3,036 research outputs found

    Reordering Columns for Smaller Indexes

    Get PDF
    Column-oriented indexes-such as projection or bitmap indexes-are compressed by run-length encoding to reduce storage and increase speed. Sorting the tables improves compression. On realistic data sets, permuting the columns in the right order before sorting can reduce the number of runs by a factor of two or more. Unfortunately, determining the best column order is NP-hard. For many cases, we prove that the number of runs in table columns is minimized if we sort columns by increasing cardinality. Experimentally, sorting based on Hilbert space-filling curves is poor at minimizing the number of runs.Comment: to appear in Information Science

    Histogram-Aware Sorting for Enhanced Word-Aligned Compression in Bitmap Indexes

    Get PDF
    Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression. These techniques are sensitive to the order of the rows: a simple lexicographical sort can divide the index size by 9 and make indexes several times faster. We investigate reordering heuristics based on computed attribute-value histograms. Simply permuting the columns of the table based on these histograms can increase the sorting efficiency by 40%.Comment: To appear in proceedings of DOLAP 200

    Reordering Rows for Better Compression: Beyond the Lexicographic Order

    Get PDF
    Sorting database tables before compressing them improves the compression rate. Can we do better than the lexicographical order? For minimizing the number of runs in a run-length encoding compression scheme, the best approaches to row-ordering are derived from traveling salesman heuristics, although there is a significant trade-off between running time and compression. A new heuristic, Multiple Lists, which is a variant on Nearest Neighbor that trades off compression for a major running-time speedup, is a good option for very large tables. However, for some compression schemes, it is more important to generate long runs rather than few runs. For this case, another novel heuristic, Vortex, is promising. We find that we can improve run-length encoding up to a factor of 3 whereas we can improve prefix coding by up to 80%: these gains are on top of the gains due to lexicographically sorting the table. We prove that the new row reordering is optimal (within 10%) at minimizing the runs of identical values within columns, in a few cases.Comment: to appear in ACM TOD

    IMPROVING MOLECULAR FINGERPRINT SIMILARITY VIA ENHANCED FOLDING

    Get PDF
    Drug discovery depends on scientists finding similarity in molecular fingerprints to the drug target. A new way to improve the accuracy of molecular fingerprint folding is presented. The goal is to alleviate a growing challenge due to excessively long fingerprints. This improved method generates a new shorter fingerprint that is more accurate than the basic folded fingerprint. Information gathered during preprocessing is used to determine an optimal attribute order. The most commonly used blocks of bits can then be organized and used to generate a new improved fingerprint for more optimal folding. We thenapply the widely usedTanimoto similarity search algorithm to benchmark our results. We show an improvement in the final results using this method to generate an improved fingerprint when compared against other traditional folding methods

    Towards a Holistic Integration of Spreadsheets with Databases: A Scalable Storage Engine for Presentational Data Management

    Full text link
    Spreadsheet software is the tool of choice for interactive ad-hoc data management, with adoption by billions of users. However, spreadsheets are not scalable, unlike database systems. On the other hand, database systems, while highly scalable, do not support interactivity as a first-class primitive. We are developing DataSpread, to holistically integrate spreadsheets as a front-end interface with databases as a back-end datastore, providing scalability to spreadsheets, and interactivity to databases, an integration we term presentational data management (PDM). In this paper, we make a first step towards this vision: developing a storage engine for PDM, studying how to flexibly represent spreadsheet data within a database and how to support and maintain access by position. We first conduct an extensive survey of spreadsheet use to motivate our functional requirements for a storage engine for PDM. We develop a natural set of mechanisms for flexibly representing spreadsheet data and demonstrate that identifying the optimal representation is NP-Hard; however, we develop an efficient approach to identify the optimal representation from an important and intuitive subclass of representations. We extend our mechanisms with positional access mechanisms that don't suffer from cascading update issues, leading to constant time access and modification performance. We evaluate these representations on a workload of typical spreadsheets and spreadsheet operations, providing up to 20% reduction in storage, and up to 50% reduction in formula evaluation time

    Sorting improves word-aligned bitmap indexes

    Get PDF
    Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression. These techniques are sensitive to the order of the rows: a simple lexicographical sort can divide the index size by 9 and make indexes several times faster. We investigate row-reordering heuristics. Simply permuting the columns of the table can increase the sorting efficiency by 40%. Secondary contributions include efficient algorithms to construct and aggregate bitmaps. The effect of word length is also reviewed by constructing 16-bit, 32-bit and 64-bit indexes. Using 64-bit CPUs, we find that 64-bit indexes are slightly faster than 32-bit indexes despite being nearly twice as large
    • …
    corecore