

TR/09/91 July1991

THE SCHEDULING OF SPARSE

MATRIX-VECTOR MULTIPLICATION ON A

MASSIVELY PARALLEL DAP COMPUTER

J. Andersen, G. Mitra, D. Parkinson

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BRUNEL UNIVERSITY

SEP 1991

LIBRARY

 w9198788

1

Contents
0. Abstract

1. Introduction

2. Background and overview

3. Basic concepts and definitions
3.1 Block partitioning methods
3.2 Dense mode algorithms
3.3 The block sparse mode

4. Sparse algorithms
4.1 Morjaria and Makinson's (MM) method
4.2 The extended stacking scheme (ESS)
4.3 The block banded scheme (BBS)

5. Presentation and discussion of results
5.1 Database of test problems
5.2 Summary results

6. Analysis and Conclusions
6.1 Analysis
6.2 Conclusions

7. Acknowledgements

8. Appendix
Appendix A
 Appendix B

9. References

2

0. Abstract

An efficient data structure is presented which supports general unstructured sparse
matrix-vector multiplications on a Distributed Array of Processors (DAP). This
approach seeks to reduce the inter-processor data movements and organises the
operations in batches of massively parallel steps by a heuristic scheduling procedure
performed on the host computer.

The resulting data structure is of particular relevance to iterative schemes for
solving linear systems. Performance results for matrices taken from well known
Linear Programming (LP) test problems are presented and analysed.

1. Introduction

One of the prerequisites for sparse matrix techniques on a Single Instruction
Multiple Data (SIMD) computer is the design of data structures which supports
sparse matrix-vector multiplication. Sparse techniques are often indirect in nature
and usually handled by list structures which are not very suitable on an SIMD
machine. For the parallel machine architectures the efficient design of data structure
has reached a new importance. The problem of efficient multiplication of a sparse
matrix by a vector on a vector computer has recently been addressed by Erhel
[ERHEL90] using a CRAY-2. The DAP is potentially yery powerful when working
on dense problems, it is therefore tempting to ignore sparsity and thus saving the
overhead of complicated housekeeping logic. This approach might well give good
results for moderately sparse matrices or for problems where it is possible to
reorder the matrix into a block sparse form.

Our particular interest in generalised sparsity stems from our concern with the
parallel computation of the main algorithmic step of the Interior Point Method
(IPM) for solving large scale Linear Programming (LP) problems, Karmarkar
[KARMAR84], Lustig et al. [LUSMSH89], Andersen et. al. [ANLEVM90].

The main computational work in each step of the IPM amounts to solving a
symmetric positive definite system of linear equations. For the SIMD machine
architecture we have focused on an iterative Conjugate Gradient solver, as this
method can be reduced to repeated matrix-vector multiplication steps which are
intrinsically parallel.

Adopting the massively parallel paradigm is a new challenge, it can often lead to
novel computational schemes such that apparent restrictions of the SIMD
architecture are removed. See also [PARKIN89] .

In this paper we examine the performance of some possible data structures and
associated matrix vector multiplication schemes for representing unstructured sparse
matrices on the massively parallel architecture of the DAP. In Section 2 we give a
brief background to the problem of sparse representation and a few past approaches
to this problem. Necessary conceptual tools are introduced in Section 3, whereby
dense matrix operations with efficient parallel performance can be represented. The

3

theoretical algebraic workload which serves as a guidance for comparing the
schemes is introduced. These representations form the basis for the further
development of sparse schemes, which are described in depth in Section 4. In this
section we consider a class of schemes based on block partitioning of the matrix. A
particular matrix "STAIR" (Fig. 8.1 in appendix B) which is of the order 356 by
356, is used as a standard example to illustrate differences between the various
schemes.

Extensive test results are presented in Section 5 together with implications for
special matrices. The analysis of complexity apects as well as concluding
discussions are contained in Section 6.

2. Background and Overview

The DAP computer is organised in a 2-dimensional grid of p by p processors; 32
by 32 for the DAP 500 series or 64 by 64 for the DAP 600 series. The memory is
distributed such that each processor has some private memory. All the processors
are controlled by a single master unit which issues the same instruction to all the
processors. The results of a global single instruction, however, can be masked out
such that it has no effect for a particular processor, thereby providing some form of
local control.

The 2-dimensional grid also defines a fixed communication pattern of rows and
column along which the inter-processor communication is most effective. Programs
can be written in FORTRAN PLUS; an extension to the FORTRAN language
which includes parallel objects, [AMTFOR90] . The relevant language extensions
which are referred to in the paper, are itemised in appendix A.

