) considering the interrelation and variability 

of lane volumes and prices, (4) developing and algorithmic approach that is 

computationally efficient. 

Numerical experiments show the importance of the method. Geographic nearness is 

not the only attribute to consider when clustering demand in logistics networks. The 

contemporaneous bilateral utility determined by the profit of serving lanes in the same 

trip-chain is an accurate metric of proximity that takes into account the different 

dimensions of this complex problem. Additionally, this Chapter shows that lanes present 

synergies at different levels, i.e., in a hierarchical fashion. Thus, carriers can analyze the 

opportunities of serving combinations of lanes with different priorities, which is 

important for decision making in complex networks. Consequently, in some cases, it is 

better not to consider some lanes that are in the vicinity of others but do not contribute to 

their local synergy. The model is scalable for real world applications. 
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CHAPTER 4. PRICING AND BUNDLING TRUCKLOAD 
                         SERVICES WITHDETERMINISTIC DEMAND 

4.1 Introduction 

Constructing bundles, e.g., for truckload combinatorial auctions, is a challenging 

problem faced by trucking firms. Several bidding advisory models have been proposed to 

bundle lanes considering their synergetic effects. These models are based on cost 

minimization approaches. However, they do not capture pricing and demand 

segmentation. Pricing is a key competitive advantage that maximizes profits when it is 

properly combined with cost minimization. Similarly, demand segmentation allows 

carriers to fully benefit from these auctions. This chapter introduces BM T, a biding 

advisory model for truckload combinatorial auctions that can be used by trucking 

practitioners to bundle lanes and overcome these limitations. Numerical experiments 

show the benefits and efficiency of the algorithmic framework. 

As shown in Subsection 1.2.3, a revenue management strategy that properly combines 

low cost bundles with prices that maximize the expected profits of carriers participating 

in TL CA is missing in literature. Consequently, in new TL CA carriers are allowed to 

bid for segments of demand in the lane rather than all of it. This is important for carriers 

because they can bid for volumes that give them more economies. On the other hand, 

shippers prefer to split high volume lanes into several carriers in order to add robustness 

to their businesses. 
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This work introduces BM T (Bidding model for TL demand), a computational 

package that overcomes the limitations of available bidding advisory models. Two 

contributions demonstrate the superiority of BM T over previous approaches: (1) it 

handles bundle generation and pricing explicitly, (2) it determines the amount of flow 

that the carrier is willing to serve in each bundle. 

The chapter is organized as follows. Section 4.1 introduces and motivates the problem. 

Section 4.2 clearly defines the problem to solve. Section 4.3 presents the methodology 

proposed to solve it (BM T), which is visualized with operational examples in Section 

4.3.4. Section 4.5 concludes the chapter. 

4.2 Problem definition and formulation 

This section clearly defines the problem to be solved. Intuitive definitions are 

followed by formal notations that describe the problem. Then the problem is formulated 

as a mixed integer quadratic program (MIQP). General mathematical notation is 

summarized in Table 4.1. 

A shipper that requires moving volumes of shipments between different origins and 

destinations organizes a TL CA. There is a reservation price that shipper is willing to pay 

for each lane. The shipper communicates lane information related to geographies, 

volumes, and maximum prices to a group of carriers invited to the auction. Each carrier is 

responsible for reviewing these data and constructing bids (quotes) that are submitted 

back to the shipper. Each bid is a bundle of desired lanes. Bundles are accompanied with 

the following information: desired volume and charged price. Desired volume indicates 

the maximum TL volume that the carrier is willing to serve for lanes in the package. 

Price indicates the amount charged for each TL shipment included in the bundle. After 
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collecting all bundles from all carriers, the shipper analyzes this information and awards 

the most competitive bundles to the corresponding carriers. Finding the best combination 

of bundles/carriers that reduces total transportation procurement cost for the shipper is 

formally called: the winning determination problem (WDP). When a carrier is awarded 

for a bundle, it wins the right and priority to serve the shipments in it. 

Table 4.1 General mathematical notation 

Notation Definition 

  Set of lanes auctioned in the TL CA. Each lane  associated to 
demand  and reservation TL price . 

  Demand of TL per unit of time associated to the auctioned lane 
. 

  Reservation TL price ($) for to the auctioned lane . 

  Set of bundles submitted by a carrier to the auction. Each bundle  
associated to auctioned lanes , maximum desired demand  , 
and TL price . 

  Set of auctioned lanes included in bundle . . 

  Maximum amount of demand (TL per unit of time) the carrier is willing 
to serve in bundle . . 

  Price the carrier would charge for every TL in bundle  if awarded 
by the shipper. . 

  Set of lanes currently served by the carrier. Each lane  
associated to demand  and a current TL price . 

  Demand of TL per unit currently served by the carrier in the lane 

. 
  TL price ($) currently charged by the carrier to demand in lane 

. 
  Carrier’s transportation network. 

  Set of pickup/delivery nodes operated by the carrier. 

  Set of arcs operated by the carrier . 

  Subset of demand arcs associated to auctioned and current lanes 

. 

  Subset of repositioning arcs associated to empty movements . 
  Unitary cost per TL in a demand lane . . 
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Notation Definition 

  Unitary traversing (loaded) cost in lane carrying demand . 

  Unitary loading/unloading costs associated to pickup  and 
delivery  nodes. 

  Unitary traversing (empty) cost in each repositioning arc . 

  Carrier’s profit threshold below which it is not willing to serve bundles. 

  Total profit associated to bundle . 

  Unitary profit per TL in bundle . 

  Set of synergetic arcs used to give continuity to auctioned lanes  in 

bundle . . 

  Flow in each arc  of auctioned lanes  and synergic arcs 

 associated to bundle . Equivalent to max. bundle 

demand . 

  Binary variable.  if bundle  is part of the subset of bundles 

 covering the lane  such that current demand  is 

satisfied,  otherwise. 

  Set off mappings  relating each demand arc  with every 
possible combination of bundles covering it. 

  Binary variable.  if bundle  is part of the subset of bundles 

 covering the lane  such that new auctioned demand 

 is considered,  otherwise. 

  Set of nodes considered in bundle . . 

 

This research addresses the perspective of a TL carrier invited to this auction. The 

challenge for this carrier is constructing bundles of lanes with the right combination of 

prices, lanes, and volumes. Defining competitive prices is important to make the bundle 

desirable to the shipper and, at the same time, profitable to the carrier. Profitability is 

obtained when these prices compensate bundle costs. Bundles have to be constructed 

such that each of them represents an expected profit higher than a profit threshold defined 

by the carrier. The main variable costs for carrier’s operation are related to loaded and 

empty movements. Loaded-movement costs are determined by pickup costs, traversing 
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costs, and delivery costs. On the other hand, empty (uncharged) costs are incurred when 

trucks are repositioned between loaded lanes. Notice that only loaded movements 

produce revenues. Thus, the carrier can eliminate empty costs by properly combining 

follow-up (loaded) lanes. This is achieved either by combining lanes in the auction or 

mixing them with lanes currently served for other clients. Therefore, considering this 

current demand is critical in the construction of competitive bundles. 

The problem is formally defined as follows. Let  indicate the set of lanes auctioned 

by the shipper. Each auctioned lane  is described by a pickup node , a delivery 

node , and volume of TL per unit of time required to be served by the shipper and 

denoted as . The reservation price (lane valuation or maximum price the shipper is 

willing to pay) for this lane is denoted as . The group or set of bundles constructed by 

the specific carrier considered in this problem is represented by the notation . Each 

bundle in this set is denoted as . Following this idea, the set of lanes that compose a 

bundle  is denoted as  (a subset of the auctioned lanes). The maximum 

volume that the shipper is willing to serve in each bundle is denoted as . Finally, the 

price charged for each TL if the bundle if awarded is denoted as . From the specific 

perspective of the carrier, let  denote the set of lanes currently served by the carrier. 

Each lane  is described by a pickup node , a delivery node , a known demand 

level denoted as , and a shipment price denoted by . The bundling problem is 

considered from a network perspective which requires defining a network  

composed by a set of nodes, denoted , and a set of arcs, denoted . The set of nodes  

indicates the location of pickups and deliveries. The set of arcs  indicates connections 
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between nodes. There are two types of arcs: (1) loaded arcs from pickups to deliveries 

(subset ), and (2) empty movements from deliveries to pickups (subset ), formally 

. The set of loaded arcs is basically formed by lanes, which can be auctioned  

or current  lanes, formally . Each loaded movement, represented by an arc 

 in the set , is associated to a traversing cost denoted by , a pickup cost , and a 

delivery cost . Then, the total cost associated to a TL movement over this arc is 

. On the other hand, the cost for each TL movement over a 

repositioning arc  in the set  is denoted as . The notation  is used to indicate the 

profit threshold that determines whether a bundle is desirable by the carrier or not. 

The problem to solve is stated as follows. Given the conditions presented above, a 

carrier is asked to analyze the set of existing  and new  lanes to determine the best 

combination of bundles  to submit to the TL CA that increases its expected profits. This 

is formally represented by the MIQP formed by the Objective Function (4.1) that is 

subjects to Constraints (4.2) to (4.13). 

There are four sets of variables in this problem: (i)  indicating the maximum 

amount of demand that the carrier is willing to serve if bundle  if awarded, (ii)  

indicating the price per TL in the bundle  if awarded, (iii) binary variable  if 

bundle  is part of the subset of bundles  covering the lane  such that 

current demand  is satisfied,  otherwise, and (iv) binary variable  if 

bundle  is part of the subset of bundles  covering the lane  such that 

new auctioned demand  is considered,  otherwise. 
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The Objective Function (4.1) maximizes the total profit of bundles submitted to the 

auction. Notice that in this formulation the set  has to consider all the possible 

combinations of bundle that can be constructed. This extremely problematic and is one of 

the main reasons supporting the development of the program introduced in the next 

section. 

  (4.1) 

The total profit associated to each bundle is denoted by  and formally defined in 

Constraint (4.2) as the product between  and , where  indicates the marginal profit 

for each TL served in bundle , and  is a variable previously defined.  

  (4.2

) 

Each bundle is composed by a set of auctioned lanes  and a set of synergetic arcs 

denoted as . These arcs are either lanes currently served by the carrier (in the set ), 

which remove empty trips connecting auctioned lanes (in ), or the arcs associated to 

empty repositioning (in the set ) if the latter is not possible. So,  is a subset of these 

arcs formally defined as . This distinction is required to define  in 

Constraint (4.3) as the summation of the profit per truckload perceived by three types of 

arcs considered in each bundle: (i) profit for auctioned lanes in the bundle  (first 

bracket), (ii) profit perceived by synergetic lanes of current demand  (second 

bracket), (iii) and costs of empty repositioning  (third bracket). 



100 
 

 

 

(4.3

) 

Constraint (4.4) specifies that the total profits for every individual bundle  has to 

be greater than or equal to the profit threshold  defined by the carrier. 

  (4.4) 

Constraint (4.5) indicates that the price for each bundle  has to be at most the 

lowest reservation price  for lanes contained in such bundle. There are three important 

considerations behind this: (i) it is consistent with the concept of pricing for TL CA, (ii) 

although the lowest reservation price is the highest for at least one lane, it is less than or 

equal to the reservation prices in other lanes and, hence, more attractive, and (iii) 

Although cost-based pricing would be lower, it would be prejudicial for carrier profits 

leaving money on the table that the shipper would be willing to pay. 

  (4.5) 

Constraint (4.6) indicates that the maximum flow  willing to be served in each 

bundle has to be assigned to each auctioned lane, i.e., , and 

synergetic arc, i.e., , in every bundle . 

  (4.6) 

Constraint (4.7) indicates that for every current lane , there exists at least a 

cover of bundles  that satisfies its demand denoted by . This is required 

because current lanes served by the carrier (denoted by ) have to be served and for each 

bundle considering this synergetic lane there must exist complementary bundles that 
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guarantee serving all its demand. Variables  define such combinations that are 

exponentially in nature. This is part of the problem that is addressed by the methodology 

proposed below. 

  (4.7) 

Consequently, Constraint (4.8) indicates that for every new auctioned lane  

there might be bundles where demand  is partially (or totally) covered. In this profit 

maximization approach, Constraint (4.8) prefers more profitable auctioned lanes and even 

leaves unserved those that are not attractive for the trucking firm. The same 

combinatorial problem presented for Constraint (4.7) occurs here. 

  (4.8) 

Constraint (4.9) gives flow conservation to every node , where  is the set of 

nodes covered by bundle . 

  (4.9) 

Finally, constraints (4.10)-(4.13) properly define non-negative and binary variables in 

this problem. 

  (4.10) 

  (4.11) 

  (4.12) 

  (4.13) 

Song and Regan (2003, and 2005) and Lee et al. (2007) recognize the computational 

complexity of bidding advisory models for TL CA. The complete enumeration of bundles 
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grows exponentially with respect of the analyzed lanes. Furthermore, analyzing each 

bundle involves the solution of an NP-problem. This computational problem is 

aggravated by the quadratic expressions required to address pricing and demand 

segmentation in this research. Thus a solution procedure (BM T) is proposed to find a 

balance between good quality bundles and a computationally tractable approach. This 

method is presented in the following section. 

4.3 Methodology 

A bidding advisory model that incorporates pricing and demand segmentation in the 

context of TL CA is computationally complex. This section introduces BM T, a 

computational package that balances between good quality bundles and low 

computational burden. 

Figure 4.1 describes the main algorithm behind BM T, which is intuitively described 

as follows. The program is initialized using the inputs described in the previous section. 

The main advantage of this approach is taking advantage of the special structure of the 

MIQP (4.1)-(4.13) to find bundles by iteratively solving minimum-cost flow (MCF) 

problems with polynomial solution time. Subsection 4.3.1 reviews the MCF problem and 

explains how the inputs of MIQP (4.1)-(4.13) are transformed into a MCF type of 

network. After solving a MCF problem, the resulting flows are explored in polynomial 

time by Tarjan’s algorithm in order to construct bundles as shown in Subsection 4.3.2. If 

profits for these bundles are acceptable (higher than the carrier’s threshold) and share the 

same price, bundles are generated and stored. Then an arc is removed from the network 

adding a perturbation to the next iteration. The prosed arc selection criterion (Subsection 

4.3.3) iteratively removes arcs with high capacity utilization and low flow and centrality. 
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On the other hand, if profits are acceptable but prices are not the same, the network is 

modified duplicating and adjusting arcs so that the appropriate prices are available the 

next time the MCF problem is solved (Subsection 4.3.4). When the MCF solution returns 

a profit below the acceptable threshold, the last removed arc is added back to the problem 

and a new arc is removed. When all candidate arcs are removed, the process stops and 

returns the bundles. The following subsections provide specific details for each module. 

 

Figure 4.1 BM T: bidding model for TL demand 

4.3.1 Minimum-cost flow (MCF) problem: special features for bundle construction 

First, the MCF problem is reviewed based on the work by Ahuja et al. (1993). Then, 

it is related to the current bundling problem and integrated to the general framework. 

Specific notation used in this subsection is summarized in Table 4.2. 
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Table 4.2 Specific mathematical notation for the MCF problem 

Notation Definition 

  MCF type of network derived from . 
  Set of nodes considered in the MCF problem. . 

  Set of dummy nodes added to  to transform  into . 

  Set of arcs considered in the MCF problem. . 
  Set of dummy arcs connected to dummy nodes  to transform 

 into . 
  Unitary cost (negative profit) to each arc . 

  Arc capacity for every arc . 

  Supply/demand associated to each node . 
  Arc flow for each arc . 

  Subset of bundles submitted to the auction . 

 

Consider a directed network  intended to transfer flow from supply to 

demand nodes. Each arc  has traversing cost  and capacity . Supply nodes 

input  flow to the network and demand nodes require  flow from it. For 

other nodes . The MCF problem (4.14)-(4.16) finds the arc flows  that 

minimize total system cost. 

  (4.14) 

s.t. 

  (4.15) 

  (4.16) 

The objective function (4.14) minimizes total flow cost. Constraint (4.15) indicates 

flows conservation at every node. Constraint (4.16) specifies that arc flow cannot exceed 

arc capacity. The MCF problem requires all inputs ( ) to be integral, supply 
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demand balance, i.e. , and non-negative arc costs. Notice, however, that the 

last requirement imposes no loss of generality and can be relaxed, e.g., using arc reversal 

transformations. 

There are several algorithms that solve the MCF problem in polynomial time. Király 

and Kovács (2012) summarize many of them (Table 4.3). 

 

Table 4.3 MCF Algorithms and worst case running time (Király and Kovács, 2012) 

Algorithm Worst case running time Reference 
Cycle-canceling  Klein (1967) 
Minimum-mean 
cycle-canceling 

 Goldberg and 
Tarjan (1989) 

Cancel-and-
tighten 

 Goldberg and 
Tarjan (1989) 

Successive 
shortest path 

 Iri (1960), Jewell 
(1958), Busacker 
and Gowen (1960), 
Edmonds and Karp 
(1972), Tomizawa 
(1971) 

Capacity-scaling  Edmonds and Karp 
(1972), Orlin 
(1993) 

Cost-scaling  Goldberg and 
Tarjan (1989) 
Röck (1980), Bland 
and Jensen (1992)  

Network simplex  Ahuja et al. (1995), 
Dantzig (1998), 
Kelly and ONeill 
(1991) 

Where, highest cost , highest capacity ,  

for Dijkstra’s algorithm with binary heaps 
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Framing the bundling problem in the MCF problem context is important to take 

advantage of its computational efficiencies. Interestingly, there are similarities between 

these two problems. The flows associated to the optimal bid that the carrier can submit to 

the auction with bundle-independent prices, akin to (Lee et al. 2007), can be obtained 

solving the MCF problem (4.14)-(4.16) with the following network transformations 

(Figure 4.2 (a)(b) illustrates Steps 1.1-1.7). 

For every current-demand lane : 

Step 1.1. Create dummy node , where  is the set of such nodes. 

Step 1.2. Create dummy arc  connecting the tail of  to , 

where  is the set of such arcs. 

Step 1.3. Set dummy arc cost  and capacity  

Step 1.4. Associate  with demand  and  with supply  

Step 1.5. Temporally remove  from the MCF problem. 

For every new-auctioned lane : 

Step 1.6. Set arc cost  and capacity  

Step 1.7. Associate no demand/supply to , i.e.,  

Additionally, for every repositioning arc : 

Step 1.8. Set arc cost to the repositioning cost  

Step 1.9. Set arc capacity to the associated lowest adjacent one, i.e., if 

, else  

The MCF network  is composed by the sets of arcs  and 

nodes . 
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Notice that, when lane price is higher than arc cost, this transformation involves 

negative cost arcs . Minimizing costs in a network with these characteristics is 

equivalent to maximizing profits (negative arcs are not a problem for MCF algorithms as 

mentioned before). 

This transformation is used to find an optimal set of flows  in which all current 

demand is served  and new auctioned lanes  are served only if they maximize profits 

(minimize modified costs). So it is equivalent to finding an optimal combination of 

potential bundles  associated to a mapping  where constraints (4.7)-(4.8) 

hold . However, it is not possible to distinguish the specific flows  

associated to each bundle  because they are aggregated, i.e., 

. The following subsection explains the steps to 

disaggregate them and uncover the associated set of bundles . 
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Figure 4.2 Network transformations from original (a) to MCF problem (b), and 
price/capacity modification from MCF network (c) to MCF temporal network (d). 

4.3.2 Finding bundles from aggregated flows 

After solving the MCF problem the resulting optimal arc flows  are aggregated in 

an optimal partition that serves current demand and includes new lanes that maximize 

system profits. However, it is not clear what lanes are bundled together. Then, a 

disaggregating method is required. The objective of this method is finding tours of tuck 

flow that are subsequently used to generate bundles. Specific notation used in this 

subsection is summarized in Table 4.4. 

Table 4.4 Specific mathematical notation to find bundles from aggregated flows 

Notation Definition 

   subset of strongly connected (SC) nodes in a graph . 
. 

  Set of arcs forming a tour associated to bundle  obtained from the SC set . 

  Price for every arc . 
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Notation Definition 
  Binary indicator.  if there exists a bundle with unacceptable profit,  

otherwise. 
  Binary indicator.  if there exists a bundle with inconsistent prices,  

otherwise. 
  Set of potential bundles related to tours with same prices 

. 

  Set of hypothetical bundles related to tours with different prices 

. 

 

Tarjan (1972) proposes an efficient algorithm  to find subsets 

 of strongly connected (SC) components in a directed graph. The special 

characteristic of a SC set  is that for each pair of nodes  there exist paths 

 and , i.e., a round tour  starting from any node  passing by any other node  

traversing the set of arcs . The recursive depth-first search used by Tarjan’s algorithm 

to find every  is also used to obtain the corresponding tours . Having each  is 

important to collect flow  and corresponding prices . This information 

will determine whether  is considered to generate a bundle  or not. Binary 

indicators  identify the existence of unacceptable-profit bundles ( ) and 

inconsistent prices in a bundle ( ),  otherwise. 

