294 research outputs found

    Cellular automata for dynamic S-boxes in cryptography.

    Get PDF
    In today\u27s world of private information and mass communication, there is an ever increasing need for new methods of maintaining and protecting privacy and integrity of information. This thesis attempts to combine the chaotic world of cellular automata and the paranoid world of cryptography to enhance the S-box of many Substitution Permutation Network (SPN) ciphers, specifically Rijndael/AES. The success of this enhancement is measured in terms of security and performance. The results show that it is possible to use Cellular Automata (CA) to enhance the security of an 8-bit S-box by further randomizing the structure. This secure use of CA to scramble the S-box, removes the 9-term algebraic expression [20] [21] that typical Galois generated S-boxes share. This cryptosystem securely uses a Margolis class, partitioned block, uniform gas, cellular automata to create unique S-boxes for each block of data to be processed. The system improves the base Rijndael algorithm in the following ways. First, it utilizes a new S-box for each block of data. This effectively limits the amount of data that can be gathered for statistical analysis to the blocksize being used. Secondly, the S-boxes are not stored in the compiled binary, which protects against an S-box Blanking [22] attack. Thirdly, the algebraic expression hidden within each galois generated S-box is destroyed after one CA generation, which also modifies key expansion results. Finally, the thesis succeeds in combining Cellular Automata and Cryptography securely, though it is not the most efficient solution to dynamic S-boxes

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    Aspects of Modeling and Verifying Secure Procedures

    Get PDF
    Security protocols are specifications for exchanging messages on a possibly insecure network. They aim at achieving some security goals (eg authenticating the parties involved in a communication, or preserving confidentiality of certain messages) preventing some malicious party to achieve advantages for its own. Goals of security protocols are generally achieved through the use of cryptography, the art of writing in secret characters, not comprehensible to anyone but the sender and the intended recipient. There is however a branch, in the computer science community, that, among its wide field of activities, aims at studying possible attacks on secure procedures without breaking cryptography, eg by manipulating some of the exchanged messages. This is the formal methods community, with an eye for security. This thesis mainly investigates the formal modeling and analysis of security protocols, both with finite and non finite behaviour, both within a process-algebraic and an automata framework. Real life protocols for signing and protecting digital contents and for giving assurance about authentic correspondences will be specified by means of the above cited formalisms, and some of their properties will be verified by means of formal proofs and automated tools. The original contributions of this thesis are the following. Within the framework of a formal modeling and verification of security protocols, we have applied an automated tool to better understand some secure mechanisms for the delivery of electronic documents. This has given us a deep insight on revealing the effects of omitted (or even erroneously implemented) security checks. Furthermore, a formal framework for modeling and analysing secure multicast and wireless communication protocols has been proposed. The analysis is mostly based on some new compositional principles giving sufficient conditions for safely composing an arbitrary number of components within a unique system. Also, steps towards providing the Team Automata formalism (TA) with a framework for security analysis have been taken. Within the framework, we model and analyse integrity and privacy properties, contributing to testify the expressive power and modelling capabilities of TA
    corecore