Since the emergence of massively parallel computers, there has been a continued
effort in developing numerical software for general purpose large scale
computations. The problem of representing sparse matrices on the DAP was first
considered by PARKINSON [PARKINS81], he developed his long-vector method
which was based on low level permutation code to achieve GATHER/SCATTER
type of operations. A long-vector derives from the 1-dimensional indexing of p by
p locations forming a general parallel object. While the storage used is compact,
there are some inevitable communication overhead involved depending on the
regularity of the sparsity pattern. BARLOW, EVANS and SHANECHI,
[BAREVS84] proposed an efficient scheme for structured sparse matrix-vector
multiplication. Their scheme used PARKINSON'S long-vector method as a kernel,
but the sparsity was restricted to banded matrices, these matrices often occur by
the discretisation of systems of partial differential equations.

MORJARIA and MAKINSON [MORMAK84] subsequently proposed a general
matrix-vector multiplication scheme for the DAP. The attraction of their method is
that they eliminated one source of communication between processors. They
specified a general stack of DAP memory planes for storing overlaid blocks of the
matrix such that there is a fixed relationship between the indices of the element and

4

its position on the DAP grid. See Section 3. In this way a sparse matrix with
unstructured sparseness pattern can be stored compactly on the DAP.

A basic criticism of this method stems from the scattering of blocks of the matrix
over the data stack of memory planes. If elements originating from different blocks
are stored in the same memory plane in the DAP, then this effectively reduces the
inherent parallelism. While the data stack is compact compared with the dense
problem, this data structure has to be traversed many times as the elements from
matching blocks could be widely scattered in the stack. While this may be
manageable for a limited problem scale, there is in fact a complexity argument
against the method; this is discussed in Section 6. As the matrix size grows, so
does the data stack, as a consequence, the number of references necessary for the parallel
computations multiplies the computational complexity measure by the problem size,
thus eventually defeating the parallelism. On the positive side however, the use of
block indices simplifies the housekeeping and accordingly provides for a simple
transition to dense matrix mode with full parallel performance.

3. Basic concepts and definitions

3.1 Block partitioning methods

Consider a matrix A of size MxN partitioned into a number of DAP size (p by p)

 block matrices Bk,l such
that:

[A] i ,j = [Bk ,ll] m ,n (3.1)

i = 1,..,M j = 1,...,N and m,n = l,...,p

In (3.1) we define (i,j) as global indices for A, (k,) as block indices and (m,n) as l
local indices, see also Fig. 3.1 .

The correspondence between the indices is given by the relations:

global indices
⎩
⎨
⎧

+=
+=

n 1) -p(f j
 m 1) -(k p i

with k= 1,..., (M- l)/p+ 1

 and l = l , … , (N - l) / p + l

(truncated integer division)

5

The inverse correspondence relations are:

block indices.
⎪
⎩

⎪
⎨

⎧

+=

+=

p mod 1) - (j 1

 p mod 1) - (i 1 k

l

local indices
⎪
⎩

⎪
⎨

⎧

=

=

p 1) - (j -

 p 1) - (i -k m

ln

Blo
 Block
 column
 l=3
 boundary of matrix A

Block
Row
K=2

 Figure 3.1

6

We introduce the term: "block row (column) index" for labelling the blocks. To be
concise, a row (column)-block is a special kind of block which has a dimension of
pxN (Mxp), hence a "row (column)-block index" is a label for these rectangular
structures.

For the block structure of the matrix, we define:

MBLK = (M-l)/p+l , and

NBLK=(N-l)/p+l

We wish to compute the sparse matrix-vector multiplication in the assignment

y = Ax (3.2)

This can be stated in terms of the block specific components as:

MBLK,...,1k,XBy
NBLK

1

,kk =∑
=l

ll (3.3)

Here x and y refers to a p element vector block of the x and y vectors l k

respectively.

For the analysis of the potential parallelism, we define a special multiplication
operator for the direct multiplication of parallel objects. If two block matrices ⊗
are stored as parallel objects, then the ⊗ operation between them corresponds to
component wise multiplication. In order to exploit the parallelism we rewrite (3.3)
in an outer product form, using the parallel ⊗ operations between block
matrices, to do this it is convenient first to generate a temporary block matrix by
copying x l ; the l’th block of the x-vector onto all the rows of a temporary block
matrix. This broadcasting operation can be expressed symbolically as:

,exX)Transposed(,k ll =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
.
.
.
1

eWhere

l,kX becomes a (p by p) block matrix. With these definitions, we can represent the

m'th component of yk in terms of the parallel objects:

7

n,m
,k,k

P

1n

NBLK

1

k
m]XB[y ll

l
⊗∑∑=

==
 (3.4)

By defining equation (3.4) becomes: ,XBY ,k,k,k lll ⊗=

n,m
,k

P

1n

NBLK

1
m]Y[y l

l ==
∑∑= (3.5)

The summation which is required inside the block is not fully parallel, it requires
approximately log2 (p) parallel steps using the well known parallel cascade
summation. The summation however need not be carried out before a complete row
block is ready; instead of NBLK individual cascade sums, only one final summation
is necessary for each row block. The result for a row block is:

[]mn
.k

NBLK

1

P

1n

k
n Yy l

l
∑∑
==

= (3.6)

The last result is obtained by changing the summation order in (3.3), it follows
that the inner summation can be evaluated in (massively) parallel steps, leaving
just one cascade sum for each row block A build in function "sumc" is used for
maximum efficiency for this task.