The method to find bundles from aggregated flows is summarized as follows: 

Step 2.1: Associate flow/cost  with corresponding  

Step 2.2: Temporally remove each  such that  

Step 2.3: Use Tarjan’s algorithm over  to find SC components  and 

underlying tours  

Step 2.4: For each  pair: 
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Step 2.4.1: Compute tour flow  

Step 2.4.2: Segregate arcs into auctioned lanes  and s lanes  

Step 2.4.3: Collect tour prices for new auctioned lanes  

Step 2.4.4: Compute tour profits  

Step 2.5: If there exists an unacceptable profit, i.e., , set , else 

. 

Step 2.6: If  do the following: if all prices  for new auctioned lanes in the 

tour are the same, i.e., , then add tour  to the set of bundles 

, else add  to the set for next network modifications . 

Step 2.7: If the set  is empty, then set , set  and store  with other 

already found bundles , else  

Valuable information is obtained after running this module. If there are tours that 

result in bundles with unacceptable profits, i.e., , the current MCF solution is not 

considered. This implies adding back the last removed arc and removing a new one as 

will be explained in Subsection 4.3.3. 

On the other hand, i.e., , tours are segregated into potential bundles , i.e., 

tours where all new auctioned demand share the same prices, and those that need to be 

revised with respect to price , i.e., tours with different prices. If all prices are right, i.e., 

 then a new arc is removed from the network, as will be explained in Subsection 

4.3.3, and bundles with correct prices are added to the global solution. Otherwise, the 

network is modified so that the corresponding flows have the option to obtain the same 

prices. This will be explained in Subsection 4.3.4. 
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4.3.3 Finding bundles from aggregated flows 

The MCF problem solution outputs an optimal set of flows that maximizes profits 

while satisfying demand-related and flow-conservation constraints. If all prices are 

correct, this solution can be used to generate a set of optimal bundles . However, 

there is high risk if only optimal bundles are submitted to the auction. If competitors have 

better prices for lanes in any of these bundles, the carrier will likely lose those lanes, 

which implies also losing all lanes in the corresponding bundles. Hence, a method to 

explore other good bundles is required. Specific notation used in this subsection is 

summarized in Table 4.5. 

Table 4.5 Specific mathematical notation to modify the original network 

Notation Definition 

  Arc betweeness centrality for arc . 

  Binary indicator.  if arc  is traversed in the shortest 

path from  to ,  otherwise. 

  Binary indicator.  if arc  has been removed from the 

network,  otherwise. 

  Capacity usage ratio. . 

  flow centrality criterion . 

 

But, how to find another set of flows that can produce different bundles at the same 

optimal MCF profit or within a narrow gap from it? Network perturbations are used to 

achieve this goal. This requires defining proper perturbation criteria that consider used 

arcs, unused capacity, and some metric of attractiveness. Perturbing very attractive arcs is 

not desirable because they are usually overlapped by several bundles to compensate low 
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attractiveness of other lanes. So, a criterion where perturbation goes from less to more 

desirable arcs is envisioned. 

Another important question is how to account for network effects? This is important 

because an isolated arc can be unattractive but very relevant when jointly analyzed with 

other lanes. In this sense, a metric considering the importance or centrality of the arcs is 

required. 

Betweenness Centrality (Anthonisse 1972, Freeman 1977, Newman 2010) is used to 

identify important central nodes/arcs in a network by counting the number of times these 

elements are used as bridges in the shortest paths between every node duplet. So, arc 

betweenness centrality is used as part of the selection criteria to perturb the network. 

Worst case running time for its computation is . It is performed once at the 

beginning of the algorithm when the original network  has not been perturbed. 

Arc betweenness centrality  is defined in Equation (4.17), where the binary variable 

 if arc  is traversed in the shortest path from  to ,  

otherwise. 

  (4.17) 

When bundles with correct prices are found, i.e.,  and , the 

current set of bundles is stored first, i.e., . Then, the following perturbation 

procedure is applied to remove an arc from the network. Let the binary indicator  

designate that the arc  has been removed from the network, and  designate 

the contrary. For each arc  such that arc is used, i.e., , it is not a current 



113 
 

 

demand arc, i.e., , it is not connected to a current demand arc, i.e., 

, and it has not been removed before, i.e., . 

Step 3.1: Compute capacity usage ratio  

Step 3.2: Compute flow centrality criterion  

Step 3.3: Select  such that  and  

Step 3.4: Remove  from the network, , , i.e.,  

(Figure 4.1) 

The perturbation procedure prioritizes arc selection based on the following three 

concepts: (1) zero or small unused capacity, i.e., , (2) low flow, and (3) low 

centrality (periphery), i.e., . Concept (1) gives flexibility to use such capacity in 

later iterations. (2) and (3) protect important arcs that can overlap in several bundles. The 

selected arc is removed from the network and not considered in next iterations. 

The overall algorithm stops when it is not possible to select an arc to remove. Notice 

that arcs related to current demand are maintained in the network. This guarantees that 

new auctioned lanes in the resulting bundles either have synergies with the current lanes 

or do not affect their current operation. 

The possibility of removing arcs resulting in bundles with unacceptable profits exists, 

i.e.,  (Subsection 4.3.2). When this happens, the last removed arc  is added 

back to , i.e., ,  (Figure 4.1), removal criteria are 

estimated again and a new arc is selected. Notice that  remains and this arc is not 

part of the removal choice set. 
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4.3.4 Temporal Network 

Subsection 4.3.2 shows how to find potential bundles where all new auctioned lanes 

have the same price . However, it is also possible to find tours where prices are not the 

same , so bundles cannot be generated. This subsection presents an iterative procedure 

to handle this case by considering the hypothetical case in which tours in  are used as 

bundles. Specific notation used in this subsection is summarized in Table 4.6. 

Table 4.6 Specific mathematical notation to define the temporal network 

Notation Definition 

  Temporal MCF type of network derived from . 

  Set of temporal nodes considered in temporal MCF problems. 
. 

   Set of dummy nodes added to  to transform  into 
. 

  Set of temporal arcs considered in the temporal MCF problem. 
. 

  Set of dummy arcs connecting dummy nodes  to transform 
 into . 

  History tracker. Stores  and  explored in previous iterations over 
. 

  Best profit for bundles in . 

  Bundle associated to the best profit  from . 

  Unique identification for the bundle setup . 

 

Let  be the hypothetical price for each  if it 

was submitted to the auction. The lowest price is selected because otherwise it violates 

the maximum value (reservation price) the shipper is willing to pay for one or more lanes 

in the bundle (i.e., from a rational deterministic perspective the bundle would never be 

selected). Likewise, relate  with the hypothetical flow  (also available from 
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Subsection 4.3.2). A temporal network is generated following the procedure below 

(Figure 4.2 (c)(d) illustrates Steps 4.3-4.6): 

Step 4.1. Create a copy of the MCF network, i.e., MCF Temporal Network 

 

Step 4.2. Reduce capacities for arcs related to potential bundles in , i.e., 

 

Step 4.3. Create a node  for every new auctioned lane in the set of hypothetical 

bundles  if price is inconsistent with the computed hypothetical price, i.e., 

, and add them to the copied set of nodes 

. 

Step 4.4. Create two arcs connecting this node. One from the tail  of , i.e., 

, and another to the head  of , i.e., . Add 

them to the copied set of arcs . 

Step 4.5. For arc , set capacity to the hypothetical bundle flow  and cost 

to zero  

Step 4.6. For arc , set capacity to the hypothetical bundle flow , and 

update price and cost based on the current hypothetical price, i.e., 

 

Notice that it is possible to enter this module with a  if prices are not 

consistent after the last modification of  (or even last version of ). In 

this case, the generation of new arcs has to properly reduce/increase capacity to temporal 

arcs already priced or create new if corresponding prices have not been considered. 
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There are special considerations for the process that updates . It stops 

when bundles/tours with unacceptable profits are found. Notice that the unacceptable 

profit for a tour with different prices  is an upper bound to the corresponding 

hypothetical bundle (all prices equal to the lowest one). So there is no loss of generality 

by stopping under this situation. When profits are acceptable but prices are not correct, 

there exists the possibility for the algorithm to flip-flop between pricing setups. 

The following strategy is proposed to avoid this behavior and applied when accepted 

profits ( ) and incorrect prices ( ) are found. It requires a history tracker  that 

saves the identification of explored tours/bundles and updating the best bundle setup 

 at each iteration: 

Step 4.7. Compute total profits for potential bundles  

Step 4.8 Compute total profits for hypothetical bundles (assuming same prices) 

 

Step 4.9 Compute total profit  for current bundle setup . 

Step 4.10 If  then update current best setup 

 

Step 4.11 Give a unique identification to this setup  

Step 4.12 If the setup was not explored in the past, i.e., , store 

it in the history tracker, i.e.,  

Step 4.13 Else, i.e., the setup was explored in the past, let  and , and 

go to “Accepted profit” checking (Figure 4.1 after Find bundles, Step 2.5 Subsection 
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4.3.2), clean MCF temporal network  and continue working over the original 

MCF network . 

In this sense, when the algorithm finds a setup already explored, it stops and returns 

the current more profitable combination of potential and hypothetical bundles , which 

will be stored in the set of bundles if they pass the “Accepted profit” test for individual 

bundles. 

4.4 Numerical example 

This section presents a numerical example illustrating the proposed bidding advisory 

model. The algorithm is coded in C++. Király and Kovács (2012) test the computational 

efficiency of different MCF software packages and algorithms. They find the C++ 

Library for Efficient Modeling and Optimization in Networks (LEMON) (Dezső et al. 

2011) and its Network Simplex algorithm to be one of the most competent for large scale 

networks. Therefore, these modules are integrated to the framework. LEMON is 

developed by the Computational Infrastructure for Operations Research (COIN-OR) and 

also used for network manipulation. Other modules are developed by the authors. 

Experiments are run in a desktop with the following characteristics: Processor Intel® 

Core™2 Duo CPU E8400 @ 3.00GHz, Installed memory (RAM) 4.00GB. 

Consider a carrier currently operating shipments  associated to 

 and  TL per month and prices  and  

respectivelly. The carrier operates over the region described by the grid network in Figure 

4.3. Without loss of generality, assume that cost (loaded/unloaded) is such that  

for very arc in the grid network. The carrier participates of a TL CA where the set of 
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lanes  is auctioned with volumes , 

, ,  TL per month, and reservation prices , 

, ,  respectively. Carrier’s acceptable profit is  for any 

bundle. 

 

Figure 4.3 Numerical example 

Table 4.7 Numerical Results 

Bundle 

 

Max Flow 

 

Price 

 

New lanes 

 

Synergetic lanes 

 

Profit 

  

Times 

found 

0 500 20 {(8,9),(10,11)}   17000 34 5 

1 700 20 {(10,11)}    11200 16 1 

2 500 20 {(8,9)}    8000 16 1 

3 200 20 {(10,11)}    3200 16 5 

4 100 20 {(10,11)}    1600 16 5 

5 100 4 {(4,5),(6,7)} {(0,1),(2,3)} 500 5 1 

6 200 4 {(4,5)} {(2,3)} 400 2 3 
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7 100 5 {(6,7)} {(0,1)} 400 4 1 

7 100 5 {(6,7)} {(0,1),(2,3)} 200 2 1 

7 100 5 {(6,7)}    100 1 1 

 

Table 4.7 presents the numerical results for this example. Computation time is 0.86 

seconds. The bundle with highest expected profit is  achieved when  TL 

per month are assigned. Interestingly, this bundle has the highest marginal profit 

(TL per month) which makes sense considering the economies of scope 

between lanes  and , i.e., serving  and  together is more 

beneficial than serving them separately. Although this bundles serves up to  TL per 

month, the model gives flexibility to consider the remaining  TL per month in bundle 

 which covers up to  TL per month on lane . Furthermore, bundles 

 can be aggregated into just one bundle ( ) given that they cover the same 

lanes, at the same prices with the same marginal profits. This is an artifact of the results 

that imposes no restriction and can be easily detected. Another example of economies of 

scopes and the benefits of this model is observed in bundle . Although it can be 

submitted to the auction alone and priced at  with maximum desired flow 

, there are three possible scenarios that would determine the actual profit of the 

bundle: (1) serving it alone (backhaul type of operation) with profit , (2) combining 

it with lanes  with profit , or (3) combining it with lane  with profit 

. Notice that this is private carrier information hidden to the shipper. Furthermore, 

lane  is part of two bundles  with different prices, i.e.,  and . 

This is possible because  bundles lanes  with  -public information-, 
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 and  -private carrier information-. The low price is attractive to the shipper 

and the marginal profit (TL per month) is better for the carrier than 

considering lanes  and  in isolation, i.e., (TL per month) in the 

best case and (TL per month) respectively. Finally, although a complete 

enumeration would find more combinations of bundles, the proposed method focusses on 

those that are more attractive without investing valuable computational resources in the 

less attractive ones, e.g.,  with profit  would 

be present in a complete enumeration procedure but not considered here for its low profit 

and synergy with other lanes. 

4.5 Conclusions 

This research investigates the bidding problem faced by carriers participating in 

truckload (TL) combinatorial auctions (CA). Previous literature is improved by the 

following two contributions: (1) explicitly handling bundle generation and pricing, (2) 

determining the amount of flow willing to serve in each bundle. The former is relevant as 

value-based pricing has shown to be a meaningful strategy for revenue management, and 

the latter is important as CA in last years have require demand segmentation. 

Given the enormous complexity of enumerating all possible bundles required to find 

an optimal solution to the bidding problem, a method is proposed to mine valuable 

bundles at a tractable computational time. This is important and meaningful for trucking 

analysts that require evaluating networks with hundreds of lanes in a TL CA setting. 
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CHAPTER 5. PRICING AND BUNDLING TRUCKLOAD 
                   SERVICES WITH STOCHASTIC DEMAND 

5.1 Introduction 

This chapter presents BM TS, a model for bundling model for truckload (TL) 

operations that accounts for stochastic demand. Motivated by the gaps in literature 

(Subsection 1.2.3), This model contributes to previous research by (1) using a value-

based pricing approach that properly handle the pricing rules of TL combinatorial 

auctions (CAs), (2) segmenting demand such that the carrier can specify the maximum 

volume of TLs willing to serve in each bundle, and (3) incorporating demand uncertainty. 

A two-stage minimum-cost flow (MCF) problem is embedded into BM TS and solved 

using its deterministic equivalent (DE), which is formulated trough network 

transformation and solved with efficient MCF algorithms, e.g., network simplex. The 

resulting aggregated flows, optimized for uncertain demand, are explored with a novel 

network algorithm that searches tours while constructing bundles. A numerical 

experiment illustrates the application of BM TS. 

The organization of the chapter is as follows. The problem addressed is introduced 

and motivated in Section 5.1. Then, it is clearly defined in Section 5.2. The methodology 

proposed to solve it (BM TS) is presented in Section 5.3. Numerical examples 

demonstrate the application of BM TS in Section 5.4. Finally, conclusions are provided 

in Section 5.5. 
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5.2 Problem definition and notation 

This section introduces the mathematical notation used throughout the Chapter (Table 

5.1), clearly defines the problem to solve, and formulates it as a stochastic mixed integer 

quadratic program (MIQP).  

The problem is clearly defined as follows. Consider a TL CA organized by a shipper 

who requires transportation for a set of lanes . Each auctioned lane  is 

associated to a number of truckloads per unit of time  between a pickup origin  

and a delivery destination  for the demand realization scenario , where  is the set 

of demand realization scenarios. Each demand scenario is associated to a realization 

probability . The shipper has a reservation price  for each auctioned lane. Each 

carrier invited to the auction is asked to submit a set of desirable bundles  based on this 

information. A bundle  is related to the triplet , where  is the 

subset of auctioned lanes desired to serve,  is the maximum amount of demand desired 

by the carrier, and  is the price charged for each TL in  if it is assigned to the carrier. 

Table 5.1 General mathematical notation in appearance order 

Notation Definition 

  Set of lanes auctioned in the TL CA. Each lane  associated to 
demand  and reservation TL price . 

  Demand realization of TL per unit of time associated to the scenario 
 and auctioned lane . 

  Sorted set of scenarios for different realizations of demand 

  Demand realization probability for lane  in scenario  

  Reservation TL price ($) for to the auctioned lane . 

  Set of bundles submitted by a carrier to the auction. Each bundle  
associated to the triplet . 

  Set of auctioned lanes included in bundle . . 
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Notation Definition 

  Maximum amount of demand (TL per unit of time) that the carrier is 
willing to serve on each lane  in bundle . 

  Price the carrier would charge for every TL in bundle  if awarded 
by the shipper. . 

  Set of lanes currently served by the carrier. Each lane  
associated to demand  and a current TL price . 

  Demand of TL per unit of time currently served by the carrier in the 

lane  associated to the scenario . 
  TL price ($) currently charged by the carrier to demand in lane 

. 
  Carrier’s transportation network. 

  Set of pickup/delivery nodes operated by the carrier. 

  Set of arcs operated by the carrier . 

  Subset of demand arcs associated to auctioned and current lanes 

. 

  Subset of repositioning arcs associated to empty movements . 
  Unitary cost per TL in a demand lane . . 

  Unitary traversing (loaded) cost in lane carrying demand . 

  Unitary loading/unloading costs associated to pickup  and 
delivery  nodes. 

  Unitary traversing (empty) cost in each repositioning arc . 

  Carrier’s profit threshold below which it is not willing to serve bundles. 

  Loaded demand served in the bundle  if awarded given that the 
demand scenario  realizes. 

  

  Binary variable.  if bundle  is part of the subset of bundles 

 covering the lane  such that current demand  is 

satisfied for scenario ,  otherwise. 

  Binary variable.  if bundle  is part of the subset of bundles 

 covering the lane  such that new auctioned demand 

 is considered for scenario ,  otherwise. 

  Total cost associated to empty repositioning movements in bundle 
. 

  Expected profit associated to auctioned lanes and synergetic current 
lanes related to bundle  for the realization of scenario . 

  Set of synergetic arcs used to give continuity to auctioned lanes  in 
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Notation Definition 

bundle . . 

  Flow on each repositioning arc  synergetic to the set of 
auctioned lanes  in bundle . 

  Loaded flow of auctioned demand and synergetic current lanes 

 associated to bundle  for the scenario 

. 
  Set off mappings  relating each demand arc  with every 

possible combination of bundles covering it. 
  Set of nodes considered in bundle . . 

 

A specific TL carrier participating of this auction also needs to consider the lanes of 

demand currently served . Similarly, each lane  is associated to demand levels 

 associated to each scenario  with realization probability  known by the 

carrier. Likewise, each lane is associated to a shipment price . Notice that this is 

private information known by the carrier. The carrier operates over a transportation 

network , where  is a set of nodes indicating the location of pickups/deliveries, 

and  indicates the set of arcs connecting these nodes.  is the 

subset of specific pickup/delivery arcs, and  is the subset of repositioning arcs that 

connect every possible delivery to every possible pickup. Each pickup/delivery arc is 

associated to a loaded traversing cost  and pickup/delivery costs  such that the 

total arc cost  for each TL. On the other hand, empty 

repositioning have a cost  per truck. Specifically, the carrier is not willing 

to serve any bundle below an expected profit threshold . 

The problem to solve is stated as follows. Given the conditions presented above, a 

carrier is asked to analyze the set of existing  and new  lanes to determine the best 
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combination of bundles  to submit to the TL CA that increases its expected profits. The 

stochastic MIQP (5.1)-(5.15) presents the mathematical formulation for this problem. 

There are five sets of variables in the this program: (i)  maximum amount of loaded 

demand that the carrier is willing to serve in the bundle  if awarded given that the 

demand scenario  realizes, (ii)  truck volume associated to empty repositioning 

in the bundle  if awarded, (iii)  price per TL in the bundle  if awarded, (iv) 

binary variable  if bundle  is part of the subset of bundles  covering 

the lane  such that current demand  is satisfied for scenario , 

 otherwise, and (v) binary variable  if bundle  is part of the 

subset of bundles  covering the lane  such that new auctioned demand 

 for scenario  is considered,  otherwise. The objective function 

(5.1), subsect to Constraints (5.2)-(5.15), maximizes the total expected profit of bundles 

associated to the expected profits for demand realizations  (Constraint (5.2)) 

minus the costs  associated to empty repositioning movements (Constraint (5.3)). 

 (5.1) 

Constraint (5.2) computes the total expected profit for all bundles , associated 

to each loaded demand  realized in scenario , i.e., the summation of expected 

profits for auctioned lanes  and expected profits for current lanes 

. 

 (5.2) 
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Constraint (5.3) computes the total cost associated to empty repositioning for all 

bundles , i.e., the summation of empty costs  for each arc  incurred 

by the bundled empty volume , where  is the set of arcs (repositioning arcs 

and current lanes) synergetic to the auctioned lanes in bundle . 

 (5.3) 

Constraint (5.4) specifies that the expected profit for every individual bundle should 

be above a profit threshold . 

 
 

(5.4) 

Constraint (5.5) sets bundle price to the lowest reservation price for lanes in it. There 

are three important considerations behind this: (i) it is consistent with the concept of 

pricing for TL CAs, (ii) although the lowest reservation price is the highest for at least 

one lane, it is less than or equal to reservation prices in other lanes and, hence, more 

attractive, and (iii) although cost-based pricing would be lower, it would be prejudicial 

for carrier profits leaving money on the table that the shipper would be willing to pay. 

