49 research outputs found

    Spacecraft nonlinear attitude control with bounded control input

    Get PDF
    The research in this thesis deals with nonlinear control of spacecraft attitude stabilization and tracking manoeuvres and addresses the issue of control toque saturation on a priori basis. The cascaded structure of spacecraft attitude kinematics and dynamics makes the method of integrator backstepping preferred scheme for the spacecraft nonlinear attitude control. However, the conventional backstepping control design method may result in excessive control torque beyond the saturation bound of the actuators. While remaining within the framework of conventional backstepping control design, the present work proposes the formulation of analytical bounds for the control torque components as functions of the initial attitude and angular velocity errors and the gains involved in the control design procedure. The said analytical bounds have been shown to be useful for tuning the gains in a way that the guaranteed maximum torque upper bound lies within the capability of the actuator and, hence, addressing the issue of control input saturation. Conditions have also been developed as well as the generalization of the said analytical bounds which allow for the tuning of the control gains to guarantee prescribed stability with the additional aim that the control action avoids reaching saturation while anticipating the presence of bounded external disturbance torque and uncertainties in the spacecraft moments of inertia. Moreover, the work has also been extended blending it with the artificial potential function method for achieving autonomous capability of avoiding pointing constraints for the case of spacecraft large angle slew manoeuvres. The idea of undergoing such manoeuvres using control moment gyros to track commanded angular momentum rather than a torque command has also been studied. In this context, a gimbal position command generation algorithm has been proposed for a pyramid-type cluster of four single gimbal control moment gyros. The proposed algorithm not only avoids the saturation of the angular momentum input from the control moment gyro cluster but also exploits its maximum value deliverable by the cluster along the direction of the commanded angular momentum for the major part of the manoeuvre. In this way, it results in rapid spacecraft slew manoeuvres. The ideas proposed in the thesis have also been validated using numerical simulations and compared with results already existing in the literature

    Spacecraft magnetic attitude control using approximating sequence Riccati equations

    Get PDF
    This paper presents the results of a spacecraft attitude control system based on magnetic actuators designed for low Earth orbits. The control system is designed by using a nonlinear control technique based on the approximating sequence of Riccati equations. The behavior of the satellite is discussed under perturbations and model uncertainties. Simulation results are presented when the control system is able to guide the spacecraft to the desired attitude in a variety of different conditions

    Design, Development, and Testing of Near-Optimal Satellite Attitude Control Strategies

    Get PDF
    Advances in space technology and interest toward remote sensing mission have grown in the recent years, requiring the attitude control subsystems of observation satellites to increase their performances in terms of pointing accuracy and on-board implementability. Moreover, an increased interest in small satellite missions and the recent technological developments related to the CubeSats standard have drastically reduced the cost of producing and flying a satellite mission. In this context, the proposed research aims to improve the state of the art for satellite attitude control methodologies by proposing a near-optimal attitude control strategy, simulated in a high-fidelity environment. Two strategies are presented, both are based on the implementation of a direct method, the Inverse Dynamics in the Virtual Domain (IDVD), and a nonlinear programming solver, the Sequential Gradient-Restoration Algorithm (SGRA). The IDVD allows the transcription of the original optimal control problem into an equivalent nonlinear programming problem. SGRA is adopted for the quick determination of near-optimal attitude trajectories. The two optimization criteria considered are the target acquisition time and the maneuver energy associated to the actuation torques. In addition, the development and initial testing of a satellite attitude simulator testbed for on-ground experimentation of attitude, determination, and control methodologies is proposed. The Suspended Satellite Three-Axis Rotation Testbed (START) is a novel low-cost satellite three-axis attitude simulator testbed, it is located at the Aerospace Robotics Testbed Laboratory (ARTLAB). START is mainly composed by a 3D printed base, a single-board computer, a set of actuators, and an electric battery. The suspension system is based on three thin high tensile strength wires allowing a three degrees-of freedom rotation range comparable to the one of air bearing-based floating testbeds, and minimal resistive torque in all the rotations axis. This set up will enable the hardware in-the-loop experimentation of attitude guidance navigation and control strategies. Finally, a set of guidelines to select a solver for the solution of nonlinear programming problems is proposed. With this in mind, a comparison of the convergence performances of commonly used solvers for both unconstrained and constrained nonlinear programming problems is presented. The terms of comparison involve accuracy, convergence rate, and convergence speed. Because of its popularity among research teams in academia and industry, MATLAB is used as common implementation platform for the solvers