For iterative applications, the x-vector is constantly modified while the A matrix is
unchanged. Therefore any sparsity pattern in the x-vector is not useful unless it
has a void block(s). The testing for a zero void is again a massively parallel
operation which can be performed as a single Boolean step.

By using such primitives, a dense matrix-vector multiplication can be conveniently
represented. For the analysis of the computational workload involved in the
algorithms, it is also useful to define two parallel measures:

DFLM = number of DAP size floating point multiplications,
similarly:

DFLA = number of DAP size floating point additions.

8

These definitions are intended only to clarify the analysis of parallel performance.

3.2 Dense mode algorithms

The parallel workload for the dense mode algorithm is:

DFLM(dense) = MBLK*NBLK (3.7)

The required number of parallel additions however, depends critically on the order
of summation in the above expressions or whether equation (3.5) or (3.6) is used.
With standard functions available such as "sumc", the immediate application of the
summation as in (3.5) leads to the measure:

DFLA*(dense) = (NBLK - l)*log2(p)*MBLK (3.8)

While using the postponed summation as in (3.6) gives the superior measure: D
 DFLA(dense) = (NBLK - 1 + log2 (p))*MBLK (3.9)

As an example, we calculate these measures for a matrix which has the dimension
356x356. Assuming 12 by 12 blocks and p = 32 we find;

DFLM(dense) DFLA*(dense) DFLA(dense)

144 660 192

3.3 The block sparse mode
The block sparse mode is a natural extension to the parallel dense mode scheme as
outlined in 3.2. In this method any void block which matches the block partition of
the matrix is bypassed if detected. The logical testing of a parallel object for zero
entries can be done as a single massively parallel step in one machine cycle only,
hence it represents virtually no overhead. Alternatively, by analysing the pattern in
advance of the computations, the stack of memory planes required for the data
structure might be reduced.

Unless the matrix exhibits a clear structured pattern, there are few chances of such
void blocks occurring, even if the matrix can be treated as sparse on a serial
computer. There is, however, scope for changing this situation by reordering the
matrix using a strategy which seeks to concentrate the nonzeros into islands leaving
some clear patches.

The well known Cuthill-McKee matrix ordering scheme for symmetric matrices

9

seeks to concentrate the matrix elements towards the diagonal (minimum bandwidth
ordering), a program for the algorithm is described by George and Liu
[GEOLIU81].

4. Sparse algorithms
A general class of sparse storage schemes consist of overlaying the matrix blocks
where possible, while keeping track of the block column and block row indices for
the local occupants of the blocks in a matching data structure of indices.

The time taken for setting up the data structure can be justified if the repeated
matrix-vector multiplications is required on the DAP, using the same matrix in each
iteration. An example is the Conjugate Gradient linear equation solver.

In the following it is useful to refine the terminology such that the overlaid blocks
in the data structure is referred to as "planes" as the structure has some
characteristics of a stack. The term "blocks" hereinafter indicates the distinct matrix
blocks before any data packing has taken place.

4.1 MORJARIA and MAKINSON's (MM) method
In the MM method, the matrix element [A]ij is assigned to processor (m,n) as
specified by equation 3.1 . This mapping causes many elements to be allocated to
the same processor so a stack of elements is created in each processor. An exampl
of a multiple stack, which follows from this data mapping is presented in Fig. 4.1.
For our standard test matrix "STAIR" (see section 5.1), the maximum number of
elements allocated to any processor by the MM method is 22 which is very much
less than the 144 which would be the maximum if the matrix is treated as dense.
The actual depth of the stack is different for each processor. We define a "plane"
as the set of elements found at a given depth in the processors, thus elements in a
plane are potential candidates for parallel operations.