 

 
(5.5) 

Constraint (5.6) and (5.7) indicate that the maximum empty  and expected loaded 

 volume in the bundle have to be assigned to each repositioning synergetic lane arc, 

i.e., , current synergetic lane, i.e., 

, and auctioned lanes  respectively in the bundle . 

 (5.6) 
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(5.7) 

Constraint (5.8) indicates that for every current lane , there exists at least a 

cover of bundles  that satisfies its demand  for the demand realization 

. 

 

 
(5.8) 

Consequently, constraint (5.9) indicates that for every new auctioned lane  

there might be bundles where demand  is partially (or totally) covered for the 

demand realization . In this profit maximization approach, constraint (5.9) prefers 

more profitable new lanes and even leaves unserved those that are not attractive for the 

trucking firm. 

 

 
(5.9) 

Constraint (5.10) gives flow conservation to every node , where  is the set of 

nodes covered by bundle . In essence, this constraints indicates that loaded 

realizations on a lane for scenario  (first term left hand of equation) should be 

equal to the empty movements generated from that lane (second term right hand of 

equation), and vice versa. 

 

 
(5.10) 
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Finally, constraints (5.11)-(5.15) properly define non-negative, integer, and binary 

variables. 

 
 

(5.11) 

 
 

(5.12) 

  
 

(5.13) 

  

 
(5.14) 

  

 
(5.15) 

Song and Regan (2003 and 2005) and Lee et al. (2007) recognize the computational 

complexity of bidding advisory models for TL CAs. The complete enumeration of 

bundles grows exponentially with respect of the analyzed lanes. Furthermore, analyzing 

each bundle involves the solution of an NP-problem. This computational problem is 

aggravated by the quadratic expressions required to address pricing and demand 

segmentation in this research. Furthermore, program (5.1)-(5.15) suffers of critical 

constraint violations for different realizations of demand. Therefore, a solution procedure 

that accounts for these limitations and provides good quality bundles is required. BM TS 

is a suite of algorithms proposed to account for these challenges. This model presents a 

balance between good quality bundles and a computationally tractable approach. The 

method is presented in the following section. 
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5.3 BM TS methodology 

This section presents BM TS (Bidding Model for TL CA with Stochastic demand), a 

methodology to solve the problem presented in Section 5.2, which is illustrated in Figure 

5.1. Table 5.2 presents specific notation used in the presentation of this method. 

 

Figure 5.1 BM TS: bidding model for TL stochastic demand. 

BM TS is initialized using the inputs described in the previous Section. Although 

each auctioned lane  is related to a reservation price , each bundle  

have to be designed such that all bundled lanes in the set  share the same price . 

Notice that  is the highest price the shipper is willing to pay for a lane, so it is willing 

to pay any price . Following this idea, the BM TS is designed such 
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that all reservation prices are analyzed sequentially in an increasing order. The current 

global price analyzed at each iteration  is defined as . This price is used to update 

the expected profits associated to each auctioned lane and solve a minimum-cost flow 

(MCF) problem that accounts for stochastic demand (Subsection 5.3.1). This is a two-

stage stochastic program where the first-stage variables  determine the flow of empty 

trucks repositioned between current and auctioned lanes, and the second stage –stage 

variables  indicate the expected demand realization associated to scenario . 

Since these flows are aggregated, a post-processing method is required to find bundles 

based on the resulting tours, flows, and consistency of prices (Subsection 5.3.2). Then, 

the network is disrupted by removing an arc following the criteria presented in 

Subsection 5.3.3. Arc betweenness centrality (computed before starting the iterations) is 

an important network metric considered to define potential arcs to remove. This required 

in order to explore new combinations of lanes associated to the current . After 

considering all the possible removable arcs, the method removes the subset of auctioned 

lanes associated to the current price, i.e.,  and a new iteration 

 starts with the next lowest price . After analyzing prices for all auctioned 

lanes the method stops and the set of bundles  is returned. 

Table 5.2 Specific mathematical notation for BM TS 

Notation Definition 

  Iteration counter. 

  Current global price associated to iteration  used to construct bundles 
and compute associated profits ensuring price consistency. 

  First-stage variable accounting for empty repositioning. 

  Second-stage variables accounting for loaded movements associated to 
stochastic demand realizations. 
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Notation Definition 

  Upper bound for empty repositioning in arc . 

  Unitary profit per TL in bundle . 

. 

  Second-stage variables accounting for the differential of demand 
between consecutive scenarios  and  on lane 

. . 

  Index identifying realizations of differentials of demand between 
consecutive scenarios  and   

  Probability of the realization of demand associated to the differential 

 and lane  
  Set of modified nodes to set the DE problem. 

. 

  Subset of nodes representing each differential of demand.  

  Subset of dummy nodes for current lanes.  

  Subset of dummy nodes for deliveries.  

  Set of modified arcs to set the DE problem. . 

  Subset of modified lanes.  

  Subsets of lanes for current demand  
and auctioned demand  

  Subsets of lanes between subsequent differential demand realizations 

  Subsets of lanes between subsequent differential demand realizations 
and corresponding delivery nodes 

  Subset of current lanes from the first differential of demand realization 
to the dummy delivery node 

  DE recourse variables 

  Expected profit for arcs in the modified network associated to the DE 
problem 

  Distribution of flows from stochastically optimized flows  and  

   subset of strongly connected nodes 

  Set of arcs forming a tour associated to bundle  obtained from the 
SC set . 

  Subset of modified arcs for tour construction. 

 

  Expected marginal profit for auctioned lanes  

  Expected total profit for bundle  
  Arc betweeness centrality for arc . 
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Notation Definition 

  Binary indicator.  if arc  is traversed in the shortest 

path from  to ,  otherwise. 

  Binary indicator.  if arc  has been removed from the 

network,  otherwise. 

  Set of potential arcs considered for removal/perturbation. . 
  Capacity usage ratio. . 

  Flow centrality criterion . 

 

After a general introduction to BM TS, this section is organized as follows. 

Subsection 5.3.1 provides details about the formulation and solution of the proposed 

MCF problem with stochastic demand, Subsection 5.3.2 shows the proposed algorithm to 

construct bundles based on these TL flows, and Subsection 5.3.3 describes the proposed 

criteria used to modify the network such that it is possible to bundle different 

combinations of lanes. 

5.3.1 Minimum-Cost Flow (MCF) Problem with Stochastic Lane Volume 

This subsection proposes a special formulation of the Minimum-Cost Flow (MCF) 

problem that can be used to find bundles in the carrier network and accounts for 

uncertainty on TL lane volumes. 

Several works have studied stochastic MCF and vehicle routing problems. Boyles and 

Waller (2010) propose a mean-variance model to the network flow problem with 

stochastic arc costs. They use two convex network optimization methods to solve the 

problem based on negative marginal cost cycles and network equilibrium. Additionally, 

they study the value of information. However, this model does not account for stochastic 

demand and capacity, which is more related to the current bundling problem. 
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Ding (2013) approaches the MCF with uncertain capacity using chance constraints. 

This Chapter transforms the uncertain MCF problem into a classical deterministic 

problem, and then solves it efficiently. Additionally, several authors have study the 

stochastic MCF in an optimization framework using fuzzy numbers (Ghatee and 

Mashemi, 2008, 2009a,2009b, Liu and Kao, 2004) study flow problems with uncertain 

arc lengths are using fuzzy numbers and transforming them to a crisp formulation. 

Although these works are useful to understand the distribution of optimal objective 

functions given the stochastic behavior of the system, they do not optimize to account 

such variations. 

Optimization under uncertainty has been proposed for vehicle routing, i.e., fleet 

management, problems with uncertain demand and complex operational constraints, e.g., 

dynamic demand, multiple commodities, etc. (Sarimveis et al. 2008, Shi et al. 2014, 

Simão et al. 2009, Topaloglu and Powell, 2006). Following this idea, a two-stage 

stochastic MCF problem is postulate to find profitable tours that can be used to construct 

bundles accounting for demand uncertainty. 

Consider the MCF where the decision variables  (first-stage variables), 

determine the volume of TLs repositioned after traversing a loaded lane. The loaded 

demand  (second-stage variables) is unknown but its realization is 

determined by the occurrence of scenario , where  is the finite set of demand 

scenarios considered in the analysis. 

The objective function (5.16) in this problem is maximizing the profit obtained from 

the summation of the revenues after charging the expected demand realization at each 

lane minus the cost associated to empty and loaded movements. For convenience, the 
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objective function is written as a minimization problem, which implies inverting the signs 

for costs and prices without loss of generality. BM TL solves this problem is solved for 

each price instance , i.e., same price for all auctioned lanes ( ). 

 (5.16) 

This objective function is subject to a set of random constraints. The summation of 

empty trucks  repositioned from each delivery  to the next loaded movement from  

should be equal to the expected realization of loaded trucks  directed to the 

corresponding pick up node  (Constraint (5.17)). 

  

 
(5.17) 

Likewise, the expected realization of TLs  moved from  to  should be equal 

to the total empty trucks  repositioned to the next pickup  after delivering at  

(Constraint (5.18)). 

 
(5.18) 

The volume of loaded trucks  on each lane  currently served by the 

carrier has to be equal to the expected demand realization  (Constraint (5.19)). 

 

 
(5.19) 

On the other hand, the volume of loaded trucks  on each auctioned lane 

 can be less than or equal to the demand realization  (Constraint (5.20)). 



135 
 

 

 

 
(5.20) 

Repositioned  and loaded trucks  TL volumes are non-negative integer 

numbers (Constraint (5.21)). Empty repositioning  is bounded by a consistent and 

sufficiently large number, e.g.,  (Constraint 

(5.22)). 

 

 
(5.21) 

  

 
(5.22) 

The solution space for the stochastic integer program (IP) (5.16)-(5.22) is infeasible 

for scenarios different to the actual realizations of demand. Hence, a deterministic 

equivalent (DE) problem is proposed to solve the stochastic IP. This is achieved using a 

series of network transformations for the current and auctioned lanes. Network 

transformations are usually proposed to solve stochastic routing problems, e.g., 

Topaloglu and Powell (2006). The DE IP uses soft constraints and appropriate penalties 

in the objective function to handle violations and compute the repositioning flows  that 

account for stochastic demand. 

Concepts related to the demand realization probabilities are introduced before 

presenting the proposed network transformation. Without loss of generality assume that 

the set  is sorted such that 

, and , which 

implies that . Likewise, let  and 
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 be the differential of demand between  and 

. Thus, any realization of loaded movements can be represented as a function 

of its previous realizations (Equation (5.23)). 

 (5.23) 

Following this idea, Equation (5.24) describes the probability  for the realization 

of . Notice that . 

 (5.24) 

Figure 5.2 illustrates the network transformations required to set the DE problem. 

This requires the definition of new sets of nodes  and arcs , 

where the modified set arcs  is composed by a modified set of lanes  and a 

modified set of empty repositioning arcs .Subsequently,  

aggregates the modified sets of current  and auctioned  lanes. 

 

Figure 5.2 Network transformation for (a) current lanes, and (b) auctioned lanes 



137 
 

 

The new set of nodes  is composed by three subsets 

defined as follows. For each lane  node  is replaced a set of  

nodes representing each differential , i.e., 

. Furthermore, a second set of dummy nodes  is generated, 

where a node  is created for each current lane . The third subset 

corresponds to delivery nodes . 

Each current lane  is replaced by a group of lanes according to the modified 

set of arcs  (Figure 5.2(a)). The first subset 

 is composed by arcs between 

subsequent differential realizations, i.e.,  and . The second subset 

 connects each 

differential realization  with the corresponding delivery node . The third subset 

 is defined for arcs from 

the first differential realization  to the corresponding dummy delivery node . 

Similarly, each auctioned lane  is replaced by a group of lanes as described 

by the set of modified auctioned lanes  (Figure 5.2(b)). The first 

subset  accounts for 

arcs between subsequent differential realizations  and , and 

 connects each differential 

realizations  with the corresponding delivery node . 

Finally, each repositioning arc  is properly redefined forming the set of 

modified repositioned arcs . 
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In the DE problem, the variables  describe the recourse actions to take if the 

scenario associated to the differential of demand  occurs. The objective function in this 

problem maximizes the total expected profit for the distribution of trucks in the network. 

If the expected demand takes place it is priced, which compensates the regular cost of the 

movement and generates a profit. Otherwise, trucks travel empty and the movement is 

associated to a net cost (negative profit). Empty repositioning cost on each arc 

 is equal to the cost for its equivalent , i.e., . Each 

auctioned lane  is associated to the cost of its analogous arc  

but its price corresponds to the one for the current iteration , i.e.,  and 

. For current lanes , price and cost are 

associated to the ones in the original arc , i.e,  and . 

Thus, the expected profit for a loaded lane  in scenario  is determined by 

Equation (5.25) (minimization and opposite signs are used for convenience), where the 

first summation accounts for the cost of empty repositioning and the second for the 

expected profit associated to each differential of demand. 

 

 
(5.25) 

Notice that in the objective function (5.25), the probability  only multiplies the 

lane price because if  realizes then TL trips will be associated to a loaded  expected 

profit . On the other hand, if this lane is part of a bundle but 
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demand does not realize the empty  expected profit will be . 

Hence, the total expected profit is . 

The artificial flows  do not contribute to the objective function but are 

required to give continuity to each  realization in a recursive fashion as described by 

constraint (5.26), which is common for current and auctioned lanes. For this constraint, 

let  and . 

 

 
(5.26) 

Constraints (5.27)-(5.31) are exclusive for the set of current lanes . Constraint (5.27) 

indicates that the summation of empty trucks repositioned from each previous delivery at 

 (left hand side) is equivalent to the flow heading to the dummy arc  plus the 

auxiliary flow . Notice that the first term in the right hand side is fixed to 

 (Constraint (5.28)) and the second term is defined by the first instance of the 

recursive constraint (5.26), i.e., . Recall that  and hence, it is known 

that at least  loaded movements will occur on lane . Additionally, since this is 

a current lane served by the carrier, it has to be guaranteed that at least this demand is 

satisfied, which is assured by the equality of constraint (5.27) and (5.28). Notice that 

 acts as a slack variable that let the problem to attract more flow than the 

smallest realization and, hence, preparing for other uncertain realizations. 

 

 
(5.27) 
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(5.28) 

Once the certain demand  is served, the possibility of serving the differential of 

demand  exists at each node  if this improves the 

corresponding expected profits. Constraint (5.29) accounts for this possibility bounding 

the loaded flow on each arc . 

 

 
(5.29) 

Given that differentials of demand  are potentially served from nodes  

associated to the lower levels of , the maximum amount of flow (capacity) that can go 

upwards on each auxiliary lane  reduces gradually as  

approaches to . Constraint (5.30) formally defines this condition. Recall that this is 

possible because the sequential  is set such that it maps to the increasingly sorted . 

 

 
(5.30) 

Constraint (5.31) specifies that the sum of the certain demand  (first term left 

hand side) plus the assigned trucks that account for uncertain loaded movements (second 

term left hand side) is equivalent to the total empty trucks generated from the expected 

deliveries on current lanes (right hand side). 

 

 
(5.31) 

Constraints (5.32)-(5.35) are exclusive for the set of auctioned lanes . Constraint 

(5.32) indicates that the summation of empty trucks repositioned from each previous 
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delivery at  (left hand side) is equivalent to the flow  heading to the arc associated 

to the certain demand on the auctioned lane  plus the auxiliary flow 

. Different to constraint (5.27) (analogous to current lanes), the first term in 

the right hand side is not fixed to . Without loss of generality, let . Then, 

Constraint (5.33) gives the possibility to include an auctioned lane in the bundle by either 

serving a fraction of certain demand, i.e., , or not 

or not, i.e., . Similarly,  gives the possibility to account for more 

demand with lower realization probability if this improves the corresponding expected 

profits. For  the Constraint (5.33)’s intuition is similar to Constraint (5.29). 

 

 
(5.32) 

 

 
(5.33) 

Constraint (5.34) is analogous to constraint (5.30). The same intuitive explanation can 

be easily adapted to the case of actioned lanes . 

 

 
(5.34) 

Constraint (5.35) specifies that the sum of assigned trucks that account for uncertain 

loaded movements (left hand side) is equivalent to the total empty trucks generated from 

the expected deliveries on current lanes (right hand side). 

 

 
(5.35) 
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Consistently, the volume of repositioned and loaded trucks are set to non-negative 

integer numbers in Constraint (5.36), and empty repositioning is bounded by a 

sufficiently large number, e.g.,  in Constraint (5.37).  is defined as in Constraint 

(5.22). 

  (5.36) 

  

 
(5.37) 

In general, stochastic programs suffer from the curse of dimensionality and this one is 

not the exception. However, the specific structure of the DE IP (5.25)-(5.37) makes 

possible to frame it as a deterministic MCF problem (Ahuja et al. 1995). Interestingly, 

there are several algorithms that solve the MCF problem in polynomial time. Király and 

Kovács (2012) summarize many of them (Table 4.3 in Chapter 4), which is beneficial for 

its solution. 

5.3.2 Find bundles from aggregated flows 

After solving the special MCF presented above (DE IP (5.25)-(5.37)), the resulting 

flows were optimized to account for uncertainty. Expression (5.38) computes the 

resulting distribution of flows  on each arc  of the 

original network. 

 

 

   

 
(5.38) 
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However,  aggregates several tours and it is not clear what lanes are suitable to be 

bundled together. Then, a disaggregating method is required. The objective of this 

method is finding tours of TL flow that are subsequently used to generate bundles. 

Tarjan (1972) proposes an efficient algorithm  to find independent subsets 

 of strongly connected (SC) components in a directed graph. The 

special characteristic of a SC set  is that for each pair of nodes  there exist 

paths  and , i.e., a round tour  starting from any node  passing by any other 

node  traversing the set of arcs . The recursive depth-first search used by Tarjan’s 

algorithm to find every  can also be used to obtain the corresponding tours . 

Having each  is important to collect flow  associated to the current global price  

for auctioned lanes. This information will determine whether  is considered to generate 

a bundle  or not. 

The proposed algorithm explores strongly connected tours  and relates each of them 

to its smallest flow . This flow is iteratively removed, which changes the 

characteristics of the network and allows the detection of new strongly connected tours. 

When a tour is found, arcs are differentiated between auctioned lanes , and 

supplementary arcs , i.e., current lanes and empty repositioning arcs. A bundle is 

constructed only if there is an auctioned lane  with a price equivalent to the 

current global price, i.e., , and the expected profit is greater than or equal to 

the accepted one, i.e., . Profits are computed considering the estimations from the 

DE IP (5.25)-(5.37) (Equation (5.39)). The output of this method is an updated set of 

bundles , where each bundle  covers the auctioned lanes  at a price , up 
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to a desired flow level  on each lane. The method to find bundles from aggregated 

flows is summarized as follows: 

Step 2.1: Define the sub-network  where  

Step 2.2: Use Tarjan’s algorithm over  to find SC components  and 

underlying tours  

Step 2.3: For each  pair: 

Step 2.3.1: Compute tour flow  

Step 2.3.2: Segregate arcs into auctioned lanes  and current lanes 

 

Step 2.3.3: if there exists an auctioned lane whose price is equal to the current global, 

i.e., , set  and continue to Step 2.3.4, else omit  and 

go to Step 2.3.7. 

Step 2.3.4: Compute the expected marginal profit for each auctioned lane  

(Equation (5.39)) 

  (5.39) 

Step 2.3.4: Compute tour profits (Equation (5.40)) 

 
 (5.40) 

Step 2.3.5: If the expected profit is acceptable, i.e., , then continue to Step 

2.3.6, else omit bundle  and go to Step 2.3.7. 

Step 2.3.6: Add tour  to the set of bundles , where  is associated to the 

bundle . 
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Step 2.3.7 Reduce flows in the current sub-network, i.e.,  

Step 2.4: If there are unanalyzed flows in the network, i.e.,  go to Step 

2.1, else stop. 

5.3.3 Network modification 

The special MCF problem solution outputs an optimal set of flows that maximizes 

expected profits accounting for demand uncertainty. Such flows are used to update the set 

of optimal bundles . However, there is high risk if only one stochastically optimal set of 

bundles is submitted to the auction. This is because if competitors have better prices for 

lanes in any of these bundles, the carrier will likely lose those lanes, and, hence, losing all 

lanes within the corresponding bundles. Therefore, a method to explore other good 

bundles is required. 

Here, the question is how to find another a set of flows that can produce different 

bundles at the same expected profit or within a narrow gap from it. The proposed answer 

is achieving it using appropriate network modifications, i.e., perturbations.  

The challenge is finding the proper perturbation criteria that consider the unused 

capacity on the arcs and a metric of arc attractiveness. Perturbing arcs that are very 

attractive for low-cost tours is not desirable because they are usually overlapped by 

several bundles. So, a criterion where perturbation goes from less to more desirable arcs 

is envisioned. 