    Nonlinear Approaches to Attitude Control Using Magnetic and Mechanical Actuation

    Get PDF
    This thesis argues the attitude control problem of nanosatellites, which has been a challenging issue over the years for the scientific community and still constitutes an active area of research. The interest is increasing as more than 70% of future satellite launches are nanosatellites. Therefore, new challenges appear with the miniaturisation of the subsystems and improvements must be reached. In this framework, the aim of this thesis is to develop novel control approaches for three-axis stabilisation of nanosatellites equipped with magnetorquers and reaction wheels, to improve the performance of the existent control strategies and demonstrate the stability of the system. In particular, this thesis is focused on the development of non-linear control techniques to stabilise full-actuated nanosatellites, and in the case of underactuation, in which the number of control variables is less than the degrees of freedom of the system. The main contributions are, for the first control strategy proposed, to demonstrate global asymptotic stability derived from control laws that stabilise the system in a target frame, a fixed direction of the orbit frame. Simulation results show good performance, also in presence of disturbances, and a theoretical selection of the magnetic control gain is given. The second control approach presents instead, a novel stable control methodology for three-axis stabilisation in underactuated conditions. The control scheme consists of the dynamical implementation of an attitude manoeuvre planning by means of a switching control logic. A detailed numerical analysis of the control law gains and the effect on the convergence time, total integrated and maximum torque is presented demonstrating the good performance and robustness also in the presence of disturbances

    Dynamics and Control of Spacecraft Rendezvous By Nonlinear Model Predictive Control

    Get PDF
    This doctoral research investigates the fundamental problems in the dynamics and control of spacecraft rendezvous with a non-cooperative tumbling target. New control schemes based on nonlinear model predictive control method have been developed and validated experimentally by ground-based air-bearing satellite simulators. It is focused on the autonomous rendezvous for a chaser spacecraft to approach the target in the final rendezvous stage. Two challenges have been identified and investigated in this stage: the mathematical modeling of the targets tumbling motion and the constrained control scheme that is solvable in an on-line manner. First, the mathematical description of the tumbling motion of the target spacecraft is proposed for the chaser spacecraft to rendezvous with the target. In the meantime, the practical constraints are formulated to ensure the safety and avoid collision during the final approaching stage. This set of constraints are integrated into the trajectory planning problem as a constrained optimization problem. Second, the nonlinear model predictive control is proposed to generate the feedback control commands by iteratively solving an open-loop discrete-time nonlinear optimal control problem at each sampling instant. The proposed control scheme is validated both theoretically and experimentally by a custom-built spacecraft simulator floating on a high-accuracy granite table. Computer software for electronic hardware for the spacecraft simulator and for the controller is designed and developed in house. The experimental results demonstrate the effectiveness and advantages of the proposed nonlinear model predictive control scheme in a hardware-in-the-loop environment. Furthermore, a preliminary outlook is given for future extension of the spacecraft simulator with consideration of the robotic arms

    Propellantless AOCS Design for a 160-m, 450-kg Sailcraft of the Solar Polar Imager Mission

    Get PDF
    An attitude and orbit control system (AOCS) is developed for a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. The SPI mission is one of several Sun- Earth Connections solar sail roadmap missions currently envisioned by NASA. A reference SPI sailcraft consists of a 160-m, 150-kg square solar sail, a 250-kg spacecraft bus, and 50-kg science payloads, The 160-m reference sailcraft has a nominal solar thrust force of 160 mN (at 1 AU), an uncertain center-of-mass/center-of-pressure offset of +/- 0.4 m, and a characteristic acceleration of 0.35 mm/sq s. The solar sail is to be deployed after being placed into an earth escaping orbit by a conventional launch vehicle such as a Delta 11. The SPI sailcraft first spirals inwards from 1 AU to a heliocentric circular orbit at 0.48 AU, followed by a cranking orbit phase to achieve a science mission orbit at a 75-deg inclination, over a total sailing time of 6.6 yr. The solar sail will be jettisoned after achieving the science mission orbit. This paper focuses on the solar sailing phase of the SPI mission, with emphasis on the design of a reference AOCS consisting of a propellantless primary ACS and a microthruster-based secondary (optional) ACS. The primary ACS employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness and effectiveness of such a propellantless primary ACS would be enhanced by the secondary ACS which employs tip-mounted, lightweight pulsed plasma thrusters (PPTs). The microPPT-based ACS is mainly intended for attitude recovery maneuvers from off-nominal conditions. A relatively fast, 70-deg pitch reorientation within 3 hrs every half orbit during the orbit cranking phase is shown to be feasible, with the primary ACS, for possible solar observations even during the 5-yr cranking orbit phase

    Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures

    Get PDF
    This thesis is divided into two parts. The main focus of the research, namely active vibration control for large flexible spacecraft, is exposed in Part I and, in parallel, the topic of machine learning techniques for modern space applications is described in Part II. In particular, this thesis aims at proposing an end-to-end general architecture for an integrated attitude-vibration control system, starting from the design of structural models to the synthesis of the control laws. To this purpose, large space structures based on realistic missions are investigated as study cases, in accordance with the tendency of increasing the size of the scientific instruments to improve their sensitivity, being the drawback an increase of its overall flexibility. An active control method is therefore investigated to guarantee satisfactory pointing and maximum deformation by avoiding classical stiffening methods. Therefore, the instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. Different spatial configurations for the placement of the distributed network of active devices are investigated, both at closed-loop and open-loop levels. Concerning closed-loop techniques, a method to optimally place the poles of the system via a Direct Velocity Feedback (DVF) controller is proposed to identify simultaneously the location and number of active devices for vibration control with an in-cascade optimization technique. Then, two general and computationally efficient open-loop placement techniques, namely Gramian and Modal Strain Energy (MSE)-based methods, are adopted as opposed to heuristic algorithms, which imply high computational costs and are generally not suitable for high-dimensional systems, to propose a placement architecture for generically shaped tridimensional space structures. Then, an integrated robust control architecture for the spacecraft is presented as composed of both an attitude control scheme and a vibration control system. To conclude the study, attitude manoeuvres are performed to excite main flexible modes and prove the efficacy of both attitude and vibration control architectures. Moreover, Part II is dedicated to address the problem of improving autonomy and self-awareness of modern spacecraft, by using machine-learning based techniques to carry out Failure Identification for large space structures and improving the pointing performance of spacecraft (both flexible satellite with sloshing models and small rigid platforms) when performing repetitive Earth Observation manoeuvres

    A multi-mode attitude determination and control system for small satellites

    Get PDF
    Thesis (PhD)--Stellenbosch University, 1995.ENGLISH ABSTRACT: New advanced control techniques for attitude determination and control of small (micro) satellites are presented. The attitude sensors and actuators on small satellites are limited in accuracy and performance due to physical limitations, e.g. volume, mass and power. To enhance the application of sophisticated payloads such as high resolution imagers within these confinements, a multi-mode control approach is proposed, whereby various optimized controller functions are utilized during the orbital life of the satellite. To keep the satellite's imager and antennas earth pointing with the minimum amount of control effort, a passive gravity gradient boom, active magnetic torquers and a magnetometer are used. A "cross-product" detumbling controller and a robust Kalman filter angular rate estimator are presented for the preboom deployment phase. A fuzzy controller and magnetometer full state extended Kalman filter are presented for libration damping and Z-spin rate control during inactive imager periods. During imaging, when high performance is required, additional fine resolution earth horizon, sun and star sensors plus 3-axis reaction wheels are employed. Full state attitude, rate and disturbance estimation is obtained from a horizon/sun extended Kalman filter. A quaternion feedback reaction wheel controller is presented to point or track a reference attitude during imaging. A near-minimum time, eigenaxis rotational reaction wheel controller for large angular maneuvers. Optimal linear quadratic and minimum energy algorithms to do momentum dumping using magnetic torquers, are presented. A new recursive magnetometer calibration method is designed to enhance the magnetic in-flight measurements. Finally, a software structure is proposed for the future onboard implementation of the multi-mode attitude control system.AFRIKAANSE OPSOMMING: Nuwe gevorderde beheertegnieke vir die oriëntasiebepaling en -beheer van klein (mikro-) satelliete word behandel. Die oriëntasiesensors en -aktueerders op klein satelliete het 'n beperkte akkuraatheid en werkverrigting as gevolg van fisiese volume, massa en kragleweringbeperkings. Om gesofistikeerde loonvragte soos hoë resolusie kameras binne hierdie tekortkominge te kan hanteer, word 'n multimode beheerbenadering voorgestel. Hiermee kan 'n verskeidenheid van optimale beheerfunksies gedurende die wentelleeftyd van die satelliet gebruik word. Om die satellietkamera en -antennas aardwysend te rig met 'n minimale beheerpoging, word 'n passiewe graviteitsgradiëntstang, aktiewe magneetspoele en 'n magnetometer gebruik. 'n "Kruisproduk" onttuimellings beheerder en 'n robuuste hoektempo Kalmanfilter afskatter is ontwikkel vir die periode voordat die graviteitsgradiëntstang ontplooi word. 'n Wasige beheerder en 'n volledige toestand, uitgebreide Kalmanfilter afskatter is ontwikkel om librasiedemping en Z-rotasietempo beheer te doen gedurende tydperke wanneer die kamera onaktief is. Gedurende kamera-opnames word hoë werkverrigting verlang. Fyn resolusie aardhorison, son en stersensors met 3-as reaksiewiele kan dan gebruik word. 'n Volledige oriëntasie, hoektempo en steurdraaimoment Kalmanfilter afskatter wat inligting van bogenoemde sensors gebruik, is ontwikkel. 'n “Quaternion” reaksiewiel terugvoerbeheerder waarmee die satelliet na verwysings oriëntasiehoeke gerig kan word of waarmee oriëntasiehoektempos gevolg kan word, word behandel. 'n Naby minimumtyd, "eigen"-as reaksiewielbeheerder vir groothoek rotasies is ontwikkel. Optimale algoritmes om momentumontlading van reaksiewiele met lineêre kwadratiese en minimumenergie metodes te doen, word afgelei en aangebied. 'n Nuwe rekursiewe kalibrasietegniek waarmee 'n magnetometer outomaties gedurende vlug ingestel kan word, is ontwikkel. Ten slotte, word 'n programstruktuur voorgestel vir aanboord implementering van die nuwe multimode beheerstelsel