If we examine a given plane in the multiple stack, (see Table 4.1) we find that the
elements in that plane derive from different (k, l) blocks. For example the plane at
the fifth level of the data structure derived for STAIR has 9 different k-values and
11 different -values. The number of "broadcast operations" of the x-vector to deal l
with a given plane is the same as the number of different column blocks
represented within that plane. If the multiplications are done immediately after each
broadcast, many multiplications are needed (157) for the STAIR matrix. If, however,
the result of the broadcasts are assigned under masking to a common temporary
variable (merging) then all the multiplications for a given plane may be performed
simultaneously, reducing the total number of multiplications to the maximum stack
depth. It is not clear from Morjaria and Makinson's paper [MORMAK84] that they
made this observation. As broadcasting on the DAP is very much faster than
multiplication the operation time is very much reduced. The total number of parallel
m multiplications is given by the maximum stack depth (22 in case of STAIR).

Fig. 4.1 A multiple stack on p by p processors

To perform the summation operations is more difficult as each row block in a plane
must be dealt with separately, so the number of parallel additions is strongly
dependent on the distribution of block indices. A detailed map of the data structure
is given in Table 4.1; each symbol "X" indicates that one or more matrix elements
of the same row block is stored in a particular plane. It is apparent that elements
from each row block is scattered over many planes, totalling 156 when adding the
number of planes used by all 12 block row indices. The DFLA measure for the
addition step can be found by the same approach as was outlined in section 3.2
equation 3.9; each row block results in an additional cascade summation requiring
log2(32) parallel operations.

DFLA(MM) = 156 - 12 + Iog2(32) *12 (3.10)

DFLM*(MM) DFLM(MM) DFLA(MM)

157 22 204

10

111111111111111

Table 4.1
Morjaria/Makinson (MM) method for matrix: STAIR

12

Potential problems with the scheme can occur when the matrix has a semi regular
pattern modulo(p) which can cause large stack sizes.

4.2 The Extended stacking scheme (ESS)
While the MM scheme usually has a compact data structure, the number of parallel
additions required as shown indicate a poor exploitation of sparsity in this respect.
In the extended stacking scheme (ESS) we separate out the different row block
indices and for each index set up a local stack in each processor as with the global
stack for the MM scheme.

Table 4.2 shows the presence of block row and block column indices in each plane
of the data structure. A preliminary scan over the matrix elements determines the
number of planes required for each local stack. These local stacks can be envisaged
as sealed boxes, which are again stacked, though the boxes do not overlap. Because
the overlap is inhibited, the data structure is less compact than for the MM scheme.
For the example STAIR the total depth of this stack of stacks is 43 instead of 22 as
in the MM scheme. On the other hand, the matching data structure to indicate the
block row index of each element stored is no longer needed.

By separating out the row blocks in this way, the number of parallel additions for
the STAIR matrix becomes 43+(log2(p)-l)*MBLK or 91, while the number of
multiplications can be limited to 43 by using the masked broadcasting technique
as previously described for the MM method. For the price of 21 extra
multiplications we achieved a saving of 113 parallel additions.

DFLM(ESS) DFLA(ESS)

43 91

With this scheme, a merge operation of the broadcasted x-vector takes place for
each block column index present in a given plane. For the STAIR example the
merging of up to 12 broadcasts are required before each parallel multiplication.
While the merging of broadcasts is much cheaper than the multiplication on the
DAP, it is still possible to assign the matrix elements in the local stack in such a
way that the number of different block column indexes in a plane is kept as low as
possible. Such a strategy is particularly beneficial if the DAP includes special fast
floating point processing elements, this DAP is also known as the coprocessor
version. A special heuristics for assigning the matrix elements such that the
number of broadcasts is reduced is as follows.

13

Table 4.2
 "Extended stack" (ESS) allocation method for STAIR

14

Table 4.3
"Extended stack" (ESS) allocation method with priority assignments for STAIR

15

Using the preliminary scan, as above, for determining sizes of the local stacks, an
incoming matrix element with a given row block index can be assigned to any plane
in the local stack for the block row index where space is free. Instead of assigning
the element to the first free location under the processor to which the element
belongs, a scan is made to see if there is a free location in the local stack which
already has a matrix element of the same column index in the same plane but for a
different processor. The scan is only done over a list of column indices for each
plane in the local stack, it is referred to as a "matching" scan. If there is no
matching location then the assignment is made to a free non-matching location.

A superior assignment technique for both matching and non-matching locations is
possible if there is a choice of available locations. In this case the plane in the local
stack is chosen which has the smallest number of different block column indices
already present. It was found that this strategy reduces the chance of "blocking" of
matching locations for subsequent incoming elements. The results of the above
enhancements to the ESS scheme from using these "priority assignments" is shown
in Table 4.3. The improvement in the allocation of column rows for STAIR in
apparent when comparing Table 4.3 with Table 4.2; only 73 merge operations is
required instead of 147.

4.3 The Block banded scheme BBS

For the solution of large scale LP problems by using the interior point method
(IPM) we are dealing with very sparse matrices where the number of elements in a
single row block is often smaller than the number of processors in the massively
parallel system. To deal with such matrices we introduce a new level of aggregation;
the block band.