Another important question is how to account for network effects? This is important 

because an isolated arc can be unattractive but very relevant when jointly analyzed with 
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other lanes. In this sense, a metric considering the importance or centrality of the arcs is 

required. 

Betweenness Centrality (Anthonisse 1971, Freeman 1977, Newman 2010) is used to 

identify important central nodes/arcs in a network by counting the number of times these 

elements are used as bridges in the shortest paths between every node duplet. So, arc 

betweenness centrality is used as part of the selection criteria to perturb the network. 

Worst case running time for its computation is . It is performed once at the 

beginning of BM TS when the original network  has not been perturbed. Arc 

betweenness centrality  is fomally defined in Equation (5.41), where the binary 

variable  if arc  is traversed in the shortest path from  to , 

 otherwise. 

  (5.41) 

After updating bundles, the perturbation procedure presented below is applied to 

remove an arc from the network. Let  indicate that the arc  has been removed 

from the network, otherwise  (  at the beginning of each 

iteration ). Let  indicate the set of potential 

arcs considered for removal/perturbation. The subset  indicates that only empty 

repositioning arcs with flow in the current solution, i.e., , not removed before, i.e., 

, are considered to be removed. However, two types of arcs are not removed: (1) 

backhauls arcs, i.e., , and (2) those giving continuity to 
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current lanes, i.e., . The algorithm for network 

modification is described as follows. 

Step 3.1: Obtain  from Equation (5.38) 

Step 3.2: For all  

Step 3.2.1: Compute capacity usage ratio  

Step 3.2.2: Compute flow centrality criterion  

Step 3.2.3: Define the subset  of potential arcs associated to the maximum 

capacity usage ratio , i.e.,  

Step 3.2.4: Select one arc  from  with the minimum selection criterion , i.e., 

 

Step 3.2.5: Remove  from the network, i.e., , and set . 

The perturbation procedure prioritizes arc removal based on (1) zero or small unused 

capacity captured by , and (2) low flow and low centrality (periphery) captured by . 

Concept (1) gives flexibility to use such capacity in later iterations. Concept (2) protects 

important arcs that can overlap in several bundles. The selected arc is removed from the 

network and not considered in next iterations because . 

The  iteration of BM TS stops when it is not possible to select an arc to remove, 

i.e., . Notice that arcs related to current demand are maintained in the network. 

This guarantees that new auctioned lanes in the resulting bundles either have synergies 

with the current lanes or do not affect their current operation. 
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The possibility of removing arcs resulting in bundles with unacceptable profits exists. 

When this happens, the last removed arc  is added back to , i.e., 

, removal criteria are estimated again and a new arc is selected. Notice that  

remains and this arc is not part of the removal choice set. 

5.4 Numerical results 

This section presents a numerical example illustrating the use of BM TS, which is 

coded in C++. Király and Kovács (2012) test the computational efficiency of different 

MCF software packages and algorithms. They find the C++ Library for Efficient 

Modeling and Optimization in Networks (LEMON) (Dezső et al. 2011) and its Network 

Simplex to be one of the most competent algorithms to solve the MCF problem in large 

scale networks. Therefore, these modules are integrated to BM TS. LEMON is 

developed by the Computational Infrastructure for Operations Research (COIN-OR) and 

also used for network manipulation. Other modules are developed by the authors. 

Experiments are run in a desktop with the following characteristics: Processor Intel® 

Core™2 Duo CPU E8400 @ 3.00GHz, Installed memory (RAM) 4.00GB. 

 

Table 5.3 Numerical example data 

Arc 1 - Low 2 - Medium 3 - High 
Type Origin Destination Price Cost Vol. Prob. Vol. Prob. Vol. Prob. 
Current 0 1 13 3 141 85% 213 10% 269 5% 
Empty 1 0  3       
Empty 1 4  4       
Empty 1 2  1       
Auctioned 2 3 17 3 199 34% 223 53% 230 13% 
Empty 3 0  1       
Empty 3 4  2       
Empty 3 2  3       
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Arc 1 - Low 2 - Medium 3 - High 
Type Origin Destination Price Cost Vol. Prob. Vol. Prob. Vol. Prob. 

Auctioned 4 5 9 2 108 32% 114 20% 196 48% 
Empty 5 0  5       
Empty 5 4  2       
Empty 5 2  1       

 

Consider a carrier participating of a TL CA. It currently serves the lane  

and will build bids for the set of auctioned lanes . For each lane, three 

scenarios of demand realizations are known, i.e., low , medium , and high 

 ( ). The prices ($), costs ($), volumes (TL/month) and probabilities (%) 

for each demand realization are presented in Table 5.3. Likewise, empty repositioning 

cost ($) is available for the corresponding arcs. 

Table 5.4 present the numerical results after running BM TS, where eight bundles are 

built and computation time is less than 1 second. The first three pre-bundles (1.1, 1.2, and 

1.3) are associated to the bundle  for the auctioned lane , notice that 

this lane is more profitable when served conjointly with the current lane  up 

to a volume of  TL/month. However, it is still profitable for demand levels up 

to  TL/month (served alone). Therefore the maximum desired volume is  

 TL/month. The price charged for this bundle is , which is consistent to the 

corresponding reservation price of the lane. The next three pre-bundles (2.1, 2.2, and 2.3) 

are associated to bundle  for the set of auctioned lanes . The 

maximum desired volume for this bundle is . The price charged for each lane in 

this bundle is , which is consistent to the rules of TL CAs and was not properly 

captured by previous models in literature. Notice that lane  (whose reservation price 
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is ) can be priced at  when combined with lanes in this bundle, one of the 

benefits of economies of scope. The last two pre-bundles (3.1,3.2) are associated to the 

bundle  for the auctioned lane , which the carrier is willing to serve by 

itself up to a volume  TL/month. The price charged for this bundle is  

(reservation price). 

Table 5.4 Preliminary numerical results 

Pre 
Bundle 

Max TL 
Vol. Price 

Expected 
Profit 

Auctioned 
Lanes 

Synergetic 
Lanes 

Profit per 
TL/month 

1.1 141 17 2972.28 {(2,3)} {(0,1)} 21.08 
1.2 82 17 826.56 {(2,3)}  10.08 
1.3 223 17 2131.88 {(2,3)}  9.56 
2.1 141 9 1906.32 {(2,3),(4,5)} {(0,1)} 13.52 
2.2 82 9 626.48 {(2,3),(4,5)}  7.64 
2.3 55 9 358.60 {(2,3),(4,5)}  6.52 
3.1 114 9 338.58 {(4,5)}  2.97 
3.2 196 9 243.04 {(4,5)}  1.24 

 

A post-processing analysis indicates that a set  with three bundles can be submitted 

to the auction. The triplets  associated to each bundle  are summarized 

in Table 5.5. Interesting insights are obtained from these bundles. Bid  bids for lane 

 up to its middle level realization , i.e., , which 

is anticipated as the expected profit for its highest differential of demand  is actually a 

net cost, i.e., . This is not the case for , where the 

entire differential levels for  are associated to expected net profits and, hence, it is 

worth bidding for the highest level of demand that compensates other empty 

repositioning costs. Finally, the distribution associated to the current lane  indicates 
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that the probabilities of the differential realizations  (medium) and  (high) are not 

high enough to have expected profits beneficial for the carrier. Indeed, these probabilities 

are associated to net expected costs. This features are reflected in bundle  where 

 and  have significant synergies with  at its lower level. 

Table 5.5 Set of bundles  submitted to the auction 

Bundle 
 

Lanes 
 

Max volume per lane 
 

Price 
 

1 {(2,3)} 223 17 
2 {(2,3),(4,5)} 141 9 
3 {(4,5)} 196 9 

 

The next section summarizes the current work and provides future research directions. 

5.5 Conclusions 

This Chapter studies TL CAs and presents BM TS, a bidding model that can be used 

by TL carriers to construct bundles and account for stochastic demand. BM TS 

determines the sets of lanes that represent expected profits to the carrier which are 

accompanied with the corresponding bidding prices and maximum TL volumes that the 

carrier is willing to serve for each lane in the buddle. 

Thus, the main contributions of BM TS to the literature related to bidding advisory 

models in TL CAs are threefold: (1) using a value-based pricing approach to build 

bundles that maximize the expected profits of the bundles and properly handle prices 

following the rules of CAs, (2) using demand segmentation to determine the maximum 

TL volume that the carrier is willing to serve within each bundle, and (3) incorporating 

demand uncertainty in the construction of bundles. 
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In addition to these contributions, BM TS finds bundles at a tractable computational 

time. This is important and meaningful for trucking analysts that require evaluating 

networks with hundreds of lanes in a TL CA setting. Computational burden is reduced by 

a novel two-stage MCF problem with stochastic lane volume that can be solved 

efficiently using available MCF algorithms. This is possible through network 

transformations that convert the two-stage stochastic problem into its deterministic 

equivalent and find aggregated flows optimized for uncertainty. Furthermore, the Chapter 

presents a novel approach to find tours and build bundles from these aggregated flows. 

A numerical example illustrates the application of BM TS and shows its ability to 

account for stochastic demand under different demand realization scenarios. Likewise, it 

takes advantage of economies of scope that generate synergies between lanes and 

propitiate their aggrupation. 
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CHAPTER 6. BENEFITS OF IN-VEHICLE CONSOLIDATION IN LESS THAN 
             TRUCKLOAD FREIGHT TRANSPORTATION OPERATIONS 

6.1 Introduction 

Researchers and public agencies have proposed consolidation policies as an 

alternative to increase truck payload utilization and mitigate externalities produced by 

freight transportation. Understanding and enhancing the economic mechanisms that lead 

to freight consolidation can ease the implementation of these strategies, increase profits 

for shippers and carriers, and reduce freight-related negative externalities. An important 

mechanism that has recently been studied for cost reduction in the freight industry is 

combinatorial auctions, where carriers construct bids considering direct shipments 

(Truckload operations). Several biding advisory models have been proposed for this 

purpose. However, there are economies of scale that can be achieved if shipments are 

consolidated inside vehicles, which have not been explored in the construction of 

competitive bids. This chapter investigates such benefits and provides insights on the 

competitiveness and challenges associated to the development of consolidated bids 

(suitable for Less-than-Truckload operations). Consolidated bids are constructed using a 

multi-commodity one-to-one pickup-and-delivery vehicle routing problem that is solved 

using a branch-and-price algorithm. 
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The numerical experiment shows that non-consolidated bids are dominated by 

consolidated bids, which implies that this type of operation can increase the likelihood of 

a carrier to win auctioned lanes, while increasing its profits margins over truckload 

companies (non-consolidated bids), and keeping the reported benefits that combinatorial 

auctions represent for shippers 

Defining appropriate routes is important for the carriers to distribute the variable cost 

among their clients, achieving different levels of economy, and quoting competitive 

shipping prices. To understand how this has been done previously, we briefly review the 

microeconomic operation of trucking firms. The total income perceived by a carrier is the 

sum of the prices charged to each shipment transported in a time period. Likewise, the 

total cost is the summation of costs associated with the delivering routes plus fixed costs. 

The total profit is defined by the difference between these two. For example, for a carrier 

serving the shipment  charged with a price  following the route , the total profit 

associated with this shipment is , where  is the total cost 

related to the operation of route , and  are fixed costs. To observe how route 

definition affects the value of the prices, assume that there is another shipper that needs 

transportation for a shipment  and requests a quote from the carrier. If the carrier 

decides to charge a price  for that shipment, the corresponding total profit would be 

, where  is the route serving both shipments  and 

. For a rational carrier it is expected that , and therefore, 

, where  is an upper bound determining the maximum price that the 

shipper is willing to pay for this service. Notice that if the carrier can serve both 

shipments following the same route, then  where  is a small cost 
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increment and, therefore, . Furthermore,  might be reduced down to  

without affecting the carrier profits. But, if the new shipper accepts to pay a price 

 that would imply more profits for the carrier. This shows that bidding for lanes 

complementary to the routes currently operated by the carrier has the potential of 

reducing the prices charged to these lanes and increasing the probability of getting the 

contracts. The variable costs for these routes depend on operational characteristics of the 

carrier, e.g., the number of vehicles operated, total distance traveled, repositioning of 

vehicles, geographical location of the pickups and deliveries, current commitments, 

location of the depot, among others. Considering all these elements in the construction of 

a bid is not easy and potentially leads to suboptimal solutions. 

 

Figure 6.1 Economies of scope achieved by truckload (TL) firms. 

Previous biding advisory models (Song and Regan, 2003, and 2005, Wang and Xia, 

2005, Lee, et al, 2007) focus primarily on carriers with TL operations, where shipments 

are sent directly from origin to destination using an exclusive truck –similar to the use of 
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taxis by passengers. This type of operation is mainly driven by economies of scope. 

These economies are achieved when there are follow-up loads that reduce the number of 

empty trips in a given trip chain/route (Caplice 1996; Jara-Diaz 1981; Jara-Diaz 1983). 

This concept is illustrated with the following case based on the previous example, as well 

as the directed network and demand scenarios shown in Figure 6.1 (i, ii, and iii). Without 

loss of generality, let us assume unitary traversing costs  for each link  in the 

network. For a TL carrier in Scenario (i) (Figure 6.1), the route  involves picking up 

the shipment  at node 1, traveling to node 2, delivering at node 3 and returning empty to 

node 1 via node 4, i.e., trip chain , and total cost 

 units (notice that the superscript in parenthesis indicates the referred 

scenario). In scenario (ii), the TL carrier has to pickup  at node 2 and deliver it at node 4. 

This implies a new trip chain  with total cost 

 units. Thus, the price charged to the new shipment  has to be defined in 

the range , where , i.e.,  . Finally, 

in scenario (iii) the TL carrier has to pickup shipment  at node 3 and deliver in node 1, 

which correspond to the same trip chain presented in scenario (i), i.e., . Thus, 

 and economies of scope are achieved by guaranteeing loaded 

follow up trips that decrease the lower bound of  to , i.e., . 

By contrasting scenarios (ii) and (iii) it can be concluded that under a fixed price 

, the profits for scenario (iii) are greater than those for scenario (ii), and, 

therefore, a carrier would be able to submit more competitive prices in a combinatorial 
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auction for the bundle in scenario (iii). Notice that the equality  does 

not strictly hold because there is a small additional cost related to uploading/downloading 

 and a marginal fuel consumption increment due to the change from empty to loaded 

trips, however these two values are assumed to be very similar. 

The bidding advisory models developed in previous research are not clearly 

applicable by companies that follow Less-Than-Truckload (LTL) operations. In these 

operations, shipments are consolidated –similarly to the use of buses by passengers– in 

order to achieve economies of scale and density in addition to the economies of scope 

(Caplice 1996; Jara-Diaz 1981; Jara-Diaz 1983). According to Caplice (1996) there are 

three types of consolidation: at the origin, i.e. waiting for an appropriate size to be 

shipped; inside vehicles, i.e. sharing transportation with shipments from other origins; 

and/or in terminals, e.g. hub-and-spoke operations. The economies of consolidation are 

illustrated with a follow up of the previous example. Assume that shipments  and  are 

suitable for consolidation in the truck operated by an LTL carrier. Thus, the demand 

considered in scenario (ii) can be served by the same route for scenarios (i) and (iii), i.e., 

picking up the shipment  at node 1, picking up shipment  at node 2, traveling to node 3 

with  and  in the same truck, delivering  at node 3, then delivering  at node 4, and 

finally returning empty to node 1, i.e., 

, 

 units, and, therefore, . Notice that from an economic perspective the 

LTL strategy dominates the TL strategy because the LTL carrier can always bid for  at 

lower prices than the TL carrier. At equilibrium the LTL carrier would obtain the demand 
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 at a price , where  is a small quantity close to zero. Notice that in 

scenario (iii) it is not possible to consolidate  and . Therefore, both TL and LTL 

strategies have the same probability of been awarded to serve shipment . 

However, TL operations are more flexible than LTL because they can easily adapt to 

changing demand. This is because LTL operations require a set of consolidation facilities 

where shipments are sorted, transferred to larger vehicles, and sent to other facilities to 

repeat this process or to be prepared for final delivery. Nevertheless, in-vehicle 

consolidation can be seen as a hybrid approach that integrates the flexibility and 

economies of scope of TL operations with the economies of scale of LTL operations. 

The objective of this Chapter is to quantify the benefits to carriers of in-vehicle 

consolidation in the bidding construction process in a freight transportation combinatorial 

auction. The focus is not on the design of the auction per se but in demonstrating that in-

vehicle consolidation in LTL framework can offer substantial gains to carriers. A multi-

commodity one-to-one pickup-and-delivery vehicle routing problem (m-PDVRP) is used 

to determine partitions of the network (bundles) that minimize operational costs. 

Minimizing costs is important because a bundle with a fixed price can be served by 

different combinations of trucks/routes but only the one with minimum cost maximizes 

the profits of the carrier. Similarly, if several carriers bid for the same bundle but have 

different operational costs, the one with lower costs can always price lower obtaining 

profits that are greater than or equal to those perceived by the others. Consequently, low 

costs propitiate low prices which increases the probability of wining lanes that are part of 

a bundle and do not deteriorate profits when competing against other carriers that have 

higher costs. The m-PDVRP formulation explicitly incorporates the following carrier 
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characteristics: a single depot where all routes start and end, a fleet of vehicles with 

specific capacity, and a consolidation policy where a single vehicle can carry shipments 

from different origin-destination OD pairs. In addition to the economies of scope 

considered in previous research, this formulation takes advantages of economies of 

density and scale to identify low cost routes. The m-PDVRP is a mixed-integer program 

(MIP) where binary variables determine the assignment of vehicles to road segments in 

the transportation network and continuous decision variables determine the amount of 

freight inside a vehicle at each segment of the network. Since using commercial software 

to solve this NP-hard problem is not practical - real world applications involve 1800 lanes 

on average (Caplice & Sheffi 2006) - a solution algorithm based on the branch-and-price 

methodology (Barnhart et al. 1998; Desaulniers et al. 1998) is proposed. The theoretical 

framework is problem specific, which means that no standard software exists to 

implement it. To the best of our knowledge, this is the first attempt to incorporate LTL 

features in the assessment of bids in combinatorial auctions for freight transportation. 

Then, a numerical experiment is conducted to contrast consolidated bids against non-

consolidated bids. The results show that, from the pure economic perspective, 

consolidated (LTL) bids are more profitable and have higher probability of being selected 

than non-consolidated (TL) bids. 

This Chapter is organized as follows: Section 6.1 presents the problem motivation 

and a review of previous work. Section 6.2 presents the problem definition, mathematical 

notation, and the MIP formulation. Section 6.3 presents the branch-and-price solution 

algorithm. Section 6.4 presents examples and computational experiments from the 



160 
 

 

proposed methodology. Finally, Section 6.5 presents conclusions and future research 

directions. 

6.2 Problem notation, definition, and formulation 

This section presents the mathematical formulation to identify the most valuable set 

of lanes (bundle) that can be submitted by a carrier in the freight market assuming that in-

vehicle consolidation (LTL carrier) is allowed. Each auctioned lane presents the amount 

of demand that goes from a specific origin to a specific destination. Likewise, the set of 

lanes can be partitioned into subsets, where each of them is served by a truck and 

represents a bundle that can be submitted to the combinatorial auction. Thus, the 

maximum number of partitions corresponds to the maximum number of trucks available 

by the carrier. This idea for bundle definition is akin to the bidding advisory model 

proposed by Lee, et al (2007), where a vehicle routing problem is used to determine 

optimal routes serving direct shipments (TL operation) and each route determines the 

lanes covered by a bundle. Furthermore, the problem approached in this Chapter 

corresponds to a multi-commodity one-to-one pickup-and-delivery vehicle routing 

problem (m-PDVHR), which has not been widely studied in previous literature. Although 

the formulation below is similar to the one presented by Hernández-Pérez, and Salazar-

González (2009) for the multi-commodity one-to-one traveling salesman problem (m-

PDTSP), it considers multiple vehicles (a distinctive difference between the TSP and the 

VRP). To the best of our knowledge the only previous work related to m-PDVHR 

correspond to the one by Psaraftis (2011), who uses dynamic programming to solve the 

problem but presents results that are limited to networks with low number of nodes (up to 

4) and vehicles (up to 2). On the other hand, several works have been presented for LTL 
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network design and vehicle routing (Andersem et al. 2011, Baykasoglu & Kaplanoglu 

2011, Crainic et al. 2009,Smilowitz et al. 2003). However, these works are based on the 

consolidation and coordination of shipments through facilities (hubs and spokes) that are 

strategically located in the transportation network, which is a rigid assumption that is 

associated to high investments in infrastructure, and do not consider the flexibility of in-

vehicle consolidation for combinatorial auctions discussed in the introduction section. 

The mathematical notation followed throughout the Chapter is presented in Table 6.1. 

Subsequent subsections present a clear definition of the problem, modeling assumptions, 

and problem formulation. 

Table 6.1 Mathematical notation 

Notation Definition 

 Transportation network (complete directed graph) 

 Set of all nodes in the transportation network. . Where 0 

identifies the depot. 

 Subset of nodes where loads have to be picked up or delivered.  

 Set of all directed arcs in the transportation network. 