    System Design and Fabrication for Microsatellite Relative Navigation Experiment

    Get PDF
    Satellites are a critical element of the modern world, and designers continue to increase their capability while significantly reducing their size, which has put space missions within the reach of Universities. Microsatellites in the 10-100 kg size class are now able to perform a sizable amount of tasks in a relatively small and inexpensive package. Texas A&M University's second foray into space featured a 50 kg microsatellite designed and manufactured by students within the AggieSat Lab Student Satellite Program. AggieSat4 was the second satellite fielded by AggieSat Lab under the NASA Low-earth Orbiting Navigation Experiment for Spacecraft Testing Autonomous Rendezvous and docking (LONESTAR) campaign. The LONESTAR campaign's goal was to partner design labs from Texas A&M and the University of Texas at Austin to build pairs of satellites to perform navigation experiments. A series of four missions would culminate with the two paired spacecraft performing autonomous rendezvous and docking. AggieSat4 was designed and fabricated from 2010 to 2015, delivered to the International Space Station in December 2015, and released into low Earth orbit in January 2016. During this process a great deal of knowledge was gained by the students as to how to design a spacecraft mission to meet a set of requirements, how to design and engineer a spacecraft to carry out this mission, and how to fabricate and assemble the spacecraft as designed. Many tips, tricks, and lessons from hindsight were learned along the way. The requirements and mission concept of operations development for AggieSat4 will be presented, along with the engineering design process, resulting configuration, fabrication process, and some of the tips, tricks, and lessons learned. These topics can serve as a starting guide for students and others designing their own space missions, with the goal of helping them identify the processes and items of consideration to help meet their mission requirements

    A model-based fault recovery for the attitude control subsystem of a satellite using magnetic torquers

    Get PDF
    The interest in small satellites for scientific missions and Earth observations has been increasing steadily in recent years and magnetic torquers have been found attractive as suitable choice of actuators for the purpose of attitude control. Magnetic torquers are commonly used for momentum desaturation of reaction wheels, damping augmentation in gravity gradient stabilized spacecraft. and reorientation of the spin axis in spin-stabilized spacecraft. Furthermore, their use as sole actuators for 3-axis stabilization of satellites in Low-Earth Orbit (LEO) has also been proven effective and advantageous when compared to other types of actuators. The autonomy of complex dynamical systems that are vulnerable to failures has been an important topic of research during the past few years. Particularly, in aerospace applications, where several constraints such as telemetry and hardware redundancy limitations make the management of on-board problems, a difficult task for ground control. With this in mind, an autonomous recovery from faults in magnetic torquers in LEO satellites constitutes the main focus of the work investigated in this dissertation. A self-recovery mechanism, which extends the capabilities of the attitude control subsystem to operate under the presence of actuator faults is developed. The solution generated takes into account the management of the control authority in the system by taking advantage of the non-faulty actuators. In other words, the recovery mechanism that is proposed in this thesis does not utilize hardware redundancy as the existing actuators are used to perform the required control action. The effects of the delay in initiating the recovery solution, the presence of noise in the magnetic field measurement, and the responses of the system that is recovered from concurrent faults are also investigated through numerical simulations. These simulations are carried out by using a model that includes relevant environmental disturbances and a realistic model of the geomagnetic field. A reduction in the average steady state error is obtained in response to and due to the application of the proposed recovery mechanism, which is applicable to the system even in the presence of fault detection delays, presence of noise in the magnetic field measurement and concurrent fault
    corecore