This method generalises the extended stack scheme by allowing matrix elements
within a range of row blocks to be allocated to planes of a common stack system.
Table 4.4 illustrates the scheme for the STAIR example. The MM scheme can be
looked at as an extreme case where the range of block row indices extends to all of
them, hence there is only one block band and consequently just one common stack
system. Furthermore, the MM scheme does not include any block matching heuristic
for the critical assignments of matrix elements to the planes of the stack system.

The width of the block bands are adjusted by a parameter Φ of the scheme as
follows: Initially, the block bands are the same as the row blocks, but if successive
row blocks has a cumulative count of the nonzero matrix elements which is less
than the parameter Φ, then the sequence of row blocks are aggregated into one
block band. The ESS scheme can be derived by setting Φ = 0 such that no
aggregation of row blocks takes place.

The performance of the scheme thus depends on selecting the parameter Φ to
obtain a balance between compactness of the data structure and computational
overheads. Table 4.4 illustrate the workings of scheme for the STAIR matrix and
selecting Φ = 1000. In this case there is a small further reduction in the total
number of DAP size floating point operations.

16

Table 4.4
"Block banded" (BBS) allocation method for STAIR

aggregation parameter = 1000

17

DFLM(BBS) DFLA(BBS)

37 91

The block matching algorithm is a feature of both the ESS and the generalised BBS
scheme, however the matching of block row indices within a block band becomes an
essential part of the BBS scheme for reducing the DFLA count (See also Section 3).
The flowchart of the algorithm is set out in Fig. 4.2. For each incoming matrix
element the range of planes belonging to the block band of the matrix element is
scanned in a priority order which is continuously updated. The priority order is
conveniently expressed as the ascending order of values for the function:

f(s) = (NBLK+1)*η{K} +η{L} (4.1)

Here η{K} indicate the cardinality of the set of block row indices already
present in the plane s and η{L} is similarly the cardinality of the set of
block column indices.

As we have : η[L] ≤ NBLK , the ordering of the function f(s), which is the order
in which the planes in the block band is scanned, gives first priority to limiting the
number of different block row indices followed by limiting the number of different
column block indices. If there is no possible block matching in the block band, then
choosing a plane s with the smallest f(s) is a heuristic which seeks to prevent
scattering of block indices over many planes.

18

BLOCK MATCHING ALGORITHM

 ok

 FAIL

 No YES

 ok

 FAIL

 1.
Match plane with block indices
(k,l) in the order of min (k)
followed by min (L) cardinality

Allocate matrix
Element to plane

are there more than one
row block in the current
block band?

2.
Match plane with row block index
(k) in the order of min (k) followed
by min (L) cardinality

Allocate matrix
element to plane

3.
Allocate to a non-matching plane in
The block band in the order of min
(k) followed by min (L) cardinality

Input stream of matrix elements

Fig 4.2

19

5. Presentation and discussion of results

5.1 Database of test problems

The following 8 models have been extracted from well known international
benchmarks of LP test problems; "NETLIB" as supplied by Gay [GAYM85] .
"Kenn" is from to Kennington et. al. [CARHKW89] and "KLOTZ" refers to a set
of problems by courtesy of Klotz [KLOTZ91].

 5.1 LP Problems statistics

No Name Rows Columns Nonzeros Source

1 STAIR 357 467 3857 NETLIB

2 PILOTXWE 723 2789 9218 NETLIB

3 25FV47 822 1571 11127 NETLIB

4 PILOTXIA 941 1988 14706 NETLIB

5 PILOT 1442 3652 43220 NETLIB

6 CYCLE 2234 2857 31476 KLOTZ

7 CRE_C 3068 3678 13244 KENN

8 CRE_A 3516 4067 14987 KENN

20

After preprocessing of the LP problems, the total number of nonzeros in the matrix
AAT less the diagonal are set out in Table 5.2.

5.2 Nonzeros in the AAT matrix less diagonal elements.

No Name Rows Nonzeros Source

1 STAIR 356 12394 NETLIB

2 PILOTXWE 722 9650 NETLIB

3 25FV47 820 22148 NETLIB

4 PILOTXIA 924 26500 NETLIB

5 PILOT 1441 119080 NETLIB

6 CYCLE 1889 55412 KLOTZ

7 CRE_C 2986 37810 KENN

8 CRE_A 3428 41496 KENN

The sparsity pattern for the matrices in the AAT form is shown in the figures (Fig.
8.1-8.8 in appendix B). For the display of large matrices each dot represents a
submatrix as indicated in the labeling, e.g. "CYCLE 1889/5 57301" indicates that a
single dot represents a 5 by 5 submatrix. The adjacent number 57301 is the
number of nonzero elements including the diagonal elements which were ignored
for the tests.