 

 Binary coefficient equal to one if arc  is covered by the 

deployment  or zero otherwise 

 Traversing cost of arc  

 Cost associated with the deployment of trucks  

 Amount of freight to be moved in the auctioned lane 

 

 Fleet of vehicles initially located at the depot (node ) 

 Capacity or maximum utilization of the vehicles. 

 A deployment of trucks covering all nodes in the network.  

 Set of all deployments of trucks. 
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 Any subset of nodes not containing the depot . 

 Binary variable equal to one if arc  is traversed by vehicle 

, zero otherwise. 

 Amount of freight picked up in  to be delivered in  

traversing arc  inside vehicle . 

 Convexity variable associated with the deployment of trucks  

 

6.2.1 Problem definition 

In this problem, given a geographic area divided into regions connected by 

transportation infrastructures, a shipper placing a combinatorial auction to assign a set of 

lanes over carriers that serve this area, and a carrier participating in the auction with a 

depot located in the area, a fleet of vehicles with specific capacities, and a LTL policy of 

in-vehicle consolidation, it is required to determine the most valuable bid (route or 

routes), to be submitted by the carrier to such auction. The most valuable bid is defined as 

the one that covers all demand and minimizes the total system cost. 

To define the problem mathematically, let  be a complete directed graph 

composed by a set of nodes  and a set of arcs . The subset  

corresponds to nodes where loads have to be picked up or delivered. The depot is 

numbered as node . Each arc  is associated with a 

traversing cost  satisfying the triangle inequality ( ). Each 

auctioned lane  is associated with an amount of 

freight . There is a fleet of vehicles  at the depot, with specific capacity . The 

problem determines the routes that minimize the total system traversing cost, such that all 
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vehicles start and finalize their routes at the depot , each  is served, and ’s payload 

never exceeds . 

6.2.2 Problem assumptions 

The formulation presented below is based on the following assumptions: 

· Only the most valuable bundle per vehicle is generated, i.e., route that 

minimizes the total system traversing cost 

· Time windows are not considered 

· All vehicles have the same capacity 

· Bundle valuation is based on the cost rather than the profits or other criteria. 

· All demand must be served 

· There is no constraint on the maximum tour length 

· Vehicles leave the depot empty and return empty. 

· All vehicles are used 

· Fleet size cannot exceed the number of freight lanes. 

The above assumptions can be relaxed leading to more complex formulations. 

Constraints such as maximum tour length and differential vehicle capacity can be easily 

incorporated within the framework presented in this work. However, for the sake of 

simplicity, this Chapter focuses on the basic version of the problem. Once this has been 

fully understood, the framework can be extended to accommodate other constraints. 

6.2.3 Problem formulation 

The m-PDTSP is formulated as a MIP model with two sets of variables: binary 

variables  that take value 1 if arc  is traversed by vehicle  and 
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continuous nonnegative variables  indicating the amount of freight picked up in 

 to be delivered in  traversing arc  inside vehicle . Sub-tour 

elimination constraints are considered in (6.5), where  is any subset of nodes not 

containing the depot . 

  (6.1) 

s.t.  (6.2) 

  (6.3) 

  (6.4) 

  (6.5) 

  (6.6) 

  (6.7) 

  (6.8) 

  and  (6.9) 

  (6.10) 

  (6.11) 



165 
 

 

  (6.12) 

In this formulation, the objective function (6.1) minimizes the total system traversing 

cost. Constraint (6.2) specifies that each node must be visited by one vehicle. Constraint 

(6.3) ensures that all vehicles are used. Constraint (6.4) defines the vehicle flow 

conservation at each node and constraint (6.5) relates to the sub-tour elimination, which 

increases the number of constraints exponentially with respect to the number of nodes. 

The demand satisfaction constraints are given by (6.6) for pickups and (6.7) for deliveries. 

Constraint (6.8) determines the payload flow conservation. Constraint (6.9) specifies that 

vehicles leave the depot empty and return empty. Constraint (6.10) indicates that loads 

can be transported only on traversed links and its total amount cannot exceed the vehicle 

capacity. Constraint (6.11) is for binary variables and (6.12) for non-negative continuous 

variables. 

The following section presents a solution algorithm that follows the branch-and-price 

methodology. This algorithm is proposed since it is difficult to solve the above 

formulation using standard MIP solvers.  

6.3 Solution methodology 

This section presents a branch-and-price (B&P) solution algorithm (Barnhart et al. 

1998, Desaulniers et al. 1998) developed to solve the MIP presented before. This 

methodology improves the computational time and can handle larger instances of the 

problem than those handled by commercial solvers. B&P is the integration of Dantzig-

Wolfe decomposition and column generation into a branch-and-bound (B&B) algorithm. 

The three modules that integrate the B&P algorithm, i.e., B&B, Master problem (MP), 
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and Sub-problem (Sub-P), are presented in the corresponding subsections below. Finally, 

the integration of these modules in the B&P framework is presented at the end of the 

section. 

6.3.1 Branch-and-bound (B&B) 

In general, B&B is a built-in procedure used to solve integer programs (IPs) and 

MIPs by commercial software. This algorithm constructs a tree of feasible solutions 

while searching for an optimal integer solution. 

In the B&B algorithm, a search tree is built based on the solution of sequential linear 

programs (LPs), a relaxation of the original IP problem, where each node represents one 

of these solutions. To accelerate the process, nodes can be terminated, or fathomed, if the 

node solution is: greater than the incumbent solution (in the case of a minimization 

problem), infeasible, or lesser than the incumbent solution and integer. In the latter case 

the node solution updates the incumbent solution. If none of these cases hold, i.e., the 

solution of the LP at the node is lesser than the incumbent solution but not integer, a non-

integer variable (or set of variables) is selected and branched, i.e., two new branches are 

added to the current node where each branch corresponds to an integer constraint of the 

branched variable (or set of variables). For example, if after solving the LP relaxation of 

a problem it turns out that the optimal solution is lesser than the incumbent solution and 

there exists a variable  such that  is a non-integer number, two new instances 

(branches) of the LP are generated, i.e. one where the constraint  is added to the 

LP and another where  is added.  and  are the nearest lower and higher 

integers to  respectively. There are different searching strategies to find an optimal 

solution (e.g., depth-first-, or breath-first-search). 
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The special characteristic that differentiates B&B from B&P is that a column 

generation procedure based on Dantzin-Wolfe decomposition (Desrosiers and Lübbecke, 

2005) is implemented at each node of the tree rather than solving the LP relaxation of the 

original problem. In order to apply these concepts, the original MIP has to be 

decomposed into a Master Problem and a Sub-Problem. 

6.3.2 Master problem (MP) 

This section presents the Master Problem (MP) used in the B&P algorithm. The MP 

is the LP solved at each node of the B&B tree embedded in the B&P algorithm. 

 

 

Figure 6.2. Examples of deployments of trucks  for one ( ), two ( ), 

and three ( ) trucks in a network with four nodes. 

Since the original problem is a MIP, it is expressed as a LP using Dantzig-Wolfe 

decomposition which allows the representation of integer variables, as convex 

combinations of extreme points of this space. Applying these concepts in the MIP (6.1)-
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(6.12) implies the identification of a common solution space that defines the 

corresponding convexity variables. It is observed that constraints (6.2)-(6.5), and (6.11) 

split the set of nodes without the depot  in  subsets. The arcs in each of these subsets 

are those covered by a Hamiltonian cycle connected to the depot. Examples of these 

covers are presented in Figure 6.2. Each combination of cycles is called a deployment of 

trucks and identified with the sub index , where  is the set of all truck deployments 

in a network . Therefore, the variables representing whether a link is selected or 

not  are expressed as convex combination of these deployments through convexity 

variables , i.e., , where  is a binary coefficient 

equal to one if arc  is covered by the deployment  or zero otherwise. The 

resulting MP is presented below. 

  (6.13) 

s.t.  (6.14) 

  (6.15) 

  (6.16) 

  and  (6.17) 

  (6.18) 

  (6.19) 
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  (6.20) 

  (6.21) 

In this program the variables are  and . The first one is defined as in MIP (6.1)-

(6.12). The second one, , is a continuous non-negative variable associated with each 

deployment of trucks  as previously defined. Constraints (6.14)-(6.17) and (6.20) have 

the same meaning as in MIP (6.1)-(6.12). Constraint (6.18) relates to the deployments of 

trucks with the flow of commodities on each truck. Constraints (6.19) and (6.21) are the 

convexity constraints required to use convex combinations to obtain each . 

Notice that the MP presented above is a LP. However, generating the complete set of 

deployments  is not practical. Therefore, column generation is used to work with a 

restricted number of variables. Hence, rather that working with the complete MP a 

restricted MP (RMP) is used. Variables (or columns) are generated iteratively by a sub-

problem (Sub-P) and controlled by reduced cost of the RMP. The exact procedure is 

presented in the following subsection. 

6.3.3 Sub problem (Sub-P) 

As presented above, the use of all the variables in the MP is avoided by using a 

restricted master problem. Variables associated with columns of this LP are generated as 

needed through column generation. In column generation, the RMP is solved with an 

initial set of variable that might include costly dummy columns. Then, the reduced cost  

associated with this solution is checked. If there exists a column such that , this 

column is added to the RMP –which is solved again. Otherwise, the solution of the RMP 

is equivalent to the solution of the MP. Recall that this is valid only for the MP that is a 
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linear relaxation of the original problem and not a solution of the original MIP. Notice 

that the reduced cost of the MP is given by  

  (6.22) 

Where  are the dual variable associated with the set of constraints (6.18) –each of 

them associated with an arc – and  is the dual variable associated with the 

convexity constraint (6.19). Hence, a negative value of  can be found minimizing the 

following IP. 

  (6.23) 

s.t.  (6.24) 

  (6.25) 

  (6.26) 

  (6.27) 

  (6.28) 

IP (6.23)-(6.28) is a vehicle routing problem (VRP), which is notoriously a NP-Hard 

problem. Although solving to optimality is not critical for the size of the instances 

considered in this work, the amount of resources required to solve slightly larger 

instances is cumbersome. Therefore, the development and implementation of heuristics to 

efficiently approximate the Sub-P is suggested as a future improvement of the algorithm. 
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6.3.4 Branch-and-price (B&P) 

A summary of the B&P algorithm is presented in Figure 6.3. 

 

Figure 6.3 Branch-and-Price (B&P) Framework 

In this figure, first a B&B node is generated and denominated as root of the tree. This 

node is initialized with an initial costly dummy variable that initializes the generation of 

columns. As presented in the previous subsections, the column generation procedure 

solves the RMP, constructs the reduced cost function  with the duals of the MP (  and 



172 
 

 

), and solves the Sub-P. If there exists a deployment  such that the minimum of , 

, is lesser than zero, then this deployment is added to the pool of columns and the 

previous RMP is modified to consider the new generated column, with its corresponding 

costs and scope, and the RMP is solved again. The procedure continues until a reduced 

cost that is greater than or equal to zero is found. Once the column generation procedure 

stops in a B&B node the solution is analyzed. If it is not possible to find a feasible 

solution for that instance of the problem, then the node is terminated. If the node solution 

is greater than the incumbent solution, the node is terminated. If the node solution is 

lesser than the incumbent solution and integer the node is terminated but the incumbent 

solution is replaced by this one. Finally, if the node solution does not hold any of these 

conditions, the node is branched and two new instances of the RMP are generated as two 

new nodes in the B&B tree. In one node, one arc or deployment variable is set to zero. In 

the other one, the same variable is set equal to one. Then the column generation is solved 

in each of these nodes again and the algorithm continues checking whether these nodes 

are terminated or branched. The algorithm stops when there are no more nodes to 

terminate or branch and the optimal solution is returned. 

6.3.5 Acceleration strategies 

Originally a depth-first search is implemented to explore solutions in the B&B tree. 

However, the computational time with this procedure is high because finding an initial 

incumbent solution (feasible and integer), that represents an upper bound to the optimal 

solution, takes a reasonable amount of time. Then, fathoming other nodes to increase the 

lower bound before finding the optimal solution consumes the remaining time. 
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To save time in the initial search Strategy 1 is proposed. Here, the algorithm is 

initialized with two initial solutions: the costly initial solution used before , and an 

initial feasible solution to the problem  associated to a feasible deployment . 

This deployment is found connecting the depot with any node that is a demand origin, 

then connecting to its corresponding destination, then connecting to another origin not 

previously selected, and so on. Once all demand is covered, the deployment returns to the 

depot. This procedure is easily extended to multiple vehicles. After column generation in 

the root B&B node, if this node is branched, the search proceeds to a branch associated to 

a link covered by . Then, if the next B&B node is also branched, the search 

continues to a branch associated to a link covered by , and so on up to finding 

. After this, the depth first search continues normally. 

Although Strategy 1 accelerates solution times, there are middle and large size 

instances in which computational time increases considerably and one wants to obtain the 

current solution and evaluate the optimality gap. However, the procedure so far rarely 

increases the lower bound of the solution at early stages of the algorithm. Therefore, the 

optimality gap is not small which is undesirable. Thus, Strategy 2 is proposed to mitigate 

this issue. Strategy 2 is run after  is found (from Strategy 1). Then, the node with 

lowest current solution is selected and fathomed. This procedure continues up to finding 

the optimal solution. 

The numerical experiments shown in the next section demonstrate the acceleration 

properties of these strategies. In essence, Strategy 1 reduces computational times as 

compared to the deep-first search, and results from Strategy 2 are sometimes faster than 

those obtained merely from Strategy 1. 
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6.4 Numerical Results 

This section presents numerical results for the formulation defined above. Figure 6.4 

presents a description of the numerical example. Since a complete network is considered, 

traversing arcs are not drawn. On the other hand, the arrows connecting nodes represent 

the auctioned lanes associated to each scenario -three in total-. Each of them is associated 

with an amount of freight (20 or 10 units). Likewise, the depot is labeled as 0 according 

to the notation above. Scenario 1 presents 2 auctioned lanes, i.e., a network with 5 nodes.  

Scenario 2 presents 3 auctioned lanes, i.e., a network with 7 nodes. Finally, Scenario 3 

presents 4 auctioned lanes, i.e., a network with 9 nodes. The matrix in Figure 6.4 presents 

the traversing cost between nodes. Each scenario is tested with a number of trucks lesser 

than or equal to the number of auctioned lanes. Likewise, three different values are 

considered for the capacity of the trucks, i.e., 20, 40, and, 50. 

 

Figure 6.4 Numerical Example 

The B&P algorithm is coded in Java. Several classes are created to set up the 

problem, manipulate the deployments in the transportation network, build the B&B tree 

with its corresponding nodes, and transfer information between the MP and the Sub-P. 

Likewise, ILOG CPLEX is called from the Java code to solve the LP associated with the 

MP and the IP associated with the Sub-P. An initial expensive solution  is used to 

initialize the algorithm, where  is a dummy deployment visiting all the arcs.  
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Table 6.2. Numerical results LTL bids. 

    
Min. 
Cost Deployment Bundles 

Time (sec) 

Gap 
(%) 

Deep-first 
search Strategy 1 Strategy 2 

5 1 50 13 0-1-2-3-4-0 {(1,3),(2,4)} 0.203 0.171 0.313 0.0 

5 1 40 13 0-1-2-3-4-0 {(1,3),(2,4)} 0.188 0.188 0.406 0.0 

5 1 20 21 0-1-3-2-4-0 {(1,3),(2,4)} 1.640 0.734 0.531 0.0 

5 2 50 30 0-1-3-0-2-4-0 {(1,3)},{(2,4)} 1.063 1.125 0.265 0.0 

5 2 40 30 0-1-3-0-2-4-0 {(1,3)},{(2,4)} 1.094 1.078 0.203 0.0 

5 2 20 30 0-1-3-0-2-4-0 {(1,3)},{(2,4)} 0.891 0.672 0.235 0.0 

7 1 50 11 0-5-1-2-6-3-4-0 {(1,3),(2,4),(5,6)} 0.359 0.234 0.281 0.0 

7 1 40 15 0-5-1-6-2-3-4-0 {(1,3),(2,4),(5,6)} 2.609 8.062 1.718 0.0 

7 1 20 31 0-5-6-1-3-2-4-0 {(1,3),(2,4),(5,6)} 1.937 4.688 5.859 0.0 

7 2 50 28 0-2-4-0-5-1-6-3-0 {(2,4)},{(1,3),(5,6)} 23.124 13.469 4.390 0.0 

7 2 40 28 0-2-4-0-5-1-6-3-0 {(2,4)},{(1,3),(5,6)} 16.734 16.109 4.781 0.0 

7 2 20 32 0-1-3-0-5-6-2-4-0 {(1,3)},{(2,4),(5,6)} 7.390 7.109 6.000 0.0 

7 3 50 45 0-1-3-0-2-4-0-5-6-0 {(1,3)},{(2,4)},{(5,6)} 15.344 3.985 1.812 0.0 

7 3 40 45 0-1-3-0-2-4-0-5-6-0 {(1,3)},{(2,4)},{(5,6)} 14.203 13.406 1.813 0.0 

7 3 20 45 0-1-3-0-2-4-0-5-6-0 {(1,3)},{(2,4)},{(5,6)} 5.484 3.719 1.125 0.0 

9 1 50 13 0-5-1-7-6-2-3-8-4-0 {(1,3),(2,4),(5,6),(7,8)} 19.203 37.265 12.188 0.0 

9 1 40 13 0-5-1-7-6-2-3-8-4-0 {(1,3),(2,4),(5,6),(7,8)} 7.094 53.656 10.531 0.0 

9 1 20 31 0-5-6-7-1-8-3-2-4-0 {(1,3),(2,4),(5,6),(7,8)} 53.312 103.359 55.406 0.0 

9 2 50 26 0-2-4-0-5-1-7-6-3-8-0 {(2,4)},{(1,3),(5,6),(7,8)} 574.012 219.905 113.172 0.0 

9 2 40 26 0-2-4-0-5-1-7-6-3-8-0 {(2,4)},{(1,3),(5,6),(7,8)} 383.779 214.186 174.281 0.0 

9 2 20 30 0-1-7-3-8-0-5-6-2-4-0 {(1,3),(7,8)},{(5,6),(2,4)} 5.812 36.406 130.657 0.0 

9 3 50 43 0-2-4-0-5-1-6-3-0-7-8-0 {(2,4)},{(1,3),(5,6)},{(7,8)} 2148.677 254.654 397.782 0.0 

9 3 40 43 0-2-4-0-5-1-6-3-0-7-8-0 {(2,4)},{(1,3),(5,6)},{(7,8)} 1267.945 270.67 413.016 0.0 

9 3 20 43 0-1-7-3-8-0-2-4-0-5-6-0 {(2,4)},{(1,3),(7,8)},{(5,6)} 205.436 91.984 138.625 0.0 

9 4 50 60 0-1-3-0-2-4-0-5-6-0-7-8-0 {(1,3)},{(2,4)},{(5,6)},{(7,8)} 692.870 91.375 58.084 0.0 

9 4 40 60 0-1-3-0-2-4-0-5-6-0-7-8-0 {(1,3)},{(2,4)},{(5,6)},{(7,8)} 503.496 101.702 77.581 0.0 

9 4 20 60 0-1-3-0-2-4-0-5-6-0-7-8-0 {(1,3)},{(2,4)},{(5,6)},{(7,8)} 260.092 59.71 39.563 0.0 

 

Table 6.2 presents the numerical results for this example. Looking at deployment 

costs, it is observed that the total system cost increases when more trucks are deployed 

and when the capacity of these trucks is low. This supports in-vehicle consolidation as a 

cost reduction strategy where the assets of the carriers (trucks) are used efficiently. 

However, it should be noticed that this conclusion is valid only in contexts where 

dynamic features are not considered, e.g., time dependent demand, time windows, and 

deadlines, which will be discussed in the following section. 
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From the algorithmic efficiency perspective, computational time increases with the 

number of nodes in the network as expected. Additionally, by comparing instances with 

high and low truck capacities it is observed that the former tend to require higher 

computational effort than the second one. This is expected because high capacities are 

related to more consolidation options that have to be systematically fathomed in the B&B 

tree. Likewise, it shows how incorporating consolidation is computationally more 

challenging than considering just TL operations. On the other hand, it is observed that 

Strategies 1 and 2 accelerate the algorithm as compared to a merely deep-first search 

strategy. For this particular example it is observed that Strategy 1 is slightly faster than 

Strategy 2. However, the value of Strategy 2 is higher in large instances where no optimal 

solution can be reached but a good approximation with low optimality gap is acceptable. 

The competitiveness of consolidated (LTL) bids over the non-consolidated (TL) ones 

is illustrated with an extension of Scenario 3 (Figure 6.4), where the same number of 

bundles is obtained considering TL operations. A simple way to model TL behavior in 

the current framework is setting each demand lane equal to the capacity of the truck. 

Thus, the results of running this scenario using Strategy 2 are presented in Table 6.3. 