21

5.2 Summary results

The test was carried out on a DAP510 with 8 MB of memory. The computer was
run both with and without installation of the floating point coprocessor. The
maximum possible size of the datastructure with this machine corresponds to 700
planes of 1024 single precision numbers, this excludes the auxcillary data structures
necessary for carrying out the matrix vector multiplication.

With respect to the test experiments, the example matrices can be classified into
two groups; the smaller matrices (1-4) which fits the memory in dense or block
sparse form, and the larger matrices (5-8) which only fits the memory when using a
compact (overlaid) scheme. Furthermore, the matrices can be subdivided into block
sparse (1,2,6-8) and scattered (3-5).

The MFLOP rate was calculated by counting the minimum number of floating point
operations required on the nonzero elements only. The calling of the matrix vector
multiplication subroutine was included in the timings. (See Table 5.3-5.4)

The Block sparse scheme BLSPAR performs very well for the group of smaller
matrices which can fit the memory without using overlaid packing. Introducing the
Cuthill-McKee reordering to the scheme BLSPAR (C-MK) gives only a small
improvement for the scattered matrices: 25FV47, PILOTXJA, while this
reordering gave no improvement for the block sparse group: STAIR, PILOTXWE.

The extended stacking scheme (ESS) is especially relevant for the larger matrices
where it performs about 3 times better than the MM scheme on CRE_A, CRE_C
and CYCLE.

The block banded scheme BBS suffer a small overhead compared with the EES
scheme because it require an indicator array for the block row indices as well as for
the block column indices. This scheme however can be combined with matrix
reordering which is indicated by the labelling: n - no reordering, c - Cuthill-McKee
reordering. The number in the label is the above mentioned aggregation parameter
(see Section 4.3), thus n0 indicates no reordering and no aggregation. The effect of
the scheme is most significant for the matrix PILOT which is large and scattered.
Only by using the BBS scheme combined with Cutthill-McKee reordering method
was it possible to fit the matrix into the memory without any aggregation. This case
performed about 6 times better than the unordered MM scheme. By using a
aggregation parameter of 4000 the memory requirement for the datastructure can
be further reduced from 442 down to 342 planes with only a small cost in speed.

22

5.3 MFLOP RATE WITHOUT COPROCESSOR

 DENSE BLSPAR C-MK MM ESS

STAIR 0.53 0.52 0.98 0.72 1.25
PILOTXWE 0.12 0.28 0.22 0.32 0.49
25FV47 0.28 0.31 0.33 0.29 0.64
PILOTXJA - 0.29 0.29 0.33 0.60
PILOT - - - - -
CYCLE - - - 0.28 0.78
CRE_C - - - 0.08 0.33
CRE_A - - - 0.07 0.34

BBS n0 BBS c0 BBSc1000 BBSc4000

STAIR 1.21 - - -
PILOTXWE 0.48 - - -
25FV47 0.62 - - -
PILOTXJA 0.59 - - -
PILOT - 1.00 1.00 0.96
CYCLE 0.76 0.74 0.75
CRE_C 0.32 - - -
CRE_A 0.33 - - -

5.4 MFLOP RATE WITH COPROCESSOR

 DENSE BLSPAR C-MK MM ESS

STAIR 1.99 2.77 2.73 1.41 2.37
PILOTXWE 0.52 0.89 0.79 0.57 0.82
25FV47 1.00 1.27 1.33 0.61 1.15
PILOTXJA - 1.21 1.25 0.68 1.03
PILOT - - - 0.29 -
CYCLE - - - 0.59 1.47
CRE_C - - - 0.17 0.54
CRE_A - - - 0.16 0.54

BBS n0 BBS c0 BBSc1000

STAIR 2.23 - -
PILOTXWE 0.77 - -
25FV47 1.07 - -
PILOTXJA 1.00 - -
PILOT - 1.74 1.71
CYCLE 1.36 1.15 -
CRE_C 0.51 - -
CRE_A 0.51 - -

23

5.5 MEMORY PLANES REQUIRED

 DENSE BLSPAR C-MK MM ESS

STAIR 144 64 67 22 43
PILOTXWE 529 190 252 20 71
25FV47 676 443 407 41 136
PILOTXJA (841) 596 562 46 162
PILOT (2116) - - 642 -
CYCLE (3600) - - 84 296
CRE_C (8836) - - 115 386
CRE_A (11664) - - 135 394

BBS n0 BBS c0 BBSc1000

STAIR 43 - - -
PILOTXWE 71 - - -
25FV47 136 - - -
PILOTXJA 162 - - -
PILOT - 442 425 342
CYCLE 296 247 202 -
CRE_C 386 - - -
CRE_A 394 - - -