Table 6.3. Numerical results TL bids (Scenario 3) 

  
Min. 
Cost 

Deployment Bundles 
Time 
(sec) 

Gap 
(%) 

9 1 43 0-1-3-2-4-5-6-7-8-0 {(1,3),(2,4),(5,6),(7,8)} 14.000 0.00 
9 2 42 0-1-3-2-4-0-5-6-7-8-0 {(1,3),(2,4)},{(5,6),(7,8)} 25.266 0.00 
9 3 47 0-1-3-0-5-6-2-4-0-7-8-0 {(1,3)},{(2,4),(5,6)},{(7,8)} 113.172 0.00 
9 4 60 0-1-3-0-2-4-0-5-6-0-7-8-0 {(1,3)},{(2,4)},{(5,6)},{(7,8)} 78.188 0.00 

 

Next, the optimal bundles obtained for the LTL carrier in Scenario 3 (Figure 6.4) are 

compared to those that would be submitted if TL operation is assumed instead. Likewise, 
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the optimal bundles obtained for TL operation are re-estimated considering in-vehicle 

consolidation (LTL). The results of this experiment are presented in Table 6.4, where the 

first column indicates the type of operation for which the bundle in the second column is 

optimal. The following columns indicate for each type of operation the optimal 

deployment to serve the demand in the bundle, its total cost, and cost per lane. It is 

observed that the total cost and cost per lane for the LTL operation are always less than 

or equal to the corresponding costs for the TL carrier. Thus, LTL carriers considering in-

vehicle consolidation can submit bundles with prices slightly lower to the operational 

costs of TL carriers –which increases their probability of winning the auctioned lanes– 

and perceive considerable profits. These profits are computed in the last column of Table 

6.4. Notice that the difference is more pronounced when fewer vehicles are used. This is 

because as the number of vehicles serving the whole network increases there are less 

possibilities of consolidation and, therefore, the LTL operation is very similar to the TL 

one (When the number of trucks equals the number of lanes, costs for TL and LTL are 

equal). This trend also occurs when the capacity of the vehicles is low, as observed for 

several instances in Table 6.2 where the capacity of the trucks is reduced to 20 units and 

the resulting deployment follow a TL-type of operation (direct shipments). 

 

Table 6.4. Comparison between LTL and TL bundles 

Opt. 

for 
Bundle 

No. 

lanes 

LTL operation  TL operation  LTL 

min 

margin 
Deployment 

Total 

cost 

Cost per 

lane 
 Deployment 

Total 

cost 

Cost per 

lane 

 

LTL {(1,3),(5,6),(7,8)} 3 0-5-1-7-6-3-8-0 11.00 3.67  0-5-6-1-3-7-8-0 35.00 11.67  24.01 

LTL {(1,3),(5,6)} 2 0-5-1-6-3-0 13.00 6.50  0-5-6-1-3-0 25.00 12.50  12 

TL {(1,3),(2,4)} 2 0-1-2-3-4-0 13.00 6.50  0-1-3-2-4-0 21.00 10.50  8 

TL {(5,6),(7,8)} 2 0-5-7-6-8-0 13.00 6.50  0-5-6-7-8-0 21.00 10.50  8 
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Opt. 

for 
Bundle 

No. 

lanes 

LTL operation  TL operation  LTL 

min 

margin 
Deployment 

Total 

cost 

Cost per 

lane 
 Deployment 

Total 

cost 

Cost per 

lane 

 

TL {(5,6),(2,4)} 2 0-5-2-6-4-0 13.00 6.50  0-5-6-2-4-0 17.00 8.50  4 

TL/LTL {(1,3),(2,4),(5,6),(7,8)} 4 0-5-1-7-6-2-3-8-4-0 13.00 3.25  0-1-3-2-4-5-6-7-8-0 43.00 10.75  30 

TL/LTL {(1,3)} 1 0-1-3-0 15.00 15.00  0-1-3-0 15.00 15.00  0 

TL/LTL {(2,4)} 1 0-2-4-0 15.00 15.00  0-2-4-0 15.00 15.00  0 

TL/LTL {(5,6)} 1 0-5-6-0 15.00 15.00  0-5-6-0 15.00 15.00  0 

TL/LTL {(7,8)} 1 0-7-8-0 15.00 15.00  0-7-8-0 15.00 15.00  0 

 

In summary, the numerical examples show that -under the conditions assumed for the 

problem above- the bids submitted by a LTL carrier that considers in-vehicle 

consolidation can be priced below or at the same price of bundles submitted by TL 

carriers. Interestingly, LTL carriers can perceive considerable profits when several 

shipments are consolidated in few trucks while TL carries would be bidding at a 

breakeven point, where operational cost equals price. Furthermore, the shipper 

conducting the auction can reduce its procurement expenditure by receiving consolidated 

bids with more favorable prices. 

The following section summarizes the findings of this research, discusses about its 

limitations, and provides interesting research directions to be approached in posterior 

works. 

6.5 Conclusions 

This Chapter quantifies the benefits of considering in-vehicle consolidation –a 

behavior suitable for LTL firms- in the construction of bids that can be submitted to a 

combinatorial auction for the procurement of freight transportation services. This strategy 

is compared with the TL bids (direct shipments) which have been the only strategy 

considered by carriers participating in these auctions and past research on bidding 
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advisory models. Thus, an m-PDVRP model is presented to find the combination of 

bundles that minimizes the system cost associated to a deployment of vehicles in the 

network auctioned by the shipper and a branch-and-price algorithm is presented to find 

optimal solutions to the problem. The numerical results show that consolidated (LTL) 

bids dominate the non-consolidated (TL) ones. 

Specifically, it is shown that the cost of serving a bundle with in-vehicle 

consolidation is always less than or equal to the cost of serving it with direct shipments. 

Thus, LTL carriers can submit bids with prices that are less than or equal to the costs of 

TL carriers for the same bundles and getting profits while TL carriers could just reach the 

breakeven point. This characteristic is better appreciated in bundles where several lanes 

are consolidated in one truck, which can be done using large trucks with consolidation 

capabilities, e.g., STAA double trailers, rocky mountain doubles, turnpike doubles, and 

triple trailers. On the other hand, shippers can benefits from this behavior by receiving 

low price bids that can potentially reduce their procurement costs. 

It is important to highlight that the strategy considered in this Chapter only covers in-

vehicle consolidation, which does not apply for typical LTL firms where shipments are 

consolidated in facilities that are strategically located over the transportation network, 

e.g., terminals, or hubs. Hence, this strategy is closer to a hybrid approach that 

incorporates the flexibility and economies of scope of TL shipments with the economies 

of scale and density encouraged by in-vehicle consolidation. Differentiating these two 

types of consolidation is important because LTL shipments that are consolidated in 

facilities are associated with high transportation times, which is not beneficial for 

shippers/commodities with high value of time, and is the main reason to prefer TL 
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shipments. However this hybrid approach does not require consolidation and sorting in 

facilities since shipments are directly consolidated inside vehicles, e.g., plugging 

additional trailers, or adding containers. Although serving several shipments with one 

truck represents higher delivery times than direct shipments, these times are not as high 

as a pure LTL approaches with consolidation in facilities. Nevertheless, additional 

research is required to understand how increased travel times and low prices affect the 

procurement decision of the shipper. This can be approached using econometric 

techniques, e.g., discrete choice models, to obtain marginal rates of substitution between 

price and time that can be incorporated in the construction of optimal bids. 
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CHAPTER 7. PRICING AND BUNDLING LESS THAN  
                                      TRUCKLOAD SERVICES: STOCHASTIC DEMAND 

7.1 Introduction 

Based on the successful implementation of truckload (TL) combinatorial auctions 

(CA), this Chapter combines available information to derive the taxonomy of a less-than-

truckload (LTL) CA. Then, a bidding advisory model for LTL CA that accounts for 

stochastic demand, designated as BM LS, is proposed. This model is the first bidding 

advisory model for LTL CA and also improves limitation of TL models by (1) using a 

value-based pricing approach that properly handles the pricing rules of TL CAs, (2) 

segmenting demand such that the carrier can specify the maximum lane flow that is 

willing to serve in each bundle, and (3) incorporating demand uncertainty. A two-stage 

minimum-cost flow problem with stochastic capacity and demand (MCFSCD) is 

embedded into BM LS and solved using as series of network transformations to 

formulate its deterministic equivalent (DE) and solve it as an efficient minimum-cost 

flow (MCF) problem. A numerical experiment illustrates the application of BM TS. 

The first contribution of the Chapter is combining available information to derive the 

taxonomy of LTL CA. Furthermore, the comprehensive literature review in Subsection 

1.2.3 shows that there is no bidding advisory model for LTL CA. This gap is narrowed by  
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BM LS (Bidding Model for LTL CA with Stochastic demand), an algorithmic 

framework that additionally improves limitations of current TL bidding advisory models 

by (i) bundling based on value-based pricing and properly handle managing the pricing 

rules of CA, (ii) segmenting demand so that the maximum lane flow that the carrier is 

willing to serve is explicitly defined in each bid, and (iii) incorporating demand 

uncertainty in the construction of bundles. 

This Chapter is organized as follows. Section 7.1 motivates the problem. Section 7.2 

provides a comprehensive literature review that highlights the gap on research and 

motivates the directions taken in the development of BM LS. Section 7.3 expands the 

concepts of LTL CA, LTL systems, and freight stochastic demand, which has to be 

mastered before properly defining and formulating the LTL bidding problem in Section 

7.4. Section 7.5 presents BM LS, an algorithmic framework to solve this problem, which 

is based in a novel algorithm to assign demand into the LTL network while accounting 

for uncertainty. Section 7.6 illustrates the implementation of BM LS with a numerical 

example. Finally, Section 7.7 concludes the Chapter with a summary of this research. 

 

7.2 Literature review 

This section presents a comprehensive literature review of LTL systems. This review 

shows that a work addressing the bidding problem for LTL carriers in LTL CA is missing 

in literature, a gap narrowed by the current work. 
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LTL systems have been widely studied from the service design perspective. Crainic 

(2000) reviews service network design studies, many of them related to LTL operations. 

Pioneering works (Powell 1986, Powell and Sheffi, 1983 and 1989) developed 

frameworks for LTL network design and implemented them in commercial settings 

(Braklow et al. 1992). These flow-based approaches introduce important LTL concepts 

(e.g., load plans, terminal definition, direct services, levels of service, etc.) and methods. 

Keaton (1993) combine service network design concepts with facility location to 

demonstrate the benefits of economies of density for LTL carriers. Jarrah et al. (2009) 

develops a similar network design problem that is solved using an original sequential 

approach. These works are formulated to address the challenging strategic planning faced 

by LTL carriers. 

The operational LTL problems offer a high level of complexity and are even more 

challenging. For example, Rieck and Zimmermann (2009) use a vehicle routing approach 

that accommodate multiple constraints to study cooperation between middle size LTL 

carriers in Europe. Estrada and Robusté (2009) propose a method for LTL long-haul 

routing with capacitated distribution centers and time-constrained shipments. Barcos et al. 

(2010) approach different details of LTL network design problem that add more 

complexity to the models in earlier years. As a common trait, these works take advantage 

of heuristic approaches to solve these complex problems, e.g., meta-heuristics like local 

search, taboo search, ant colony, among others, are popular. 

A significant amount of work in LTL modeling has been conducted in the last few 

years by Lin and co-authors. Lin (2001) studies LTL freight routing in a cost 

minimization framework using an explicit enumeration approach that is similar to 
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branch-and-bound. Lin (2004) investigates the LTL load planning with uncertain 

demands using two-stage stochastic programing. Lin and Chen (2004) explore cases 

when load plans can incorporate two paths between different terminals in the LTL 

network. However, common practice is assuming just one. Lin et al. (2009) present a 

good taxonomy of the LTL network and propose a pricing model for LTL services that 

assume (i) that demand can be estimates as a continuous and invertible function of price, 

(ii) revenue follows a concave continuous function, and (iii) capacities are fixed in the 

network. 

Other topics related to LTL research include collaboration (which has received 

significant attention by several authors e.g., Hernández and Peeta, 2011, Hernández et al. 

2011, Hernández et al. 2012, Nadarajah et al. 2013, Xu et al. 2009), econometric pricing 

(Özkaya, E et al. 2010), assignment of drivers (Erera 2008), benefits of LTL operations 

for reductions in emissions (Clausen et al. 2012), inventory management related to LTL 

systems (Buijs et al. 2014, Banerjee, 2009), pickup-and-deliveries at end of lines (EOLs) 

(Barnhart and Kim, 1995), and real time decisions (Hejazi et al. 2007). 

However, no work approaching the bidding problem for LTL carriers in CA is found 

in literature. This problem has been mainly explored from a TL perspective (Song and 

Regan, 2003 and 2005, Wang, and Xia, 2005, Lee et al. 2007) but these works suffer of 

the following issues: (i) pricing is not properly addressed using value-based frameworks, 

(ii) demand segmentation within bids submitted to the CA is not allowed, and (iii) 

uncertainty is not considered. 

Meaningful conclusions are obtained from this review. LTL systems can be modeled 

using network flow approaches if they are properly defined. Heuristic approaches are 
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commonly required to solve these complex problems. Uncertainty has been scarcely 

incorporated in these problems but can be approached using DE approaches. Operational 

constraints, e.g., load plans, are critical in the operation of LTL systems and have to be 

considered to obtain realistic results. A bidding model for LTL CA is missing in literature. 

Although developing the first model in this context is a significant contribution per se, 

addressing the limitations in previous TL bidding advisory model adds considerable 

value to this work. 

Given this review and conclusions, the following sections provide preliminary 

concepts to deeply understand LTL CA, LTL systems, freight demand uncertainty, and, 

furthermore, develop the robust and efficient algorithmic framework proposed in this 

work (BM LS). 

7.3 Preliminaries 

Preliminary concepts have to be reviewed and defined before to properly define and 

formulate the bidding problem approached in this research. 

This section is organized as follows. Subsection 7.3.1 clarifies the context of an LTL 

CA. Subsection 7.3.2 reviews the operational characteristics of LTL systems. Finally, 

Subsection 7.3.3 shows the importance of considering stochastic demand in freight 

transportation and how this affects the bidding problem faced by LTL carriers. 

 

7.3.1 LTL combinatorial auctions (CA) 

There is a considerable amount of evidence in literature about the implementation of 

TL CA (De Vries, and Vohra, 2003, Elmaghraby, and Keskinocak, 2004, Ledyard et al. 
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2002, Moore et al. 1991, Sheffi, 2004). However, little is known about how these 

auctions are conducted in the LTL context. In practice, there are several websites 

conducting online freight auctions for both TL and LTL, e.g. Cargo Auctions (2011), and 

Freight Brokers USA (2014). They offer the possibility for shippers to post lanes that 

require TL or LTL transportation and specifying pickup/delivery locations, weight, and 

other requirements, e.g., special equipment. However these places do not give the 

possibility for carriers to bundle demand. Although, carriers can bid for multiple lanes 

that would work economically when served together, the risk of losing a subsets of them 

exists and is potentially harmful for its operation. Following this idea, software 

development companies, e.g., SciQuest (2014) (which acquired CombineNet), SMC3 

(2006), and DeltaBid (2014), offer solutions to develop business-to-business (B2B) 

procurement applications, e.g., requests for proposals (RFP), request for quotes (RFQ), 

and request for information (RFI). Thus, LTL CA are offered as a type of RFQ. Although 

the service is openly publicized, specific information about the details of such 

implementations is not available. 

On the other hand, scant documentation about these auctions is available in literature. 

To the best of authors’ knowledge, only Achermann et al. (2011), and Dai et al. (2014) 

approach LTL CA as mechanisms to distribute lanes among cooperative LTL carriers. 

However, these academic exercises are theoretical and do depict the shipper/carrier 

interaction, i.e., only carrier/carrier interaction is considered. 

Although shippers conduct LTL CA in practice, this market interaction is not 

properly illustrated in literature. A formal definition of LTL CA is presented next. 
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Let a lane be the volume of shipments per unit of time between an origin-destination 

(OD) pair. Their small size and supply-chain context make them suitable to be 

transported by LTL carriers. A shipper requires transportation services for several lanes 

and conducts a LTL CA to collect quotes for combinations of them. There is a maximum 

price that the shipper is willing to pay for each lane, i.e., reservation price. This is a 

reverse auction where the auctioneer is a shipper that procures transportation services, 

and bidders are the carriers offering them. Auctioned items are freight lanes. Several LTL 

carriers are invited to the auction and the following information is communicated to them: 

lane origins, destinations, volumes (shipments per unit of time), and dimensions. The 

carriers analyze this information and construct a set of bundles. Each bundle includes a 

combination of shipments desired to be served. A unique price per unit of weight is 

charged to all lanes in the bundle. Dimensional weighting is used to account for critical 

dimensions of the shipments. Furthermore, the carriers specify the maximum volume 

willing to serve for each lane in the bundle. After collecting all bids, in a single-round 

LTL CA, the shipper solves the winning determination problem (WDP) to find the 

combination of bundles that covers all lanes and represents the lowest procurement cost. 

Then, the right to serve the lanes in the winning bids is assigned to the corresponding 

carriers. In a multiple-round LTL CA, information about the best prices on each lane is 

communicated back to the carriers and they prepare new bids. This loop repeats for 2 or 3 

iterations. Usually, there is a post-negotiation process where specific certain lanes are re-

negotiated in order to maintain behavioral preferences of the shipper and other business 

constraints. The following notation is used to formally represent sets and parameters in 

the LTL CA. 
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Sets and indexes: 

 set of lanes auctioned in the auction. 

 index related to an OD pair.  

 set of bids submitted to the auction. 

 index associated with each bid. . 

 set of lanes included in bid . . 

Parameters: 

 (weight/time) lane flow from origin  to destination , where . 

 ($/weight) unitary reservation price per weight for lane . 

 (weight/time) maximum amount of flow that the carrier is willing to serve for 

lane  as part of bid . 

 ($/weight) unitary price per weight charged to all lanes included in bid . 

Preparing bids for LTL CA is a challenging tasks faced by LTL carriers. These agents 

should properly integrate the information communicated in the LTL CA to their current 

operations in order to construct profitable and attractive bundles. So, understanding the 

operation of LTL carriers is critical to propose an assertive biding advisory model. 

7.3.2 Less-than-truckload (LTL) systems 

The introduction provided in Subsection 1.1.2 is complemented with the following 

definition of LTL systems. 

A LTL carrier operates over a well-defined network that is currently serving a 

number of clients. Load Plans are already defined so there is a pre-specified OD path 

between every pair of terminals in the network with acceptable levels of service, i.e., 
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acceptable delivery times. However, there are several links where trucks are not used to 

full capacity. Likewise, some terminals are underutilized. In an LTL CA, the carrier seeks 

to properly match such unused capacities with the lanes communicated by the shipper, 

and, therefore, maximizing profits by loading unutilized assets. The operational costs for 

LTL carrier are: transportation and terminal handling costs. Revenues come from prices 

charges to the shipments served. 

 

Figure 7.1 Formal representation of the LTL network. 

The notation below is used to formally represent sets and parameters describing the 

LTL network and its operation. Figure 7.1 illustrates some of these concepts. Without 

loss of generality, any terminal  is represented as an arc , where node  

(with accent mark pointing into the node index ) indicates shipments that enter the 

terminal, and node  (with accent pointing out of the node index) indicates shipments 

that depart from it. Furthermore, a movement between terminals  is executed 

between the corresponding nodes . Finally, shipments originated in a region 

served by an EOL enter the LTL network through the an entering node , and 

shipment delivered in such region exit the network from the corresponding departing 

node . 
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Sets: 

 LTL network composed by a set of terminals  and a set of arcs  

connecting them. 

 set of nodes representing terminals in the LTL network. . 

 set of nodes related to EOL terminals. 

 set of nodes related to BB terminals. 

 set of directed arcs representing connections between or within terminals, i.e., 

 and  respectively. 

Parameters: 

 ($/weight) unitary handling cost for terminal  represented by the terminal arc 

. 

 (weight/time) unused capacity in terminal arc . 

 ($/weight) unitary cost for movements between terminals in the transportation arc 

. 

 (weight/time) unused capacity in transportation arc . 

 ($/weight) unitary price per weight charged to shipments originated in the region 

served by EOL  and delivered in the region served by EOL , i.e., price for a movement 

from  to . Notice that the carrier can only bid for lanes  

such that  and  are associated to EOLs in its network, e.g.,  and  respectively. 

Therefore, and without loss of generality, let  and  for 

every lane where this constraint applies. 
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The carrier is currently serving a number of customers which determines its available 

capacity for new shipments. However, freight demand fluctuates significantly. The 

question is, how can the carrier properly account for such demand uncertainty? 

7.3.3 Freight stochastic demand 

The preliminary insights provided in Subsection 1.1.3 are complemented with the 

following definitions for freight stochastic demand. The following notation is used to 

formally represent sets and parameters associated with freight stochastic demand. 

Sets and indexes: 

 set of scenario realizations. 

 index related to a scenario realization. . 

Parameters: 

 (weight/time) unused capacity in terminal arc  for realization . 

 ($/weight) unitary handling cost for shipments directed to terminal , represented 

by arc , when the owned facility  operates at full capacity. 

 probability of having unused capacity  available in terminal arc 

 for realization . 

 (weight/time) unused capacity in transportation arc  for realization 

. 