6. Analysis and Conclusions

6.1 Analysis

The performance of the MM scheme for the matrix PILOT gives an indication of
the complexity aspect of this method. If the matrix is treated as dense it would
require the following number of DAP size operations:

DFLM(dense) DFLA(dense)

2116 2300

While analysing the data stack for the MM scheme for PILOT gives the measures:

DFLM(dense) DFLA(dense)

642 11350

24

The resulting DFLA count (11350) is 38% of the maximum possible figure if the
whole data structure of 642 planes had to be traversed for each row block. This
illustrates the point (Section 2.) that in the MM scheme, a large fraction of the data
structure has to be traversed for summation operation in each row block.

The development of sparse matrix techniques has made it possible to solve large
scale LP problems on computers of moderate size, although even for serial
computers, there are some considerable overhead involved with the indirect
addressing of the data structure. The salient features of the proposed data
structure, which supports sparse matrix vector multiplication on the massively
parallel DAP computer are the overlaid blocks and the block matching heuristic.

Generally, the use of overlaid blocks is advantageous for reducing the
communication between processors. The block matching technique also contributes
in reducing the communication and is a key to parallelism for the more compact
BBS scheme. The figure (Fig 6.1) shows an example of the number of DAP size
floating point operations required for the matrix PILOTXJA as a function of the
aggregation parameter Φ , the curve marked "DFL" shows the combined number of
DAP size floating point operations, this curve is almost flat over the range of F
starting with Φ=0 corresponding to MBLK block bands and up to Φ =26500 which
corresponds to just one block band. However, with increasing aggregation more
communication is likely to follow, this is evidenced by the presence of block column
indices in the data structure shown in Table 4.4 in comparison with Table 4.3 .

Block banded scheme
PILOTXJA.AAT

 Thousands

Aggregation parameter for determining the block bands

1 DFLM 2 DFLA 3 DFL steps

Fig. 6.1

25

6.2 Conclusions
The two main issues with the proposed scheme are the folllowing

1) Inefficient packing of overlaid blocks (collisions)

2) Non-matching of block indices in the planes (scattering)

The first issue arises if there is a regular pattern in the matrix which matches the
block size; if this is caused by some form of structured sparsity, then this could be
exploited in different ways. If the only apparent structure is a repeated block
pattern, then the collision problem could be resolved by mapping a slightly different
blocksize e.g. (p-1) by (p-1) onto the p by p processor grid. A single dense row or
column can also lead to inefficient packing, but if detected the contribution from
such rows or colums to the matrix-vector product can be computed separately by
highly parallel methods. The matrices CRE_A and CRE_C contains dense rows and
columns which explains the reduction of performance in these cases. However, no
provision was made for the separate treatment of the dense rows and columns.

In dealing with the second issue we would like to use a re-ordering method which
improves the block sparsity pattern and thus simplifying the block matching
procedure. The Cuthill-McKee re-ordering was only beneficial for the scattered
matrices: 24FV47, PILOTXJA and PILOT, while the re-ordering did not improve
the performance for the matrices STAIR , PILOTXWE and CYCLE which were
already block sparse.

7. Acknowledgements
Mr. Johannes Andersen is supported by the Science and Engineering Research
Council (UK) CASE studentship with Active Memory Technology (AMT) as the
industrial sponsor. The authors gratefully acknowledge the equipment facilities
offered by AMT and Queen Mary & Westfield College.

26

8. Appendix

Apendix A

The FORTRAN PLUS language contains some parallel extensions to
FORTRAN77. The '*' in front of the first array dimension number in some of the
array dimension statements indicate that the variable is a parallel object. The new
FORTRAN-PLUS 'enhanced' will map the objects onto the machine architecture
as parallel as possible, the compiler is therefore also called "unrestricted", this
greatly facilitates portability between DAP computers of different size, e.g. from the
32 by 32 grid array of processors of the AMT DAP510 to the DAP610 which has
a grid of 64 by 64 processors.

If an array is declared with a parallel dimension, then the index can be omitted in a
statement with the implied meaning "for all elements" of the parallel dimension. An
operation can also be selectively masked by substituting an index by a logical
condition. As the selective masking operations are performed in parallel, the
memory can be considered as content addressable, this property is a characteristic
of the massively parallel architecture.

FORTRAN PLUS also includes a number of functions to facilitate an efficient use
of the DAP. The functions used in the code have the following actions:

 matr(V,R)
Returns a matrix by copying the vector V onto R rows (vector broadcasting).

 sumc(M)
Returns a vector of the sums over columns of the matrix M.

27

The following program example shows the time-critical part of the code for the
DAP. The pointers to the data structure LTAB1, LTAB2 and KTAB are set up on
the host computer.

 PROGRAMESS
C ------ MATRIX-CECTOR multiplication scheme.
 Integer P, ROWS, COLUMS
 Parameter(P=32, ROWS=356, COLUMNS=356, NMEM=43,
 > MBLK=(ROWS-1)/P+1, NBLK=(COLUMNS-1)/P+1)
 real A(*P, *P, NMEM), AX(*P, *P, NMEM), BLKSUM(*P, *P)
 real BRCAST(*P,*P), X(*P, NBLK), XBLOCK(*P)
 real XMERG(*P, *P, NMEM), Y(*P, MBLK)
 integer IA, IB, JMAP(*P, *P, NMEM)
 integer K, KTAB(MBLK), L, LTAB1(NBLK), LTAB2(NMEM)
c
c ------ 1. x-vector broadcasting
c
 do 100 L=1, NBLK
 BRCAST = matr(X(, L), P)
 IA = LTAB1(L)
 IB = LTAB1(L+1)-1
c
 do 100 KA = IA, IB
 KMEM = LTAB2(KA)
 XMERG(JMAP(, , KMEM).eq.L, KMEM) = BRCAST
 100 continue

c ------ 2. Parallel multiplication
 do 200 KMEM=1, NMEM
 AX(, , KMEM)= A(, , KMEM)*XMERG(, , KMEM)
 200 continue

c ----- 3. Parallel summation
 do 300 K = 1, MBLK
 IA = KTAB(K)
 IB = KTAB(K+1)-1
 BLKSUM = AX(, , IA)
 do 310 KMEM = IA+1, IB

 BLKSUM = BLKSUM+AX(,, KMEM)
 310 continue
c
 Y(, K)= sumc(BLKSUM)
300 continue

28

Appendix B

stair 356/1 1275O

Fig. 8.1

pilotxue 722/2 1O372

 Fig. 8.2

29

 25fv47 82O/2 22968

 Fig. 8.3

 Pilotxja 924/3 27424

Fig. 8.4

30

pilot 1441/4 12O521

Fig. 8.5

cycle 1889/5 57301

Fig. 8.6

31
cre_c 2986/7 40796
Fig. 8.7

cre_a 3428/8 44924 Fig. 8.8

32

9. References
[AMTFOR90] Active Memory Technology (1990), FORTRAN-PLUS enhanced,
Technical publication man 102.01. AMT Ltd. Reading, U.K.

[ANLEVM90] Andersen, J., Levkovitz, R., Mitra, G., and Tamiz, M. (1990)
Adopting the Interior Point Method for the solution of LP's on serial, coarse grain
parallel and massively parallel computers. Technical Report, Dept of Mathematics
and Statistics, Brunel University, Uxbridge, Middlesex, U.K.

[BARESH84] Barlow, R.,H., Evans, D.,J., Shanehchi, J., (1984) Sparse Matrix
Vector Multiplication on the DAP, Super Computers and Parallel Computation,
Clarendon Press, Oxford, pp 149-155.

[CARHKW89] Carolan, W.J., Hill, J.,E., Kennington, J.,L., Niemi, S., Wichman,
S..J. (1989) An Empirical Evaluation of the KORBX Algorithms for Military Airlift
Applications, Tech. Report 89-OR-06, Dept. Comp. Sci. Southern Methodist
University, Dallas, USA.

[ERHEL] ErhelJ., (1990) Sparse Matrix Multiplication on Vector Computers,
International Jounal of High Speed Computing, Vol. 2 No.2, June 1990.

[GAYM85] Gay, D.M. (1985) Electronic Mail Distribution of Linear Programming
Test Problems, Mathematical Programming Society, COAL Newsletter.

[GEOLIU81] George, J.A. and Liu, J.W., Computer Solutions of Large Sparse
Positive Definite Systems, Prentice Hall, 1981.

[KARMAR84] Karmarkar, N. (1984) A New Polynomial Time Algorithm for
Linear Programming, Combinatoria, vol 4, pp373-394.

[MORMAK84] Morjaria, M., and Makinson, G. J. (1984) Unstructured Sparse
Matrix-Vector Multiplication on the DAP, Super Computers and Parallel
Computation, Clarendon Press, Oxford, pp 157-166, 1984.

[PARKINS81] Parkinson, D. (1981) Sparse Matrix Vector Multiplication on the
DAP, Technical Report, DAP Support Unit, Queen Mary & Westfield College,
London, UK.

[PARKIN90] Parkinson, D., and Litt, J., (editors) (1990) Massively Parallel
Computing with the DAP, MIT Press, Cambridge , Massachusetts. U.S.A.