 ($/weight) unitary transportation cost for arc  when owned trucks operate 

at full capacity. 

 probability of having unused capacity  available in transportation arc 

 for realization . 
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 (weight/time) lane flow from origin  to destination  for realization , 

where  such that  and . 

 probability of having the amount of demand  in lane  for 

realization . 

Stochastic unused capacity and stochastic auctioned demand are the two main 

elements that introduce uncertainty to the bidding problem. These concepts are described 

below. 

· Stochastic unused capacity. The LTL carrier currently serves lanes for multiple 

clients (shippers). Thus, many arcs in its network are operated below capacity at 

different levels. However, unused capacity does not remain constant over time. 

Instead, it fluctuates and its realization is associated to an observed probability. 

Thus, the carriers can determine a set of realization scenarios  based on its 

experience and observation of unused capacity (a function of demand 

fluctuations). For each scenario  and each terminal\transportation arc in its 

network, , the carrier estimates that with a probability  the 

unused capacity is . A cautions conservative carrier would bid only for 

lanes that can always be fitted within the unused capacity. However, smart carrier 

account for such uncertainty and bid for lanes that can potentially violate capacity 

but represent maximized expected profits. When demand is violated, the carrier 

can always sub-hire another carrier or facility that will charge a unit price  per 

weight handled/transported. This is not rare in the highly competitive trucking 

industry characterized by excess supply (surplus). 
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· Stochastic auctioned demand. The carrier also expects demand in auctioned lanes 

to fluctuate as it happens to current demand. Similar to current operations, the 

carrier can estimate demand realization probabilities  for the amount of 

flow  in the lane  and scenario realization . 

At this point, all required information is available to properly define and formulate 

the LTL bidding problem in the next section. 

7.4 LTL bidding problem definition and formulation 

The LTL Bidding Problem is defined as follows. Given a LTL CA (Subsection 7.3.1) 

this research approaches the perspective of a specific LTL carrier (Subsection 7.3.2), 

which is asked to construct a set of bids  that represents the maximum expected profits 

where bids are optimized to account for freight demand uncertainty (Subsection 7.3.3). 

The Stochastic mixed integer quadratic program (SMIQP) (7.1)-(7.16) presents the 

mathematical formulation of this problem. Without loss of generality, arcs in the 

formulation below are represented as  to account for terminal arcs , 

transportation arcs , and OD pairs . However, they maintain the 

definitions introduced in Section 7.3. The notation for sets, variables, and parameters not 

introduced before is stated below. 

Variables: 

 (weight/time) maximum amount of flow the carrier is willing to serve in 

lane  included in bid  associated with auctioned demand scenario . 

 (weight/time) amount of flow traversing arc  in the LTL network 

related to bid  for the included lane  in the unused-capacity scenario . 
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 (weight/time) amount of flow traversing arc  outsourced to 

carriers/terminals offering their services over arc  related to the realization 

. 

 ($/weight) unitary price per weight charged to all lanes included in bid . 

 binary routing variable.  if arc  is used to serve the lanes  

 included in bid  as specified in the Load Plan described by ;  

otherwise. 

Parameters: 

 binary parameter that describes the load plan for each .  if 

arc  is used in the path to deliver lane ,  otherwise. 

 ($) minimum expected profit accepted for any bid submitted to the auction. 

The Objective Function (7.1), subsect to the Random Constraints (7.2)-(7.16), 

maximizes the total expected profit  of bids associated to the expected profits  

(defined in Constraint (7.2)) for realization . 

 (7.1) 

Constraint (7.2) computes the total expected profit for all bids  as the sum of 

revenues perceived by pricing the flow  for lane  at an unitary price  

for the auctioned demand realization , minus the analogous sum of costs associated 

to the flow served by the LTL network itself  and outsourced to other carriers 

when there is no sufficient capacity  in each arc . 
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(7.2) 

Constraint (7.3) specifies that the expected profit for each individual bid should be 

above a profit threshold . 

 

 

(7.3) 

Constraint (7.4) sets bid price  to the lowest reservation price for lanes considered 

in. This makes each bid price (i) consistent with the concept of pricing for LTL CAs, (ii) 

equivalent to the lowest reservation price, which make cheaper for the shipper lanes with 

higher , and (iii) improves over cost-based pricing which can be lower but does not 

consider shipper valuation. 

 

 
(7.4) 

Constraint (7.5) states that the OD flow  considered in each bid  cannot 

exceed the flow  realization for each lane posted in the auction. 

 

 
(7.5) 

Constraints (7.6)-(7.8) are flow conservation constraints affecting each bid  and 

scenario realization . Constraint (7.6) indicates that flow handled in a terminal 

 and outsourced when there is no sufficient capacity , where 

 as in Subsection 7.3.2, is equivalent to the sum of flow originated at the region 

served by the corresponding EOL, , plus the sum of flow sent from other 
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terminals to transit in this one using carrier’s unused capacity  and outsourced 

. 

 

 
(7.6) 

Constraint (7.7) specifies that for each node  that is neither an origin  nor a 

destination  for a lane  considered in bid , inbound and outbound flows are 

equivalent 

 

 
(7.7) 

Constraint (7.8) designates that flow handled  and outsourced  in a 

terminal, where  as in Subsection 7.3.2, is equal to the sum of flow to be delivered 

in the region served by the corresponding EOL, , plus the sum of flow that 

transited such terminal but was not delivered  and . 

 

 
(7.8) 

Constraints (7.9)-(7.10) properly handle the state of variable  such that it is 

activated or deactivate as required, i.e.,  or  respectively. If bid  

includes lane , then , Constraint (7.10) forces  for the 

corresponding arcs in the load plan, i.e., , and Constraint (7.9) forces  for 

arcs not included in such load plan, i.e., . On the other hand, if lane  is 

not included in bid , then , Constraint (7.9) forces  for all arcs 
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in load plans related to this lane. These constraint are affected by the realization of 

scenario . 

 

 (7.9) 

 

 (7.10) 

Constraint (7.11) forces the sum of fractions of multi-commodity flows  

related to bundle  traversing each arc in the LTL network to be less than or equal to 

the available unused capacity  for the realization  so that load plans are 

properly covered ( ). 

 

 
(7.11) 

Finally Constraints (7.12)-(7.15) declare variables , , ,  

to be non-negative, and Constraint (7.16) declares variable  as binary. 

 

 (7.12) 

 

 (7.13) 

 

 (7.14) 

 

 (7.15) 

  

 (7.16) 
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Finding an optimal solution for the SMIQP (7.1)-(7.16) is computationally expensive 

for several reasons. The solution of its deterministic version is computationally expensive 

due to the multi-commodity nature of the problem, the quadratic form of the Objective 

Function (7.1), the necessity to enumerate all possible bids that grows exponentially with 

respect to the lanes considered, and to the inherited complexity of integer programs. 

However, the most critical problem to find an optimal solution is related to the violations 

of different realizations of demand and unused capacity. Therefore, a solution procedure 

that accounts for these limitations and provides good quality bundles is required. BM LS 

is a suite of algorithms proposed to account for these challenges that provides an 

appropriate balance between good quality bids and a computationally tractable approach. 

The method is presented in the following section. 

7.5 BM LS methodology 

This section presents BM LS (Bidding Model for LTL CA with Stochastic demand), 

which is an algorithmic framework developed to solve the problem formulated in Section 

7.4. Figure 7.2 illustrates its implementation. The section is organized as follows: first the 

inputs, main algorithm, and outputs are described. Then additional subsections expand 

details for specific modules.  

The inputs required to run BM LS are summarized below according to the subsection 

where they were introduced and defined. 

Inputs 

Subsection 7.3.1 

 set of auctioned lanes 
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 ($/weight) unitary reservation price per weight for lane  

Subsection 7.3.2 

 carrier network 

 ($/weight) unitary costs associated with each terminal/transportation arc . 

 

Figure 7.2 BM LS: Main algorithm 

Subsection 7.3.3 
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 set of scenario realizations. Indexed by  

 (weight/time) unused capacity in the terminal/transportation arc  of 

the LTL network for realization . 

 ($/weight) unitary cost for shipments outsourced to third-parties when 

terminal/transportation arc  is operated at full capacity in the LTL network. 

 probability of having unused capacity  available in the 

terminal/transportation arc  for realization . 

 (weight/time) flow on lane  for realization . 

 probability of having an amount of flow  on lane  for 

realization . 

In general, BM LS designed based on two constituent loops, i.e., the outer loop and 

the inner loop. Before running such loops, the main algorithm is initialized in Step 0 

setting the counter to zero  and identifying the highest reservation price for the first 

iteration, i.e., . 

The outer loop (Steps 1-7) analyzes lanes sequentially in a descending order with 

respect to their reservation prices. Each iteration is related to a price which is used to 

construct bids. This price decreases sequentially as iterations proceed and is the 

maximum price the shipper would pay for lanes in bids constructed in the current 

iteration. Thus, only lanes with reservation prices greater than or equal to the current one 

can be considered. If a lane with lower reservation price is included, then the shipper 

would immediately reject all lanes in the bid because it is not willing to pay such price 

for that lane. Step 2 uses the current price  to construct an initial set of potential 
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lanes  useful for bundle generation .The inner loop (Steps 3-6) iteratively explores 

these lanes and constructs bundles. When it stops, Step 7 seeks for the next lower price 

 and a new iteration begins in Step 1 if such price exits. On the other hand, if it 

is not possible to select a new price -because all of them have been explored- BM LS 

stops. 

But, how are bundles constructed in the inner loop (Steps 3-4)? This loop considers 

the set of potential lanes in  to construct bids with the same price  (Step 4). The 

iterative process first assigns demand to the carrier network using a loading procedure 

that maximizes the expected profits of lanes served conjointly and optimized for 

stochastic demand and capacity (Step 4). More details about this module are provided in 

Subsection 7.5.1. Lanes sharing assets in the LTL network are bundled and considered as 

potential bids. If the expected profit for a potential bid is greater than or equal to the 

acceptable profit , then it is stored as a definite bid. Otherwise, it is discarded 

(Subsection 7.5.5). In order to explore different combinations of lanes, the lane with 

lowest marginal profit  is removed from the potential lanes  in Step 6, and a new 

iteration of the inner loop starts from Step 3. This process is described in Subsection 7.5.7 

When it is achieved a stage where finding a lane to remove is not possible, the inner loop 

stops and the outer loop continues. 

The following outputs are returned when BM LS stops. 

Outputs (defined in Subsection 7.3.1) 

 set of bids submitted by the LTL carrier to the LTL CA. 

 information associated to each bid . 
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The following Subsections provide further details about the modules to Assign 

Demand (Step 4 - Subsection 7.5.1), Build bundles (Step 5 - Subsection 7.5.5), and Select 

Lane to Remove (Step 6 - Subsection 7.5.7). 

7.5.1 Assign Demand 

This subsection describes the framework followed to assign demand in BM LS such 

that the expected profits of the bundles are maximized and flows are optimized to account 

for demand and capacity uncertainty. The cornerstone of this module is the Minimum 

Cost Flow problem with Stochastic Capacities and Demand realizations (MCFSCD) 

(Subsection 7.5.2), which is solved efficiently applying a series of network 

transformations (Subsection 7.5.3) used to construct its deterministic equivalent (DE) 

problem and solving it as a regular Minimum Cost Flow (MCF) problem (Subsection 

7.5.4). 

Figure 7.3 illustrates the execution of this module. The MCFSCD takes as input a 

lane  and the current price . Then, it outputs the profit  associated to 

the desirable lane flow  and corresponding arc flows , where  is used 

to denote an arc from the a set of modified arcs introduced in Subsection 7.5.3. Although 

the bidding problem is a multi-commodity type of problem, a greedy algorithm is 

proposed to relax this limitation and take full computational advantage of the MCFSCD. 

The idea is based on the continuous knapsack problem where items are sorted with 

respect to their unitary profit and then allocated into the knapsack decreasingly up to 

filling it in. Thus, this module computes the unitary profits for each arc  (Step 4.1) 

based on initial MCFSCD results (Step 4.0) obtained by assigning each lane into the 
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network without interacting with others. Then, the lanes with higher unitary profits are 

selected iteratively. Each time a lane is selected (Step 4.2) it is assigned to the network 

(Step 4.3) and the resulting flows are used to reduce capacity  for subsequent lanes 

(Step 4.4) in the modified network introduced in Subsection 7.5.3. This process continues 

up to analyzing all lanes with positive . Then, it returns the corresponding profits  

and desired flows  for the explored lanes . The following subsections 

provide details for the computation of these values using the MCFSCD. 

 

Figure 7.3 BM LS: assign demand algorithm (Step 4). 



204 
 

 

7.5.2 Minimum Cost Flow problem with Stochastic Capacities and Demand realizations 

(MCFSCD) 

This subsection proposes a special formulation of the Minimum-Cost Flow (MCF) 

problem that can be used to add lanes into bundles in the LTL network while accounting 

for auctioned demand and capacity uncertainty. 

Several works have studied stochastic MCF problems (e.g., Boyles and Waller, 2010, 

Ding, 2013, Ghatee and Mashemi, 2008, 2009a,2009b, Liu and Kao, 2004) applying 

methods that include convex network optimization, chance constraints, fuzzy numbers, 

among others. Although these are very relevant works, they are not able to optimize 

under uncertainty related to demand and capacities. Interestingly, many of them 

transform the computationally complex stochastic program into a MCF type of 

formulation that can be solved efficiently. Optimization under uncertain demand has been 

proposed to solve stochastic vehicle routing and fleet management problems (Sarimveis 

et al. 2008, Shi et al. 2014, Simão et al. 2009 Topaloglu and Powell, 2006). 

Following ideas in these works, this research formulates and proposes a solution 

approach for the MCFSCD that is able to optimize flows under uncertainty. The required 

notation is introduced below. The MCFSCD problem is solved for a specific lane 

. So, this index is removed from the corresponding variables/parameters to 

simplify notation. 

Sets 

 set of arcs included in the load plan between the origin and destination of 

lane . 

Variables 
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 (weight/time) first stage variable that determines the desirable amount of 

flow in arc  related to the flow in lane  for the scenario . 

 (weight/time) second stage variable that determines the unknown 

amount of flow for pricing in lane  for the scenario . 

 (weight/time) second stage variable that determines the outsourced 

flow (additional to the unknown available capacity) in arc  related to the flow in 

lane  for the scenario . 

 ($) maximum profit expected by selecting the desirable amount of 

flow  from the flow in lane  for the scenario . 

Parameters 

 ($/weigh) fixed unitary price per weight charged to the flow in lane 

. 

 (weight/time) lane  flow for realization  

(Subsection 7.3.3). 

 realization probability for lane flow  in scenario . 

(Subsection 7.3.3). 

 probability of having unused capacity  available in arc  for 

realization . (Subsection 7.3.3). 

The problem is defined as follow: For a given lane  related to a postulated 

price , the problem is determining the desirable amount of flow  that maximizes the 

corresponding expected profits. The first-stage variable  has to be selected before the 
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realization of unknown second-stage variables , and , which are subject to 

constraints determined by scenario . Thus,  

The MCFSCD is formulated by the stochastic program (7.17)-(7.25). The carrier can 

only price the demand that realizes , however it has to consider a desired flow  in 

advance associated to costs in its network and outsourcing costs when capacity is not 

sufficient. The Objective Function (7.17) captures this by computing the maximum profit 

 as the revenues obtained charging the price  to the pricing lane flow  in 

scenario  minus the corresponding total operational cost. Two terms comprise this 

cost (bigger parenthesis): (i) the total cost of serving the desired flow , and (ii) the cost 

of considering flow higher than arc capacities. Notice that (ii) corrects cost estimation 

when  is higher than capacity. The Objective Function (7.17) is subject to the set of 

Random Constraints (7.18)-(7.25). 

 (7.17) 

  
 (7.18) 

  

 
(7.19) 

  

 
(7.20) 

  

 
(7.21) 
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 (7.22) 

  
 (7.23) 

  

 (7.24) 

  

 (7.25) 

First, the unknown pricing flow  has to be at most equivalent to the lane demand 

 in scenario  (Constraint (7.18)). Constraints (7.19)-(7.21) indicate flow 

conservation that follows the load plan as defined by , i.e. the pricing flow enters the 

network at the origin node for the considered lane  (Constraint (7.19)), exits it from 

the destination node  (Constraint (7.20)), and there is equivalency between inbound 

and outbound flows at intermediate nodes (Constraint (7.21)). Furthermore, Constraint 

(7.22) establishes that the flow carried within the carrier’s network  (not 

outsourced) has to be at most equivalent to the capacity  in scenario . Recall 

that arcs in this problem are only those in the corresponding load plan. Finally, 

Constraints (7.23)-(7.25) are non-negativity constraints. 

Again, the solution space for the stochastic program (7.17)-(7.25) is infeasible for 

scenarios different than the actual realizations of demand. Hence, a deterministic 

equivalent (DE) problem is proposed to solve it. This is achieved using a series of 

network transformations, a concept commonly used to solve stochastic routing problems, 

e.g., Topaloglu and Powell (2006). The DE uses soft constraints and appropriate penalties 

in the objective function to handle violations and compute the desired flow  that 
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account for stochastic demand. The following sections describe the transformations 

require to construct the DE. 

7.5.3 Network transformations 

This subsection describes a series of network modifications proposed to derive an 

efficient DE problem for the MCFSCD. Concepts related to demand realization 

probabilities are introduced first. Without loss of generality assume that the set 

 is sorted such that , which implies 

that . Let , and 

 be the differential of realized demand  and . Likewise, assume 

that  is split in intervals  such that Constraint (7.26) holds. Thus, any 

realization of flow for pricing can be represented as a function of its previous realizations 

(Equation (7.27)). Following this idea, Equation (7.28) describes the probability  

for the realization of . Notice that probabilities decrease as scenarios increase, i.e., 

. Finally, the expected total income 

(first term in Objective Function (7.17)) can be computed using its DE as shown in 

Equation (7.29). 

 
 (7.26) 

 

 
(7.27) 

 
(7.28) 
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(7.29) 

Similarly, assume  is such that 

. Let , and  be the 

differential of available capacity between  and . The desired flow  

can be is split in intervals  where Constraints (7.30)-(7.31) hold. Following this 

idea, Equation (7.32) indicates the probability  of serving the segment of desired 

demand  by capacity available in the LTL network. Again, notice that 

probabilities decrease as scenarios increase, i.e., 

. Finally, the expected total cost (second term in Objective 

Function (7.17)) can be computed using its DE as shown in Equation (7.33). 

 

 
(7.30) 

 

 
(7.31) 

 
(7.32) 

 (7.33) 

A series of network transformations are required to convert The MCFSCD (7.17)-

(7.25) into its DE. These transformations are illustrated in Figure 7.4, where each arc in 

the load plan for lane  (Figure 7.4(a)) is transformed (Figure 7.4(b)) to 

generate its new representation using the new sets of nodes and arcs:  and  

respectively (Figure 7.4(c)). 



210 
 

 

 

Figure 7.4 Network transformations: (a) load plan, (b) arc transformation, and (c) 
transformed load plan. 
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Formally, each node  is replaced by a set of  nodes representing each 

differential , i.e., . Additionally, each arc 

 is replaced by a group of arcs . The arc  is an artificial arc whose 

tail and head are the  lane destination  and origin  respectively. Let 

 be the subset of modified arcs associated to this artificial arc. This is 

requires to find the right balance between supply and demand in the problem. Likewise, 

, where the first subset 

 accounts for arcs 

between subsequent differential realizations  and , and the second subset 

 connects each differential 

realization  to the first realization of the next node . 

Now, the DE of the MCFSCD can be formally defined. 

7.5.4 Deterministic equivalent (DE) problem 

The DE is formulated as the MCF problem (7.37)-(7.40). The corresponding variables 

and sets are summarized below. Other parameters were previously defined. 

Sets and indexes 

 set of transformed nodes required to derive the DE of the MCFSD. 

 set of transformed arcs required to derive the DE of the MCFSD. 

 set of arcs used for flow conservation in the transformed network 

 set of arcs used pricing/costing in the transformed network 

 subset of arcs associated to the artificial arc  

 index used to identify the node in  associated to the origin of lane  
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 index used to identify the node in  associated to the destination of lane  

Variables 

 (weight/time) recourse actions related to the pricing flow traversing arc 

. 

 (weight/time) recourse actions related to the costing flow traversing arc 

. 

 ($) maximum expected profit 

Parameters 

 ($/weight) expected marginal income for a unit of flow priced in arc 

. Equation (7.34) sets this expected value combining the right arcs in the 

transformed network with the derivation obtained from Equation (7.29). Thus, only the 

flow traversing modified arcs associated to the artificial arc  contributes to the 

expected income. 

  (7.34) 

 ($/weight) expected marginal cost for a unit of flow traversing arc 

. Equation (7.35) sets this expected value combining the 

corresponding arcs in the transformed network with the derivation obtained from 

Equation (7.33). Thus, only the flow traversing modified arcs associated to those in the 

LTL network contribute to the expected cost. 

  (7.35) 
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 (weight/time) capacity for arc  in the modified network. Equation 

(7.36) sets arc capacity according to the derivations in Constraints (7.26) and (7.30) for 

pricing and costing arcs in subset , and allowing a logical flow propagation for the 

related flow-conservation arcs in subset . 

 (7.36) 

 

The Objective Function (7.37) maximizes the total expected profit  for the desired 

assignment of flow in lane  into the LTL network, where the first term computes 

the total expected income (using the artificial arc  to represent and price the 

corresponding desired flow), and the second term computes the total expected cost.  

 

 
(7.37) 

 

 
(7.38) 

 

 (7.39) 

 

 (7.40) 

Constraint (7.38) appropriately combines sets and variables previously defined to 

guarantee flow conservation throughout the modified network. Constraints (7.39) and 

(7.40) are non-negativity constraints. The directed loop enforced by this network 
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modification implies that the minimum expected total profit is  occurring either 

when no-flow is assigned to the network, or when the best flow corresponds to the break-

even point for this price and operational configuration. 

As usual in stochastic programming, the DE of the MCFSCD suffers from the curse 

of dimensionality. However, the specific structure of the DE (7.37)-(7.40) makes possible 

to frame it as a deterministic MCF problem (Ahuja et al. 1995). Interestingly, there are 

several algorithms that solve the MCF problem in polynomial time. Király and Kovács 

(2012) summarize many of them (Table 4.3 in Chapter 4), which is beneficial for its 

solution. 

After solving the DE of the MCFSCD using one of these algorithms, the 

corresponding outputs are: 

Outputs 

 ($) maximum expected profit for the analyzed lane, which will be used to 

compute unitary profit (Step 4.1) added to the profit from other lanes to build bids. 

 (weight/time) costing flow in the modified network, which will be used to 

reduce capacities before assigning other lanes 

 (weight/time) amount of flow desirable from the lane 

, which is information required to if the lane used to construct a bid. 

7.5.5 Build bundles 

This section describes a procedure to build bundles by combining lanes with positive 

desired flow whose load plans overlap in the LTL network (Figure 7.5). Specific notation 

is described below. 
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Figure 7.5 BM LS: build bundles algorithm (Step 5). 

Variables 

 binary variable that indicate whether lane  has been explored in the 

recursive search ( ) or not ( ). 

Parameters 

 binary parameter that indicate whether lanes  share one or more 

arcs in their corresponding load plans  or not . 
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 ($) minimum expected profit accepted for any bid submitted to the auction (Section 

7.4). 

A bundle  is constructed by bundling all lanes  with positive and 

overlapping flows in the LTL network. Overlaps are determined by the arcs shared in the 

corresponding load plans. Thus, the expected profit  for a potential bid  is computed 

as the sum of expected profits  for each of these lanes. Only bundles with acceptable 

expected profits are stored as definite bids, i.e., . 

The bundling process, that recursively searches for lanes with overlapping paths and 

positive flows, is illustrated in Figure 7.5, where a. Step 5.0 initializes the process 

indicating that no lane has been explored yet, i.e., . The recursive 

search starts from any lane  that has not been explored, i.e.,  (Step 

5.1). Then, a potential bundle  is initialized (Step 5.2) and a recursive search is 

conducted from  searching other overlapping nodes and updating the specific features 

of  when required (Step 5.3). Specific details about this search are provided in 

Subsection 7.5.6. When the search stops, the updated bundle profit  is compared with 

respect to the acceptable one . If the former is greater than or equal to the latter, a bid 

related to this bundle  is added to the set of bids  (Step 5.5). If there are unexplored 

lanes after the search conducted for the latest bundle (Step 5.6), the process returns to 

Step 5.1. Otherwise, the process ends and the current updated set of bids  is returned. 

The following subsection provides additional details for the recursive search 

conducted in Step 5.3. 
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7.5.6 Recursive search 

The recursive search conducted in Step 5.3 starts from a specific lane  and 

continues to all other overlapping lanes . When a specific overlapping lane is 

selected the process repeats assuming it as the current one. This is a depth first search 

conducted over a network where a connection exists whenever two lanes overlap. 

 

Figure 7.6 BM LS: recursive search algorithm (Step 5.3). 

Figure 7.6 illustrates this search. As observed in Section 7.5.5, the inputs for this 

process are an potential bundle  and a lane . Step 5.3.0 checks whether  has been 

explored in the search, i.e., . If this is the case, Step 5.3.1 labels the lane as 

explored, i.e., , and checks whether this lane is related to a positive desired flow 
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, which was obtained from the “assign demand” Step 4 (Subsection 7.5.5). If this 

is the case, Step 5.3.3 updates the information for the current bundle, i.e., . 

Then, for all lanes  that overlap with , i.e.,  (Step 5.3.4), the 

recursive search is conducted (Step 5.3.5). Notice that when one of the conditions in 

Steps 5.3.0 or 5.3.2 does not hold, the recursive search returns to the Step 5.3.5 associated 

to the previous lane and a new overlapping lane is fathomed. 

7.5.7 Select lane to remove 

Lanes related to low unitary profits are removed to allow other lanes to be included in 

a new bid. This process is guided by the “select lane to remove” algorithm (Figure 7.7). 

The algorithm starts assuming that there are no lanes to remove (Step 6.0). Then, the 

unitary profit  is computed for each lane (Step 6.1). First, lanes  not related to the 

current price  are analyzed and the one with lowest  is selected. If 

there are no lanes with this characteristic, either because they were already removed or 

they are not considered in the desired flows, lanes related to the current price  

are analyzed and the one with lowest  is selected. If a new lane  to remove is 

found, then it is returned, i.e., . Otherwise, an empty index is returned, i.e., 

, which stops the iterations of the inner loop. 
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Figure 7.7 BM LS: Select lane to remove algorithm (Step 6). 

The application of BM LS is illustrated with a numerical example in the next section. 

7.6 Numerical results 

This section presents a numerical example illustrating the use of BM LS, which is 

coded in C++. Király and Kovács (2012) test the computational efficiency of different 

MCF software packages and algorithms. They find the C++ Library for Efficient 

Modeling and Optimization in Networks (LEMON) (Dezső et al. 2011) and its Network 

Simplex to be one of the most competent algorithms to solve the MCF problem in large 

scale networks. Therefore, these modules are integrated to solve the DE MCF associated 

to the MCFSCD solved by BM LS. LEMON is developed by the Computational 
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Infrastructure for Operations Research (COIN-OR) and also used for network 

manipulation. Other modules are developed by the authors. Experiments are run in a 

desktop with the following characteristics: Processor Intel® Core™2 Duo CPU E8400 @ 

3.00GHz, Installed memory (RAM) 4.00GB. 

The numerical experiment is defined as follows. Consider an LTL carrier with a 

network composed by two EOLs (EOL1 and EOL2) and two BBs (BB1 and BB2). The 

carrier sends a straight truck daily in both directions between each EOL-BB pair. The 

capacity of each truck is  equivalent to . Likewise, it sends a 

tandem of 2 pup trailers every three days in both directions between BBs. The capacity is 

 lb (  for each pup) equivalent to . Between each pair 

of terminals (first two columns), Table 7.1 summarizes the operational characteristics 

related to service time interval, cost in the LTL network, and outsourcing cost (columns 3 

to 5). Likewise, the carrier has estimated a set  with three scenarios of capacity 

realizations: low , medium, , and high . The corresponding realization 

probabilities and realization values are presented in columns 6 to 11. 

Table 7.1 Operational characteristics for movements between terminals 

    
Interval 
(days) 

  

($/k lb) 

  

($/k lb) 

  

(k lb/week) 

 

(%) 

  

(k lb/week) 

 

(%) 

  

(k lb/week) 

 

(%) 

EOL1 BB1 1 10 20 17 10 41 60 66 30 
BB1 EOL1 1 10 20 32 70 40 25 45 5 
BB1 BB2 3 40 70 22 10 46 60 71 30 
BB2 BB1 3 40 70 37 70 45 25 50 5 
BB2 EOL2 1 10 20 17 10 41 60 66 30 
EOL2 BB2 1 10 20 32 70 40 25 45 5 

 

Similarly, for each terminal (column 1), Table 7.2 summarizes the operational 

characteristics related to service cost in the LTL network (column 2), and outsourcing 
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cost (columns 3), and corresponding realization probabilities and realization values for 

capacities in each scenario (columns 4 to 9). 

Table 7.2 Operational characteristics for movements within terminals 

  
  

($/k lb) 
  

($/k lb) 
  

(k lb/week) 
 

(%) 
  

(k lb/week) 
 

(%) 
  

(k lb/week) 
 

(%) 

EOL1 8 16 50 10 74 60 99 30 
EOL2 8 16 60 10 84 60 109 30 
BB1 2 10 190 10 214 60 239 30 
BB2 2 10 170 10 194 60 219 30 

 

This carrier is participating of an LTL CA. After a preliminary analysis of the lanes 

communicated by the shipper, it decides to prepare bids for the lanes summarized in 

Table 7.3, where column 1 indicates the EOL related to the lane origin, column 2 the 

EOL related to the destination, column 3 the reservation price, and columns 4-9 the 

corresponding realization probabilities and values for demand in each lane. 

Table 7.3 Lanes in the LTL CA considered for bid preparation 

    Load Plan 

  
($/ k lb) 

  
(k lb/week) 

 
(%) 

  
(k lb/week) 

 
(%) 

  
(k lb/week) 

 
(%) 

EOL1 EOL2 EOL1-BB1-BB2-EOL2 110 25 70 50 20 100 10 
EOL2 EOL1 EOL2- BB2-BB1-EOL1 90 10 20 13 40 18 40 

 

The combination of these 4 terminals and 2 lanes results in a modified network with 

32 nodes and 60 arcs, which reflects the acknowledged curse of dimensionality. However, 

it takes less than 1 second to return the set of bids, which is summarized in Table 7.4. 

Table 7.4 Set of bids 

          

0 (EOL1,EOL2) 25 110 725 
1 (EOL1,EOL2) 25 90 325 
 (EOL2,EOL1) 10 90  
2 (EOL2,EOL1) 10 90 100 
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This example demonstrates the influence that stochastic realizations of demand and 

capacity have over the bid construction problem. In this case, BM LS selects the 

realizations of demand for the low scenario  in each lane. This gives the highest 

expected marginal income for a unit of priced flow. Since terminals have sufficient 

capacity, the desired demand can be handled for the scenario with lowest capacity. More 

interestingly, BM LS assigns more load (25 k lb/week) to the transportation arc EOL1-

BB1 than the one that is certain for this arc, i.e., 17 k lb/week with 100% realization 

probability. So, it says that it is worth to assign such higher load because the next 

differential of capacity has a large realization probability, i.e., 41 k lb/week = [17 (with 

100%) + 24 (with 90%)] k lb/week. Similar results occur with the segments BB1-BB2 

and BB2-EOL2. However, this is not the case for operations in the other direction, where 

assuming a realization of capacity for the medium differential of demand is highly risky, 

e.g., between EOL2 and BB2 in the low-capacity differential scenario there is a 100% 

probability of having 32 k lb/week available but in the medium capacity differential there 

is a lot of uncertainty for the availability of 40 k lb/week = [32 (with 100%) + 8 (with 

30%)]. 

This shows the importance of considering stochastic demand and capacity when 

planning LTL operations like those required for bidding in LTL CA. 

The next subsection summarizes this work and provides future research directions. 

7.7 Conclusions 

In the context of LTL CA, this research studies the bidding problem faced by LTL 

carriers. BM LS, an efficient algorithmic framework to construct bundles that account 

for demand and capacity uncertainty, is proposed for this purpose. 
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The main contributions of this work are: (1) formulating the context of LTL CA, and 

(2) proposing the first LTL bidding model in literature. Additionally, this model 

addresses the following limitations of incumbent TL bidding advisory models: (i) using a 

value-based pricing approach to build bundles that maximize the expected profits of the 

bids and properly handle prices following the rules of CAs, (ii) using demand 

segmentation to determine the maximum LTL flow that the carrier is willing to serve 

within each bundle, and (iii) incorporating demand and capacity uncertainty in the 

construction of bundles. 

BM LS finds bundles at a tractable computational time, which is important and 

meaningful for trucking analysts that require evaluating networks with hundreds of lanes 

in a LTL CA. Computational burden is reduced by a novel DE formulation of the 

MCFPSCD requires to be solved several times in the framework. This is possible through 

network transformations that convert the two-stage stochastic problem into its 

deterministic equivalent and find aggregated flows optimized for uncertainty. 

A numerical example illustrates the application of BM LS and shows its ability to 

account for stochastic demand and capacity under different realization scenarios. 
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CHAPTER 8. CONCLUSION 

8.1 Summary, findings, and contributions 

This dissertation studies the problem faced by carriers that require to bundle and price 

trucking services as part of the negotiation process with shippers. This is a challenging 

task driven by three distinctive elements: (i) shipper preferences, (ii) carrier operation, i.e., 

truckload (TL) and less-than-truckload (LTL), and (iii) lane flow uncertainty. The main 

motivations of this dissertation are presented below. 

This study is motivated by the real world implementation of combinatorial auctions 

(CA) in trucking markets, which have provided significant savings for both shippers and 

carriers. Likewise, bundling improves inefficiencies in asset utilization, e.g., reduced 

empty trips and unused capacity, which in turn contributes to reduce freight-related 

externalities, e.g., emissions, congestion, safety, infrastructure deterioration, etc. 

Furthermore, new paradigms are proposed to improve modeling gaps found in previous 

literature. The important findings obtained from this research are presented next. 

8.2 Findings 

Bundling and pricing trucking services is a very interesting problem that deserves 

more attention from the research community. Improvements in this direction can 

significantly benefit shippers, carriers, and society. However, this is not an easy task 

because the pricing/bundling problem involves addressing hard transportation and 
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combinatorial problems. Therefore, creative approaches with the right balance between 

accuracy and efficiency are required. 

Additionally, modeling this complex interaction requires a good detailed 

understanding of the relationship between shippers and carriers, negotiation interfaces, 

behavior, and operation. Although it is easy to postulate a theoretical problem that is 

complex and interesting from the academic perspective, it does not mean that such 

problem is relevant in practice. This research narrows the gap between theory and 

practice by paying special attention to these details and developing tools that provide 

good quality solution given the demanding complexity of the problem. 

Although understanding behavior is crucial to study the interaction of agents in 

transportation systems, researchers tend to underestimate its importance. Thus, 

"economic rationality" is commonly assumed in models where agents always take the 

most economic decisions, e.g., the cheapest options. Although paradigms for passenger 

transportation have gradually relaxed this assumption, i.e., considering bounded 

rationality, it is erroneously believed that firms involved in freight interactions are 

exclusively driven by monetary incentives. This research finds that although prices/costs 

are very important to determinant the attractiveness and selection of trucking services, 

there are other behavioral attributes influencing this decision. This work presents a 

rigorous econometric exercise that supports this behavior, which was timidly reported in 

previous research but never corroborated statistically. 

Similarly, literature is plenty of models that assume complete and perfect information 

for operational decisions. However, transportation agents operate in an environment 

surrounded by uncertainty, which is commonly relaxed in transportation models. This 
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work recognizes the importance of stochastic effects for decision making and develops 

models that properly handle them. This is important to take decisions when information is 

ambiguous. 

In addition to these general findings, several specific research contributions result 

from this dissertation. 

8.3 Contributions 

This work expands and improves the current knowledge in transportation research 

with higher impact in the area of freight and logistics modeling. There are a number of 

contributions related to each objective met in the dissertation. 

Next objectives are recapped and related to the corresponding contributions obtained. 

· Objective 1. Understand shipper preferences toward truck-service selection using 

econometric analysis. 

This objective is met in Chapter 2. As contributions, this chapter provides a 

comprehensive understanding of shipper preferences, postulates a set of pragmatic 

attributes to explain truck-service selection, quantifies the shipper willingness to 

pay (WTP) for these attributes, and provides meaningful negotiation guidance for 

shippers and carriers based on behavioral inferences. 

· Objective 2. Develop a framework for demand clustering in TL networks based 

on historical data of lane flows and prices. 

This objective is met in Chapter 3, where a systematic framework for demand 

clustering in freight logistics networks is proposed and is a contribution to 

literature itself. This framework incorporates economic interdependencies among 

clustered lanes that reflects network effects, considers historical market prices in 
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the clustering process, integrates uncertainty associated to historical variations on 

lane prices and volume, and is computationally efficient. 

· Objective 3. Develop a model for demand bundling in TL networks that considers 

value-based pricing, and demand segmentation. 

Chapter 4 meets the objective and contributes to literature developing a bundling 

model for TL services that handles bundle generation, value-based pricing, and 

flow segmentation explicitly. 

· Objective 4. Develop a model for demand bundling in TL networks that considers 

value-based pricing, demand segmentation, and stochastic lane flows. 

The latter contributions are expanded in Chapter 5, where the objective is met 

incorporating lane uncertainty into the TL bundle construction process. 

· Objective 5. Demonstrate the economic benefits of routing strategies considering 

in-vehicle consolidation in the development of bundles for trucking service. 

This objective is met in Chapter 6, demonstrating these benefits as research 

contribution. 

· Objective 6. Develop a model for demand bundling in LTL networks that 

considers value-based pricing, demand segmentation, and stochastic lane flows. 

Chapter 7 meets this objective. It combines available information to derive the 

taxonomy of LTL CA and expands the contributions from previous chapters by 

addressing, for the first time, the bundling/pricing problem from an LTL 

perspective. This model is based on value-based pricing, it properly handles 

valuation rules, and segments lane to define the maximum flow that the carrier is 
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willing to serve in each bundle. Furthermore, it incorporates demand uncertainty 

in the construction of bundles. 

These contributions are elaborated on top of relevant and meaningful works 

developed by many researchers in the past. Likewise, there are several opportunities to 

expand and improve the work proposed in this dissertation. These extensions are 

summarized and presented next. 

8.4 Future research directions 

The following future research directions are identified and proposed as extensions 

and improvements of the current work. 

8.4.1 Shipper preferences 

The following research directions can be explored to improve the quality of the 

discrete choice experiment conducted in Chapter 2. 

· Although there is sufficient variability and a large number of observations for 

hypothetical carriers, future research can significantly benefit from a larger 

sample. This would allow the incorporation of additional variables that potentially 

explain the unobserved heterogeneity associated to random parameters, e.g., 

shipment type, commodity transporter, economic sector of the shipper, geography,  

· The amount of information delivered to the respondent might propitiate attribute-

processing-strategies (APS) (e.g., Puckett and Hensher, 2008). Future 

developments will test whether APS exist and approaches to mitigate it, e.g., 

improved survey design. 
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8.4.2 Demand clustering 

The following research directions can be explored to expand the scope of the work 

conducted in Chapter 3 and improve its performance. 

· Accounting for modes that not only benefit from economies of scope/frequency 

but also scale/density by developing appropriate methods to capture the bilateral 

utilities between lanes. 

· Exploring additional operational constraints not captured in the model 

(specifically in Module 2). Practically, any possibility can be explored and 

complexity will change as a function of the complexity of the implemented 

approach. 

· Similarly, numerical results show that the linear program (LP) used in Module 2 

roughly contributes to 46% of computational time. So improvements can 

considerably increase the performance of the overall algorithm, e.g. framing it as 

a minimum-cost flow (MCF) problem and using a MCF algorithm. 

· Algorithmic efficiency can be improved by developing new efficient approaches 

in Module 3, which finds tours and updates interconnections. Currently, this 

module contributes to roughly 53% of overall computational time. The 

fundamental properties of efficient algorithms that explore cycles in networks can 

be approached with this purpose, e.g., the efficient Tarjan's algorithm (Tarjan, 

1972) 
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8.4.3 Pricing and bundling algorithms 

The following research directions can be explored to expand the scope of the 

algorithms proposed in Chapters 4 to 7. 

· Similarly to Song and Regan (2003 and 2005), limited availability of vehicles due 

to fleet size and depot location is not considered in Chapter 4 and Chapter 5. 

Further developments can deal with this assumption. Notice that this will involve 

a drastic reevaluation of using the minimum-cost flow (MCF) problem as 

backbone of the framework and potentially losing its computational efficiencies. 

· The algorithm proposed in Chapter 6 can be accelerated in future research. For 

example, exploring parallel computing (Bader et al. 2004; Melab et al. 2012), and 

complementing it with hybrid-metaheuristics, e.g., taboo search (Hung and Chen 

2011). 

· Similarly, the modular structure of the algorithms proposed in these chapters, give 

flexibility to improve efficiencies by implementing more advanced methods 

without compromising the overall assembly. 

8.4.4 Other 

Additional extensions are presented below. 

· The impact of favoring larger trucks for consolidation should be analyzed from a 

macroscopic perspective, which will determine the (positive/negative) 

externalities and network effects associated with this behavior. It is expected that 

consolidation would reduce the number of truck-miles and, hence, reduce 
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emissions, traffic congestion, accidents, and pavement deterioration. However, 

this has to be validated with appropriate performance measures, models and data. 

· The bundling/pricing strategy addressed in this research can be tested in a game 

theoretical framework to estimate its impact in the larger economy. An agent 

based simulation where several agents compete to serve one or many shippers is 

envisioned. 
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